JP2008209022A - Multi-air conditioner - Google Patents

Multi-air conditioner Download PDF

Info

Publication number
JP2008209022A
JP2008209022A JP2007043277A JP2007043277A JP2008209022A JP 2008209022 A JP2008209022 A JP 2008209022A JP 2007043277 A JP2007043277 A JP 2007043277A JP 2007043277 A JP2007043277 A JP 2007043277A JP 2008209022 A JP2008209022 A JP 2008209022A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
outdoor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007043277A
Other languages
Japanese (ja)
Inventor
Kenji Ito
健二 伊藤
Akihiro Masutani
晃弘 桝谷
Yoshihiro Hara
芳裕 波良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007043277A priority Critical patent/JP2008209022A/en
Publication of JP2008209022A publication Critical patent/JP2008209022A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-air conditioner capable of preventing shortage of an oil level of a compressor in defrosting operation. <P>SOLUTION: This multi-air conditioner has an outdoor machine unit 10 having the compressor 11 compressing a refrigerant, and a plurality of indoor machine units 20 having an indoor heat exchanger 21, and outputs a control command for controlling output of the compressor 11 of the outdoor machine unit 10 from the respective indoor machine units 20, and has a control part for performing the defrosting operation for heating an outdoor heat exchanger 13 provided in the outdoor machine unit 10. The control part performs refrigerant recovery operation for recovering the refrigerant gathered in the outdoor heat exchanger 13 provided in an outdoor machine to the compressor 11 when starting the defrosting operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空調運転(冷房運転、暖房運転及び除湿運転)により空調空気を噴出する複数の室内機ユニットを備え、各室内機ユニット毎に異なる運転制御が可能なマルチ型空気調和装置に関する。   The present invention relates to a multi-type air conditioner that includes a plurality of indoor unit units that eject conditioned air by air conditioning operation (cooling operation, heating operation, and dehumidifying operation) and that can perform different operation control for each indoor unit.

室内の冷暖房や除湿(以下、総称して「空調」と呼ぶ)を行う空気調和装置は、室内機ユニットと室外機ユニットとの間を冷媒配管及び電気配線で接続した構成とされる。このような空気調和装置は、圧縮機、室外熱交換器、絞り機構、室内熱交換器及び四方弁を主な構成要素として冷媒の循環回路を形成するヒートポンプを用いており、圧縮機から送出される冷媒の循環方向を四方弁の操作によって切り換えることで、所望の空調運転を行っている。
このような空気調和装置には、一式の室外機ユニットに対し、室内機ユニットが一台接続された構成のシングル型と、それぞれ独自の運転制御を可能にした室内機ユニットが複数接続された構成のマルチ型とがある。
暖房運転時、室外熱交換器の凍結防止のため、デフロスト運転を行なっている。デフロスト運転では冷房サイクル方向に冷媒を流し、室外機に対して高温冷媒を流すことにより、凍結した熱交換器の温度を上昇させる。なお、圧縮機回転数と電子膨張弁(EEV)開度は、凍結した熱交換器を溶かし、かつ、冷媒流動音を許容できる範囲に設定している。
特許第2503633号公報
An air conditioner that performs indoor air conditioning and dehumidification (hereinafter collectively referred to as “air conditioning”) has a configuration in which an indoor unit and an outdoor unit are connected by a refrigerant pipe and an electrical wiring. Such an air conditioner uses a heat pump that forms a refrigerant circulation circuit with a compressor, an outdoor heat exchanger, a throttle mechanism, an indoor heat exchanger, and a four-way valve as main components, and is sent from the compressor. The desired air conditioning operation is performed by switching the circulation direction of the refrigerant by operating the four-way valve.
In such an air conditioner, a single type of configuration in which one indoor unit is connected to a set of outdoor unit and a configuration in which a plurality of indoor unit units each enabling independent operation control are connected There are multiple types.
During the heating operation, the defrost operation is performed to prevent the outdoor heat exchanger from freezing. In the defrost operation, the refrigerant flows in the cooling cycle direction, and the high-temperature refrigerant flows through the outdoor unit, thereby increasing the temperature of the frozen heat exchanger. The compressor speed and the opening of the electronic expansion valve (EEV) are set in a range in which the frozen heat exchanger is melted and the refrigerant flow noise can be allowed.
Japanese Patent No. 2503633

上述したマルチエアコンの場合、接続室内機が多く、総配管長も長い。このため、冷媒に含まれる冷凍機油を圧縮機に回収できず、デフロスト運転中に圧縮機が油面切れに至る場合があった。これは外気温が低いほど顕著である。
この結果、圧縮機内部の摩耗・破損を招く可能性があった。
In the case of the multi air conditioner described above, there are many connected indoor units and the total piping length is also long. For this reason, the refrigerating machine oil contained in the refrigerant cannot be recovered by the compressor, and the compressor may run out of oil during the defrost operation. This is more noticeable as the outside air temperature is lower.
As a result, there is a possibility of causing wear and damage inside the compressor.

本発明は上記事情に鑑みてなされたものであり、デフロスト運転時に圧縮機の油面切れを防ぐことができるマルチ型空気調和装置を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the multi-type air conditioning apparatus which can prevent the oil level cut | off of a compressor at the time of a defrost operation.

請求項1に記載の発明は、冷媒を圧縮する圧縮機を備えた室外機ユニットと、室内熱交換器を備えた複数の室内機ユニットとを具備したマルチ型空気調和装置において、前記室外機ユニットが備える室外熱交換器を加熱するデフロスト運転を行なう制御部を備え、該制御部は、前記デフロスト運転の際に、前記室外熱交換器に溜まった冷媒を前記圧縮機に回収する冷媒回収運転を行なうことを特徴とする。   The invention according to claim 1 is a multi-type air conditioner comprising an outdoor unit provided with a compressor for compressing refrigerant and a plurality of indoor unit provided with an indoor heat exchanger. A control unit that performs a defrost operation for heating the outdoor heat exchanger included in the refrigerant, and the control unit performs a refrigerant recovery operation for recovering the refrigerant accumulated in the outdoor heat exchanger to the compressor during the defrost operation. It is characterized by performing.

このようなマルチ型空気調和装置によれば、冷媒に混入した冷凍機油が本来のデフロスト運転に先立って圧縮機に回収される。   According to such a multi-type air conditioner, the refrigeration oil mixed in the refrigerant is recovered by the compressor prior to the original defrost operation.

請求項2に記載の発明は、請求項1に記載のマルチ型空気調和装置において、前記制御部は、前記冷媒回収運転として、前記圧縮機の回転数を前記室外熱交換器から冷媒を排出できる回転数とし、かつ、冷媒流路を絞る電子膨張弁の開度を通常の前記デフロスト運転よりも大きい開度とすることを特徴とする。   According to a second aspect of the present invention, in the multi-type air conditioner according to the first aspect, the control unit can discharge the refrigerant from the outdoor heat exchanger with the rotation speed of the compressor as the refrigerant recovery operation. The rotation speed of the electronic expansion valve that restricts the refrigerant flow path is set to be larger than that of the normal defrost operation.

このようなマルチ型空気調和装置によれば、電子膨張弁の開度を開き気味にしても、冷媒循環が少ないため、冷媒流動音は大きくならない。   According to such a multi-type air conditioner, even if the opening of the electronic expansion valve is opened, the refrigerant flow noise does not increase because the refrigerant circulation is small.

請求項3に記載の発明は、前記制御部は、前記圧縮機の吸入管温度から、前記室外熱交換器の液相側冷媒温度を引いた値が、0℃未満となるまで前記冷媒回収運転を行なうことを特徴とする。   According to a third aspect of the present invention, the control unit performs the refrigerant recovery operation until a value obtained by subtracting the liquid phase side refrigerant temperature of the outdoor heat exchanger from the suction pipe temperature of the compressor becomes less than 0 ° C. It is characterized by performing.

このようなマルチ型空気調和装置によれば、冷媒回収が終了したことを判定する条件として、以下の(1)式を満足することを制御部が判定することができる。
圧縮機の吸入管温度−室外熱交換器の液相側冷媒温度<0℃・・・(1)
According to such a multi-type air conditioner, the control unit can determine that the following expression (1) is satisfied as a condition for determining that the refrigerant recovery is completed.
Compressor suction pipe temperature−outdoor heat exchanger liquid phase side refrigerant temperature <0 ° C. (1)

請求項4に記載の発明は、前記圧縮機の吸入管温度から、運転中の前記室内機ユニットが備える室内熱交器温度平均値を引いた値が、0℃未満となるまで前記冷媒回収運転を行なうことを特徴とする。   According to a fourth aspect of the present invention, the refrigerant recovery operation is performed until a value obtained by subtracting an average value of the indoor heat exchanger temperature included in the indoor unit being operated from the suction pipe temperature of the compressor is less than 0 ° C. It is characterized by performing.

このようなマルチ型空気調和装置によれば、冷媒回収が終了したことを判定する条件として、以下の(2)式を満足することを制御部が判定することができる。
圧縮機の吸入管温度−運転中の室内機ユニットが備える室内熱交器温度平均値<0℃・・・(2)
According to such a multi-type air conditioner, the control unit can determine that the following expression (2) is satisfied as a condition for determining that the refrigerant recovery is completed.
Compressor suction pipe temperature-indoor heat exchanger temperature average value of the operating indoor unit <0 ° C (2)

本発明のマルチ型空気調和装置によれば、デフロスト運転時に圧縮機の油面切れを防ぐことができ、圧縮機内部の摩耗・破損を防止することができる。   According to the multi-type air conditioning apparatus of the present invention, it is possible to prevent the oil level of the compressor from being cut during defrost operation, and it is possible to prevent wear and damage inside the compressor.

以下、本実施形態に係るマルチ型空気調和装置の一実施形態について、図面を参照して説明する。図1は、マルチ型空気調和装置の全体構成例を示す説明図である。このマルチ型空気調和装置は、室外機ユニット10と、同室外機ユニット10に接続された複数台の室内機ユニット20(図示の例では、室内機ユニット20A,20Bの2台)とを具備して構成される。これら室内機ユニット20及び室外機ユニット10は、冷媒を流す冷媒配管30や図示しない電気配線等により接続されている。   Hereinafter, an embodiment of a multi-type air conditioner according to the present embodiment will be described with reference to the drawings. FIG. 1 is an explanatory diagram illustrating an example of the overall configuration of a multi-type air conditioner. This multi-type air conditioner includes an outdoor unit 10 and a plurality of indoor unit units 20 (two indoor unit units 20A and 20B in the illustrated example) connected to the outdoor unit 10. Configured. The indoor unit 20 and the outdoor unit 10 are connected by a refrigerant pipe 30 through which a refrigerant flows, electric wiring (not shown), and the like.

室外機ユニット10は、冷媒を圧縮して送出する圧縮機11と、冷媒の循環方向を切り換える四方弁12と、冷媒と外気との間で熱交換を行う室外熱交換器13と、絞り機構として機能する電子膨張弁14とを主な構成要素とし、さらに、消音の目的で圧縮機11の吐出側配管に配設されたマフラ15と、同じく消音の目的で圧縮機11の吸入管配管に配設された吸入マフラ16と、各種の運転制御を行う室外制御部(制御部)17とを具備して構成される。なお、この室外機ユニット10には、この他にも図示省略の室外ファン、レシーバ、サービスバルブ及びストレーナ等の機器類や温度センサ等のセンサ類が設けられている。   The outdoor unit 10 includes a compressor 11 that compresses and sends out a refrigerant, a four-way valve 12 that switches a circulation direction of the refrigerant, an outdoor heat exchanger 13 that exchanges heat between the refrigerant and the outside air, and a throttling mechanism. The functioning electronic expansion valve 14 is a main component, and further, the muffler 15 disposed in the discharge side piping of the compressor 11 for the purpose of silencing, and the suction pipe piping of the compressor 11 for the same purpose of silencing. The suction muffler 16 is provided, and an outdoor control unit (control unit) 17 that performs various operation controls is provided. In addition, the outdoor unit 10 is provided with devices such as an outdoor fan, a receiver, a service valve, and a strainer (not shown) and sensors such as a temperature sensor.

室内機ユニット20は、ケーシング内に室内熱交換器21や室内制御部(制御部)22などの他、図示しない室内ファン等の機器を収納した構成とされる。また、室内熱交換器21には、二相流部の温度を検出する二相流部温度センサ23と、気相側の温度を検出する気相部温度センサ24と、室内気吸込温度センサ25とが設けられており、これらの温度センサで検出した温度データは室内制御部22に入力される。ここで、二相流部温度センサ23は、室内熱交換器21のパス中間部に取り付けた温度センサであり、二相流部における圧力飽和温度を検出している。また、室内気吸込温度センサ25は、室内機ユニット20に吸い込む室内気の温度、すなわちこれから空調しようとする室内気の温度を検出するため、吸込口から室内熱交換器21に至る流路の適所に取り付けられている温度センサである。
なお、図中の各符号に付記されたA,Bは、2つの室内機ユニットを区別して説明する場合にのみ使用するものとする。
The indoor unit 20 is configured such that a casing and other devices such as an indoor fan (not shown) are housed in the casing in addition to the indoor heat exchanger 21 and the indoor control unit (control unit) 22. The indoor heat exchanger 21 includes a two-phase flow part temperature sensor 23 that detects the temperature of the two-phase flow part, a gas phase part temperature sensor 24 that detects the temperature on the gas phase side, and an indoor air suction temperature sensor 25. The temperature data detected by these temperature sensors is input to the indoor control unit 22. Here, the two-phase flow part temperature sensor 23 is a temperature sensor attached to the intermediate part of the path of the indoor heat exchanger 21, and detects the pressure saturation temperature in the two-phase flow part. The indoor air suction temperature sensor 25 detects the temperature of the indoor air sucked into the indoor unit 20, that is, the temperature of the indoor air to be air-conditioned from now on, so that an appropriate position in the flow path from the suction port to the indoor heat exchanger 21 is detected. It is a temperature sensor attached to.
In addition, A and B attached to each code | symbol in a figure shall be used only when distinguishing and explaining two indoor unit units.

この室内機ユニット20は、室内ファンで吸引した室内の空気を室内熱交換器21に導いて通過させ、上述した室外機ユニット10から供給される冷媒との間で熱交換した空調空気を室内に吹き出すように構成されている。また、2台の室内機ユニット20A,20Bは、それぞれ異なる空調対象の部屋に設置され、各部屋の状況に応じて異なる運転制御が可能に構成されている。なお、ここでの異なる運転制御とは、冷房運転または暖房運転のいずれか一方を選択し、部屋毎に異なる空調負荷に対応した運転制御を行うこと意味しており、二つの室内機ユニット20A,20Bが暖房運転及び冷房運転のように異なる空調運転を同時に行うものではない。   This indoor unit 20 guides indoor air sucked by an indoor fan to the indoor heat exchanger 21 and passes it through, and the conditioned air heat-exchanged with the refrigerant supplied from the outdoor unit 10 described above into the room. It is configured to blow out. Also, the two indoor unit units 20A and 20B are installed in different air-conditioning target rooms, and are configured to be capable of different operation control depending on the situation of each room. Here, the different operation control means that either one of the cooling operation or the heating operation is selected, and the operation control corresponding to the air conditioning load different for each room is performed, and the two indoor unit 20A, 20B does not perform different air conditioning operations at the same time as in the heating operation and the cooling operation.

2台の室内機ユニット20A,20Bは、それぞれ室外機ユニット10内のパイプコネクタ31,ヘッダー32で分岐した冷媒配管30A,30Bに接続されている。また、室外機ユニット10内の各冷媒配管30A,30Bには、それぞれ独立して動作する電子膨張弁14A,14Bが、室外熱交換器13と室内機ユニット20A,20Bとの間に配設されている。
なお、上述した室外機ユニット10には、圧縮機11の吸入管センサ11a及び吐出管センサ11bと、室外熱交換器13の液相側に設けられた室外熱交センサ13aと、外気温を検出する外温センサ18とを具備し、それぞれの検出値が室外制御部17に入力されるようになっている。
The two indoor unit units 20A and 20B are connected to refrigerant pipes 30A and 30B branched by a pipe connector 31 and a header 32 in the outdoor unit 10, respectively. In addition, each refrigerant pipe 30A, 30B in the outdoor unit 10 is provided with electronic expansion valves 14A, 14B that operate independently between the outdoor heat exchanger 13 and the indoor unit 20A, 20B. ing.
In the outdoor unit 10 described above, the intake pipe sensor 11a and the discharge pipe sensor 11b of the compressor 11, the outdoor heat exchange sensor 13a provided on the liquid phase side of the outdoor heat exchanger 13, and the outside air temperature are detected. The detected temperature is input to the outdoor control unit 17.

以下では、上述した構成のマルチ型空気調和装置の作用について、暖房運転時及び冷房運転時のそれぞれの場合に分けて説明する。
最初に、暖房運転時の空調作用について、図中に矢印で示した冷媒の流れとともに説明する。なお、暖房運転及び冷房運転は、四方弁12の操作により変化する冷媒の流れ方向に応じて選択切換えされる。
Below, the effect | action of the multi-type air conditioning apparatus of the structure mentioned above is divided and demonstrated in each case at the time of heating operation and air_conditionaing | cooling operation.
First, the air conditioning operation during the heating operation will be described together with the refrigerant flow indicated by arrows in the drawing. The heating operation and the cooling operation are selectively switched according to the flow direction of the refrigerant that changes depending on the operation of the four-way valve 12.

さて、圧縮機11の圧縮で高温高圧の気体とされた冷媒は、マフラ15及び四方弁12を通過してヘッダー32に導かれる。この気体冷媒は、さらに、ヘッダー32から室内機ユニット20の室内熱交換器21へ導かれ、室内気と熱交換して放熱する。この放熱により凝縮した高温高圧の液冷媒は、電子膨張弁14を通過する際に減圧されて低温低圧の気液二相冷媒となり、室外熱交換器13に流れ込む。   The refrigerant that has been compressed into high-temperature and high-pressure gas by the compressor 11 passes through the muffler 15 and the four-way valve 12 and is guided to the header 32. The gaseous refrigerant is further guided from the header 32 to the indoor heat exchanger 21 of the indoor unit 20 and exchanges heat with the indoor air to dissipate heat. The high-temperature and high-pressure liquid refrigerant condensed by this heat release is reduced in pressure when passing through the electronic expansion valve 14 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 13.

室外熱交換器13に流れ込んだ気液二相冷媒は、この熱交換器を通過する際に室外の空気(以下、「室外気」と呼ぶ)と熱交換して吸熱し、蒸発気化して低温低圧の気体冷媒となる。この気体冷媒は、四方弁12及び吸入マフラ16を通過して圧縮機11に吸引され、以下同様の過程で状態変化を繰り返しながら、マルチ型空気調和装置の冷凍サイクルを循環することになる。
このような暖房運転時において、室内機ユニット20A,20Bの空調負荷が異なる状況で同時に運転する場合、両ユニットに分配される冷媒循環量は、電子膨張弁14A,14Bの開度により調整される。なお、運転停止中の室内機ユニット20については、同ユニットに接続されている電子膨張弁14が全閉または微開とされる。
When the gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 13 passes through this heat exchanger, it exchanges heat with outdoor air (hereinafter referred to as “outdoor air”), absorbs heat, evaporates, and evaporates to a low temperature. It becomes a low-pressure gas refrigerant. This gaseous refrigerant passes through the four-way valve 12 and the suction muffler 16 and is sucked into the compressor 11, and then circulates in the refrigeration cycle of the multi-type air conditioner while repeating state changes in the same process.
In such heating operation, when the indoor unit 20A, 20B is operated simultaneously under different air conditioning loads, the refrigerant circulation amount distributed to both units is adjusted by the opening degree of the electronic expansion valves 14A, 14B. . In addition, about the indoor unit 20 in operation stop, the electronic expansion valve 14 connected to the unit is fully closed or slightly opened.

次に、冷房運転について簡単に説明する。この冷房運転は、上述した暖房運転から四方弁12を操作して冷媒の循環方向を切り換えることにより実施される。
この冷房運転では、圧縮機11から四方弁12までの冷媒の流れは暖房運転時と同様であるが、四方弁12を出た高温高圧の気相冷媒は室外熱交換器13に導かれ、室外気と熱交換する。この熱交換により、高温高圧の気体冷媒が室外気に熱を与えて凝縮液化し、高温高圧の液冷媒となる。この液冷媒は、電子膨張弁14を通過することで減圧され、低温低圧の気液二相冷媒となり、再び冷媒配管30を通り室内機ユニット20の室内熱交換器21に送られる。
Next, the cooling operation will be briefly described. This cooling operation is performed by operating the four-way valve 12 and switching the refrigerant circulation direction from the above-described heating operation.
In this cooling operation, the refrigerant flow from the compressor 11 to the four-way valve 12 is the same as that in the heating operation. However, the high-temperature and high-pressure gas-phase refrigerant that has exited the four-way valve 12 is guided to the outdoor heat exchanger 13 and the outdoor operation. Exchange heat with air. By this heat exchange, the high-temperature and high-pressure gaseous refrigerant gives heat to the outdoor air to be condensed and liquefied, and becomes a high-temperature and high-pressure liquid refrigerant. The liquid refrigerant is depressurized by passing through the electronic expansion valve 14 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and is sent again to the indoor heat exchanger 21 of the indoor unit 20 through the refrigerant pipe 30.

低温低圧の気液二相冷媒は、室内熱交換器21で室内気と熱交換し、空調対象である室内気から熱を奪って当該室内気を冷却するとともに、冷媒自身が蒸発気化して低温低圧の気体冷媒となる。
この気体冷媒は、ヘッダー32,四方弁12及び吸入マフラ16を通過して再び圧縮機11に吸引され、以下同様の過程で状態変化を繰り返しながら、マルチ型空気調和装置の冷凍サイクルを循環する。
The low-temperature and low-pressure gas-liquid two-phase refrigerant exchanges heat with the indoor air in the indoor heat exchanger 21, removes heat from the indoor air to be air-conditioned, cools the indoor air, and evaporates and evaporates itself to reduce the temperature. It becomes a low-pressure gas refrigerant.
This gaseous refrigerant passes through the header 32, the four-way valve 12, and the suction muffler 16, and is again sucked into the compressor 11, and thereafter circulates in the refrigeration cycle of the multi-type air conditioner while repeating state changes in the same process.

次に、室外制御部17によるデフロスト制御を以下に示す。
暖房運転中に所定の運転時間が経過し、室外機ユニット10の室外熱交換器13の配管に取り付けた室外熱交センサ13aによって検出された室外熱交液管センサ温度TOPLと外温センサ18により検出された外温センサ温度TOが所定の温度になればデフロスト制御に入り、室外熱交液管センサ温度TOPLの温度が上昇して所定の温度になれば通常の運転となる。
Next, defrost control by the outdoor control unit 17 will be described below.
A predetermined operation time elapses during the heating operation, and the outdoor heat exchanger tube sensor temperature TOPL and the outdoor temperature sensor 18 detected by the outdoor heat exchanger 13a attached to the pipe of the outdoor heat exchanger 13 of the outdoor unit 10 are used. When the detected outside temperature sensor temperature TO reaches a predetermined temperature, the defrost control is started, and when the outdoor heat exchanger tube sensor temperature TOPL rises to a predetermined temperature, a normal operation is performed.

上述のマルチ型空気調和装置において、デフロスト制御の開始から終了するまでの条件について、以下に説明する。
[1]開始条件
デフロスト制御に入る条件(デフロスト条件)は、次の条件を全て満足した場合とする。なお、<1>通常運転と、<2>デフロスト促進運転とに分けて判断する。ここで、デフロスト促進運転時とは、デフロスト終了条件[5](b)に示すとおり、1回前のデフロスト終了が、デフロスト時間10分経過によりデフロスト終了となった場合をいう。通常運転とは上記以外をいう。また、電源投入時及び全停止・異常停止・冷房運転から暖房運転に運転切替後は通常運転とする。また、デフロスト促進運転を終了した場合、次回のデフロストは通常運転とする。
<1>通常運転時
(a)運転モード:暖房
(b)運転開始あるいはデフロスト制御終了後:40分経過後(室外回転数0rps以外のコンプ実運転累積時間)
(c)TOPLの温度:37分経過後から3分間継続して−2℃以下(圧縮機実運転中に限る)
(d)(TO−TOPL)の温度:0.44×TO+A℃以上
(e)圧縮機実運転中
ただし、(d)の温度は(b)が経過してから読み取る。
In the above-described multi-type air conditioner, conditions from the start to the end of the defrost control will be described below.
[1] Start condition The condition for entering defrost control (defrost condition) is when all of the following conditions are satisfied. The determination is made separately for <1> normal operation and <2> defrost acceleration operation. Here, at the time of the defrost promotion operation, as shown in the defrost end condition [5] (b), it means that the previous defrost end is the end of the defrost after the defrost time of 10 minutes. Normal operation means other than the above. In addition, normal operation is performed when the power is turned on and after switching from full stop, abnormal stop, cooling operation to heating operation. In addition, when the defrost promotion operation is finished, the next defrost is set to the normal operation.
<1> Normal operation (a) Operation mode: Heating (b) After start of operation or after defrost control: 40 minutes have elapsed (computed operation cumulative time other than outdoor rotation speed 0 rps)
(C) Temperature of TOPL: Continued for 3 minutes after 37 minutes have passed and is below −2 ° C. (limited to actual operation of the compressor)
(D) Temperature of (TO-TOPL): 0.44 × TO + A ° C. or higher (e) During actual compressor operation However, the temperature of (d) is read after (b) has elapsed.

Figure 2008209022
Figure 2008209022

(f)上記(a)から(e)の条件を全て満たした後、マルチ指令回転数の上限を40rpsとし、室外回転数とInv回転数が初めて一致した後180秒後にデフロスト入運転を実施する。
<2>デフロスト促進運転時
(a)運転モード:暖房
(b)デフロスト終了後、40分経過(室外回転数0rps以外のコンプ実運転累積時間)
(c)圧縮機実運転中
(d)上記(a)から(c)の条件を全て満たした後、マルチ指令回転数の上限を40rpsとし、室外回転数とInv回転数が初めて一致したのち180秒後にデフロスト入運転を実施する。
(F) After all the conditions (a) to (e) are satisfied, the upper limit of the multi-command rotation speed is set to 40 rps, and the defrost operation is performed 180 seconds after the outdoor rotation speed and the Inv rotation speed first coincide with each other. .
<2> Defrost accelerated operation (a) Operation mode: Heating (b) 40 minutes have elapsed after completion of defrost (cumulative operation cumulative time other than outdoor rotation speed 0 rps)
(C) During actual compressor operation (d) After all the conditions (a) to (c) are satisfied, the upper limit of the multi-command rotation speed is set to 40 rps, and the outdoor rotation speed and the Inv rotation speed are first matched 180 Perform defrosting operation after 2 seconds.

[2]暖房時のマルチ指令回転数が0rpsに変わった回数をカウントして、10回以上となったならば、次の条件を全て満足した場合にデフロスト制御となる。
(室外保護機能の作動による停止の回数はカウントしない)
<1>通常運転時
(a)運転モード 暖房
(b)運転開始後、あるいはデフロスト制御終了後 40分経過(室外回転数0rps以外の圧縮機実運転累積時間)
(c)TOPLの温度 37分経過後から3分間経過して−2℃以下
(d)圧縮機 実運転中
(e)TO≦3℃
(f)上記(a)から(e)の条件を全て満たした後、マルチ指令回転数の上限を40rpsとし、室外回転数とInv回転数が初めて一致したのち180秒後にデフロスト入運転を実施する。
これは、負荷が小さい部屋にエアコンを設置した際、サーモON−OFFを繰返しデフロスト制御が行なわれないことの対策である。
<2>デフロスト促進運転時には[1]<2>に従う。
[3]暖房時のマルチ指令回転数0rpsの回数カウント及び累積時間は、次の場合リセットされる。(0回に戻る)
(a)デフロスト制御を行なったとき
(b)運転モードが変更されたとき
(c)全ての室内コントロールから停止信号を受信したとき(全停止時)
(d)電源投入時
[2] The number of times the multi-command rotation speed during heating is changed to 0 rps is counted, and if it becomes 10 or more, defrost control is performed when all of the following conditions are satisfied.
(The number of stops due to the activation of the outdoor protection function is not counted.)
<1> During normal operation (a) Operation mode Heating (b) 40 minutes after starting operation or after defrost control ends (accumulated operation time of compressor other than outdoor rotation speed 0 rps)
(C) Temperature of TOPL 3 minutes after 37 minutes have passed and -2 ° C or lower (d) Compressor during actual operation (e) TO ≤ 3 ° C
(F) After satisfying all the above conditions (a) to (e), the upper limit of the multi-command rotation speed is set to 40 rps, and the defrosting operation is performed 180 seconds after the outdoor rotation speed and the Inv rotation speed first coincide with each other. .
This is a countermeasure against the fact that the defrost control is not repeatedly performed when the air conditioner is installed in a room with a small load.
<2> Follow [1] <2> during defrost acceleration operation.
[3] The multi-command rotation speed count of 0 rps and the accumulated time during heating are reset in the following cases. (Return to 0 times)
(A) When defrost control is performed (b) When operation mode is changed (c) When stop signals are received from all indoor controls (when all stops)
(D) When power is turned on

[4]制御内容
デフロスト制御中の各アクチュエータの動作は図2の通りである。
デフロスト運転開始時に、冷媒回収運転(符号A)を行なう。この時には、運転中の各室内機ユニット20の電子膨張弁(EEV)14の開度を上げ(X3パルス)、圧縮機11回転数を、冷媒回収可能な回転数(R3rps)とする。圧縮機回転数R3及びEEV開度X3は、油を回収する冷媒流速を満たすために必要な流量を達成するように、運転する室内機の台数から予め算出した値である。
[4] Control contents The operation of each actuator during defrost control is as shown in FIG.
At the start of the defrost operation, the refrigerant recovery operation (symbol A) is performed. At this time, the opening degree of the electronic expansion valve (EEV) 14 of each indoor unit 20 in operation is increased (X3 pulse), and the compressor 11 rotation speed is set to the rotation speed (R3 rps) at which the refrigerant can be recovered. The compressor rotation speed R3 and the EEV opening X3 are values calculated in advance from the number of indoor units to be operated so as to achieve a flow rate necessary to satisfy the refrigerant flow velocity for recovering oil.

冷媒回収運転の終了、すなわちR3rps、X3パルスからR1rps、X1パルスへ移行するタイミングは、以下の条件から判定する。ただし、デフロスト運転開始30秒以降から判定する。
TCS−TOPL<0℃となったとき
上記の判定条件(温度)は外温センサ温度TOの値によって値を変更しても良い。
The end of the refrigerant recovery operation, that is, the timing for shifting from the R3 rps and X3 pulse to the R1 rps and X1 pulse is determined from the following conditions. However, the determination is made from 30 seconds after the start of the defrost operation.
When TCS-TOPL <0 ° C. The above-described determination condition (temperature) may be changed depending on the value of the external temperature sensor temperature TO.

これら値を図3のモリエル線図上に示した。本来冷房サイクルであるデフロスト運転中は、圧縮機11の吸入管温度TCSのほうが電子膨張弁(EEV)14で減圧される前のTOPLよりも低いため、TSCとTOPLの差(TCS−TOPL)はゼロより小さくなる。TCSとTOPLの差(TCS−TOPL)がゼロより大きいことは、室外熱交換器13の過冷却域が多く冷凍機油を含んだ液冷媒が溜まり込んでいることを意味している。したがって、これらの差が0℃よりも低くなった場合に冷媒回収が終了したと判定する。   These values are shown on the Mollier diagram of FIG. During the defrost operation, which is essentially a cooling cycle, the suction pipe temperature TCS of the compressor 11 is lower than the TOPL before being depressurized by the electronic expansion valve (EEV) 14, so the difference between TSC and TOPL (TCS-TOPL) is Less than zero. The difference between TCS and TOPL (TCS-TOPL) being greater than zero means that the subcooling region of the outdoor heat exchanger 13 is large and liquid refrigerant containing refrigeration oil is accumulated. Therefore, when these differences are lower than 0 ° C., it is determined that the refrigerant recovery is finished.

なお、以下の(3)式を満足することを条件として吸入過熱度により判定しても良い。
TCS−運転中の室内機ユニット20が備える室内熱交器温度平均値(TIPave)<0℃・・・(3)
In addition, you may determine by the suction superheat degree on condition that the following (3) Formula is satisfied.
TCS-indoor heat exchanger temperature average value (TIPave) <0 ° C. (3) included in the indoor unit 20 during operation

冷媒回収運転終了によりEEVをX1パルスとすることで、デフロスト運転中の冷媒流動音を抑える。圧縮機回転数を、熱交換器の解凍に見合った回転数に上昇させる。   By setting the EEV to the X1 pulse at the end of the refrigerant recovery operation, the refrigerant flow noise during the defrost operation is suppressed. The compressor speed is increased to a speed commensurate with the thawing of the heat exchanger.

また、デフロスト運転開始30秒以降からTOPL≧2℃を判定し、これが成立する場合、圧縮機回転数をR2rpsに下げるとともにEEV開度をX2に上げることで、さらに冷媒流動音を抑える。   Further, TOPL ≧ 2 ° C. is determined from 30 seconds after the start of the defrost operation, and when this is established, the refrigerant flow noise is further suppressed by lowering the compressor speed to R2 rps and raising the EEV opening to X2.

[5]終了条件
デフロスト運転からデフロスト終了運転に移る条件は、次の項目のどれか一方を満たした場合である。ただし、デフロスト運転開始90秒以降から判定する。
(a)熱交液管センサ温度TOPL 20℃以上
(b)デフロスト運転時間:デフロスト運転開始後10分経過
(c)熱交液管センサ温度TOPL 10℃以上を2分間継続時
[5] End condition The condition for moving from the defrost operation to the defrost end operation is when one of the following items is satisfied. However, the determination is made from 90 seconds after the start of the defrost operation.
(A) Heat exchange liquid tube sensor temperature TOPL 20 ° C. or higher (b) Defrost operation time: 10 minutes after defrost operation start (c) Heat exchange liquid tube sensor temperature TOPL 10 ° C. or higher for 2 minutes

以上のように、本実施形態のマルチ型空気調和装置によれば、室外制御部17によるデフロスト運転に先立って、冷媒回収運転が行なわれ、室外熱交換器13に溜まり込んだ冷凍機油を含む冷媒が圧縮機11に回収される。このため、デフロスト運転での油面切れが防止され、圧縮機内部の摩耗・破損を防ぐことができる。   As described above, according to the multi-type air conditioner of the present embodiment, the refrigerant recovery operation is performed prior to the defrost operation by the outdoor control unit 17, and the refrigerant includes the refrigerating machine oil accumulated in the outdoor heat exchanger 13. Is recovered by the compressor 11. For this reason, it is possible to prevent the oil level from being cut off during the defrost operation, and to prevent wear and breakage inside the compressor.

本発明に係るマルチ型空気調和装置の一実施形態を示す構成図である。It is a lineblock diagram showing one embodiment of a multi type air harmony device concerning the present invention. 同マルチ型空気調和装置によるデフロスト運転を示すタイミングチャートである。It is a timing chart which shows the defrost driving | operation by the multi type air conditioning apparatus. モリエル線図とマルチ型空気調和装置における各部温度を示した図である。It is the figure which showed each part temperature in a Mollier diagram and a multi-type air conditioning apparatus.

符号の説明Explanation of symbols

10…室外機ユニット、11…圧縮機、17…室外制御部(制御部)、18…外温センサ、20…室内機ユニット、22…室内制御部(制御部)、23…二相流部温度センサ
DESCRIPTION OF SYMBOLS 10 ... Outdoor unit, 11 ... Compressor, 17 ... Outdoor control part (control part), 18 ... Outside temperature sensor, 20 ... Indoor unit, 22 ... Indoor control part (control part), 23 ... Two-phase flow part temperature Sensor

Claims (4)

冷媒を圧縮する圧縮機を備えた室外機ユニットと、
室内熱交換器を備えた複数の室内機ユニットとを具備したマルチ型空気調和装置において、
前記室外機ユニットが備える室外熱交換器を加熱するデフロスト運転を行なう制御部を備え、
該制御部は、前記デフロスト運転の際に、前室外熱交換器に溜まった冷媒を前記圧縮機に回収する冷媒回収運転を行なう、マルチ型空気調和装置。
An outdoor unit having a compressor for compressing the refrigerant;
In a multi-type air conditioner comprising a plurality of indoor unit units equipped with an indoor heat exchanger,
A controller for performing a defrost operation for heating an outdoor heat exchanger provided in the outdoor unit;
The control unit is a multi-type air conditioner that performs a refrigerant recovery operation of recovering the refrigerant accumulated in the front outdoor heat exchanger to the compressor during the defrost operation.
前記制御部は、前記冷媒回収運転として、前記圧縮機の回転数を前記室外熱交換器から冷媒を排出できる回転数とし、かつ、冷媒流路を絞る電子膨張弁の開度を通常の前記デフロスト運転よりも大きい開度とする、請求項1に記載のマルチ型空気調和装置。   In the refrigerant recovery operation, the control unit sets the rotation speed of the compressor to a rotation speed at which the refrigerant can be discharged from the outdoor heat exchanger, and sets the opening degree of the electronic expansion valve that throttles the refrigerant flow path to the normal defrosting The multi-type air conditioner according to claim 1, wherein the opening degree is larger than that of the operation. 前記制御部は、前記圧縮機の吸入管温度から、前記室外熱交換器の液相側冷媒温度を引いた値が、0℃未満となるまで前記冷媒回収運転を行なう、請求項1または2に記載のマルチ型空気調和装置。   The said control part performs the said refrigerant | coolant collection | recovery operation until the value which pulled the liquid phase side refrigerant | coolant temperature of the said outdoor heat exchanger from the suction pipe | tube temperature of the said compressor becomes less than 0 degreeC. The multi-type air conditioning apparatus described. 前記制御部は、前記圧縮機の吸入管温度から、運転中の前記室内機ユニットが備える室内熱交器温度平均値を引いた値が、0℃未満となるまで前記冷媒回収運転を行なう、請求項1または2に記載のマルチ型空気調和装置。


The control unit performs the refrigerant recovery operation until a value obtained by subtracting an average value of an indoor heat exchanger temperature included in the indoor unit being operated from an intake pipe temperature of the compressor is less than 0 ° C. Item 3. The multi-type air conditioner according to Item 1 or 2.


JP2007043277A 2007-02-23 2007-02-23 Multi-air conditioner Pending JP2008209022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043277A JP2008209022A (en) 2007-02-23 2007-02-23 Multi-air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043277A JP2008209022A (en) 2007-02-23 2007-02-23 Multi-air conditioner

Publications (1)

Publication Number Publication Date
JP2008209022A true JP2008209022A (en) 2008-09-11

Family

ID=39785473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043277A Pending JP2008209022A (en) 2007-02-23 2007-02-23 Multi-air conditioner

Country Status (1)

Country Link
JP (1) JP2008209022A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085320A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Heat pump device
EP2363654A2 (en) 2010-02-24 2011-09-07 Mitsubishi Heavy Industries Air conditioner
JP2013155964A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Air conditionning apparatus
JP2017125665A (en) * 2016-01-15 2017-07-20 ダイキン工業株式会社 Refrigeration device
JP2021012020A (en) * 2015-07-30 2021-02-04 ダイキン工業株式会社 Freezing device
CN115789864A (en) * 2022-12-09 2023-03-14 宁波奥克斯电气股份有限公司 Multi-connected air conditioner outdoor unit defrosting control method and device, air conditioner and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230058A (en) * 1989-02-28 1990-09-12 Daikin Ind Ltd Operation control device for freezer
JPH04222368A (en) * 1991-03-14 1992-08-12 Komatsu Ltd Defrosting method for engine heat pump
JPH08128763A (en) * 1994-10-31 1996-05-21 Daikin Ind Ltd Operation controller for air conditioner
JP2000346470A (en) * 1999-06-03 2000-12-15 Bosch Automotive Systems Corp Air conditioner for vehicle
JP2001280767A (en) * 2000-03-29 2001-10-10 Daikin Ind Ltd Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230058A (en) * 1989-02-28 1990-09-12 Daikin Ind Ltd Operation control device for freezer
JPH04222368A (en) * 1991-03-14 1992-08-12 Komatsu Ltd Defrosting method for engine heat pump
JPH08128763A (en) * 1994-10-31 1996-05-21 Daikin Ind Ltd Operation controller for air conditioner
JP2000346470A (en) * 1999-06-03 2000-12-15 Bosch Automotive Systems Corp Air conditioner for vehicle
JP2001280767A (en) * 2000-03-29 2001-10-10 Daikin Ind Ltd Refrigerator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085320A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Heat pump device
EP2363654A2 (en) 2010-02-24 2011-09-07 Mitsubishi Heavy Industries Air conditioner
JP2013155964A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Air conditionning apparatus
JP2021012020A (en) * 2015-07-30 2021-02-04 ダイキン工業株式会社 Freezing device
JP7303172B2 (en) 2015-07-30 2023-07-04 ダイキン工業株式会社 refrigeration equipment
JP2017125665A (en) * 2016-01-15 2017-07-20 ダイキン工業株式会社 Refrigeration device
EP3404344A4 (en) * 2016-01-15 2019-01-02 Daikin Industries, Ltd. Refrigeration device
US10473374B2 (en) 2016-01-15 2019-11-12 Daikin Industries, Ltd. Refrigeration apparatus for oil and defrost control
CN115789864A (en) * 2022-12-09 2023-03-14 宁波奥克斯电气股份有限公司 Multi-connected air conditioner outdoor unit defrosting control method and device, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
WO2013099047A1 (en) Air conditioner
US20160238271A1 (en) Air conditioner
JP4069947B2 (en) Refrigeration equipment
JP4909093B2 (en) Multi-type air conditioner
JP2011149659A (en) Air conditioner
JP2007051825A (en) Air-conditioner
JP2006105560A (en) Air conditioner
WO2015122056A1 (en) Air conditioning device
JP2008128498A (en) Multi-type air conditioner
US20190360725A1 (en) Refrigeration apparatus
JP2008209022A (en) Multi-air conditioner
JP2006300374A (en) Air conditioner
JPWO2016117113A1 (en) Air conditioner
WO2015060384A1 (en) Refrigeration device
JP3941817B2 (en) Air conditioner
JP2010048506A (en) Multi-air conditioner
JP2006132797A (en) Air conditioner
JP2009145032A (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2007051824A (en) Air-conditioner
JP4889714B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
CN114364933B (en) air conditioner
KR101151529B1 (en) Refrigerant system
JP4164566B2 (en) Air conditioner
JP4301987B2 (en) Multi-type air conditioner
KR102481685B1 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110