JP2008231553A - Method for producing low elastic titanium alloy sheet and titanium alloy sheet - Google Patents

Method for producing low elastic titanium alloy sheet and titanium alloy sheet Download PDF

Info

Publication number
JP2008231553A
JP2008231553A JP2007076530A JP2007076530A JP2008231553A JP 2008231553 A JP2008231553 A JP 2008231553A JP 2007076530 A JP2007076530 A JP 2007076530A JP 2007076530 A JP2007076530 A JP 2007076530A JP 2008231553 A JP2008231553 A JP 2008231553A
Authority
JP
Japan
Prior art keywords
titanium alloy
cold rolling
alloy plate
alloy sheet
solution treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007076530A
Other languages
Japanese (ja)
Inventor
Fumihiko Motojima
文彦 源島
Takuo Yamaguchi
拓郎 山口
Shuji Hanada
修治 花田
Hiroaki Matsumoto
洋明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nissan Motor Co Ltd
Original Assignee
Tohoku University NUC
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nissan Motor Co Ltd filed Critical Tohoku University NUC
Priority to JP2007076530A priority Critical patent/JP2008231553A/en
Publication of JP2008231553A publication Critical patent/JP2008231553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a low elastic titanium alloy sheet in which only an elastic modulus is reduced while maintaining its strength, and to provide a titanium alloy sheet. <P>SOLUTION: A low elastic titanium alloy sheet having a martensitic structure is produced through: a solution treatment step at a β transformation temperature or above; a first cold rolling step succeeding to the solution treatment step; and a second cold rolling step using a cross system with respect to the first cold rolling. When the reduction rates (%) of the first cold rolling step and the second cold rolling step are expressed as RD1 and RD2, respectively, RD2/RD1 is 1.1 to 2.5, and also satisfies RD1×RD2>400. The titanium alloy is obtained by the above production method, and contains 6 to 18% vanadium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低弾性チタン合金板の製造方法及びチタン合金板に係り、更に詳細には、高強度低弾性率で高弾性変形能な低弾性チタン合金板の製造方法及びチタン合金板に関する。   The present invention relates to a method for producing a low-elasticity titanium alloy plate and a titanium alloy plate, and more particularly to a method for producing a low-elasticity titanium alloy plate having high strength and low elastic modulus and high elastic deformability, and a titanium alloy plate.

チタン合金は比強度や耐食性に優れるため、航空、軍事、宇宙、深海探査、化学プラントなどの分野で多用されている。この汎用チタン合金はその組織上、α型、α+β型、β型に分類される。中でも、α+β型チタン合金のTi‐6%Al‐4%Vは強度が高いこと等の理由で多用されてきた。   Titanium alloys are excellent in specific strength and corrosion resistance, and are widely used in fields such as aviation, military, space, deep sea exploration, and chemical plants. This general-purpose titanium alloy is classified into α type, α + β type, and β type according to its structure. Among them, Ti-6% Al-4% V of α + β type titanium alloy has been frequently used because of its high strength.

また、従来のβ型合金としては、例えば、Ti‐15V‐3Cr‐3Sn‐3Al、Ti‐22V‐4Alなどがあり、しなやかである特徴から、眼鏡フレームやゴルフクラブに用いられている。更に、上記汎用β型合金の他にヤング率が80GPaを下回る種類のβ型チタン基合金が提案されており、例えば、生体適合品(例えば、人工骨等)、装身具(例えば、眼鏡のフレーム等)、スポーツ用品(例えば、ゴルフクラブ等)、スプリングなどへの適用が期待されている(例えば特許文献1〜4参照。)。
特開2005‐113227号公報 特開2002‐180168号公報 特開2004‐353039号公報 特許第3375083号公報
Further, as conventional β-type alloys, for example, there are Ti-15V-3Cr-3Sn-3Al, Ti-22V-4Al, etc., which are used for spectacle frames and golf clubs because of their supple characteristics. Furthermore, in addition to the general-purpose β-type alloys, β-type titanium-based alloys whose Young's modulus is less than 80 GPa have been proposed. For example, biocompatible products (for example, artificial bones), jewelry (for example, glasses frames) ), Application to sports equipment (for example, golf clubs), springs, and the like is expected (see, for example, Patent Documents 1 to 4).
JP 2005-113227 A Japanese Patent Laid-Open No. 2002-180168 JP 2004-353039 A Japanese Patent No. 3375083

一方、上記α型、α+β型、β型チタン合金以外のチタン合金として、マルテンサイト組織を有するチタン合金が挙げられる。このチタン合金は、V,Mo,Nb等のβ安定化元素の料を適度に制御し、β相安定温度域で溶体化処理した際に、α’やα”のマルテンサイト組織が現れることが特徴である。
具体的な合金としては、Ti‐V‐Al、Ti‐V‐Al‐Fe、Ti‐Nb‐Sn、Ti‐Nb‐Al、Ti‐Mo‐Sn等が知られている。これらのチタン合金は、マルテンサイト組織であるため形状記憶効果を示す。また、弾性率も純チタンに比べ低くなる。
従って、形状記憶合金としての応用だけでなく、低弾性が望まれる生体適合品、装身具、スポーツ用品、スプリングなどへの適用が期待されている。例えば、人体への適合性が良いTi‐Nb‐SnやTi‐Mo‐Sn合金は医療用途への応用が期待されている(例えば特許文献5,6参照。)。
また、Ti‐V系合金は、NbやMoに対しVが低融点であるため、溶製が容易であり、Ti‐15V‐3Cr‐3Sn‐3Alのような汎用合金と同様に低コストで製造できることから、医療用途以外の種類の用途への適用が期待されている。
特許第3521253号 特公昭59‐35978号公報
On the other hand, titanium alloys having a martensitic structure can be cited as titanium alloys other than the α-type, α + β-type, and β-type titanium alloys. In this titanium alloy, when a β-stabilizing element material such as V, Mo, Nb is appropriately controlled and a solution treatment is performed in a β-phase stable temperature range, a martensitic structure of α ′ or α ″ may appear. It is a feature.
As specific alloys, Ti—V—Al, Ti—V—Al—Fe, Ti—Nb—Sn, Ti—Nb—Al, Ti—Mo—Sn, and the like are known. Since these titanium alloys have a martensite structure, they exhibit a shape memory effect. Also, the elastic modulus is lower than that of pure titanium.
Therefore, it is expected to be applied not only as a shape memory alloy but also to biocompatible products, accessories, sports equipment, springs and the like for which low elasticity is desired. For example, Ti—Nb—Sn and Ti—Mo—Sn alloys having good compatibility with the human body are expected to be applied to medical applications (see, for example, Patent Documents 5 and 6).
Ti-V alloys are easy to melt because V has a low melting point relative to Nb and Mo, and are manufactured at a low cost, just like general-purpose alloys such as Ti-15V-3Cr-3Sn-3Al. Since it can be applied, it is expected to be applied to other types of uses other than medical uses.
Japanese Patent No. 3512253 Japanese Examined Patent Publication No.59-35978

これらマルテンサイト組織を有するチタン合金は、板材として製造する場合は、一般に熱間、冷間での圧延により板状に加工されるが、その際に板面内でマルテンサイト組織が配向し、結果として弾性率に板面内異方性(異方性)が生じやすい特長があった。
そのため、板面内での弾性率の方向による違いが製品の性能を左右する場合には、性能が悪化したり、ばらついたりする原因となっていた。例えば、圧延により製造された板から部品を打ち抜く際に、特定の向きで統一しないと、その後のプレス成型工程で部品を製造する際にスプリングバックが安定せず、部品の寸法制度が悪化するという問題があった。
また、製品により性能が大きく変わってしまう問題もあった。具体例を挙げれば、ゴルフクラブのフェースに用いる場合、弾性率の異方性が大きいと飛距離悪化や、打球の方向を損ねる原因になっていた。
更に、自動車等の回転体部品に上記チタン合金の板材を加工して用いた場合、回転する位置による弾性率の差が振動や騒音の原因となったり、応力集中により部品の疲労特性が低下するという欠点があった。
These titanium alloys having a martensite structure are generally processed into a plate shape by hot and cold rolling when manufactured as a plate material, and in that case, the martensite structure is oriented in the plate surface. As a result, the elastic modulus tends to cause in-plane anisotropy (anisotropy).
For this reason, when the difference in the direction of the elastic modulus in the plate surface affects the performance of the product, the performance deteriorates or varies. For example, when punching a part from a plate manufactured by rolling, if it is not unified in a specific direction, the spring back will not be stable when manufacturing the part in the subsequent press molding process, and the dimensional system of the part will deteriorate There was a problem.
In addition, there is a problem that the performance varies greatly depending on the product. As a specific example, when used for the face of a golf club, if the anisotropy of the elastic modulus is large, the flight distance deteriorates and the direction of the hit ball is damaged.
Furthermore, when the titanium alloy plate material is processed and used for a rotating body part such as an automobile, the difference in elastic modulus depending on the rotating position causes vibration and noise, and the fatigue characteristics of the part deteriorate due to stress concentration. There was a drawback.

一方、本発明者らは、かかる課題を達成すべくマルテンサイト組織を有するチタン合金板の工法について種々検討を重ねた結果、次のような知見を得るに至った。
即ち、ベータトランザス温度以上での溶体化処理を行うことで、α’やα”相のマルテンサイト組織とし、その後冷間圧延加工すると、マルテンサイト組織が加工集合組織を形成する。この加工集合組織により弾性率に異方性が生ずる。
しかし、先の冷間圧延方向に対しクロス方向に第二の冷間圧延加工を施すと、集合組織が変化し、結果として弾性率の異方性が大きく減少することを明らかにした。
On the other hand, the present inventors have made various studies on the construction method of a titanium alloy plate having a martensite structure in order to achieve such a problem, and as a result, have obtained the following knowledge.
That is, by performing a solution treatment at a temperature higher than the beta transus temperature, a martensite structure of α ′ or α ″ phase is formed, and then cold-rolled, the martensite structure forms a processed texture. Anisotropy occurs in the elastic modulus depending on the tissue.
However, it has been clarified that when the second cold rolling process is performed in the cross direction with respect to the previous cold rolling direction, the texture changes, and as a result, the anisotropy of the elastic modulus is greatly reduced.

本発明は、このような従来技術の有する課題及び新たな知見に鑑みてなされたものであり、その目的とするところは、強度を保持しつつ弾性率のみを低減した低弾性チタン合金板の製造方法及びチタン合金板を提供することにある。   The present invention has been made in view of the problems and new knowledge of the prior art, and the object of the present invention is to produce a low-elasticity titanium alloy plate having only a reduced elastic modulus while maintaining strength. It is to provide a method and a titanium alloy plate.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、β変態温度以上での溶体化処理後にクロス圧延を行うことにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by performing cross rolling after the solution treatment at the β transformation temperature or higher, and to complete the present invention. It came.

即ち、本発明のチタン合金板の製造方法は、マルテンサイト組織を有する低弾性チタン合金板を製造するに当たり、
β変態温度以上での溶体化処理工程、
前記溶体化処理工程に続く第1冷間圧延工程、
前記第1冷間圧延に対してクロス方式とした第2冷間圧延工程、
を行うことを特徴とする。
That is, the manufacturing method of the titanium alloy plate of the present invention, in manufacturing a low-elasticity titanium alloy plate having a martensite structure,
solution treatment process above the β transformation temperature,
A first cold rolling step following the solution treatment step,
A second cold rolling step in which a cross method is used for the first cold rolling;
It is characterized by performing.

また、本発明のチタン合金板の製造方法の好適形態は、第1冷間圧延工程と第2冷間圧延工程の圧下率(%)をそれぞれRD1、RD2としたときに、
RD2/RD1が1.1以上2.5以下であり、且つ以下の不等式、
RD1×RD2>400
を満たすことを特徴とする。
Moreover, when the suitable form of the manufacturing method of the titanium alloy plate of this invention sets the reduction | decrease rate (%) of a 1st cold rolling process and a 2nd cold rolling process to RD1, RD2, respectively,
RD2 / RD1 is 1.1 or more and 2.5 or less, and the following inequality:
RD1 × RD2> 400
It is characterized by satisfying.

更に、本発明のチタン合金板は、上記製造方法により得られたチタン合金板であって、
バナジウムを6〜18%含むことを特徴とする。
Furthermore, the titanium alloy plate of the present invention is a titanium alloy plate obtained by the above production method,
It contains 6 to 18% of vanadium.

本発明によれば、β変態温度以上での溶体化処理後にクロス圧延を行うこととしたため、従来品に比べてヤング率を低減させた低弾性チタン合金板の製造方法及びチタン合金板を提供することができる。   According to the present invention, since the cross rolling is performed after the solution treatment at the β transformation temperature or higher, a low elastic titanium alloy plate manufacturing method and a titanium alloy plate having a reduced Young's modulus compared to conventional products are provided. be able to.

以下、本発明の低弾性チタン合金板の製造方法について、更に詳細に説明する。なお、本明細書及び特許請求の範囲において、濃度、含有量、充填量などについての「%」は、特記しない限り質量百分率を表すものとする。   Hereafter, the manufacturing method of the low elastic titanium alloy plate of this invention is demonstrated in detail. In the present specification and claims, “%” for concentration, content, filling amount and the like represents a mass percentage unless otherwise specified.

上述の如く、本発明は、マルテンサイト組織を有する低弾性チタン合金板を製造するに当たり、以下の1〜3工程
1.β変態温度以上での溶体化処理工程、
2.前記溶体化処理工程に続く第1冷間圧延工程、
3.前記第1冷間圧延に対してクロス方式とした第2冷間圧延工程、
を行うことを特徴とする。
As described above, the present invention can produce a low-elasticity titanium alloy plate having a martensite structure by the following 1 to 3 steps. solution treatment process above the β transformation temperature,
2. A first cold rolling step following the solution treatment step,
3. A second cold rolling step in which a cross method is used for the first cold rolling;
It is characterized by performing.

本発明の製造方法では、上記工程を行うことにより、製造されたチタン合金板は、弾性率が等方的になるだけでなく、冷間圧延による加工硬化により強度も同時に向上する。言い換えれば、本発明者らは、チタン合金板の引張強度や伸びなどの強度特性も板面内で異方性が小さい場合に向上することを見出した。
また、本発明の製造方法により得られたチタン合金板の弾性率や強度の値は、合金の成分や加工条件により異なるが、具体的には、弾性率としては80GPaを下回る低い値と、強度として引張強度が1GPaを越えるような高い値とが同時に満たされる素材も得られる。
従って、かかるチタン合金板は、板面内での弾性率の方向による違いが少ないため、例えば、部品を打ち抜く際に、板面内でどの向きに打ち抜いても製品の性能に支障をきたさない。また、プレス成型工程で部品を製造する際にスプリングバックが一定であるため、部品の寸法制度が良く歩留まりが向上する。更に、かかるチタン合金板を、例えば、ゴルフクラブのフェースに用いた場合は、打球の方向や飛距離が安定する。自動車等の回転体部品に該チタン合金板を加工して用いた場合は、回転する位置による弾性率の差が少ないため振動や騒音が発生せず、弾性率の異方性に起因する応力集中も発生しないため、部品の疲労特性も向上する。
In the manufacturing method of the present invention, by performing the above steps, the manufactured titanium alloy sheet not only has an elastic modulus, but also has improved strength due to work hardening by cold rolling. In other words, the present inventors have found that strength characteristics such as tensile strength and elongation of the titanium alloy plate are improved when the anisotropy is small in the plate surface.
The elastic modulus and strength values of the titanium alloy plate obtained by the production method of the present invention vary depending on the alloy components and processing conditions. Specifically, the elastic modulus has a low value of less than 80 GPa and strength. As a result, a material that simultaneously satisfies a high tensile strength exceeding 1 GPa can be obtained.
Therefore, since the titanium alloy plate has little difference depending on the direction of the elastic modulus in the plate surface, for example, when punching a component, any direction in the plate surface does not hinder product performance. In addition, since the spring back is constant when the parts are manufactured in the press molding process, the dimensional system of the parts is good and the yield is improved. Furthermore, when such a titanium alloy plate is used for the face of a golf club, for example, the direction of the hit ball and the flight distance are stabilized. When the titanium alloy plate is processed and used for rotating parts such as automobiles, there is little difference in elastic modulus depending on the rotating position, so vibration and noise do not occur, and stress concentration caused by elastic modulus anisotropy This also improves the fatigue characteristics of the parts.

なお、上記クロス方向とは、第一の圧延に対して角度を変えて第二の冷間圧延を施すことを意味していて、角度については特に限定しないが、第一の圧延方向に対して略90度の方向であることが望ましいが、例えば45度とする等しても本発明の効果が発揮できれば特に問題ない。
また、本発明では、1.溶体化処理工程→2.第1冷間圧延工程→3.クロス方式の第2冷間圧延工程を行うが、上記溶体化処理工程の前の工程については、特に限定されるものではない。即ち、溶体化処理工程においてマルテンサイト組織が再結晶するため、本製造方法においてマルテンサイト組織を制御する上では、その前段階の組織に大きく影響されないためである。従って、上記溶体化処理工程の前工程として、熱間圧延等の一般的なチタン合金の製造方法を採用しても何ら問題ない。
更に、これら3つの工程の間には、本発明の主旨を逸脱しない範囲で種々の工程を挟んでも問題ない。例えば、溶体化処理工程の後に酸洗工程を入れても良いし、第2冷間圧延工程の後に表面性状を整えるための研磨工程を入れても良いし、第2冷間圧延工程の後にマルテンサイト組織を壊さない範囲で短時間の焼鈍工程を含んでも良い。
The cross direction means that the second cold rolling is performed by changing the angle with respect to the first rolling, and the angle is not particularly limited, but with respect to the first rolling direction. Although the direction is preferably approximately 90 degrees, there is no particular problem as long as the effect of the present invention can be exhibited even when the angle is set to 45 degrees, for example.
In the present invention, 1. Solution treatment step → 2. First cold rolling process → 3. Although the cross-type second cold rolling process is performed, the process before the solution treatment process is not particularly limited. That is, because the martensite structure is recrystallized in the solution treatment step, the martensite structure is not greatly influenced by the previous structure in controlling the martensite structure in the present manufacturing method. Therefore, there is no problem even if a general titanium alloy manufacturing method such as hot rolling is adopted as a pre-process of the solution treatment process.
Further, there is no problem even if various steps are interposed between these three steps without departing from the gist of the present invention. For example, a pickling process may be inserted after the solution treatment process, a polishing process for adjusting the surface properties may be inserted after the second cold rolling process, and martensite is added after the second cold rolling process. A short annealing process may be included as long as the site structure is not broken.

更に、本発明の製造方法においては、第1冷間圧延工程と第2冷間圧延工程の圧下率(%)をそれぞれRD1、RD2としたとき、
RD2/RD1が1.1以上2.5以下であり、且つ以下の不等式、
RD1×RD2>400
を満たすようにすることが好ましい。
これにより、マルテンサイト組織が適度に配向し、弾性率の異方性が好適に低減されうる。
Furthermore, in the production method of the present invention, when the reduction ratios (%) of the first cold rolling step and the second cold rolling step are RD1 and RD2, respectively,
RD2 / RD1 is 1.1 or more and 2.5 or less, and the following inequality:
RD1 × RD2> 400
It is preferable to satisfy.
Thereby, a martensite structure | tissue is orientated moderately and the anisotropy of an elasticity modulus can be reduced suitably.

なお、RD2/RD1が1.1未満のときは、あるいは、2.5超のときは、加工集合組織が、板面内で弾性率の異方性を促進するように発達することがあるため、十分な異方性を得られないことがある。また、RD1×RD2が400を下回るときは、圧下率が足りないためマルテンサイト組織に十分な歪がかからず、加工集合組織が形成されにくい。
ここで、上記圧下率は、圧延前の板厚と圧延後の板厚の関係で決定される値であり、第1冷間圧延と第2冷間圧延のそれぞれの圧延パス数については特に限定されないが、多くのパス数で圧下していく方法(1回のパスで表面付近しか歪みが入らないので、結晶が回転しにくい。)よりは、少ないパス数で素材内部まで結晶の回転が進行するような条件の方が望ましい。
When RD2 / RD1 is less than 1.1 or more than 2.5, the processed texture may develop to promote the anisotropy of elastic modulus within the plate surface. , Sufficient anisotropy may not be obtained. Further, when RD1 × RD2 is less than 400, since the reduction ratio is insufficient, the martensite structure is not sufficiently distorted, and the processed texture is difficult to be formed.
Here, the rolling reduction is a value determined by the relationship between the plate thickness before rolling and the plate thickness after rolling, and the number of rolling passes in each of the first cold rolling and the second cold rolling is particularly limited. Although it is not performed, the rotation of the crystal proceeds to the inside of the material with a smaller number of passes than the method of rolling down with a large number of passes (since distortion occurs only near the surface in one pass, the crystal is difficult to rotate). It is preferable to have such conditions.

上述の製造方法で得られるチタン合金板は、マルテンサイト組織を有するチタン合金から構成され、バナジウム(V)を6〜18%含むものである。
成分元素としてVを6%以上含め、溶体化処理によって常温でマルテンサイト相単相とすることで、常温での変形、即ち冷間加工が容易になる。一方、Vが18%を超えて含まれると、β相が安定化し溶体化処理後にマルテンサイト組織としにくくなる上、密度が大きくなり、チタン合金本来の特徴である軽量化が図れない。
上記チタン合金板では、その他にもβ安定化元素として、モリブデン(Mo),ニオブ(Nb),タンタル(Ta)等を含有していても良いし、更にはアルミニウム(Al)、スズ(Sn)等を加工性向上のために添加しても良い。
The titanium alloy plate obtained by the manufacturing method described above is made of a titanium alloy having a martensite structure and contains 6 to 18% of vanadium (V).
By including 6% or more of V as a component element and forming a single martensite phase at room temperature by solution treatment, deformation at room temperature, that is, cold working becomes easy. On the other hand, when V exceeds 18%, the β phase is stabilized and it becomes difficult to form a martensite structure after the solution treatment, and the density is increased, and the weight reduction, which is a characteristic characteristic of the titanium alloy, cannot be achieved.
In addition, the titanium alloy plate may contain molybdenum (Mo), niobium (Nb), tantalum (Ta), etc. as a β-stabilizing element, and further aluminum (Al), tin (Sn). Etc. may be added to improve processability.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1〜12)
純度99.9%のTi,V,Al,Snの純金属を用い、アルゴン雰囲気中でアーク溶解によって、表1に示す2種類の組成のチタン合金(Ti‐7.68V‐4Sn、Ti‐11.76V‐2Al)に作製し、約90gのインゴットを得た。
(Examples 1-12)
Titanium alloys (Ti-7.68V-4Sn, Ti-11) having two kinds of compositions shown in Table 1 were obtained by arc melting in an argon atmosphere using pure metals of Ti, V, Al, and Sn with a purity of 99.9%. .76V-2Al) to obtain about 90 g of ingot.

このインゴットを真空中で1150℃×24時間の均質化処理を施した後、800℃で熱間圧延し、所定の板厚の板を得た。更にベータトランザス温度以上の950℃で1時間の溶体化処理を行い氷水中に焼き入れた。溶体化処理後の合金の組織を光学顕微鏡で観察した結果を図1、図2の写真に示す。これら写真からわかるように、針状のマルテンサイト組織となっていることが確認できた。   The ingot was homogenized at 1150 ° C. for 24 hours in a vacuum and then hot-rolled at 800 ° C. to obtain a plate having a predetermined thickness. Further, a solution treatment was carried out at 950 ° C. above the beta transus temperature for 1 hour, and then quenched in ice water. The results of observing the structure of the alloy after solution treatment with an optical microscope are shown in the photographs of FIGS. As can be seen from these photographs, it was confirmed that the structure had a needle-like martensite structure.

以上のようにして溶体化処理を終えた試料について、表面の酸化スケールを研削除去した後、表1に示す圧下率で第1冷間圧延を行い、更に第1冷間圧延に対してクロス方向に第2冷間圧延を行い、本例のチタン合金板を得た。
ここで、第2冷間圧延は第1冷間圧延に対して90度方向に実施した。第2冷間圧延後の試料の板厚はすべて1mmとした(第2冷間圧延後に1mm厚となるように、第1冷間圧延前の試料の厚みを調整した。)。
About the sample which completed the solution treatment as mentioned above, after grinding and removing the surface oxide scale, the first cold rolling is performed at the rolling reduction shown in Table 1, and further in the cross direction with respect to the first cold rolling. The second cold rolling was performed to obtain a titanium alloy plate of this example.
Here, the second cold rolling was performed in the direction of 90 degrees with respect to the first cold rolling. The plate thickness of the sample after the second cold rolling was all 1 mm (the thickness of the sample before the first cold rolling was adjusted so as to be 1 mm after the second cold rolling).

(比較例1,2)
1方向のみの冷間圧延とし、第1冷間圧延を行わなかった以外は、実施例1と同様の工程を繰り返して、本例のチタン合金板を得た。
(Comparative Examples 1 and 2)
A titanium alloy sheet of this example was obtained by repeating the same process as in Example 1 except that the cold rolling was performed in only one direction and the first cold rolling was not performed.

<評価方法>
上記各例のチタン合金板について、以下の評価を行った。
<Evaluation method>
The following evaluation was performed about the titanium alloy plate of each said example.

1.ヤング率
JIS Z 2280に準じて、共振法によりRD2方向を基準として、0度方向と90度方向のヤング率を室温で測定した。この結果を表1に示す。
1. Young's Modulus According to JIS Z 2280, Young's modulus in the 0 degree direction and the 90 degree direction was measured at room temperature using the resonance method with the RD2 direction as a reference. The results are shown in Table 1.

2.引張試験
実施例7、8、比較例2に示すチタン合金板について、JIS Z 2241試験に準じて、引張試験により引張強度を測定した。この結果を表2に示す。
2. Tensile test Tensile strength of the titanium alloy plates shown in Examples 7 and 8 and Comparative Example 2 was measured by a tensile test according to the JIS Z 2241 test. The results are shown in Table 2.

Figure 2008231553
Figure 2008231553

Figure 2008231553
Figure 2008231553

表1より、本発明の一例である実施例1〜12のチタン合金板は、ヤング率の異方性が15GPa以下であり、一方向圧延の結果である比較例1、2のチタン合金板と比べ、十分に異方性を低減することができた。   From Table 1, the titanium alloy plates of Examples 1 to 12, which are examples of the present invention, have an anisotropy of Young's modulus of 15 GPa or less, and the titanium alloy plates of Comparative Examples 1 and 2 that are the results of unidirectional rolling. In comparison, the anisotropy could be reduced sufficiently.

図3に表1の結果を、横軸にRD2/RD1で、縦軸に弾性率の方向による大きさの違い具合でとって整理したグラフを示したが、RD2/RD1が1.1以上2.5以下の範囲で特に弾性率の異方性が小さいことが確かめられた。   FIG. 3 shows a graph in which the results of Table 1 are plotted with the horizontal axis representing RD2 / RD1 and the vertical axis representing the difference in size depending on the direction of the elastic modulus. RD2 / RD1 is 1.1 or more 2 It was confirmed that the anisotropy of the elastic modulus was particularly small in the range of .5 or less.

また、表2より、実施例6や実施例7のチタン合金板は、比較例2のチタン合金板の一方向圧延の引張試験結果に比べ、引張強度の角度による差が半分以下になっていることも分かった。   Further, from Table 2, the difference in the tensile strength angle of the titanium alloy plates of Examples 6 and 7 is less than half compared to the tensile test result of the unidirectional rolling of the titanium alloy plate of Comparative Example 2. I also understood that.

更に、表1,2より、実施例6のチタン合金板は、板面内で弾性率、強度の異方性が小さい上、強度が1100MPa以上、弾性率は約70GPaであり、高強度と低弾性を併せ持つ面内異方性が小さいチタン合金板であることが確かめられた。これは現在最も多用されているTi‐6Al‐4V合金と比較すると、同程度の強度でありながら弾性率が40GPa程度も低くできたことになる。   Furthermore, from Tables 1 and 2, the titanium alloy plate of Example 6 has a low modulus of elasticity and strength anisotropy within the plate surface, a strength of 1100 MPa or more, and a modulus of elasticity of about 70 GPa. It was confirmed that this was a titanium alloy plate having both elasticity and small in-plane anisotropy. Compared with the Ti-6Al-4V alloy which is most frequently used at present, this means that the elastic modulus can be lowered by about 40 GPa while having the same strength.

以上に説明した本発明のチタン合金板は、種々の製品に幅広く利用でき、高強度低弾性を付与し、生産性の向上と低コスト化を図ることができる。
代表的には、自動車、産業機械、バイク、自転車、精密機器、家電品、航空宇宙機器、船舶、装身具、スポーツ・レジャ用品、生体関連品、医療器材、玩具等に利用できる。
The titanium alloy plate of the present invention described above can be widely used for various products, imparts high strength and low elasticity, and can improve productivity and reduce costs.
Typically, it can be used for automobiles, industrial machines, motorcycles, bicycles, precision equipment, home appliances, aerospace equipment, ships, accessories, sports / leisure products, biological products, medical equipment, toys, and the like.

また、防振特性が要求される製品に利用できる。即ち、本発明のチタン合金板は、従来のチタン合金に対してヤング率が低い上、マルテンサイト相又はマルテンサイト変態を利用できるが、当該マルテンサイト相はTi‐NiやMn‐Cuに代表される双晶型の制振合金と同じく双晶変形するので、これら双晶型の制振合金と同様に振動吸収特性が優れる製品が得られる。   It can also be used for products that require anti-vibration characteristics. That is, the titanium alloy sheet of the present invention has a lower Young's modulus than conventional titanium alloys and can use a martensite phase or a martensite transformation. The martensite phase is represented by Ti-Ni or Mn-Cu. As with twin-type damping alloys, twin deformation occurs, so that products having excellent vibration absorption characteristics can be obtained in the same manner as these twin-type damping alloys.

具体的には、本発明のチタン合金板は、例えば、自動車の車室内こもり音の発生を防止する防振緩衝材として、また、カーオーディオのマウントなどに利用することでビビリ音の解消などに好適に使用することができる。   Specifically, the titanium alloy plate of the present invention is used, for example, as an anti-vibration cushioning material that prevents the occurrence of a booming noise in an automobile interior, and to eliminate chattering noise when used for mounting a car audio. It can be preferably used.

更に、スポーツ・レジャ用品の一種であるゴルフクラブや、バットなど、特にフェース部分にも好適に利用でき、この場合は、その低ヤング率と高強度による薄肉化とによりゴルフボールや、野球ボールの飛距離を相当伸ばし得る。   Furthermore, it can be suitably used for golf clubs and bats, which are a kind of sports and recreation goods, and particularly for the face portion. The flight distance can be extended considerably.

更にまた、本発明のチタン合金板は、例えば、自動車の各種メタルシール、シャシー、ボルト、ゼンマイ、動力伝動ベルト(CVTのフープ等)、ギア、歯車、タイヤの内張り、タイヤの補強材、燃料タンク等の各種容器類等の各種分野の各種製品に利用できる。   Furthermore, the titanium alloy plate of the present invention includes, for example, various metal seals for automobiles, chassis, bolts, springs, power transmission belts (CVT hoops, etc.), gears, gears, tire linings, tire reinforcements, fuel tanks. It can be used for various products in various fields such as various containers.

Ti‐7.68V‐4Sn合金の溶体化処理後の光学顕微鏡写真である。It is an optical micrograph after the solution treatment of Ti-7.68V-4Sn alloy. Ti‐11.76V‐2Al合金の溶体化処理後の光学顕微鏡写真である。It is an optical micrograph after the solution treatment of Ti-11.76V-2Al alloy. 弾性率の異方性に対する、RD1とRD2の比の影響を現すグラフである。It is a graph showing the influence of the ratio of RD1 and RD2 on the anisotropy of elastic modulus.

Claims (3)

マルテンサイト組織を有する低弾性チタン合金板を製造するに当たり、
β変態温度以上での溶体化処理工程、
前記溶体化処理工程に続く第1冷間圧延工程、
前記第1冷間圧延に対してクロス方式とした第2冷間圧延工程、
を行うことを特徴とする低弾性チタン合金板の製造方法。
In producing a low elastic titanium alloy plate having a martensite structure,
solution treatment process above the β transformation temperature,
A first cold rolling step following the solution treatment step,
A second cold rolling step in which a cross method is used for the first cold rolling;
A method for producing a low-elasticity titanium alloy plate, characterized in that:
第1冷間圧延工程と第2冷間圧延工程の圧下率(%)をそれぞれRD1、RD2としたときに、
RD2/RD1が1.1以上2.5以下であり、且つ以下の不等式、
RD1×RD2>400
を満たすことを特徴とする請求項1に記載の低弾性チタン合金板の製造方法。
When the reduction ratio (%) of the first cold rolling process and the second cold rolling process is RD1 and RD2, respectively,
RD2 / RD1 is 1.1 or more and 2.5 or less, and the following inequality:
RD1 × RD2> 400
The method for producing a low-elasticity titanium alloy plate according to claim 1, wherein:
請求項1又は2に記載の低弾性チタン合金板の製造方法により得られたチタン合金板であって、
バナジウムを6〜18%含むことを特徴とするチタン合金板。
A titanium alloy plate obtained by the method for producing a low-elasticity titanium alloy plate according to claim 1 or 2,
A titanium alloy plate containing 6 to 18% of vanadium.
JP2007076530A 2007-03-23 2007-03-23 Method for producing low elastic titanium alloy sheet and titanium alloy sheet Pending JP2008231553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076530A JP2008231553A (en) 2007-03-23 2007-03-23 Method for producing low elastic titanium alloy sheet and titanium alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076530A JP2008231553A (en) 2007-03-23 2007-03-23 Method for producing low elastic titanium alloy sheet and titanium alloy sheet

Publications (1)

Publication Number Publication Date
JP2008231553A true JP2008231553A (en) 2008-10-02

Family

ID=39904707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076530A Pending JP2008231553A (en) 2007-03-23 2007-03-23 Method for producing low elastic titanium alloy sheet and titanium alloy sheet

Country Status (1)

Country Link
JP (1) JP2008231553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910103A (en) * 2019-05-10 2020-11-10 大田精密工业股份有限公司 Titanium alloy sheet material and method for producing same
CN113930641A (en) * 2021-10-18 2022-01-14 东北大学 Medical beta titanium alloy plate and cold machining manufacturing method for controlling texture thereof
KR20230088655A (en) * 2020-12-15 2023-06-20 한국재료연구원 Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910103A (en) * 2019-05-10 2020-11-10 大田精密工业股份有限公司 Titanium alloy sheet material and method for producing same
KR20230088655A (en) * 2020-12-15 2023-06-20 한국재료연구원 Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same
KR102582659B1 (en) 2020-12-15 2023-09-22 한국재료연구원 Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same
CN113930641A (en) * 2021-10-18 2022-01-14 东北大学 Medical beta titanium alloy plate and cold machining manufacturing method for controlling texture thereof

Similar Documents

Publication Publication Date Title
US7438849B2 (en) Titanium alloy and process for producing the same
JP4605514B2 (en) Titanium plate and titanium plate manufacturing method
KR100417943B1 (en) Titanium alloy and method for producing the same
US20030168138A1 (en) Method for processing beta titanium alloys
US20090074606A1 (en) Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part
WO2002050324A1 (en) Titanium alloy having high elastic deformation capacity and method for production thereof
JP2015508847A (en) Titanium alloy
US20150147225A1 (en) Beta-type titanium alloy having low elastic modulus and high strength
JP5005889B2 (en) High strength low Young&#39;s modulus titanium alloy and its manufacturing method
JP2013539822A (en) High strength and ductile alpha / beta titanium alloy
JP2010007166A (en) alpha+beta TYPE TITANIUM ALLOY FOR CASTING, AND GOLF CLUB HEAD USING THE SAME
JP2008115932A (en) Torque transmitting member and harmonic drive gear
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
JP2007113120A (en) Titanium alloy and its production method
JP2002332531A (en) Titanium alloy and manufacturing method
JP5748267B2 (en) Titanium alloy billet, method for producing titanium alloy billet, and method for producing titanium alloy forged material
JP2012132057A (en) Titanium alloy for golf-club face
JP2011179075A (en) Magnesium alloy sheet material having improved cold-formability and in-plane anisotropy, and method for manufacturing the same
JP2008231553A (en) Method for producing low elastic titanium alloy sheet and titanium alloy sheet
JP2002249836A (en) Titanium alloy having high elastic deformability and its manufacturing method
JP2012184505A (en) Aluminum alloy hollow shaped member excellent in fatigue strength and method for manufacturing the same, and swing arm for motorcycle
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
JP5605273B2 (en) High strength α + β type titanium alloy having excellent hot and cold workability, production method thereof, and titanium alloy product
JP5668712B2 (en) A hard pure titanium plate excellent in impact resistance and a method for producing the same.
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same