JP2008228048A - Quantum communicator - Google Patents

Quantum communicator Download PDF

Info

Publication number
JP2008228048A
JP2008228048A JP2007065114A JP2007065114A JP2008228048A JP 2008228048 A JP2008228048 A JP 2008228048A JP 2007065114 A JP2007065114 A JP 2007065114A JP 2007065114 A JP2007065114 A JP 2007065114A JP 2008228048 A JP2008228048 A JP 2008228048A
Authority
JP
Japan
Prior art keywords
quantum
channel
signal
optical
communication device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007065114A
Other languages
Japanese (ja)
Other versions
JP5014844B2 (en
Inventor
Junichi Abe
淳一 安部
Katsuhiro Shimizu
克宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007065114A priority Critical patent/JP5014844B2/en
Publication of JP2008228048A publication Critical patent/JP2008228048A/en
Application granted granted Critical
Publication of JP5014844B2 publication Critical patent/JP5014844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an excellent quantum communicator which detects a classical channel of a strong light intensity, masks a gate bias of a quantum channel, and does not cause a performance degradation due to an excessive noise. <P>SOLUTION: The quantum communicator comprises: a multiplexing means 3 for multiplexing waves of the quantum channel and classical channel; a transmission path 4 for transmitting an optical signal having a wave multiplexed by the multiplexing means; an optical demultiplexing means 5 for demultiplexing the optical signal transmitted via the transmission path; a photon detecting means 6 for receiving the optical signal of the quantum channel of the optical signals demultiplexed by the optical demultiplexing means; a classical channel detecting means 7 for detecting the classical channel of the optical signals demultiplexed by the optical demultiplexing means; a mask signal generating means 8 for generating a mask signal based on a detection result of the classical channel detecting means; and a bias signal generating means 9 for masking a bias signal applied to the photon detecting means based on the mask signal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、量子暗号通信において光子を検出するための量子通信装置に関するものである。   The present invention relates to a quantum communication device for detecting photons in quantum cryptography communication.

従来技術として、量子暗号を使用する通信の方法において、多重した強い光よって信号光の同期をとるものがある(例えば、特許文献1参照)。また、同一の光源から出力される信号に対し、時間的に光強度を変え位相制御を行っているものがある(例えば、非特許文献1参照)。また、伝送路中の信号光の状態を制御するものがある(例えば、特許文献2参照)。さらに、光パワーの大きいチャネルが微弱なチャネルに影響を及ぼすことなく、かつ効率的な情報通信を可能にする光多重通信システムがある(例えば、特許文献3参照)。   As a conventional technique, there is a communication method using quantum cryptography in which signal light is synchronized by multiplexed strong light (see, for example, Patent Document 1). In addition, there is a signal in which the light intensity is temporally changed and phase control is performed on signals output from the same light source (for example, see Non-Patent Document 1). Also, there is one that controls the state of signal light in the transmission line (see, for example, Patent Document 2). Furthermore, there is an optical multiplex communication system that enables efficient information communication without a channel having high optical power affecting a weak channel (see, for example, Patent Document 3).

しかしながら、このような方法では、通信装置の通信速度が上昇するに従い、量子チャネルと古典チャネルの分離制御が難しくなり、通信路の制御用に用いられる強度の強い古典チャネルの光が量子チャネルの光子検出器に入射され、その雑音によって誤り率が増大するという問題があった。また、強度の強い光信号が、光子検出器に入射され、光子検出器を破損してしまうという問題があった。   However, in such a method, as the communication speed of the communication device increases, it becomes difficult to control the separation of the quantum channel and the classical channel, and the strong classical channel light used for controlling the communication path becomes the quantum channel photon. There is a problem that the error rate increases due to the noise incident on the detector. Further, there is a problem that a strong optical signal is incident on the photon detector and damages the photon detector.

ここで、単一光子に関する従来技術について説明すると、1.5μm帯での光子検出には、感度の問題からInGaAs系のAPD(avalanche photodiode)が用いられることが多い(例えば、非特許文献2参照)。光子検出に用いられるAPDは、Geigerモードと呼ばれる特殊なバイアス条件で駆動される。Geigerモード動作では、APDの降伏電圧Vよりも若干高めにバイアス電圧Vbiasを印加した状態にしておき、光子の入射によって生じた電子雪崩を、パルス信号として観測することができる。また、入射される光子がクロック信号に同期して周期的に飛来するような場合には、gated モードと呼ばれ、入射光子信号と同期して、信号光子が入射されるタイミングに合わせて、APDの降伏電圧Vより大きなバイアス電圧を印加する方式が用いられる。ここで、バイアスがVより大きくなった瞬間にちょうど光子が入射されれば、一定の検出効率で出力信号に信号パルスが発生する。また、光子検出できなかったときには、出力には何も出力されない。 Here, the conventional technology related to single photons will be described. In Photon detection in the 1.5 μm band, InGaAs-based APD (avalanche photodiode) is often used due to sensitivity problems (see, for example, Non-Patent Document 2). ). An APD used for photon detection is driven under a special bias condition called a Geiger mode. In the Geiger mode operation, a bias voltage V bias is applied slightly higher than the breakdown voltage V B of the APD, and an electron avalanche caused by photon incidence can be observed as a pulse signal. In addition, when the incident photons periodically fly in synchronization with the clock signal, this is called a gated mode, and the APD is synchronized with the incident photon signal in accordance with the timing at which the signal photons are incident. scheme to apply a large bias voltage than the breakdown voltage V B is used. Here, if the bias is just incident photons at the moment of greater than V B, the signal pulse is generated in the output signal with a constant detection efficiency. If no photon can be detected, nothing is output.

特表平9−502320号公報JP-T 9-502320 特開200−37559号公報JP-A-200-37559 特開2006−101491号公報JP 2006-101491 A "Quantum key distribution over distances as long as 30 km" Christophe Marand and Paul D. Townsend, August 15, 1995/Vol. 20, No. 16/OPTICS LETTERS, pp. 1695-1697"Quantum key distribution over distances as long as 30 km" Christophe Marand and Paul D. Townsend, August 15, 1995 / Vol. 20, No. 16 / OPTICS LETTERS, pp. 1695-1697 D. Stucki et al., “Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APD's” J. Mod. Opt. 48, 1967 (2001)D. Stucki et al., “Photon counting for quantum key distribution with Peltier cooled InGaAs / InP APD's” J. Mod. Opt. 48, 1967 (2001)

上述した従来技術では、制御用に用いられる古典チャネルの光信号が、量子チャネルを受信する光子検出器に悪影響を及ぼすという影響があった。   In the above-described prior art, the optical signal of the classical channel used for control has an adverse effect on the photon detector that receives the quantum channel.

この発明は上記のような点に鑑みてなされたもので、光強度の強い古典チャネルが入射されたことを検出して、量子チャネルのゲートバイアスにマスクを掛け、過剰な雑音による性能劣化が生じない、良好な量子通信装置を得ることを目的とする。   The present invention has been made in view of the above points, and detects that a classical channel having high light intensity is incident, masks the gate bias of the quantum channel, and causes performance degradation due to excessive noise. An object is to obtain a good quantum communication device.

この発明に係る量子通信装置は、量子チャネルと古典チャネルとを合波する合波手段と、前記合波手段で合波された光信号を伝送する伝送路と、前記伝送路を介して伝送された光信号を分波する光分波手段と、前記光分波手段で分波された光信号のうち量子チャネルの光信号を受信する光子検出手段と、前記光分波手段で分波された光信号のうち古典チャネルを検出する古典チャネル検出手段と、前記古典チャネル検出手段の検出結果をもとにマスク信号を発生するマスク信号発生手段と、前記マスク信号を元に前記光子検出手段に印加するバイアス信号をマスクするバイアス信号発生手段とを備えたものである。   A quantum communication device according to the present invention includes a multiplexing unit that combines a quantum channel and a classical channel, a transmission path that transmits an optical signal combined by the multiplexing unit, and a transmission path that is transmitted through the transmission path. Optical demultiplexing means for demultiplexing the optical signal, photon detection means for receiving the optical signal of the quantum channel among the optical signals demultiplexed by the optical demultiplexing means, and demultiplexed by the optical demultiplexing means Classical channel detection means for detecting a classical channel among optical signals, mask signal generation means for generating a mask signal based on the detection result of the classical channel detection means, and application to the photon detection means based on the mask signal Bias signal generating means for masking the bias signal to be applied.

この発明によれば、光強度の強い古典チャネルが入射されたことを検出して、量子チャネルのゲートバイアスにマスクを掛けることで、過剰な雑音による性能劣化が生じない、良好な量子通信装置を得ることができる。   According to the present invention, a good quantum communication device that does not cause performance degradation due to excessive noise is detected by detecting that a classical channel having high light intensity is incident and masking the gate bias of the quantum channel. Obtainable.

実施の形態1.
図1は、この発明の実施の形態1による量子通信装置の概念的な構成を示すブロック図である。この実施の形態1による量子通信装置は、相対的に光パワーが小さい量子チャネル1と、相対的に光パワーが大きい古典チャネル2と、量子チャネル1と古典チャネル2を合波する合波手段3と、合波された信号を伝送する伝送路4と、伝送された合波信号を量子チャネルと古典チャネルに分波する分波手段5と、分波された量子チャネルを受信する光子検出手段6と、分波された古典チャネルを受信する古典チャネル検出手段7と、古典チャネル検出手段7の情報を元にマスク信号を発生するマスク信号発生手段8と、マスク信号が入力されたときには光子検出手段6に印加するゲートバイアス信号をオフにするバイアス発生手段9とを備えている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a conceptual configuration of a quantum communication apparatus according to Embodiment 1 of the present invention. The quantum communication device according to the first embodiment includes a quantum channel 1 having a relatively small optical power, a classical channel 2 having a relatively large optical power, and a multiplexing means 3 for multiplexing the quantum channel 1 and the classical channel 2. A transmission path 4 for transmitting the multiplexed signal, a demultiplexing means 5 for demultiplexing the transmitted multiplexed signal into a quantum channel and a classical channel, and a photon detection means 6 for receiving the demultiplexed quantum channel. A classical channel detecting means 7 for receiving the demultiplexed classical channel, a mask signal generating means 8 for generating a mask signal based on the information of the classical channel detecting means 7, and a photon detecting means when a mask signal is inputted. 6 is provided with bias generating means 9 for turning off the gate bias signal applied to 6.

このように構成された実施の形態1による量子通信装置では、古典チャネル2が入射された際には、バイアス発生手段9により、光子検出手段6に印加するゲートバイアス信号がオフになって量子チャネル1がオフになるため、古典チャネル2のクロストークの影響による誤り率を改善できる。また、強度の強い光信号が、光子検出手段6に入射され、光子検出手段6を破損してしまうという問題も生じない。   In the quantum communication device according to the first embodiment configured as described above, when the classical channel 2 is incident, the bias generator 9 turns off the gate bias signal applied to the photon detector 6 and the quantum channel Since 1 is turned off, the error rate due to the influence of the crosstalk of the classical channel 2 can be improved. Further, there is no problem that a strong optical signal is incident on the photon detection means 6 and the photon detection means 6 is damaged.

実施の形態2.
次に、図2は、この発明の実施の形態2による量子通信装置の構成を示すブロック図である。この実施の形態2による量子通信装置は、量子チャネル10と、同期信号を送信する古典チャネル11と、分波手段5と、APD(avalanche photodiode)13及びバイアス印加手段14を有する、図1に示す光子検出手段6に対応する光子検出器12と、古典チャネル11を分岐する光分岐手段15と、マスク信号発生手段8と、図1に示すバイアス信号発生手段9に対応する、古典チャネル11を受信して同期信号を取り出すクロック抽出手段16とゲートバイアス発生手段18及び位相調整器19を備えている。
Embodiment 2. FIG.
Next, FIG. 2 is a block diagram showing a configuration of a quantum communication apparatus according to Embodiment 2 of the present invention. The quantum communication device according to the second embodiment includes a quantum channel 10, a classical channel 11 that transmits a synchronization signal, a demultiplexing unit 5, an APD (avalanche photodiode) 13, and a bias applying unit 14, as shown in FIG. The photon detector 12 corresponding to the photon detection means 6, the optical branching means 15 for branching the classical channel 11, the mask signal generating means 8, and the classical channel 11 corresponding to the bias signal generating means 9 shown in FIG. Thus, a clock extracting means 16 for taking out a synchronizing signal, a gate bias generating means 18 and a phase adjuster 19 are provided.

ここで、量子チャネル10と古典チャネル11は、図1に示す実施の形態1と同様な図示しない合波手段3によって、タイムスロット割り当てにより、図3に示すように、ブロックごとに時分割多重されている。   Here, the quantum channel 10 and the classical channel 11 are time-division multiplexed for each block as shown in FIG. 3 by time slot allocation by the multiplexing means 3 (not shown) similar to the first embodiment shown in FIG. ing.

このように構成された量子通信装置では、古典チャネル11が検出されている、図3に示す期間Tの間は、マスク信号発生手段8からのマスク信号により光子検出器12に与えられるゲートバイアスは、APD13のブレークダウン電圧以下に抑圧されているため、光子検出器12からは何も出力されない。このため、古典チャネル11のクロストークがあったとしても誤った光子信号をカウントすることはない。また、合波手段と分波手段との間の伝送路中で多重反射が発生し、本来のタイムスロット割り当て以外の位置に強度の強い古典チャネルが存在した場合も、古典チャネル検出手段7とマスク信号発生手段8によってゲートバイアス発生手段18からのゲートバイアスがマスクされる。 Configuration quantum communication device as described above, the classical channel 11 is detected during the period T 1 shown in FIG. 3, the gate bias applied to the photon detector 12 by the mask signal from the mask signal generating means 8 Is suppressed below the breakdown voltage of the APD 13, so nothing is output from the photon detector 12. For this reason, even if there is a crosstalk of the classical channel 11, an erroneous photon signal is not counted. In addition, when multiple reflections occur in the transmission path between the multiplexing means and the demultiplexing means and a strong classical channel exists at a position other than the original time slot assignment, the classical channel detecting means 7 and the mask are also used. The gate bias from the gate bias generating means 18 is masked by the signal generating means 8.

実施の形態3.
次に、図4は、この発明の実施の形態3による量子通信装置の構成を示すブロック図である。この実施の形態3による量子通信装置は、図2に示す実施の形態2と同様な構成を備えるが、実施の形態2に係る分波手段5の代わりに、異なる波長の光信号を分波する波長分波手段22を備えている点が異なる。その他の構成は同様であるため、同一の構成については同一の符号を付して説明を省略する。
Embodiment 3 FIG.
Next, FIG. 4 is a block diagram showing a configuration of a quantum communication apparatus according to Embodiment 3 of the present invention. The quantum communication device according to the third embodiment has the same configuration as that of the second embodiment shown in FIG. 2, but demultiplexes optical signals having different wavelengths instead of the demultiplexing unit 5 according to the second embodiment. The difference is that wavelength demultiplexing means 22 is provided. Since other configurations are the same, the same reference numerals are given to the same configurations, and description thereof is omitted.

本実施の形態3の量子通信装置では、図1に示す実施の形態1と同様な図示しない合波手段3によって、量子チャネル10と古典チャネル11が、異なる波長λ及びλで波長多重され、さらにタイムスロット割り当てにより、異なるブロックに時分割多重されている。 In the quantum communication device according to the third embodiment, the quantum channel 10 and the classical channel 11 are wavelength-multiplexed at different wavelengths λ 1 and λ 2 by the combining means 3 (not shown) similar to the first embodiment shown in FIG. Furthermore, time division multiplexing is performed on different blocks by time slot allocation.

このように構成された量子通信装置では、波長分波手段22により、量子チャネル10への古典チャネル11のクロストークが例えば30dB以上抑圧されるため、前記実施の形態2よりも、より効果的に古典チャネル11が量子チャネル10に及ぼす影響を抑圧することが可能である。   In the quantum communication device configured as described above, the cross-talk of the classical channel 11 to the quantum channel 10 is suppressed by, for example, 30 dB or more by the wavelength demultiplexing unit 22, so that it is more effective than the second embodiment. It is possible to suppress the influence of the classical channel 11 on the quantum channel 10.

なお、波長分波手段22としては、アレイ導波路回折格子(AWG: arrayed−waveguide grating)型分波器、または薄膜フィルタがあげられる。   The wavelength demultiplexing means 22 includes an arrayed-waveguide grating (AWG) type demultiplexer or a thin film filter.

実施の形態4.
次に、図5は、この発明の実施の形態4による量子通信装置の構成を示すブロック図である。この実施の形態4による量子通信装置は、実施の形態1の構成に対し、送信側データ処理手段24と、量子チャネル送信機25と、古典チャネル送信機(同期信号)26と、古典チャネル送信機(データ信号)27と、古典チャネル送信機(制御信号)28と、後述する伝送路状態モニタ手段34の情報を元に伝送路4の状態を制御する伝送路制御手段29と、量子チャネル受信機30と、古典チャネル受信機(同期信号)31と、古典チャネル受信機(データ信号)32と、古典チャネル受信機(制御信号)33と、古典チャネルの受信情報を元に伝送路4の状態をモニタする伝送路状態モニタ手段34と、受信側データ処理手段35をさらに備えている点が異なり、その他の構成は同様であるため、同一の構成については同一の符号を付して説明を省略する。
Embodiment 4 FIG.
Next, FIG. 5 is a block diagram showing a configuration of a quantum communication apparatus according to Embodiment 4 of the present invention. The quantum communication device according to the fourth embodiment is different from the configuration of the first embodiment in that the transmission side data processing means 24, the quantum channel transmitter 25, the classical channel transmitter (synchronization signal) 26, and the classical channel transmitter are used. (Data signal) 27, classical channel transmitter (control signal) 28, transmission path control means 29 for controlling the state of transmission path 4 based on information of transmission path state monitoring means 34 described later, and quantum channel receiver 30, the classical channel receiver (synchronization signal) 31, the classical channel receiver (data signal) 32, the classical channel receiver (control signal) 33, and the state of the transmission line 4 based on the reception information of the classical channel. Since the transmission path state monitoring means 34 to be monitored and the receiving side data processing means 35 are further provided and the other configurations are the same, the same reference numerals are given to the same configurations. The description thereof is omitted Te.

この実施の形態4では、古典チャネルとして、量子チャネル送信機24と同期した光信号を送信する古典チャネル送受信機(25、31)と、データ通信を行うための古典チャネル送受信機(27、32)と、伝送路の状態制御を行うための古典チャネル送受信機(28、33)の三種類の古典チャネルを備えている。   In the fourth embodiment, as a classical channel, a classical channel transceiver (25, 31) that transmits an optical signal synchronized with the quantum channel transmitter 24, and a classical channel transceiver (27, 32) for performing data communication. And classical channel transceivers (28, 33) for controlling the state of the transmission line.

量子チャネルとしては、従来技術で示した文献に記載されている、量子暗号通信送受信機などがあり、複数の量子チャネルを備えている。また、同期信号用古典チャネルは、実施の形態2、3と同様である。   As the quantum channel, there is a quantum cryptography communication transceiver described in the literature shown in the prior art, which includes a plurality of quantum channels. The classical channel for synchronization signals is the same as in the second and third embodiments.

データ通信用古典チャネルは、量子暗号通信で用いられる、暗号送信者と暗号受信者の間で通信される、変調基底情報の交換などに用いられる。また、通常の古典的なデータ通信でも良い。   The classical channel for data communication is used for exchanging modulation basis information, etc., used in quantum cryptography communication and communicated between an encryption sender and an encryption receiver. Or, normal classical data communication may be used.

伝送路状態制御用古典チャネルは、伝送路4の偏波状態を制御するものがあり、伝送路制御手段29により、伝送路状態モニタ手段34でモニタされる偏波状態が一定になるように制御を行う。あるいは、量子暗号通信であれば、受信側データ処理手段35でモニタされる誤り率が最小になるように制御を行う。   The transmission channel state control classical channel controls the polarization state of the transmission channel 4 and is controlled by the transmission channel control unit 29 so that the polarization state monitored by the transmission channel state monitoring unit 34 is constant. I do. Alternatively, in the case of quantum cryptography communication, control is performed so that the error rate monitored by the receiving side data processing means 35 is minimized.

また、伝送路状態制御用古典チャネルは、伝送路の波長分散を制御するものでもよい。この場合、量子暗号通信であれば、伝送路制御手段29により、受信側データ処理手段35でモニタされる誤り率などの伝送品質情報が最小になるように制御を行う。   Further, the transmission channel state control classical channel may control the chromatic dispersion of the transmission channel. In this case, in the case of quantum cryptography communication, the transmission path control unit 29 performs control so that transmission quality information such as an error rate monitored by the reception side data processing unit 35 is minimized.

この発明の実施の形態1による量子通信装置の概念的な構成を示すブロック図である。It is a block diagram which shows the notional structure of the quantum communication apparatus by Embodiment 1 of this invention. この発明の実施の形態2による量子通信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the quantum communication apparatus by Embodiment 2 of this invention. 量子チャネルと古典チャネルがタイムスロット割り当てによりブロックごとに時分割多重されていることを説明する図である。It is a figure explaining that a quantum channel and a classical channel are time-division multiplexed for every block by time slot allocation. この発明の実施の形態3による量子通信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the quantum communication apparatus by Embodiment 3 of this invention. この発明の実施の形態4による量子通信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the quantum communication apparatus by Embodiment 4 of this invention.

符号の説明Explanation of symbols

1,10 量子チャネル、2,11 古典チャネル、3 合波手段、4 伝送路、5 分波手段、6 光子検出手段、7 古典チャネル検出手段、8 マスク信号発生手段、9 バイアス発生手段、12 光子検出器、13 APD(avalanche photodiode)、14 バイアス印加手段、15 光分岐手段、16 クロック抽出手段、18 ゲートバイアス発生手段、19 位相調整器、22 波長分波手段、24 送信側データ処理手段、25 量子チャネル送信機、26 古典チャネル送信機(同期信号)、27 古典チャネル送信機(データ信号)、28 古典チャネル送信機(制御信号)、29 伝送路制御手段、30 量子チャネル受信機、31 古典チャネル受信機(同期信号)、32 古典チャネル受信機(データ信号)、33 古典チャネル受信機(制御信号)、34 伝送路状態モニタ手段、35 受信側データ処理手段。   1, 10 quantum channel, 2, 11 classical channel, 3 multiplexing means, 4 transmission line, 5 demultiplexing means, 6 photon detecting means, 7 classical channel detecting means, 8 mask signal generating means, 9 bias generating means, 12 photons Detector, 13 APD (avalanche photodiode), 14 bias applying means, 15 optical branching means, 16 clock extracting means, 18 gate bias generating means, 19 phase adjuster, 22 wavelength demultiplexing means, 24 transmission side data processing means, 25 Quantum channel transmitter, 26 Classical channel transmitter (synchronous signal), 27 Classical channel transmitter (data signal), 28 Classical channel transmitter (control signal), 29 Transmission path control means, 30 Quantum channel receiver, 31 Classical channel Receiver (synchronization signal), 32 classical channel receiver (data signal), 33 classical channel receiver ( Control signal), 34 channel state monitor unit, 35 receiving side data processing unit.

Claims (9)

量子チャネルと古典チャネルとを合波する合波手段と、
前記合波手段で合波された光信号を伝送する伝送路と、
前記伝送路を介して伝送された光信号を分波する光分波手段と、
前記光分波手段で分波された光信号のうち量子チャネルの光信号を受信する光子検出手段と、
前記光分波手段で分波された光信号のうち古典チャネルを検出する古典チャネル検出手段と、
前記古典チャネル検出手段の検出結果を元にマスク信号を発生するマスク信号発生手段と、
前記マスク信号を元に前記光子検出手段に印加するバイアス信号をマスクするバイアス信号発生手段と
を備えた量子通信装置。
A multiplexing means for combining the quantum channel and the classical channel;
A transmission path for transmitting the optical signal combined by the combining means;
Optical demultiplexing means for demultiplexing an optical signal transmitted through the transmission path;
A photon detecting means for receiving an optical signal of a quantum channel among the optical signals demultiplexed by the optical demultiplexing means;
Classical channel detection means for detecting a classical channel among the optical signals demultiplexed by the optical demultiplexing means;
Mask signal generating means for generating a mask signal based on the detection result of the classical channel detecting means;
And a bias signal generating means for masking a bias signal applied to the photon detecting means based on the mask signal.
請求項1に記載の量子通信装置において、
前記合波手段は、前記量子チャネルと前記古典チャネルとを時分割多重する
ことを特徴とする量子通信装置。
The quantum communication device according to claim 1,
The said multiplexing means time-division-multiplexes the said quantum channel and the said classical channel. The quantum communication apparatus characterized by the above-mentioned.
請求項1または2に記載の量子通信装置において、
前記合波手段は、前記量子チャネルと前記古典チャネルとを波長多重し、
前記分波手段は、異なる波長の光信号を分波する波長分波手段でなる
ことを特徴とする量子通信装置。
The quantum communication device according to claim 1 or 2,
The multiplexing means wavelength-multiplexes the quantum channel and the classical channel,
The quantum demultiplexing device, wherein the demultiplexing unit is a wavelength demultiplexing unit that demultiplexes optical signals having different wavelengths.
請求項1から3までのいずれか1項に記載の量子通信装置において、
前記量子チャネルは、量子暗号通信を行う光信号であり、
前記古典チャネルは、同期信号を送信する光信号である
ことを特徴とする量子通信装置。
In the quantum communication device according to any one of claims 1 to 3,
The quantum channel is an optical signal that performs quantum cryptography communication,
The quantum communication device, wherein the classical channel is an optical signal that transmits a synchronization signal.
請求項1から4までのいずれか1項に記載の量子通信装置において、
前記古典チャネルは、データ信号を送信する光信号である
ことを特徴とする量子通信装置。
In the quantum communication device according to any one of claims 1 to 4,
The quantum communication device, wherein the classical channel is an optical signal for transmitting a data signal.
請求項1から5までのいずれか1項に記載の量子通信装置において、
前記古典チャネルの受信情報を元に前記伝送路の状態をモニタする伝送路状態モニタ手段と、
前記伝送路状態モニタ手段の情報を元に前記伝送路の状態を制御する伝送路制御手段と
をさらに備えた
ことを特徴とする量子通信装置。
In the quantum communication device according to any one of claims 1 to 5,
Transmission line state monitoring means for monitoring the state of the transmission line based on the reception information of the classical channel;
A quantum communication device, further comprising: a transmission path control means for controlling the state of the transmission path based on information of the transmission path status monitoring means.
請求項6に記載の量子通信装置において、
前記伝送路制御手段は、前記伝送路の偏波状態を制御する
ことを特徴とする量子通信装置。
The quantum communication device according to claim 6,
The transmission line control means controls a polarization state of the transmission line.
請求項6に記載の量子通信装置において、
前記伝送路制御手段は、前記伝送路の波長分散を制御する
ことを特徴とする量子通信装置。
The quantum communication device according to claim 6,
The transmission line control means controls chromatic dispersion of the transmission line.
請求項1から8までのいずれか1項に記載の量子通信装置において、
前記量子チャネルと前記古典チャネルは、複数の量子チャネルと複数の古典チャネルを備えた
ことを特徴とする量子通信装置。
In the quantum communication device according to any one of claims 1 to 8,
The quantum channel and the classical channel comprise a plurality of quantum channels and a plurality of classical channels.
JP2007065114A 2007-03-14 2007-03-14 Quantum communication equipment Active JP5014844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065114A JP5014844B2 (en) 2007-03-14 2007-03-14 Quantum communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065114A JP5014844B2 (en) 2007-03-14 2007-03-14 Quantum communication equipment

Publications (2)

Publication Number Publication Date
JP2008228048A true JP2008228048A (en) 2008-09-25
JP5014844B2 JP5014844B2 (en) 2012-08-29

Family

ID=39846102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065114A Active JP5014844B2 (en) 2007-03-14 2007-03-14 Quantum communication equipment

Country Status (1)

Country Link
JP (1) JP5014844B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225865A (en) * 2013-05-14 2014-12-04 株式会社東芝 Signal manipulator for quantum communication system
JP2015179895A (en) * 2014-03-18 2015-10-08 株式会社東芝 Communication apparatus, communication system, and communication method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281029A (en) * 2001-03-21 2002-09-27 Japan Science & Technology Corp Quantum cipher communication system
JP2006101491A (en) * 2004-09-02 2006-04-13 Nec Corp Multiplex communication system and its cross talk eliminating method
JP2006129332A (en) * 2004-11-01 2006-05-18 Nec Corp Common information generating method and system
JP2006284202A (en) * 2005-03-31 2006-10-19 Nec Corp Photon detection circuit and noise elimination method
JP2007124484A (en) * 2005-10-31 2007-05-17 Nec Corp Method and device for measuring micro optical power, and optical communication system employing the same
JP2008519487A (en) * 2004-11-01 2008-06-05 マジック テクノロジーズ, インコーポレイテッド System and method for bidirectional communication of quantum signals, timing signals and public data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281029A (en) * 2001-03-21 2002-09-27 Japan Science & Technology Corp Quantum cipher communication system
JP2006101491A (en) * 2004-09-02 2006-04-13 Nec Corp Multiplex communication system and its cross talk eliminating method
JP2006129332A (en) * 2004-11-01 2006-05-18 Nec Corp Common information generating method and system
JP2008519487A (en) * 2004-11-01 2008-06-05 マジック テクノロジーズ, インコーポレイテッド System and method for bidirectional communication of quantum signals, timing signals and public data
JP2006284202A (en) * 2005-03-31 2006-10-19 Nec Corp Photon detection circuit and noise elimination method
JP2007124484A (en) * 2005-10-31 2007-05-17 Nec Corp Method and device for measuring micro optical power, and optical communication system employing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014225865A (en) * 2013-05-14 2014-12-04 株式会社東芝 Signal manipulator for quantum communication system
JP2015179895A (en) * 2014-03-18 2015-10-08 株式会社東芝 Communication apparatus, communication system, and communication method
US9893884B2 (en) 2014-03-18 2018-02-13 Kabushiki Kaisha Toshiba Communication device, communication system, and communication method

Also Published As

Publication number Publication date
JP5014844B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US7613396B2 (en) Multiplexing communication system and crosstalk elimination method
US9860013B2 (en) Time division multiplexed orbital angular momentum based communication
US9712273B2 (en) Orbital angular momentum multiplexing for digital communication
JP2019216413A (en) Quantum communication network
US7269356B2 (en) Optical device with tunable coherent receiver
JP2006191612A (en) Optical transceiver and passive optical network using the same
EP2501067B1 (en) System and method for reducing interference of a polarization multiplexed signal
EP1788736B1 (en) Improved data transmission apparatus for communication devices in a passive optical network
JP2009077323A (en) Station-side optical communication device and optical communication system
Fitzke et al. Scalable network for simultaneous pairwise quantum key distribution via entanglement-based time-bin coding
KR20060061045A (en) Passive optical network
JP4695594B2 (en) Photon detection device and optical communication system
US20080253768A1 (en) High Bit Rate Packet Generation with High Spectral Efficiency in an Optical Network
JP6497439B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND COMMUNICATION SYSTEM
CN111800197A (en) Simplified wavelength division multiplexing coherent optical communication system based on frequency comb light source
CN111049613A (en) Time Division Multiplexing (TDM) removing device and method
JP2009296183A (en) Data transmission system and method
Honz et al. First demonstration of 25λ× 10 Gb/s C+ L band classical/DV-QKD co-existence over single bidirectional fiber link
JP5014844B2 (en) Quantum communication equipment
JP2003273807A (en) Method for transmission of optical signal using pseudorandom mode modulation
Matsuura et al. Multi-carrier distributed WDM ring network based on reconfigurable optical drop-add-drop multiplexers and carrier wavelength reuse
JP2005079833A (en) Distributed compensation control method and apparatus, and optical transmission method and system
KR101561593B1 (en) Wave length-coded quantum communication systems
CN110868293A (en) Time division multiplexing high-speed QKD system and method
JP2003037559A (en) Signal state control equipment and signal state control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250