JP2008190757A - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP2008190757A
JP2008190757A JP2007024615A JP2007024615A JP2008190757A JP 2008190757 A JP2008190757 A JP 2008190757A JP 2007024615 A JP2007024615 A JP 2007024615A JP 2007024615 A JP2007024615 A JP 2007024615A JP 2008190757 A JP2008190757 A JP 2008190757A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
temperature
capacity
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007024615A
Other languages
Japanese (ja)
Other versions
JP4730318B2 (en
Inventor
Meiji Kojima
明治 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007024615A priority Critical patent/JP4730318B2/en
Publication of JP2008190757A publication Critical patent/JP2008190757A/en
Application granted granted Critical
Publication of JP4730318B2 publication Critical patent/JP4730318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid the wet state of the inlet refrigerant of a compressor in cooling operation. <P>SOLUTION: A refrigerant circuit (10) to which an indoor unit (2) is connected is provided to an outdoor unit (3) having the compressor (11), and the capacity of the compressor (11) is controlled so that evaporating temperature is set to a target evaporating temperature in the cooling operation. Then, it is determined whether or not the inlet refrigerant of the compressor (11) is in the wet state based on the degree of superheating of the temperature of the discharge refrigerant of the compressor (11). When the inlet refrigerant of the compressor (11) takes wet, the target evaporating temperature is lowered to increase the capacity of the compressor (11). Further, it is determined whether or not the inlet refrigerant of the compressor (11) is in the superheating state based on the degree of the superheating of the temperature of the discharge refrigerant of the compressor (11). When the inlet refrigerant is in the superheating state, the target evaporating temperature is raised. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷凍装置に関し、特に、圧縮機の吸入冷媒の湿り対策に係るものである。     The present invention relates to a refrigeration apparatus, and particularly relates to measures against wetness of refrigerant sucked in a compressor.

従来、空気調和装置には、特許文献1に開示されているように、圧縮機と四路切換弁と室外熱交換器と室外膨張弁とを備えた室外ユニットに、室内熱交換器及び室内膨張弁を備えた室内ユニットが複数台互いに並列に接続されて構成されているのもがある。     Conventionally, as disclosed in Patent Document 1, an air conditioner includes an outdoor unit including a compressor, a four-way switching valve, an outdoor heat exchanger, and an outdoor expansion valve. Some indoor units having valves are connected in parallel to each other.

そして、上記室外膨張弁及び室内膨張弁は、圧縮機の吐出過熱度と吸入過熱度に基づいて開度を調整するようにしている。
特公平7−99286号公報
And the opening degree of the said outdoor expansion valve and an indoor expansion valve is adjusted based on the discharge superheat degree of a compressor, and the suction | inhalation superheat degree.
Japanese Patent Publication No. 7-99286

しかしながら、従来の空気調和装置においては、圧縮機の吸入冷媒が湿り状態とならないように膨張弁の開度を制御しているのみであった。つまり、上記圧縮機の吸入冷媒が湿り状態になると、膨張弁の開度を小さくして室内熱交換器の出口の冷媒過熱度を大きくし、湿り状態を回避しているに過ぎなかった。     However, in the conventional air conditioner, the opening degree of the expansion valve is only controlled so that the refrigerant sucked by the compressor does not become wet. That is, when the refrigerant sucked in the compressor becomes wet, the opening degree of the expansion valve is reduced to increase the degree of refrigerant superheat at the outlet of the indoor heat exchanger, thereby avoiding the wet state.

したがって、上記圧縮機の容量を蒸発温度が一定になるように制御している場合、低外気温度の場合、上記圧縮機に液冷媒が戻り、いわゆる液バックを確実に回避することができないという問題があった。つまり、外気温度が低い冷房運転時においては、蒸発温度が外気温度より高くなる場合がある。この場合、上記圧縮機の吸入冷媒が湿り状態になる。その際、従来のように、室内膨張弁の開度を小さくすると、冷媒循環量が低下すると共に、蒸発温度が低下することから、圧縮機の運転容量を低下する。この結果、より冷媒循環量が低下し、上記圧縮機の吸入冷媒がより湿り状態になるという問題があった。     Therefore, when the capacity of the compressor is controlled so that the evaporation temperature is constant, the liquid refrigerant returns to the compressor at a low outside air temperature, and so-called liquid back cannot be avoided reliably. was there. That is, during the cooling operation where the outside air temperature is low, the evaporation temperature may be higher than the outside air temperature. In this case, the refrigerant sucked in the compressor becomes wet. At that time, if the opening of the indoor expansion valve is reduced as in the conventional case, the refrigerant circulation amount is reduced and the evaporation temperature is reduced, so that the operating capacity of the compressor is reduced. As a result, there is a problem that the refrigerant circulation amount is further reduced, and the refrigerant sucked into the compressor becomes wet.

本発明は、斯かる点に鑑みてなされたものであり、冷却運転時における圧縮機の吸入冷媒が湿り状態を回避することを目的とする。     This invention is made | formed in view of such a point, and it aims at avoiding the wet state of the suction | inhalation refrigerant | coolant of the compressor at the time of cooling operation.

第1の発明は、容量可変の圧縮機(11)を備えた室外ユニット(3)に利用ユニット(2)が接続された蒸気圧縮式冷凍サイクルの冷媒回路(10)を備え、上記冷媒回路(10)の冷却運転時に蒸発温度が目標蒸発温度になるように圧縮機(11)の容量を制御する冷凍装置を対象としている。そして、上記圧縮機(11)の吸入冷媒が冷却運転時に湿り状態になると、該圧縮機(11)の容量が増大するように上記目標蒸発温度を低下させる容量変更手段(53)を備えている。     A first invention includes a refrigerant circuit (10) of a vapor compression refrigeration cycle in which a utilization unit (2) is connected to an outdoor unit (3) having a variable capacity compressor (11), and the refrigerant circuit ( It is intended for a refrigeration system that controls the capacity of the compressor (11) so that the evaporation temperature becomes the target evaporation temperature during the cooling operation of 10). The refrigerant (11) includes a capacity changing means (53) for reducing the target evaporation temperature so that the capacity of the compressor (11) increases when the refrigerant sucked in the cooling operation is wet. .

上記第1の発明では、圧縮機(11)の吸入冷媒が冷却運転時に湿り状態になると、該圧縮機(11)の容量を増大させて目標蒸発温度を低下させ、低圧圧力相当飽和温度を低下させる。この結果、上記利用ユニット(2)から圧縮機(11)に戻る冷媒の過熱度を十分に確保することができ、冷媒の湿り状態が回避される。     In the first aspect of the invention, when the refrigerant sucked into the compressor (11) becomes wet during the cooling operation, the capacity of the compressor (11) is increased to lower the target evaporation temperature, and the low pressure equivalent saturation temperature is reduced. Let As a result, the degree of superheat of the refrigerant returning from the utilization unit (2) to the compressor (11) can be sufficiently ensured, and the wet state of the refrigerant is avoided.

第2の発明は、上記第1の発明において、上記圧縮機(11)の吐出冷媒温度の過熱度に基づいて圧縮機(11)の吸入冷媒が湿り状態か否かを判定し、湿り状態であると湿り信号を出力する湿り判定手段(52)を備えている。加えて、上記容量変更手段(53)は、湿り判定手段(52)が湿り信号を出力すると、上記目標蒸発温度を低下させるように構成されている。     According to a second invention, in the first invention, it is determined whether the refrigerant sucked in the compressor (11) is wet based on the degree of superheat of the refrigerant temperature discharged from the compressor (11). When there is a wetness determination means (52) for outputting a wetness signal. In addition, the capacity changing means (53) is configured to lower the target evaporation temperature when the wetness determining means (52) outputs a wetness signal.

上記第2の発明では、上記圧縮機(11)の吐出冷媒温度の過熱度により圧縮機(11)の吸入冷媒の湿り状態を判定し、上記圧縮機(11)の運転容量を増大させるか否かを判定する。     In the second aspect of the invention, whether or not the operating capacity of the compressor (11) is increased by determining the wet state of the suction refrigerant of the compressor (11) based on the degree of superheat of the discharge refrigerant temperature of the compressor (11). Determine whether.

第3の発明は、上記第2の発明において、上記湿り判定手段(52)は、圧縮機(11)の吐出冷媒温度の過熱度に基づいて圧縮機(11)の吸入冷媒が過熱状態か否かを判定し、過熱状態であると過熱信号を出力するように構成されている。更に、上記容量変更手段(53)は、湿り判定手段(52)が過熱信号を出力すると、上記目標蒸発温度を上昇させるように構成されている。     In a third aspect based on the second aspect, the wetness determining means (52) determines whether the refrigerant sucked by the compressor (11) is in an overheated state based on the degree of superheat of the refrigerant temperature discharged from the compressor (11). It is configured so that an overheat signal is output in the overheat state. Further, the capacity changing means (53) is configured to increase the target evaporation temperature when the wetness judging means (52) outputs an overheat signal.

上記第3の発明では、圧縮機(11)の吸入冷媒が湿り状態から過熱状態に戻ると、圧縮機(11)の運転容量を本来の容量に復帰させる。     In the said 3rd invention, if the suction | inhalation refrigerant | coolant of a compressor (11) returns from a wet state to an overheated state, the operating capacity of a compressor (11) will be returned to an original capacity | capacitance.

第4の発明は、上記第3の発明において、上記湿り判定手段(52)は、所定時間ごとに圧縮機(11)の吸入冷媒が湿り状態か否か及び過熱状態か否かを判定するように構成されている。     In a fourth aspect based on the third aspect, the wetness determining means (52) determines whether or not the refrigerant sucked in the compressor (11) is wet and overheated at predetermined time intervals. It is configured.

上記第4の発明では、冷媒の湿り状態を所定時間ごとに判定するので、湿り状態が回避されるまで順次圧縮機(11)の運転容量が増大する。     In the fourth aspect of the invention, since the wet state of the refrigerant is determined every predetermined time, the operating capacity of the compressor (11) is sequentially increased until the wet state is avoided.

第5の発明は、上記第1〜第4の何れか1つの発明において、上記利用ユニット(2)が、利用側熱交換器(16)と開度可変の利用側膨張弁(17)とを備える一方、上記利用側熱交換器(16)の負荷に対応して利用側膨張弁(17)の開度を制御する開度制御手段(54)を備えている。     According to a fifth invention, in any one of the first to fourth inventions, the usage unit (2) includes a usage-side heat exchanger (16) and a variable-side usage-side expansion valve (17). On the other hand, opening degree control means (54) for controlling the opening degree of the utilization side expansion valve (17) corresponding to the load of the utilization side heat exchanger (16) is provided.

上記第5の発明では、利用ユニット(2)の利用側膨張弁(17)を負荷に合わせて制御するので、冷媒の湿り状態においてさらに蒸発温度が低下することがない。     In the fifth aspect of the invention, since the use side expansion valve (17) of the use unit (2) is controlled in accordance with the load, the evaporation temperature does not further decrease in the wet state of the refrigerant.

上記本発明によれば、圧縮機(11)の吸入冷媒が湿り状態になると、該圧縮機(11)の容量を増大させるようにしたために、低外気温度状態の冷却運転時において、圧縮機(11)の吸入冷媒の湿り状態を確実に回避することができる。この結果、いわゆる液バックを確実に防止することができるので、圧縮機(11)の損傷を未然に確実に防止することができる。     According to the present invention, when the suction refrigerant of the compressor (11) becomes wet, the capacity of the compressor (11) is increased. Therefore, during the cooling operation in the low outside air temperature state, the compressor (11 The wet state of the suction refrigerant in 11) can be avoided reliably. As a result, so-called liquid back can be reliably prevented, and damage to the compressor (11) can be reliably prevented.

特に、上記圧縮機(11)の運転容量を蒸発温度一定制御しているので、従来の膨張弁の開度制御によっては湿り状態を助長することになる。本発明によれば、上記圧縮機(11)の運転容量を増大することにより低圧圧力相当飽和温度を低下させるので、低外気温度時における冷媒の湿り状態を確実に防止することができる。     In particular, since the operating capacity of the compressor (11) is controlled at a constant evaporating temperature, a wet state is promoted depending on the conventional opening degree control of the expansion valve. According to the present invention, the saturation temperature corresponding to the low pressure is decreased by increasing the operating capacity of the compressor (11), so that the wet state of the refrigerant at the low outside air temperature can be reliably prevented.

また、第3の発明によれば、上記圧縮機(11)の吸入冷媒が過熱状態になると、目標蒸発温度を上昇させるので、冷媒の湿り状態が回避されると、通常の冷却運転に確実に復帰させることができる。     According to the third aspect of the invention, when the refrigerant sucked into the compressor (11) is overheated, the target evaporation temperature is raised. Therefore, when the refrigerant is avoided from being wet, the normal cooling operation is surely performed. Can be restored.

また、第4の発明によれば、上記圧縮機(11)の吸入冷媒の湿り状態を所定時間ごとに判定しているので、湿り状態が回避されるまで圧縮機(11)の運転容量を増大させるので、冷媒の湿り状態を迅速且つ確実に回避することができる。     According to the fourth aspect of the invention, since the wet state of the suction refrigerant of the compressor (11) is determined every predetermined time, the operating capacity of the compressor (11) is increased until the wet state is avoided. Therefore, the wet state of the refrigerant can be avoided quickly and reliably.

上記第5の発明によれば、利用ユニット(2)の利用側膨張弁(17)を負荷に合わせて制御するので、冷媒の湿り状態において利用側膨張弁(17)の開度を絞ることがなく、さらに蒸発温度が低下することを確実に回避することができる。     According to the fifth aspect of the invention, since the use side expansion valve (17) of the use unit (2) is controlled according to the load, it is possible to reduce the opening of the use side expansion valve (17) in the wet state of the refrigerant. In addition, it is possible to reliably avoid a further decrease in the evaporation temperature.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本実施形態の空気調和装置(1)は、冷媒回路(10)を備えた冷凍装置であって、1台の利用ユニットである室内ユニット(2)と1台の熱源ユニットである室外ユニット(3)とを備え、いわゆるペア型の空気調和装置である。     As shown in FIG. 1, the air conditioner (1) of the present embodiment is a refrigeration apparatus including a refrigerant circuit (10), and includes an indoor unit (2) that is one usage unit and one heat source. The outdoor unit (3) which is a unit is a so-called pair type air conditioner.

上記室内ユニット(2)と室外ユニット(3)は、ガス配管(4)と液配管(5)とにより接続されている。     The indoor unit (2) and the outdoor unit (3) are connected by a gas pipe (4) and a liquid pipe (5).

上記室外ユニット(3)は、インバータの周波数制御により運転容量が可変に構成された圧縮機(11)と、四路切換弁(12)と、室外熱交換器(13)と、電子膨張弁により構成された室外膨張弁(14)と、アキュムレータ(15)とを備えている。尚、上記室外熱交換器(13)の近傍には室外ファンが設けられているが、図示を省略している。     The outdoor unit (3) includes a compressor (11) having a variable operating capacity by frequency control of an inverter, a four-way switching valve (12), an outdoor heat exchanger (13), and an electronic expansion valve. The outdoor expansion valve (14) comprised and the accumulator (15) are provided. Although an outdoor fan is provided in the vicinity of the outdoor heat exchanger (13), the illustration is omitted.

上記室外ユニット(3)において、上記圧縮機(11)は、吐出配管(21)を介して四路切換弁(12)の第1ポート(P1)に接続されている。この四路切換弁(12)の第2ポート(P2)は、室外熱交換器(13)のガス側端部に接続されている。また、上記圧縮機(11)は、途中にアキュムレータ(15)が設けられた吸入配管(22)を介して四路切換弁(12)の第3ポート(P3)に接続されている。上記四路切換弁(12)の第4ポート(P4)は室外ガス管(23)を介してガス配管(4)に接続されている。     In the outdoor unit (3), the compressor (11) is connected to the first port (P1) of the four-way switching valve (12) via the discharge pipe (21). The second port (P2) of the four-way selector valve (12) is connected to the gas side end of the outdoor heat exchanger (13). The compressor (11) is connected to the third port (P3) of the four-way switching valve (12) through a suction pipe (22) provided with an accumulator (15) in the middle. The fourth port (P4) of the four-way switching valve (12) is connected to the gas pipe (4) via the outdoor gas pipe (23).

上記四路切換弁(12)は、第1ポート(P1)と第2ポート(P2)が連通するとともに第3ポート(P3)と第4ポート(P4)が連通する第1位置(図の実線参照)と、第1ポート(P1)と第4ポート(P4)が連通するとともに第2ポート(P2)と第3ポート(P3)が連通する第2位置(図の破線参照)とに切り換え可能に構成されている。この四路切換弁(12)は、冷却運転時である冷房運転時には第1位置に設定され、暖房運転時には第2位置に設定される。     The four-way selector valve (12) has a first position (solid line in the figure) where the first port (P1) and the second port (P2) communicate and the third port (P3) and the fourth port (P4) communicate. Switchable to the second position (refer to the broken line in the figure) where the first port (P1) and the fourth port (P4) communicate with each other and the second port (P2) and the third port (P3) communicate with each other It is configured. The four-way switching valve (12) is set to the first position during the cooling operation during the cooling operation, and is set to the second position during the heating operation.

上記室外熱交換器(13)の液側端部は、途中に室外膨張弁(14)が設けられた室外液管(24)を介して液配管(5)に接続されている。     The liquid side end of the outdoor heat exchanger (13) is connected to the liquid pipe (5) through an outdoor liquid pipe (24) provided with an outdoor expansion valve (14) in the middle.

上記室内ユニット(2)は、利用側熱交換器である室内熱交換器(16)と開度可変の利用側膨張弁である室内膨張弁(17)とを備えている。上記室内膨張弁(17)は電子膨張弁により構成されている。上記液配管(5)は、途中に室内膨張弁(17)を有する室内液管(25)を介して室内熱交換器(16)の液側端部に接続されている。上記室内熱交換器(16)のガス側端部は室内ガス管(26)を介してガス配管(4)に接続されている。上記室内熱交換器(16)の近傍には室内ファン(18)が設置されている。     The indoor unit (2) includes an indoor heat exchanger (16) that is a use side heat exchanger and an indoor expansion valve (17) that is a use side expansion valve having a variable opening. The indoor expansion valve (17) is an electronic expansion valve. The liquid pipe (5) is connected to the liquid side end of the indoor heat exchanger (16) through an indoor liquid pipe (25) having an indoor expansion valve (17) in the middle. The gas side end of the indoor heat exchanger (16) is connected to the gas pipe (4) via the indoor gas pipe (26). An indoor fan (18) is installed in the vicinity of the indoor heat exchanger (16).

上記室外ユニット(3)の圧縮機(11)の吐出配管(21)には、高圧冷媒圧力を検出する高圧圧力センサ(31)が設けられ、圧縮機(11)の吸入配管(22)には、低圧冷媒圧力を検出する低圧圧力センサ(32)が設けられている。また、上記圧縮機(11)の吐出配管(21)には、圧縮機(11)の吐出冷媒温度を検出する吐出温度センサ(33)が設けられ、圧縮機(11)の吸入配管(22)には、圧縮機(11)の吸入冷媒温度を検出する吸入温度センサ(34)が設けられている。     The discharge pipe (21) of the compressor (11) of the outdoor unit (3) is provided with a high pressure sensor (31) for detecting the high pressure refrigerant pressure, and the suction pipe (22) of the compressor (11) A low pressure sensor (32) for detecting the low pressure refrigerant pressure is provided. The discharge pipe (21) of the compressor (11) is provided with a discharge temperature sensor (33) for detecting the refrigerant discharge temperature of the compressor (11), and the suction pipe (22) of the compressor (11). Is provided with an intake temperature sensor (34) for detecting the intake refrigerant temperature of the compressor (11).

また、上記室外熱交換器(13)には、該室外熱交換器(13)における冷媒温度を測定する室外熱交温度センサ(35)が設けられ、上記室外ユニット(3)には、外気温度を測定する外気温度センサ(36)が設けられている。     The outdoor heat exchanger (13) is provided with an outdoor heat exchanger temperature sensor (35) for measuring the refrigerant temperature in the outdoor heat exchanger (13), and the outdoor unit (3) has an outdoor air temperature. An outside air temperature sensor (36) is provided for measuring.

一方、上記室内熱交換器(16)には、該室内熱交換器(16)における冷媒温度を測定する室内熱交温度センサ(37)が設けられ、上記室内ユニット(2)には、室内温度を測定する室内温度センサ(38)が設けられている。     On the other hand, the indoor heat exchanger (16) is provided with an indoor heat exchange temperature sensor (37) for measuring the refrigerant temperature in the indoor heat exchanger (16), and the indoor unit (2) An indoor temperature sensor (38) for measuring is provided.

この空気調和装置(1)は、制御手段であるコントローラ(50)を含んでいる。該コントローラ(50)には、上記各センサが接続されてその検出値が入力されるようになっている。     The air conditioner (1) includes a controller (50) as control means. Each sensor is connected to the controller (50), and the detected value is inputted.

上記コントローラ(50)には、圧縮機制御手段である圧縮機制御部(51)と湿り判定手段(52)である湿り判定部(52)と容量変更手段である容量変更部(53)と開度制御手段である開度制御部(54)とが設けられている。     The controller (50) includes a compressor control unit (51) as a compressor control unit, a wetness determination unit (52) as a wetness determination unit (52), and a capacity change unit (53) as a capacity change unit. An opening degree control unit (54) that is a degree control means is provided.

上記圧縮機制御部(51)は、冷媒回路(10)の冷房運転時(冷却運転時)に蒸発温度が目標蒸発温度になるように圧縮機(11)の容量を制御する(蒸発温度一定制御)。具体的に、上記圧縮機制御部(51)は、低圧圧力センサ(32)が検出する低圧冷媒圧力に基づき低圧圧力相当飽和温度を導出し、低圧圧力相当飽和温度から冷房運転時の室内熱交換器(16)における蒸発温度を導出する。そして、上記圧縮機制御部(51)は、冷房運転時の蒸発温度が目標蒸発温度になるように圧縮機(11)の運転周波数を制御する。尚、上記冷媒回路(10)の暖房運転時においては、凝縮温度が目標凝縮温度になるように圧縮機(11)の容量を制御する(凝縮温度一定制御)。     The compressor control unit (51) controls the capacity of the compressor (11) so that the evaporation temperature becomes the target evaporation temperature during the cooling operation (cooling operation) of the refrigerant circuit (10) (constant evaporation temperature control). ). Specifically, the compressor control unit (51) derives a low pressure equivalent saturation temperature based on the low pressure refrigerant pressure detected by the low pressure sensor (32), and performs indoor heat exchange during cooling operation from the low pressure equivalent saturation temperature. The evaporation temperature in the vessel (16) is derived. And the said compressor control part (51) controls the operating frequency of a compressor (11) so that the evaporation temperature at the time of air_conditionaing | cooling operation may turn into target evaporation temperature. During the heating operation of the refrigerant circuit (10), the capacity of the compressor (11) is controlled so that the condensation temperature becomes the target condensation temperature (constant condensation temperature control).

上記湿り判定部(52)は、圧縮機(11)の吐出冷媒温度の過熱度に基づいて圧縮機(11)の吸入冷媒が冷房運転時に湿り状態か否かを判定し、湿り状態であると湿り信号を出力するように構成されている。更に、上記湿り判定部(52)は、圧縮機(11)の吐出冷媒温度の過熱度に基づいて圧縮機(11)の吸入冷媒が過熱状態か否かを判定し、過熱状態であると過熱信号を出力するように構成されている。     The wetness determination unit (52) determines whether or not the suction refrigerant of the compressor (11) is in a wet state during the cooling operation based on the degree of superheat of the discharge refrigerant temperature of the compressor (11). It is configured to output a wet signal. Furthermore, the wetness determination unit (52) determines whether or not the suction refrigerant of the compressor (11) is in an overheated state based on the degree of superheat of the refrigerant temperature discharged from the compressor (11). It is configured to output a signal.

具体的に、上記湿り判定部(52)は、高圧圧力センサ(31)が検出する高圧冷媒圧力と、吐出温度センサ(33)が検出する圧縮機(11)の吐出冷媒温度とに基づいて圧縮機(11)の吐出冷媒温度の過熱度を導出する。そして、上記湿り判定部(52)は、圧縮機(11)の吐出冷媒温度の過熱度が10℃より低下すると、湿り信号を出力し、圧縮機(11)の吐出冷媒温度の過熱度が30℃より上昇すると、過熱信号を出力する。     Specifically, the wetness determination unit (52) compresses based on the high-pressure refrigerant pressure detected by the high-pressure sensor (31) and the discharge refrigerant temperature of the compressor (11) detected by the discharge temperature sensor (33). The degree of superheat of the discharged refrigerant temperature of the machine (11) is derived. The wetness determination unit (52) outputs a wetness signal when the superheat degree of the discharge refrigerant temperature of the compressor (11) falls below 10 ° C., and the superheat degree of the discharge refrigerant temperature of the compressor (11) is 30. When the temperature rises above ° C, an overheat signal is output.

更に、上記湿り判定部(52)は、所定時間ごとに圧縮機(11)の吸入冷媒が湿り状態か否か及び過熱状態か否かを判定するように構成されている。     Further, the wetness determination unit (52) is configured to determine whether or not the refrigerant sucked in the compressor (11) is in a wet state and in an overheated state every predetermined time.

上記容量変更部(53)は、圧縮機(11)の吸入冷媒が湿り状態になると、該圧縮機(11)の容量が増大するように上記圧縮機制御部(51)の目標蒸発温度を低下させる。     The capacity changing section (53) reduces the target evaporation temperature of the compressor control section (51) so that the capacity of the compressor (11) increases when the suction refrigerant of the compressor (11) becomes wet. Let

具体的に、上記容量変更部(53)は、湿り判定部(52)が湿り信号を出力すると、圧縮機制御部(51)の目標蒸発温度を0.5℃だけ低下させて圧縮機(11)の容量を増大させる。上記容量変更部(53)は、湿り判定部(52)が過熱信号を出力すると、圧縮機制御部(51)の目標蒸発温度を0.5℃だけ上昇させて圧縮機(11)の容量を減少させる。そして、上記容量変更部(53)は、所定時間ごとに出力される湿り判定部(52)の湿り信号又は過熱信号に基づき目標蒸発温度を変更する。     Specifically, when the wetness determination unit (52) outputs a wetness signal, the capacity changing unit (53) decreases the target evaporation temperature of the compressor control unit (51) by 0.5 ° C. to reduce the compressor (11 ) Capacity. When the wetness determination unit (52) outputs an overheat signal, the capacity changing unit (53) increases the target evaporation temperature of the compressor control unit (51) by 0.5 ° C. to increase the capacity of the compressor (11). Decrease. And the said capacity | capacitance change part (53) changes target evaporation temperature based on the wet signal or overheat signal of the wetness determination part (52) output for every predetermined time.

上記開度制御部(54)は、冷房運転時に室内熱交換器(16)の負荷に対応して室内膨張弁(17)の開度を制御するように構成されている。具体的に、上記開度制御部(54)は、室内温度センサ(38)が検出する室内温度(吸込空気温度)と設定温度との差温が所定範囲内であると、該差温に基づいて室内膨張弁(17)の開度を制御する一方、差温が所定範囲より大きいと、室内熱交温度センサ(37)が検出する蒸発温度と吸入温度センサ(34)が検出する圧縮機(11)の吸入冷媒温度との温度差である室内熱交換器(16)の出口の冷媒過熱度が所定値になるように室内膨張弁(17)の開度を制御する。     The opening degree control unit (54) is configured to control the opening degree of the indoor expansion valve (17) corresponding to the load of the indoor heat exchanger (16) during the cooling operation. Specifically, when the temperature difference between the indoor temperature (intake air temperature) detected by the indoor temperature sensor (38) and the set temperature is within a predetermined range, the opening degree control unit (54) is based on the differential temperature. While controlling the opening degree of the indoor expansion valve (17), if the differential temperature is larger than the predetermined range, the compressor detects the evaporating temperature detected by the indoor heat exchanger temperature sensor (37) and the suction temperature sensor (34) ( The opening degree of the indoor expansion valve (17) is controlled so that the refrigerant superheat degree at the outlet of the indoor heat exchanger (16), which is a temperature difference from the intake refrigerant temperature of 11), becomes a predetermined value.

尚、暖房運転時には、上記室外膨張弁(14)の開度を室外熱交温度センサ(35)が検出する蒸発温度と吸入温度センサ(34)が検出する圧縮機(11)の吸入冷媒温度との温度差である室外熱交換器の出口の冷媒過熱度が所定値になるように室外膨張弁(14)の開度を制御する。     During heating operation, the evaporating temperature detected by the outdoor heat exchanger temperature sensor (35) and the intake refrigerant temperature of the compressor (11) detected by the intake temperature sensor (34) The degree of opening of the outdoor expansion valve (14) is controlled such that the degree of refrigerant superheating at the outlet of the outdoor heat exchanger, which is the temperature difference between, becomes a predetermined value.

要するに、上記容量変更部(53)は、冷房運転時における圧縮機(11)の吸入冷媒が湿り状態になると圧縮機(11)の運転容量を増大させる。     In short, the capacity changing unit (53) increases the operating capacity of the compressor (11) when the refrigerant sucked by the compressor (11) during the cooling operation becomes wet.

すなわち、外気温度が低い場合、図2に示すように、冷房運転時に室内熱交換器(16)を出た冷媒は、圧縮機(11)までのガス配管(4)の途中で冷やされることになる。そして、図3に示すように、外気温度(B点参照)が飽和温度よりも低い場合、室内熱交換器(16)の出口の冷媒温度(A点参照)と飽和温度との差温(過熱度)が小さくなり、圧縮機(11)の吸入冷媒が湿り状態となる。     That is, when the outside air temperature is low, as shown in FIG. 2, the refrigerant that has left the indoor heat exchanger (16) during the cooling operation is cooled in the middle of the gas pipe (4) to the compressor (11). Become. As shown in FIG. 3, when the outside air temperature (see point B) is lower than the saturation temperature, the difference between the refrigerant temperature (see point A) at the outlet of the indoor heat exchanger (16) and the saturation temperature (overheating). Degree) and the suction refrigerant of the compressor (11) becomes wet.

そこで、本実施形態では、図4に示すように、外気温度(B点参照)が低い場合、圧縮機(11)の運転容量を増大させて、飽和温度を低下させ、室内熱交換器(16)の出口の冷媒温度(C点参照)と飽和温度との差温(過熱度)を大きくし、圧縮機(11)の吸入冷媒が湿り状態となることを回避するようにしている。     Therefore, in the present embodiment, as shown in FIG. 4, when the outside air temperature (see point B) is low, the operating capacity of the compressor (11) is increased, the saturation temperature is lowered, and the indoor heat exchanger (16 ) At the outlet of the refrigerant (see point C) and the saturation temperature (the degree of superheat) is increased to prevent the refrigerant sucked into the compressor (11) from becoming wet.

特に、上記圧縮機(11)の運転容量を蒸発温度一定制御するようにしていると、単に室内膨張弁(17)の開度を小さくし、過熱度を大きくするようにすると、蒸発温度が低下することから、この蒸発温度が上昇するように圧縮機(11)の運転容量を低下させることになる。この結果、圧縮機(11)の吸入冷媒がより湿ることになる。     In particular, if the operating capacity of the compressor (11) is controlled at a constant evaporating temperature, the evaporating temperature decreases if the opening degree of the indoor expansion valve (17) is simply reduced and the degree of superheat is increased. Therefore, the operating capacity of the compressor (11) is reduced so that the evaporation temperature increases. As a result, the refrigerant sucked in the compressor (11) becomes wetter.

そこで、本実施形態では、蒸発温度一定制御する圧縮機(11)の運転容量を積極的に増大させて湿り状態を回避するようにしたものである。     Therefore, in this embodiment, the operating capacity of the compressor (11) that controls the evaporation temperature to be constant is positively increased to avoid a wet state.

−運転動作−
次に、上述した空気調和装置(1)の運転動作について説明する。
-Driving action-
Next, the operation of the above-described air conditioner (1) will be described.

先ず、冷房運転時においては、上記四路切換弁(12)が第1位置に設定されるとともに室外膨張弁(14)が全開に設定される。そして、上記圧縮機(11)から吐出されたガス冷媒が室外熱交換器(13)で凝縮して液冷媒となり、室内膨張弁(17)で減圧されてから室内熱交換器(16)で蒸発し、アキュムレータ(15)を介して圧縮機(11)に戻るサイクルが行われる。     First, during the cooling operation, the four-way switching valve (12) is set to the first position and the outdoor expansion valve (14) is set to fully open. The gas refrigerant discharged from the compressor (11) condenses in the outdoor heat exchanger (13) to become liquid refrigerant, is decompressed by the indoor expansion valve (17), and then evaporates in the indoor heat exchanger (16). Then, a cycle for returning to the compressor (11) through the accumulator (15) is performed.

一方、暖房運転時は、上記四路切換弁(12)が第2位置に設定されるとともに、室内膨張弁(17)が全開となり、室外膨張弁(14)の開度が調整される。暖房運転時には、圧縮機(11)から吐出されたガス冷媒が室内熱交換器(16)で凝縮して液冷媒となり、室外膨張弁(14)で減圧されてから室外熱交換器(13)で蒸発し、アキュムレータ(15)を介して圧縮機(11)に戻るサイクルが行われる。     On the other hand, during the heating operation, the four-way switching valve (12) is set to the second position, the indoor expansion valve (17) is fully opened, and the opening degree of the outdoor expansion valve (14) is adjusted. During the heating operation, the gas refrigerant discharged from the compressor (11) condenses into a liquid refrigerant in the indoor heat exchanger (16), is decompressed by the outdoor expansion valve (14), and then is discharged from the outdoor heat exchanger (13). A cycle is performed that evaporates and returns to the compressor (11) via the accumulator (15).

そこで、上記冷房運転時における圧縮機(11)の容量制御について、図5に基づいて説明する。     Therefore, the capacity control of the compressor (11) during the cooling operation will be described with reference to FIG.

先ず、上記冷房運転が開始されると、ステップST1において、通常の冷房運転の制御が行われ、例えば、上記圧縮機制御部(51)は、低圧圧力センサ(32)が検出する低圧冷媒圧力に基づき低圧圧力相当飽和温度を導出し、低圧圧力相当飽和温度から冷房運転時の室内熱交換器(16)における蒸発温度を導出する。そして、上記圧縮機制御部(51)は、蒸発温度が目標蒸発温度になるように圧縮機(11)の運転周波数を制御する。     First, when the cooling operation is started, normal cooling operation is controlled in step ST1, for example, the compressor control unit (51) controls the low-pressure refrigerant pressure detected by the low-pressure sensor (32). Based on the low pressure equivalent saturation temperature, the evaporation temperature in the indoor heat exchanger (16) during the cooling operation is derived from the low pressure equivalent saturation temperature. And the said compressor control part (51) controls the operating frequency of a compressor (11) so that evaporation temperature may become target evaporation temperature.

また、上記開度制御部(54)は、室内温度(吸込空気温度)と設定温度との差温が所定範囲内であると、該差温に基づいて室内膨張弁(17)の開度を制御する一方、差温が所定範囲より大きいと、室内熱交換器(16)の出口の冷媒過熱度が所定値になるように室内膨張弁(17)の開度を制御する。     In addition, when the temperature difference between the room temperature (suction air temperature) and the set temperature is within a predetermined range, the opening degree control unit (54) controls the opening degree of the indoor expansion valve (17) based on the temperature difference. On the other hand, when the differential temperature is larger than the predetermined range, the opening degree of the indoor expansion valve (17) is controlled so that the refrigerant superheat degree at the outlet of the indoor heat exchanger (16) becomes a predetermined value.

次に、ステップST2に移り、圧縮機(11)の吸入冷媒が湿り状態か否かを判定する。つまり、上記湿り判定部(52)は、高圧圧力センサ(31)が検出する高圧冷媒圧力と、吐出温度センサ(33)が検出する圧縮機(11)の吐出冷媒温度とに基づいて圧縮機(11)の吐出冷媒温度の過熱度を導出する。そして、上記湿り判定部(52)は、圧縮機(11)の吐出冷媒温度の過熱度が10℃より低下したか否かを判定し、過熱度が10℃以上であれば、湿り状態でないと判断する。その結果、ステップST2の判定はNOとなってステップST1に戻る。     Next, it moves to step ST2, and it is determined whether the suction | inhalation refrigerant | coolant of a compressor (11) is a wet state. That is, the wetness determination unit (52) is configured to compress the compressor (11) based on the high pressure refrigerant pressure detected by the high pressure sensor (31) and the discharge refrigerant temperature of the compressor (11) detected by the discharge temperature sensor (33). 11) Deriving the degree of superheat of the discharged refrigerant temperature. And the said wetness determination part (52) determines whether the superheat degree of the discharge refrigerant | coolant temperature of a compressor (11) fell from 10 degreeC, and if it is 10 degreeC or more, it is not a wet state. to decide. As a result, the determination in step ST2 is NO and the process returns to step ST1.

一方、上記圧縮機(11)の吐出冷媒温度の過熱度が10℃より低いと、上記湿り判定部(52)は、湿り状態と判定し、上記ステップST2の判定のYESとなってステップST3に移る。該ステップST3において、容量変更部(53)は、圧縮機制御部(51)の目標蒸発温度を0.5℃だけ低下させて圧縮機(11)の容量を増大させる。     On the other hand, when the degree of superheat of the discharged refrigerant temperature of the compressor (11) is lower than 10 ° C., the wetness determination unit (52) determines the wet state, and the determination in step ST2 is YES and the process proceeds to step ST3. Move. In step ST3, the capacity changing unit (53) decreases the target evaporation temperature of the compressor control unit (51) by 0.5 ° C. to increase the capacity of the compressor (11).

続いて、ステップST4に移り、上記湿り判定部(52)は、圧縮機(11)の吐出冷媒温度の過熱度が30℃より上昇した過熱状態か否かを判定し、過熱度が30℃より低いと、過熱状態でないと判定し、上記ステップST4の判定のNOとなってステップST5に移る。     Then, it moves to step ST4, the said wetness determination part (52) determines whether it is the superheated state in which the superheat degree of the discharge refrigerant | coolant temperature of a compressor (11) rose from 30 degreeC, and a superheat degree is from 30 degreeC. If it is low, it is determined not to be in an overheated state, and the determination in step ST4 is NO and the process proceeds to step ST5.

上記ステップST5において、上記湿り判定部(52)は、圧縮機(11)の吐出冷媒温度の過熱度が10℃より低下したか否かを判定し、過熱度が10℃以上であれば、湿り状態でないと判断する。その結果、ステップST5の判定はNOとなってステップST4に戻り、過熱状態か否かを判定する。そして、上記ステップST4とステップST5との判定を繰り返す。     In said step ST5, the said wetness determination part (52) determines whether the superheat degree of the discharge refrigerant | coolant temperature of a compressor (11) fell from 10 degreeC, and if a superheat degree is 10 degreeC or more, it will be wet. Judge that it is not in a state. As a result, the determination in step ST5 is NO, and the process returns to step ST4 to determine whether or not it is in an overheated state. Then, the determination at step ST4 and step ST5 is repeated.

上記ステップST5において、上記湿り判定部(52)は、圧縮機(11)の吐出冷媒温度の過熱度が10℃より低いと、湿り状態と判断し、上記ステップST5の判定のYESとなってステップST6に移る。該ステップST6において、容量変更部(53)は、圧縮機制御部(51)の目標蒸発温度を0.5℃だけ低下させて圧縮機(11)の容量を増大させ、ステップST4に戻り、上述の動作を繰り返す。     In step ST5, when the superheat degree of the discharge refrigerant temperature of the compressor (11) is lower than 10 ° C., the wetness determination unit (52) determines a wet state, and the determination in step ST5 is YES. Move on to ST6. In step ST6, the capacity changing unit (53) decreases the target evaporation temperature of the compressor control unit (51) by 0.5 ° C. to increase the capacity of the compressor (11), and returns to step ST4. Repeat the operation.

つまり、上記圧縮機(11)の吐出冷媒温度の過熱度が10℃より一旦低下すると、過熱度が10℃以上になるまで所定時間ごとに目標蒸発温度を0.5℃ずつ低下させる一方、過熱度が10℃以上で30℃になるまでは現状の目標蒸発温度を維持する。     That is, once the superheat degree of the refrigerant temperature discharged from the compressor (11) is lowered from 10 ° C., the target evaporation temperature is lowered by 0.5 ° C. every predetermined time until the superheat degree becomes 10 ° C. or higher. The current target evaporation temperature is maintained until the temperature is 10 ° C. or higher and 30 ° C.

また、上記ステップST4において、圧縮機(11)の吐出冷媒温度の過熱度が30℃より上昇すると、上記湿り判定部(52)は過熱状態と判定し、上記ステップST4の判定のYESとなってステップST7に移る。該ステップST7において、容量変更部(53)は、圧縮機制御部(51)の目標蒸発温度を0.5℃だけ上昇させて圧縮機(11)の容量を減少させ、ステップST8に移り、蒸発温度が元の通常運転状態に復帰したか否かを判定する。そして、上記蒸発温度が元の状態に戻るまでステップST8の判定がNOとなって上記ステップST4に移り、上述の動作を繰り返す。一方、上記蒸発温度が元の状態に戻ると、ステップST8の判定がYESとなって上記ステップST1に移り、通常の冷房運転に戻る。     In step ST4, when the degree of superheat of the discharged refrigerant temperature of the compressor (11) rises from 30 ° C., the wetness determination unit (52) determines that it is in an overheated state, and the determination in step ST4 is YES. Move on to step ST7. In step ST7, the capacity changing section (53) increases the target evaporation temperature of the compressor control section (51) by 0.5 ° C. to decrease the capacity of the compressor (11), and moves to step ST8 to evaporate. It is determined whether or not the temperature has returned to the original normal operation state. Then, the determination in step ST8 is NO until the evaporation temperature returns to the original state, the process proceeds to step ST4, and the above operation is repeated. On the other hand, when the evaporating temperature returns to the original state, the determination in step ST8 is YES, the process proceeds to step ST1, and the normal cooling operation is resumed.

−実施形態の効果−
以上のように、本実施形態によれば、圧縮機(11)の吸入冷媒が冷房運転時に湿り状態になると、該圧縮機(11)の容量を増大させるようにしたために、低外気温度状態の冷房運転時において、圧縮機(11)の吸入冷媒の湿り状態を確実に回避することができる。この結果、液バックを確実に防止することができるので、圧縮機(11)の損傷を未然に確実に防止することができる。
-Effect of the embodiment-
As described above, according to the present embodiment, when the refrigerant sucked into the compressor (11) becomes wet during the cooling operation, the capacity of the compressor (11) is increased. During the cooling operation, it is possible to reliably avoid the wet state of the refrigerant sucked by the compressor (11). As a result, liquid back can be reliably prevented, and damage to the compressor (11) can be reliably prevented.

特に、上記圧縮機(11)の運転容量を蒸発温度一定制御しているので、従来の膨張弁の開度制御によっては湿り状態を助長することになる。本実施形態によれば、上記圧縮機(11)の運転容量を増大することにより低圧圧力相当飽和温度を低下させるので、低外気温度時における冷媒の湿り状態を確実に防止することができる。     In particular, since the operating capacity of the compressor (11) is controlled at a constant evaporating temperature, a wet state is promoted depending on the conventional opening degree control of the expansion valve. According to the present embodiment, the saturation temperature corresponding to the low pressure is decreased by increasing the operating capacity of the compressor (11), so that the wet state of the refrigerant at the low outside air temperature can be reliably prevented.

また、上記圧縮機(11)の吸入冷媒が過熱状態になると、目標蒸発温度を上昇させるので、上記圧縮機(11)の吸入冷媒の湿り状態が回避されると、通常の冷房運転に確実に復帰させることができる。     Further, when the suction refrigerant of the compressor (11) is overheated, the target evaporation temperature is raised. Therefore, when the wet state of the suction refrigerant of the compressor (11) is avoided, the normal cooling operation is surely performed. Can be restored.

また、上記圧縮機(11)の吸入冷媒の湿り状態を所定時間ごとに判定しているので、湿り状態が回避されるまで圧縮機(11)の運転容量を増大させるので、冷媒の湿り状態を迅速且つ確実に回避することができる。     In addition, since the wet state of the refrigerant sucked in the compressor (11) is determined every predetermined time, the operating capacity of the compressor (11) is increased until the wet state is avoided. It can be avoided quickly and reliably.

また、上記室内ユニット(2)の室内膨張弁(17)を負荷に合わせて制御するので、冷媒の湿り状態において室内膨張弁(17)の開度を絞ることがなくさらに蒸発温度が低下することを確実に回避することができる。     Further, since the indoor expansion valve (17) of the indoor unit (2) is controlled in accordance with the load, the opening temperature of the indoor expansion valve (17) is not reduced in the wet state of the refrigerant, and the evaporation temperature is further reduced. Can be reliably avoided.

〈その他の実施形態〉
本発明は、上記実施形態について、以下のような構成としてもよい。
<Other embodiments>
The present invention may be configured as follows with respect to the above embodiment.

本実施形態は、1台の室外ユニット(3)と1台の室内ユニット(2)を設けるようにしたが、本発明は、複数台の室外ユニット(3)又は複数台の室内ユニット(2)を設けるものであってもよい。     In the present embodiment, one outdoor unit (3) and one indoor unit (2) are provided. However, the present invention provides a plurality of outdoor units (3) or a plurality of indoor units (2). May be provided.

尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、低外気温度時に冷却運転を行う冷凍装置について有用である。     As described above, the present invention is useful for a refrigeration apparatus that performs a cooling operation at a low outside air temperature.

図1は、本発明の実施形態を示す空気調和装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus showing an embodiment of the present invention. 図2は、室外ユニットと室内ユニットとの配置図である。FIG. 2 is a layout diagram of the outdoor unit and the indoor unit. 図3は、従来の室内熱交換器から圧縮機までの冷媒温度の特性図である。FIG. 3 is a characteristic diagram of refrigerant temperature from a conventional indoor heat exchanger to a compressor. 図4は、本実施形態の室内熱交換器から圧縮機までの冷媒温度の特性図である。FIG. 4 is a characteristic diagram of the refrigerant temperature from the indoor heat exchanger to the compressor of the present embodiment. 図5は、圧縮機の容量制御を示すブロック図である。FIG. 5 is a block diagram showing capacity control of the compressor.

符号の説明Explanation of symbols

1 空気調和装置
2 室外ユニット
3 室内ユニット(利用ユニット)
10 冷媒回路
11 圧縮機
13 室外熱交換器
14 室外膨張弁
16 室内熱交換器(利用側熱交換器)
17 室内膨張弁(利用側膨張弁)
50 コントローラ
51 圧縮機制御部(圧縮機制御手段)
52 湿り判定部(湿り判定手段)
53 容量変更部(容量変更手段)
54 開度制御部(開度制御手段)
1 Air conditioner
2 Outdoor unit
3 Indoor unit (Usage unit)
10 Refrigerant circuit
11 Compressor
13 Outdoor heat exchanger
14 Outdoor expansion valve
16 Indoor heat exchanger (use side heat exchanger)
17 Indoor expansion valve (use side expansion valve)
50 controller
51 Compressor controller (compressor control means)
52 Wetness determination unit (wetness determination means)
53 Capacity changing section (capacity changing means)
54 Opening control unit (opening control means)

Claims (5)

容量可変の圧縮機(11)を備えた室外ユニット(3)に利用ユニット(2)が接続された蒸気圧縮式冷凍サイクルの冷媒回路(10)を備え、上記冷媒回路(10)の冷却運転時に蒸発温度が目標蒸発温度になるように圧縮機(11)の容量を制御する冷凍装置であって、
上記圧縮機(11)の吸入冷媒が冷却運転時に湿り状態になると、該圧縮機(11)の容量が増大するように上記目標蒸発温度を低下させる容量変更手段(53)を備えている
ことを特徴とする冷凍装置。
A refrigerant circuit (10) of a vapor compression refrigeration cycle in which a use unit (2) is connected to an outdoor unit (3) having a variable capacity compressor (11), and during the cooling operation of the refrigerant circuit (10) A refrigeration apparatus for controlling the capacity of the compressor (11) so that the evaporation temperature becomes a target evaporation temperature,
A capacity changing means (53) for lowering the target evaporation temperature so that the capacity of the compressor (11) increases when the refrigerant sucked into the compressor (11) becomes wet during the cooling operation; Refrigeration equipment characterized.
請求項1において、
上記圧縮機(11)の吐出冷媒温度の過熱度に基づいて圧縮機(11)の吸入冷媒が湿り状態か否かを判定し、湿り状態であると湿り信号を出力する湿り判定手段(52)を備える一方、
上記容量変更手段(53)は、湿り判定手段(52)が湿り信号を出力すると、上記目標蒸発温度を低下させるように構成されている
ことを特徴とする冷凍装置。
In claim 1,
Wet determination means (52) for determining whether or not the suction refrigerant of the compressor (11) is in a wet state based on the degree of superheat of the discharge refrigerant temperature of the compressor (11), and outputting a wet signal in the wet state While comprising
The refrigerating apparatus, wherein the capacity changing means (53) is configured to lower the target evaporation temperature when the wetness determining means (52) outputs a wetness signal.
請求項2において、
上記湿り判定手段(52)は、圧縮機(11)の吐出冷媒温度の過熱度に基づいて圧縮機(11)の吸入冷媒が過熱状態か否かを判定し、過熱状態であると過熱信号を出力するように構成され、
上記容量変更手段(53)は、湿り判定手段(52)が過熱信号を出力すると、上記目標蒸発温度を上昇させるように構成されている
ことを特徴とする冷凍装置。
In claim 2,
The wetness determination means (52) determines whether or not the suction refrigerant of the compressor (11) is in an overheated state based on the degree of superheat of the discharge refrigerant temperature of the compressor (11). Configured to output,
The refrigeration apparatus, wherein the capacity changing means (53) is configured to increase the target evaporation temperature when the wetness judging means (52) outputs an overheat signal.
請求項3において、
上記湿り判定手段(52)は、所定時間ごとに圧縮機(11)の吸入冷媒が湿り状態か否か及び過熱状態か否かを判定するように構成されている
ことを特徴とする冷凍装置。
In claim 3,
The refrigeration apparatus characterized in that the wetness determination means (52) is configured to determine whether or not the refrigerant sucked in the compressor (11) is in a wet state and in an overheated state at predetermined time intervals.
請求項1において、
上記利用ユニット(2)は、利用側熱交換器(16)と開度可変の利用側膨張弁(17)とを備える一方、
上記利用側熱交換器(16)の負荷に対応して利用側膨張弁(17)の開度を制御する開度制御手段(54)を備えている
ことを特徴とする冷凍装置。
In claim 1,
The usage unit (2) includes a usage-side heat exchanger (16) and a variable-side usage-side expansion valve (17),
A refrigeration apparatus comprising opening degree control means (54) for controlling the opening degree of the use side expansion valve (17) corresponding to the load of the use side heat exchanger (16).
JP2007024615A 2007-02-02 2007-02-02 Refrigeration equipment Active JP4730318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024615A JP4730318B2 (en) 2007-02-02 2007-02-02 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024615A JP4730318B2 (en) 2007-02-02 2007-02-02 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2008190757A true JP2008190757A (en) 2008-08-21
JP4730318B2 JP4730318B2 (en) 2011-07-20

Family

ID=39751022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024615A Active JP4730318B2 (en) 2007-02-02 2007-02-02 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4730318B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087978A (en) * 2010-10-19 2012-05-10 Mitsubishi Electric Corp Refrigerating device
JP2012247111A (en) * 2011-05-26 2012-12-13 Mitsubishi Electric Corp Freezing apparatus
JP2013181711A (en) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp Refrigeration device
CN114992826A (en) * 2022-07-13 2022-09-02 广东美的制冷设备有限公司 Control method and device of multi-split system, multi-split system and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179088A1 (en) 2016-04-11 2017-10-19 三菱電機株式会社 Refrigerating device and refrigerating device control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109683A (en) * 1996-06-26 1998-01-16 Toshiba Corp Air conditioner
JPH11182951A (en) * 1997-12-25 1999-07-06 Mitsubishi Electric Corp Refrigerating device
JP2002071192A (en) * 2000-08-28 2002-03-08 Daikin Ind Ltd Air conditioning apparatus
JP2006317050A (en) * 2005-05-11 2006-11-24 Yanmar Co Ltd Control device for cooling and heating concurrent operation type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109683A (en) * 1996-06-26 1998-01-16 Toshiba Corp Air conditioner
JPH11182951A (en) * 1997-12-25 1999-07-06 Mitsubishi Electric Corp Refrigerating device
JP2002071192A (en) * 2000-08-28 2002-03-08 Daikin Ind Ltd Air conditioning apparatus
JP2006317050A (en) * 2005-05-11 2006-11-24 Yanmar Co Ltd Control device for cooling and heating concurrent operation type air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087978A (en) * 2010-10-19 2012-05-10 Mitsubishi Electric Corp Refrigerating device
JP2012247111A (en) * 2011-05-26 2012-12-13 Mitsubishi Electric Corp Freezing apparatus
JP2013181711A (en) * 2012-03-02 2013-09-12 Mitsubishi Electric Corp Refrigeration device
CN114992826A (en) * 2022-07-13 2022-09-02 广东美的制冷设备有限公司 Control method and device of multi-split system, multi-split system and storage medium

Also Published As

Publication number Publication date
JP4730318B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP2270405B1 (en) Refrigerating device
KR100540808B1 (en) Control method for Superheating of heat pump system
US7509817B2 (en) Cooling cycle apparatus and method of controlling linear expansion valve of the same
JP4725387B2 (en) Air conditioner
JP6595205B2 (en) Refrigeration cycle equipment
JP5795025B2 (en) Refrigeration cycle equipment
JP2009014212A (en) Refrigerating device
CN111486574B (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
JP2004226006A (en) Controller for multiple indoor unit type air conditioner
JP2014190554A (en) Air conditioner
JP2013178046A (en) Air conditioner
JP2018141599A (en) Air conditioning device
JP4730318B2 (en) Refrigeration equipment
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP6577264B2 (en) Air conditioner
JP2008025901A (en) Air conditioner
CN111503854B (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
JP3668750B2 (en) Air conditioner
JP2011149611A (en) Air-conditioning apparatus
WO2017094172A1 (en) Air conditioning device
JP2007327717A (en) Air conditioner
JP2019203688A (en) Refrigeration cycle device
JP2018141600A (en) Air conditioner
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JP2002228284A (en) Refrigerating machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4730318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3