JP2008209249A - Oxygen gas detection element, and nanowire for oxygen gas detection element - Google Patents

Oxygen gas detection element, and nanowire for oxygen gas detection element Download PDF

Info

Publication number
JP2008209249A
JP2008209249A JP2007046461A JP2007046461A JP2008209249A JP 2008209249 A JP2008209249 A JP 2008209249A JP 2007046461 A JP2007046461 A JP 2007046461A JP 2007046461 A JP2007046461 A JP 2007046461A JP 2008209249 A JP2008209249 A JP 2008209249A
Authority
JP
Japan
Prior art keywords
nanowire
oxygen gas
detection element
gas detection
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007046461A
Other languages
Japanese (ja)
Inventor
Nobuyuki Nishi
信之 西
Takeshi Soshiro
健 十代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Natural Sciences
Original Assignee
National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Natural Sciences filed Critical National Institute of Natural Sciences
Priority to JP2007046461A priority Critical patent/JP2008209249A/en
Priority to PCT/JP2007/069690 priority patent/WO2008105119A1/en
Publication of JP2008209249A publication Critical patent/JP2008209249A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device capable of detecting adsorption oxygen gas molecules by electrical conductivity characteristics change at room temperature. <P>SOLUTION: This oxygen gas detection element equipped with a nanowire, including a CU core and a carbon-coating layer formed so as to coat the CU core, is constituted so that the nanowire shows an adsorption/desorption action to oxygen gas at a room temperature, and that the oxygen gas is detected through the adsorption/desorption action of the oxygen gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、銅アセチリドのナノ構造体を活用した酸素ガス分子の吸着を電気伝導特性として感知するセンサー装置に関するものである。   The present invention relates to a sensor device that senses adsorption of oxygen gas molecules as an electric conduction characteristic using a copper acetylide nanostructure.

酸素ガスを検出するセンサーは、多種多様な動作原理および動作環境のものが提案されている(例えば、R. Ramamoorthy et al. Journal of Materials Science vol.38 year 2003 pages 4271-4282)。酸素ガス分子の検出を電気伝導特性(抵抗率)で感知するものが、装置の簡便さとしては有利であるが、分子が吸脱着・化学反応を起こすには、かなりの高温を必要とする。一方、室温で動作可能なセンサーとしては、水中の溶解ガスを電気分解により感知するものと、発光分子の失効過程を利用するものが挙げられるが、どちらも装置が大掛かりとなってしまう欠点をもつため簡便な実用に対しては問題を有する。
R. Ramamoorthy et al. Journal of Materials Science vol.38 year 2003 pages 4271-4282
Sensors for detecting oxygen gas have been proposed with various operating principles and operating environments (for example, R. Ramamoorthy et al. Journal of Materials Science vol. 38 year 2003 pages 4271-4282). The detection of oxygen gas molecules by means of electric conduction characteristics (resistivity) is advantageous as the simplicity of the apparatus, but a considerably high temperature is required for molecules to cause adsorption / desorption / chemical reaction. On the other hand, sensors that can be operated at room temperature include sensors that detect dissolved gas in water by electrolysis and sensors that use the deactivation process of luminescent molecules, both of which have the disadvantage of making the device large. Therefore, there is a problem for simple practical use.
R. Ramamoorthy et al. Journal of Materials Science vol.38 year 2003 pages 4271-4282

本発明は、室温において電気伝導特性変化により吸着酸素ガス分子を検知できる装置を提供することを目的とする。   An object of this invention is to provide the apparatus which can detect adsorption | suction oxygen gas molecule | numerator by electrical conductivity characteristic change at room temperature.

上記目的を達成すべく、本発明は、
Cuコアと、このCuコアを被覆するようにして形成された炭素被覆層とを含むナノワイヤを具え、
室温において酸素ガスに対して脱吸着作用を呈し、前記酸素ガスの前記脱吸着作用を通じて前記酸素ガスを検出するように構成したことを特徴とする、酸素ガス検出素子に関する。
In order to achieve the above object, the present invention provides:
Comprising a nanowire comprising a Cu core and a carbon coating layer formed so as to cover the Cu core;
The present invention relates to an oxygen gas detection element configured to exhibit a desorption action on oxygen gas at room temperature and to detect the oxygen gas through the desorption action of the oxygen gas.

また、本発明は、
Cuコアと、このCuコアを被覆するようにして形成された炭素被覆層とを含むナノワイヤを具えることを特徴とする、酸素ガス検出素子用ナノワイヤに関する。
The present invention also provides:
The present invention relates to a nanowire for an oxygen gas detection element, comprising a nanowire including a Cu core and a carbon coating layer formed so as to cover the Cu core.

本発明者は、上記目的を達成すべく鋭意検討を実施した。その結果、銅アセチリド分子を自己組織化によりナノワイヤへと結晶成長させる方法を見出し、この銅アセチリドナノワイヤを出発物質として熱処理により炭素層被覆銅ナノワイヤ(ナノケーブル)に変換することに成功していた。そして、熱処理後の炭素層被覆銅ナノワイヤを含む銅と炭素の混合物の電気伝導特性を測定したところ、酸素分子の吸脱着により抵抗値が変化することを発見した。また、分子の吸脱着は室温で可逆的進行することを見出した。   The present inventor has intensively studied to achieve the above object. As a result, the inventors have found a method for crystal growth of copper acetylide molecules into nanowires by self-organization, and succeeded in converting the copper acetylide nanowires to carbon layer-coated copper nanowires (nano-cables) by heat treatment using the copper acetylide nanowires as a starting material. And when the electrical conduction characteristic of the mixture of copper and carbon containing the carbon layer covering copper nanowire after heat processing was measured, it discovered that resistance value changed by adsorption / desorption of an oxygen molecule. It was also found that the adsorption / desorption of molecules proceeds reversibly at room temperature.

したがって、上述のような炭素層被覆銅ナノワイヤの上記室温での脱吸着反応を利用することによって、上記ナノワイヤを室温において酸素ガスを検出するセンサー装置として利用可能であることを見出し、本発明をするに至った。   Therefore, the present invention finds that the nanowire can be used as a sensor device for detecting oxygen gas at room temperature by utilizing the desorption reaction at room temperature of the carbon layer-coated copper nanowire as described above. It came to.

なお、本発明における「室温」とは、広義には酸素の脱吸着に対して特に従来のような加熱操作を行わないことを意味し、特には上記酸素ガス検出素子の使用環境におけるその環境温度を意味するものである。   The term “room temperature” in the present invention means, in a broad sense, that no conventional heating operation is performed for desorption of oxygen, and in particular, the ambient temperature in the environment where the oxygen gas detection element is used. Means.

銅と炭素複合材料との混合物である上記ナノワイヤによれば、室温において様々な分子の吸脱着を進行させることができる。一般に室温などで容易に吸脱着できるのは、物理吸着過程による分子の吸着であり、物理吸着過程では、分子と吸着体との相互作用が小さく、電気伝導特性が大きく変化することは、ほとんど観測されない。   According to the nanowire which is a mixture of copper and a carbon composite material, adsorption / desorption of various molecules can proceed at room temperature. In general, adsorption and desorption that can be easily adsorbed and desorbed at room temperature is the adsorption of molecules by the physical adsorption process, and in the physical adsorption process, it is almost observed that the interaction between the molecule and the adsorbent is small and the electric conduction characteristics change greatly Not.

しかしながら、本発明の上記ナノワイヤでは、ナノ構造物の特異な吸着構造のため、物理吸着のような弱い酸素分子吸着状態においても、ナノ構造物から酸素分子への可逆的な電子移動、即ち構造体へのホール注入を起こすことにより大きく電気伝導度が上昇する。この事は、熱起電力計測結果からも確認された。ゆえに、本発明において、室温でも動作可能な酸素ガスセンサーを得ることができた。   However, since the nanowire of the present invention has a unique adsorption structure of the nanostructure, reversible electron transfer from the nanostructure to the oxygen molecule, that is, the structure even in a weak oxygen molecule adsorption state such as physical adsorption. Electrical conductivity is greatly increased by injecting holes. This was also confirmed from the thermoelectromotive force measurement results. Therefore, in the present invention, an oxygen gas sensor operable at room temperature has been obtained.

以上説明したように、本発明によれば、室温において電気伝導特性変化により吸着酸素ガス分子を検知できる装置、いわゆる酸素ガス検出素子を提供することができる。   As described above, according to the present invention, it is possible to provide a device capable of detecting adsorbed oxygen gas molecules based on a change in electric conduction characteristics at room temperature, a so-called oxygen gas detection element.

以下、本発明のその他の特徴及び利点について、発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the invention will be described with respect to other features and advantages of the present invention.

(ナノワイヤ)
本発明の酸素ガス検出素子は、Cuコアと、このCuコアを被覆するようにして形成された炭素被覆層とを含むナノワイヤを基本的な構成要素として含む。このナノワイヤは、その直径が5nm〜10nmであることが好ましい。前記ナノワイヤがこのような微細な大きさを有することによって、前記ナノワイヤが室温において酸素ガス(分子)をより多く物理的に吸着することができるとともに、その結果、酸素分子との物理的吸着を通じて酸素分子への電子移動及びナノワイヤへのホール注入を良好に行うことができるようになる。したがって、前記ナノワイヤは酸素ガス検出素子としてより効果的に機能するようになる。
(Nanowire)
The oxygen gas detection element of the present invention includes, as a basic constituent element, a nanowire including a Cu core and a carbon coating layer formed so as to cover the Cu core. The nanowire preferably has a diameter of 5 nm to 10 nm. Since the nanowire has such a fine size, the nanowire can physically adsorb more oxygen gas (molecules) at room temperature, and as a result, oxygen can be absorbed through physical adsorption with oxygen molecules. Electron transfer to molecules and hole injection to nanowires can be performed well. Accordingly, the nanowire functions more effectively as an oxygen gas detection element.

また、同様の観点から、前記ナノワイヤの長さは0.1μm〜1μmであることが好ましい。   From the same viewpoint, the length of the nanowire is preferably 0.1 μm to 1 μm.

なお、上記構成及び大きさのナノワイヤは、以下に詳述するような製造方法に起因して必然的に得ることができる。   The nanowire having the above-described configuration and size can be inevitably obtained due to a manufacturing method as described in detail below.

(ナノワイヤの製造)
次に、上記ナノワイヤの製造方法について説明する。最初に塩化銅(I)(CuCl)を準備し、反応容器中に入れたアンモニア水中に溶解させる。その後、必要に応じて前記アンモニア水中に溶解している酸素分子及び前記反応容器中の空気を追い出すために、希ガス、例えばアルゴンガスなどを用いてバブリングする。このバブリングに要する時間は前記容器の体積などに依存するが、通常は数十分のオーダである。
(Manufacture of nanowires)
Next, the manufacturing method of the said nanowire is demonstrated. First, copper (I) chloride (CuCl) is prepared and dissolved in ammonia water placed in a reaction vessel. Thereafter, in order to drive out oxygen molecules dissolved in the ammonia water and air in the reaction vessel as necessary, bubbling is performed using a rare gas such as argon gas. The time required for this bubbling depends on the volume of the container, but is usually on the order of several tens of minutes.

次いで、前記アンモニア水に対して希ガス、例えばアルゴンガスなどで所定濃度に希釈したアセチレンガスを接触させ、前記塩化銅(I)と反応させる。このような反応を通じて、水溶液中のCuイオンを元に以下の反応式で示すようなCCuなる組成を有し、その全体に亘って均一な組成を有するナノワイヤ中間体が自己組織的に形成される。
2Cu+C→CCu(ナノワイヤ中間体)+2H
Subsequently, acetylene gas diluted to a predetermined concentration with a rare gas such as argon gas is brought into contact with the ammonia water, and reacted with the copper (I) chloride. Through such a reaction, a nanowire intermediate having a composition of C 2 Cu 2 as shown in the following reaction formula based on Cu + ions in an aqueous solution and having a uniform composition over the whole is self-organizing. Formed.
2Cu + + C 2 H 2 → C 2 Cu 2 (nanowire intermediate) + 2H +

なお、アセチレンガスの希釈度合いは、例えばアセチレンガスが数%のオーダとなるようにする。また、アセチレンガスの接触時間(反応時間)は、数時間のオーダである。   The degree of dilution of the acetylene gas is, for example, such that the acetylene gas is on the order of several percent. The contact time (reaction time) of acetylene gas is on the order of several hours.

また、前記アセチレンガスは前記アンモニア水に対して0.3ml/分以下の割合で接触させる。アセチレンガスの量が0.3ml/分よりも大きいと、前記アセチレンガスの接触によって得るナノワイヤ中間体の結晶性が低下し、例えばアモルファス化する。したがって、目的とする、Cuコアと、このCuコアを被覆するようにして形成された炭素被覆層とを含むナノワイヤを得ることができない場合がある。但し、アセチレンガスの量の下限は0.01ml/分とする。これよりもアセチレンガスの量が少ないと上記ナノワイヤ中間体を自己組織的に得ることができない場合がある。   The acetylene gas is brought into contact with the ammonia water at a rate of 0.3 ml / min or less. When the amount of acetylene gas is larger than 0.3 ml / min, the crystallinity of the nanowire intermediate obtained by the contact with the acetylene gas is lowered, for example, it becomes amorphous. Therefore, there may be a case where the target nanowire including the Cu core and the carbon coating layer formed so as to cover the Cu core cannot be obtained. However, the lower limit of the amount of acetylene gas is 0.01 ml / min. If the amount of acetylene gas is less than this, the nanowire intermediate may not be obtained in a self-organizing manner.

次いで、上述のようのようにして得たナノワイヤ中間体を非酸化性雰囲気下に配置し、所定温度に加熱してアニール処理を施す。この際、均一な組成のナノワイヤ中間体は、それを構成するCCuがC(炭素)とCu(銅)とに分離し、Cuをコア層としてその外表面に炭素層が被覆してなる、本発明の構成のナノワイヤが得られる。 Next, the nanowire intermediate obtained as described above is placed in a non-oxidizing atmosphere, and is annealed by heating to a predetermined temperature. At this time, the nanowire intermediate of uniform composition is formed by separating C 2 Cu 2 constituting it into C (carbon) and Cu (copper), and coating the outer surface with a carbon layer using Cu as a core layer. Thus, a nanowire having the structure of the present invention is obtained.

なお、上記非酸化性雰囲気としては、希ガス雰囲気や減圧雰囲気などの酸素成分が前記ナノワイヤの作製に影響を与えないような条件が選ばれる。特に、減圧雰囲気の場合、その圧力は1mTorr以下とすることが好ましい。また、前記アニール処理は50℃以上、好ましくは80℃程度で行うことが好ましい。さらに、前記アニール処理は2段階で行うことができ、例えば最初に50−70℃程度で前段階加熱した後、80℃付近の温度で加熱処理を行うようにすることができる。   The non-oxidizing atmosphere is selected so that oxygen components such as a rare gas atmosphere and a reduced-pressure atmosphere do not affect the production of the nanowire. In particular, in a reduced pressure atmosphere, the pressure is preferably 1 mTorr or less. The annealing treatment is preferably performed at 50 ° C. or higher, preferably about 80 ° C. Furthermore, the annealing treatment can be performed in two stages. For example, after the first stage heating is first performed at about 50 to 70 ° C., the heating treatment can be performed at a temperature around 80 ° C.

以下、実施例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

最初に、200mlのセパラブルフラスコに5%アンモニア水100mlを採り、塩化銅(I)1.0gを加え、溶解させた。次いで、前記フラスコ内の空気およびアンモニア水に溶けている酸素分子を追い出すため、前記フラスコ内にアルゴンガスを投入し、30分間、バブリングした。次いで、攪拌しているフラスコ内にアルゴンにより希釈した1%のアセチレンガスを水溶液上方から前記フラスコ内のアルゴンを介して間接的に溶液と反応させた。この際、アセチレンガスはアルゴンで希釈した状態で5〜30ml/分の流量で3時間反応させた。この反応により、得られた反応溶液は銅アンミン錯体の青色から茶褐色に変化し沈殿が生じた。   First, 100 ml of 5% aqueous ammonia was taken into a 200 ml separable flask, and 1.0 g of copper (I) chloride was added and dissolved. Subsequently, in order to drive out oxygen molecules dissolved in the air and aqueous ammonia in the flask, argon gas was introduced into the flask and bubbled for 30 minutes. Next, 1% acetylene gas diluted with argon was reacted with the solution indirectly from above the aqueous solution via argon in the flask in the stirring flask. At this time, the acetylene gas was reacted at a flow rate of 5 to 30 ml / min for 3 hours in a state diluted with argon. As a result of this reaction, the resulting reaction solution changed from the blue color of the copper ammine complex to brown, and precipitation occurred.

次いで、前記沈殿物を濾過により溶液から分離して試験内に採り、減圧及び脱水処理を実施した。次いで、前記沈殿物をSEM及びTEMで観察したところ、長さ約1μm、直径5−10nmのナノワイヤ(中間体)であることが判明した。また、前記ナノワイヤ(中間体)をXRDによって調べたところ、CCuなる結晶構造を呈することが判明した。 Next, the precipitate was separated from the solution by filtration and taken into the test, and decompression and dehydration were performed. Next, when the precipitate was observed with SEM and TEM, it was found to be a nanowire (intermediate) having a length of about 1 μm and a diameter of 5 to 10 nm. Further, when the nanowire (intermediate) was examined by XRD, it was found to exhibit a crystal structure of C 2 Cu 2 .

次いで、真空下電気炉あるいは所定の容器中に溶媒分散した浴を準備し、前記電気炉あるいは前記浴中において、前記ナノワイヤ中間体を50℃から70℃程度で前段階加熱した後、80℃付近の温度で加熱処理を行なった。この加熱処理により、前記ナノワイヤでは、銅元素と炭素元素への分離が進行し、銅ナノワイヤ(直径2nm)を炭素層で被覆した銅ナノワイヤを形成した。なお、このナノワイヤの構成についてもTEMによって確認した。   Next, an electric furnace under vacuum or a bath in which a solvent is dispersed in a predetermined container is prepared. In the electric furnace or the bath, the nanowire intermediate is heated in the previous stage at about 50 ° C. to 70 ° C., and then around 80 ° C. The heat treatment was performed at a temperature of. By this heat treatment, separation of the copper element and the carbon element proceeded in the nanowire, and a copper nanowire in which the copper nanowire (diameter 2 nm) was covered with a carbon layer was formed. The configuration of the nanowire was also confirmed by TEM.

次いで、前記銅ナノワイヤを以下に示す評価に供するために、ハンドプレス等によりタブレット状に加圧成型した。   Subsequently, in order to use for the evaluation shown below, the copper nanowire was press-molded into a tablet shape by a hand press or the like.

図1は、上述のようにして得た銅ナノワイヤの電気伝導変化のグラフである。図1から明らかなように、成型したタブレットを窒素雰囲気下に存在させると低い電気伝導度(高抵抗)を示し、酸素ガスに暴露すると高い電気伝導度(低抵抗)を示した。この変化は、 繰り返し測定可能であり、酸素分子が室温において吸脱着していることが判明した。   FIG. 1 is a graph of the change in electrical conductivity of copper nanowires obtained as described above. As is apparent from FIG. 1, when the molded tablet was present in a nitrogen atmosphere, it exhibited low electrical conductivity (high resistance), and when exposed to oxygen gas, it exhibited high electrical conductivity (low resistance). This change can be measured repeatedly, and it was found that oxygen molecules adsorbed and desorbed at room temperature.

図2は、上述のようにして得た銅ナノワイヤを窒素ガス100%、1気圧の環境から窒素ガス0.5気圧、酸素ガス0.5気圧(酸素50%)の状態に変化させたときの電流量の変化を示すグラフである。なお、印加電圧は1Vとした。図2から明らかなように、酸素ガスの吸着が進むにつれ、電流値が増大し、前記銅ナノワイヤに対して酸素分子が吸着することが分かる。但し、応答時間が若干長いが、これはタブレットが0.2 mm程度の厚みを持つために、酸素吸着が飽和するまでに多少の時間を要するためであると考えられる。   FIG. 2 shows a state in which the copper nanowire obtained as described above is changed from an environment of nitrogen gas 100% and 1 atm to a state of nitrogen gas 0.5 atm and oxygen gas 0.5 atm (oxygen 50%). It is a graph which shows the change of electric current amount. The applied voltage was 1V. As can be seen from FIG. 2, as the adsorption of oxygen gas proceeds, the current value increases, and oxygen molecules are adsorbed to the copper nanowires. However, although the response time is slightly long, this is considered to be because it takes some time for oxygen adsorption to saturate because the tablet has a thickness of about 0.2 mm.

上記応答時間を短縮化するためには、銅ナノワイヤを櫛形電極等に厚さ数μmの薄膜として密着させれば、応答時間の大幅な短縮が期待される。しかし、現状のタブレット状においても、初期の数分間の電流値変化の勾配から、飽和状態を予測することが可能であり、十分な実用速度を持っていると言える。さらに、この飽和状態では、酸素分子の吸脱着が化学反応的に平衡状態になっているとみられ、飽和・平衡状態での電気伝導特性を求めることができる。   In order to shorten the response time, if the copper nanowire is brought into close contact with a comb-shaped electrode or the like as a thin film having a thickness of several μm, it is expected that the response time is significantly shortened. However, even in the current tablet form, it is possible to predict the saturation state from the gradient of the current value change in the initial few minutes, and it can be said that it has a sufficient practical speed. Further, in this saturated state, the adsorption / desorption of oxygen molecules is considered to be in an equilibrium state in a chemical reaction, and the electric conduction characteristics in the saturation / equilibrium state can be obtained.

図3は、上記銅ナノワイヤにおいて、全圧が1気圧の条件で酸素の分圧を0%から100%まで変化させた場合の電流量の変化を示すグラフである。なお、この場合の印加電圧も1Vとしている。電流量の変化は、Langmuirの吸着等温式を用いて説明することができ、図3より酸素濃度を決定する検量線として利用可能である。また、Langmuirの吸着等温式の特性として、低濃度において大きく吸着量が変化する。さらに、酸素ガスの存在により最大10倍程度も電流値が変化するため、前記銅ナノワイヤは、低濃度域での超高感度な酸素センサーとして機能することが判明した。   FIG. 3 is a graph showing changes in the amount of current when the partial pressure of oxygen is changed from 0% to 100% under the condition that the total pressure is 1 atm in the copper nanowire. In this case, the applied voltage is also 1V. The change in the amount of current can be described using the Langmuir adsorption isotherm, and can be used as a calibration curve for determining the oxygen concentration from FIG. In addition, as an adsorption isotherm characteristic of Langmuir, the amount of adsorption varies greatly at low concentrations. Furthermore, since the current value is changed up to about 10 times due to the presence of oxygen gas, it has been found that the copper nanowire functions as an ultra-sensitive oxygen sensor in a low concentration region.

一方、上記の電気伝導性の変化は、窒素ガス・アルゴンガスでは全く観測されなかった。
以上、具体例を挙げながら発明の実施の形態に基づいて本発明を詳細に説明してきたが、本発明は上記内容に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
On the other hand, the above-mentioned change in electrical conductivity was not observed at all with nitrogen gas / argon gas.
As described above, the present invention has been described in detail based on the embodiments of the present invention with specific examples. However, the present invention is not limited to the above contents, and all modifications and changes are made without departing from the scope of the present invention. It can be changed.

本発明の銅ナノワイヤの電気伝導変化を示すグラフである。It is a graph which shows the electrical conduction change of the copper nanowire of this invention. 本発明の銅ナノワイヤを窒素ガス100%、1気圧の環境から窒素ガス0.5気圧、酸素ガス0.5気圧(酸素50%)の状態に変化させたときの電流量の変化を示すグラフである。It is a graph which shows the change of the amount of electric current when the copper nanowire of this invention is changed into the state of nitrogen gas 0.5 atmosphere, oxygen gas 0.5 atmosphere (oxygen 50%) from nitrogen gas 100% and 1 atmosphere. is there. 本発明の銅ナノワイヤを、全圧が1気圧の条件で酸素の分圧を0%から100%まで変化させた場合の電流量の変化を示すグラフである。It is a graph which shows the change of the electric current amount when changing the partial pressure of oxygen from 0% to 100% of the copper nanowire of the present invention under the condition that the total pressure is 1 atm.

Claims (13)

Cuコアと、このCuコアを被覆するようにして形成された炭素被覆層とを含むナノワイヤを具え、
室温において酸素ガスに対して脱吸着作用を呈し、前記酸素ガスの前記脱吸着作用を通じて前記酸素ガスを検出するように構成したことを特徴とする、酸素ガス検出素子。
Comprising a nanowire comprising a Cu core and a carbon coating layer formed so as to cover the Cu core;
An oxygen gas detection element configured to exhibit a desorption action on oxygen gas at room temperature, and to detect the oxygen gas through the desorption action of the oxygen gas.
前記ナノワイヤの直径が5nm〜10nmであることを特徴とする、請求項1に記載の酸素ガス検出素子。   The oxygen gas detection element according to claim 1, wherein the nanowire has a diameter of 5 nm to 10 nm. 前記ナノワイヤの長さが0.1μm〜1μmであることを特徴とする、請求項1又は2に記載の酸素ガス検出素子。   3. The oxygen gas detection element according to claim 1, wherein the nanowire has a length of 0.1 μm to 1 μm. 前記酸素ガスの検出は、前記酸素ガスの前記脱吸着作用を通じた電気伝導特性の変化として検出することを特徴とする、請求項1〜3のいずれか一に記載の酸素ガス検出素子。   The oxygen gas detection element according to any one of claims 1 to 3, wherein the detection of the oxygen gas is detected as a change in electrical conduction characteristics through the desorption action of the oxygen gas. 前記ナノワイヤは、水溶液中のCuイオンを原料とし、この原料に対してアセチレンガスを接触させて結晶性のナノワイヤ中間体を自己組織的に形成する工程と、前記ナノワイヤ中間体をアニール処理する工程とを経て作製したことを特徴とする、請求項1〜4のいずれか一に記載の酸素ガス検出素子。 The nanowire uses Cu + ions in an aqueous solution as a raw material, an acetylene gas is brought into contact with the raw material to form a crystalline nanowire intermediate in a self-organized manner, and a step of annealing the nanowire intermediate The oxygen gas detection element according to any one of claims 1 to 4, wherein the oxygen gas detection element is manufactured through the steps described above. 前記アセチレンガスは、前記原料に対して0.3ml/分以下の割合で接触させることを特徴とする、請求項5に記載の酸素ガス検出素子。   The oxygen gas detecting element according to claim 5, wherein the acetylene gas is brought into contact with the raw material at a rate of 0.3 ml / min or less. 前記アニール処理は、非酸化性雰囲気下、50℃以上の温度で実施することを特徴とする、請求項5又は6に記載の酸素ガス検出素子。   The oxygen gas detection element according to claim 5 or 6, wherein the annealing treatment is performed at a temperature of 50 ° C or higher in a non-oxidizing atmosphere. Cuコアと、このCuコアを被覆するようにして形成された炭素被覆層とを含むナノワイヤを具えることを特徴とする、酸素ガス検出素子用ナノワイヤ。   A nanowire for an oxygen gas detection element, comprising a nanowire including a Cu core and a carbon coating layer formed so as to cover the Cu core. 前記ナノワイヤの直径が5nm〜10nmであることを特徴とする、請求項8に記載の酸素ガス検出素子用ナノワイヤ。   The nanowire for an oxygen gas detection element according to claim 8, wherein the diameter of the nanowire is 5 nm to 10 nm. 前記ナノワイヤの長さが0.1μm〜1μmであることを特徴とする、請求項8又は9に記載の酸素ガス検出素子用ナノワイヤ。   The nanowire for an oxygen gas detection element according to claim 8 or 9, wherein the nanowire has a length of 0.1 µm to 1 µm. 前記ナノワイヤは、水溶液中のCuイオンを原料とし、この原料に対してアセチレンガスを接触させて結晶性のナノワイヤ中間体を自己組織的に形成する工程と、前記ナノワイヤ中間体をアニール処理する工程とを経て作製したことを特徴とする、請求項8〜10のいずれか一に記載の酸素ガス検出素子用ナノワイヤ。 The nanowire uses Cu + ions in an aqueous solution as a raw material, an acetylene gas is brought into contact with the raw material to form a crystalline nanowire intermediate in a self-organized manner, and a step of annealing the nanowire intermediate The nanowire for oxygen gas detection elements according to any one of claims 8 to 10, which is manufactured through 前記アセチレンガスは、前記原料に対して0.3ml/分以下の割合で接触させることを特徴とする、請求項11に記載の酸素ガス検出素子用ナノワイヤ。   The nanowire for an oxygen gas detection element according to claim 11, wherein the acetylene gas is brought into contact with the raw material at a rate of 0.3 ml / min or less. 前記アニール処理は、非酸化性雰囲気下、50℃以上の温度で実施することを特徴とする、請求項11又は12に記載の酸素ガス検出素子用ナノワイヤ。   The nanowire for an oxygen gas detection element according to claim 11 or 12, wherein the annealing treatment is performed at a temperature of 50 ° C or higher in a non-oxidizing atmosphere.
JP2007046461A 2007-02-27 2007-02-27 Oxygen gas detection element, and nanowire for oxygen gas detection element Withdrawn JP2008209249A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007046461A JP2008209249A (en) 2007-02-27 2007-02-27 Oxygen gas detection element, and nanowire for oxygen gas detection element
PCT/JP2007/069690 WO2008105119A1 (en) 2007-02-27 2007-10-09 Oxygen gas detecting device and nanowire for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046461A JP2008209249A (en) 2007-02-27 2007-02-27 Oxygen gas detection element, and nanowire for oxygen gas detection element

Publications (1)

Publication Number Publication Date
JP2008209249A true JP2008209249A (en) 2008-09-11

Family

ID=39720963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046461A Withdrawn JP2008209249A (en) 2007-02-27 2007-02-27 Oxygen gas detection element, and nanowire for oxygen gas detection element

Country Status (2)

Country Link
JP (1) JP2008209249A (en)
WO (1) WO2008105119A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170101A (en) * 2012-02-21 2013-09-02 National Institute Of Advanced Industrial Science & Technology Nanowire and method for producing the same
JP2016008820A (en) * 2014-06-22 2016-01-18 株式会社 京都モノテック Gas sensor and gas detector
CN105424763A (en) * 2015-10-30 2016-03-23 电子科技大学 Preparation method of nanometer tin dioxide gas sensitive material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214215A1 (en) * 2017-08-15 2019-02-21 Carl Zeiss Smt Gmbh METHOD FOR OPERATING AN OPTICAL SYSTEM AND OPTICAL SYSTEM

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030055346A (en) * 2000-12-11 2003-07-02 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 Nanosensors
CA2447728A1 (en) * 2001-05-18 2003-01-16 President And Fellows Of Harvard College Nanoscale wires and related devices
KR20040054801A (en) * 2001-11-26 2004-06-25 소니 인터내셔널(유로파) 게엠베하 The use of 1d semiconductor materials as chemical sensing materials, produced and operated close to room temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170101A (en) * 2012-02-21 2013-09-02 National Institute Of Advanced Industrial Science & Technology Nanowire and method for producing the same
JP2016008820A (en) * 2014-06-22 2016-01-18 株式会社 京都モノテック Gas sensor and gas detector
CN105424763A (en) * 2015-10-30 2016-03-23 电子科技大学 Preparation method of nanometer tin dioxide gas sensitive material

Also Published As

Publication number Publication date
WO2008105119A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
Ovsianytskyi et al. Highly sensitive chemiresistive H2S gas sensor based on graphene decorated with Ag nanoparticles and charged impurities
Bhangare et al. XPS and Kelvin probe studies of SnO2/RGO nanohybrids based NO2 sensors
Liang et al. Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer
Domènech-Gil et al. Gas sensors based on individual indium oxide nanowire
Vaishampayan et al. Influence of Pd doping on morphology and LPG response of SnO2
Kim et al. H2S gas sensing properties of bare and Pd-functionalized CuO nanorods
Chen et al. Superior ethanol-sensing properties based on Ni-doped SnO2 p–n heterojunction hollow spheres
Leghrib et al. Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters
Zilli et al. Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films
Jung et al. Room-temperature gas sensor using carbon nanotube with cobalt oxides
Aroutiounian et al. Study of the surface-ruthenated SnO2/MWCNTs nanocomposite thick-film gas sensors
Liu et al. Tin oxide films for nitrogen dioxide gas detection at low temperatures
Bendahan et al. Development of an ammonia gas sensor
Huang et al. Selective-detection NO at room temperature on porous ZnO nanostructure by solid-state synthesis method
US8778714B2 (en) Gas sensitive materials for gas detection and methods of making
Wang et al. A ZnO/porous GaN heterojunction and its application as a humidity sensor
Xu et al. Oxygen vacancy engineering on cerium oxide nanowires for room-temperature linalool detection in rice aging
Huang et al. Pd-loaded In 2 O 3 nanowire-like network synthesized using carbon nanotube templates for enhancing NO 2 sensing performance
Chiu et al. The influence of microstructure and deposition methods on CO gas sensing properties of La0. 8Sr0. 2Co1− xNixO3− δ perovskite films
JP2008209249A (en) Oxygen gas detection element, and nanowire for oxygen gas detection element
Singh et al. Highly sensitive and selective liquefied petroleum gas sensor based on novel ZnO–NiO heterostructures
Wan et al. Dense doping of indium to coral-like SnO2 nanostructures through a plasma-assisted strategy for sensitive and selective detection of chlorobenzene
Liu et al. Influence of oxygen vacancies on the performance of SnO2 gas sensing by near-ambient pressure XPS studies
Yan et al. Electrophoretic deposition of multiwalled carbon nanotubes onto porous silicon with enhanced NO2-sensing characteristics
Yadav et al. Synthesis of nano-sized ZnO using drop wise method and its performance as moisture sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511