JP2008184623A - Method for producing three-dimensional molding, and material - Google Patents

Method for producing three-dimensional molding, and material Download PDF

Info

Publication number
JP2008184623A
JP2008184623A JP2007016675A JP2007016675A JP2008184623A JP 2008184623 A JP2008184623 A JP 2008184623A JP 2007016675 A JP2007016675 A JP 2007016675A JP 2007016675 A JP2007016675 A JP 2007016675A JP 2008184623 A JP2008184623 A JP 2008184623A
Authority
JP
Japan
Prior art keywords
material layer
layer
powder
metal
dimensional shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007016675A
Other languages
Japanese (ja)
Other versions
JP4915660B2 (en
Inventor
Isao Fuwa
勲 不破
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007016675A priority Critical patent/JP4915660B2/en
Publication of JP2008184623A publication Critical patent/JP2008184623A/en
Application granted granted Critical
Publication of JP4915660B2 publication Critical patent/JP4915660B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a three-dimensional molding where the material is composed of fine powder, and has good fluidity and satisfactory molding precision, and also, the treatability of the raw material is satisfactory, and to provide the material used therefor. <P>SOLUTION: As the material, a mixture of metal powder and a highly volatile solvent is used, the material is fed onto a plate 31 for molding, so as to form a material layer 22, the highly volatile solvent in the material layer 22 is volatilized, thereafter, the material layer 22 is irradiated with an optical beam L, and a sintered layer 81 or a melted layer is formed. The formation of the material layer 22, the volatilization of the highly volatile solvent and the irradiation of the optical beam L are repeated, thus each sintered layer 81 or melted layer is stacked on the plate 31 for molding. Since the fluidity of the material is satisfactory, the material layer 22 can be uniformly thinly formed, and a three-dimensional molding 82 having satisfactory precision can be produced. Further, the metal powder is not stirred up, and the treatability of the material is satisfactory. Since the highly volatile solvent volatilizes and impurities are reduced, the three-dimensional molding 82 having high density and strength can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は金属材料に光ビームの照射を行なう三次元形状造形物の製造方法及び材料に関する。   The present invention relates to a manufacturing method and a material for a three-dimensional shaped object in which a metal material is irradiated with a light beam.

従来から、金属材料で形成した材料層に光ビーム(指向性エネルギービーム、例えばレーザ光)を照射して焼結層又は溶融層を形成し、この焼結層又は溶融層の上に新たな材料層を形成して光ビームを照射することで焼結層又は溶融層を形成するということを繰り返して三次元形状造形物を製造する技術が知られている。この技術の特徴は、複雑な三次元形状物を短時間で製造することができることである。エネルギー密度の高い光ビームを照射することで金属材料がほぼ完全に溶融した後に固化した状態、つまり溶融後の材料密度がほぼ100%の状態となり、この高密度の造形物の表面を仕上げ加工することにより滑らかな面を形成することができ、プラスチック成形用金型などに適用される。   Conventionally, a material layer formed of a metal material is irradiated with a light beam (directional energy beam, for example, laser light) to form a sintered layer or a molten layer, and a new material is formed on the sintered layer or the molten layer. A technique for manufacturing a three-dimensional shaped object by repeating the formation of a sintered layer or a molten layer by forming a layer and irradiating a light beam is known. A feature of this technique is that a complicated three-dimensional shape can be manufactured in a short time. By irradiating a light beam with high energy density, the metal material is almost completely melted and then solidified, that is, the material density after melting is almost 100%, and the surface of this high-density model is finished. Thus, a smooth surface can be formed, which is applied to a plastic mold or the like.

金属光造形と称されるこの技術において、通常使用する金属材料は、粉末の状態で用いられている。積層する材料を金属粉末とすることで、材料の表面積が大きくなりレーザ光の吸収率も大きくなるので、エネルギー密度の低い照射条件でも材料を焼結又は溶融することが可能となり、造形速度が向上する。   In this technique called metal stereolithography, the metal material normally used is used in a powder state. By making the material to be laminated a metal powder, the surface area of the material increases and the absorption rate of the laser beam also increases, so it is possible to sinter or melt the material even under irradiation conditions with low energy density, improving the modeling speed To do.

ある程度の強度を有する造形物を得るためには、レーザ光を照射する材料層においてレーザ光走査箇所に隣接する造形部との密着強度を高めると共に、照射された造形部とその下層にある造形層との密着強度も高くしなければならない。積層する材料が金属粉末であれば、粉末間にある隙間を通してレーザ光が下層の造形層にも照射され、下層の造形層も加熱されて密着強度が向上する。   In order to obtain a modeled object having a certain level of strength, in the material layer to which the laser beam is irradiated, the adhesion strength between the modeled part adjacent to the laser beam scanning position is increased, and the modeled layer that is irradiated and the modeled layer underneath it Adhesion strength with must also be increased. If the material to be laminated is a metal powder, the lower modeling layer is irradiated with laser light through a gap between the powders, and the lower modeling layer is also heated to improve the adhesion strength.

更に、レーザ照射された箇所の上面があまり大きく盛り上がってはならない。次の層を造形するための次の材料層を形成する際に、盛り上がり高さが金属粉末を積層する厚み以上となると、材料層の形成そのものが困難となってしまう。   Furthermore, the upper surface of the laser-irradiated portion should not rise so much. When the next material layer for modeling the next layer is formed, if the raised height is equal to or greater than the thickness for laminating the metal powder, formation of the material layer itself becomes difficult.

もちろん、造形物の外観に割れが生じてはならないし、内部組織にもマイクロクラックの無いことが望まれる。   Of course, the appearance of the shaped object must not be cracked, and it is desirable that the internal structure be free of microcracks.

ここにおいて、レーザ照射された金属材料は、その一部、又は全部が一旦溶融し、その後冷却凝固されて造形物となるが、この溶融した時の濡れ性が大きいと隣接する造形部との接合面積が大きくなり、流動性が大きければ盛り上がりが小さくなることから、溶融した時の流動性が大きく、かつ、濡れ性が良いことが望まれる。   Here, a part or all of the metal material irradiated with the laser is once melted and then cooled and solidified to form a modeled object. If the wettability at the time of the melting is large, it is possible to join the adjacent modeled part. If the area is large and the fluidity is large, the rise is small. Therefore, it is desirable that the fluidity when melted is large and the wettability is good.

このような観点から、本出願人は特許文献1に示されるように、クロムモリブデン鋼からなる鉄系粉末と、ニッケル粉末と、リン銅又はマンガン銅粉末からなる金属光造形用の混合粉末を提案した。クロムモリブデン鋼粉末はその硬度や強度の点から、ニッケル粉末は強度、靭性及び加工性の点から、リン銅又はマンガン銅粉末は濡れ性及び流動性の点から採用している。   From such a viewpoint, as shown in Patent Document 1, the present applicant proposed a mixed powder for metal stereolithography made of iron-based powder made of chromium molybdenum steel, nickel powder, and phosphorous copper or manganese copper powder. did. Chrome molybdenum steel powder is adopted from the viewpoint of hardness and strength, nickel powder is adopted from the viewpoint of strength, toughness and workability, and phosphorous copper or manganese copper powder is adopted from the viewpoint of wettability and fluidity.

鉄系粉末のみにレーザ光を照射して高密度な三次元形状造形物を製造することは困難である。これは、先に形成された鉄の造形層に次の造形層を、隙間を作ることなく一体化することが困難であるからである。クロムモリブデン鋼自体は硬度が高く機械的強度に優れていても、クロムモリブデン鋼粉末のみでレーザ照射をして得られる三次元造形物の造形密度は低く、その強度も弱い。   It is difficult to produce a high-density three-dimensional shaped object by irradiating only iron-based powder with laser light. This is because it is difficult to integrate the next modeling layer into the previously formed iron modeling layer without creating a gap. Even if the chromium molybdenum steel itself has high hardness and excellent mechanical strength, the modeling density of the three-dimensional structure obtained by laser irradiation with only the chromium molybdenum steel powder is low and its strength is also weak.

鉄系粉末がニッケル成分を多く含む合金の場合、粉末の表面に形成される強固な酸化膜が鉄系粉末同士の融着一体化を阻害するため、前記の問題が甚だしくなる。鉄系金属にニッケルを含有させることは、その鉄系金属の靭性や強度及び耐食性を向上できるという利点があるが、レーザ照射による三次元造形物の製造に使用した場合には、その利点が発揮されにくい。   In the case where the iron-based powder is an alloy containing a large amount of nickel component, the above-mentioned problem becomes serious because a strong oxide film formed on the surface of the powder hinders fusion integration of the iron-based powders. Inclusion of nickel in an iron-based metal has the advantage of improving the toughness, strength, and corrosion resistance of the iron-based metal, but when used for the production of three-dimensional structures by laser irradiation, the advantage is demonstrated. It is hard to be done.

レーザ照射のエネルギーを大きくすれば、クロムモリブデン鋼やニッケル成分を含む鉄系粉末でも、十分に融着一体化できるが、その場合には、レーザ光の照射装置が大掛かりになったり、過大な電カが必要となり、製造コストが高くつくという欠点がある他、レーザ光の走査速度を高められないため、製造能率が低下する。また、過大な照射エネルギー量でつくられた造形物は、熱応力により反りや変形を起こし易くなる。   If the energy of laser irradiation is increased, even iron-based powders containing chromium-molybdenum steel and nickel components can be sufficiently fused and integrated. In this case, however, the laser irradiation device becomes too large or excessive power is required. In addition to the disadvantage that the manufacturing cost is high and the manufacturing cost is high, the scanning speed of the laser beam cannot be increased, and the manufacturing efficiency is lowered. In addition, a shaped article made with an excessive amount of irradiation energy tends to warp or deform due to thermal stress.

溶融された時にその流動性が良く、溶融状態で鉄系材料との濡れ性が良く、かつ鉄系材料と合金化された場合でも特性の劣化がほとんどない金属材料が銅である。鉄系粉末と銅合金粉末からなる混合粉末にレーザ光を照射すると、この銅合金が先に溶融し、鉄系粉末間の隙間を埋めると同時に、これが結合材となって融着一体化する。レーザ光の照射エネルギーが高い場合は混合粉末を形成する鉄系粉末及び銅合金粉末が溶融し合金となる。   Copper is a metal material that has good fluidity when melted, good wettability with an iron-based material in a molten state, and hardly deteriorates in characteristics even when alloyed with an iron-based material. When the mixed powder composed of iron-based powder and copper alloy powder is irradiated with laser light, the copper alloy is melted first to fill the gap between the iron-based powders, and at the same time, this becomes a binder and is fused and integrated. When the laser beam irradiation energy is high, the iron-based powder and copper alloy powder forming the mixed powder are melted to form an alloy.

溶融金属の流動性は、溶融時の温度と融点との差が大きいほど良くなる。純銅よりもリン銅合金やマンガン銅合金の方が融点は低く、同じエネルギーで照射した場合の流動性は、純銅よりもリン銅合金やマンガン銅合金の方が良い。   The fluidity of the molten metal becomes better as the difference between the melting temperature and the melting point increases. Phosphorous copper alloys and manganese copper alloys have lower melting points than pure copper, and the fluidity when irradiated with the same energy is better for phosphorous copper alloys and manganese copper alloys than for pure copper.

従来の金属光造形用鉄系粉末材料には、ニッケル粉末も含まれている。前述したように、鉄系粉末がニッケル成分を含む合金である場合には、粉末表面に形成される強固な酸化膜によって、粉末同士の融着一体化が阻害されるが、鉄系粉末とは別個の粉末としてニッケル粉末が銅合金と共に混合された場合には、これらの粉末同上の融着一体化は良好に行なわれる。そして、鉄系成分とニッケルと銅合金成分とからなる硬化層は、その焼結密度は高く、その結果、靭性や強度が高くなる。   The conventional iron-based powder material for metal stereolithography also includes nickel powder. As described above, when the iron-based powder is an alloy containing a nickel component, fusion integration between the powders is hindered by a strong oxide film formed on the powder surface. When nickel powder is mixed with a copper alloy as a separate powder, fusion and integration of these powders are performed well. And the hardened layer which consists of an iron-type component, nickel, and a copper alloy component has the high sintered density, As a result, toughness and intensity | strength become high.

特に、クロムモリブデン鋼の配合量が60〜90wt%、ニッケル粉末の配合量が5〜35wt%、銅マンガン合金粉末の配合量が5〜15wt%である時に、特に好ましい結果を得ることができる。   Particularly preferable results can be obtained when the amount of chromium molybdenum steel is 60 to 90 wt%, the amount of nickel powder is 5 to 35 wt%, and the amount of copper manganese alloy powder is 5 to 15 wt%.

上述した金属粉末を材料として使った金属光造形において、レーザ照射とその積層によって複雑な三次元形状造形物を得るという点において、概ね好ましい結果を得ることができている。   In the metal stereolithography using the above-described metal powder as a material, a generally preferable result can be obtained in that a complicated three-dimensional shaped object is obtained by laser irradiation and its lamination.

しかしながら、高精度な三次元形状造形物を得るためには、粉末材料をできるだけ薄くかつ均一に敷く必要があり、そのためには金属粉末の粒径を細かくしなければならないが、金属粉末の粒径が細かくなるほど粉末同士が凝集を起こし、結果的に金属粉末自身の流動性が低下してしまい、金属粉末を薄く均一に敷けなくなるという問題がある。   However, in order to obtain a highly accurate three-dimensional shaped object, it is necessary to spread the powder material as thinly and uniformly as possible, and for this purpose, the particle size of the metal powder must be made fine. As the powder becomes finer, the powders agglomerate with each other. As a result, the fluidity of the metal powder itself is lowered, and the metal powder cannot be spread thinly and uniformly.

また、乾燥状態の微粉末は非常に舞い易く、取り扱い性が悪いだけでなく、その材料が混合粉末の場合、成分の変動を起こし、微粉末にしたために逆に高精度な造形が望めなくなる虞がある。
特開2005−48234号公報
In addition, dry fine powder is very easy to fly and not only is poor in handleability, but if the material is a mixed powder, the components may fluctuate and the fine powder may not be able to achieve high-precision modeling. There is.
JP-A-2005-48234

本発明は、上記の問題を解決するためになされたものであり、材料が微粉末で流動性が良好であって造形精度が良く、かつ、材料の取り扱い性が良い三次元形状造形物の製造方法及び材料を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and the production of a three-dimensional shaped object having a fine powder, good fluidity, good modeling accuracy, and good material handling properties. It is an object to provide methods and materials.

上記目的を達成するために請求項1の発明は、三次元形状造形用の材料を造形用プレート上に供給して、材料層を形成する材料層形成工程と、前記材料層に光ビームを照射して、焼結層又は溶解層を形成する照射工程と、前記材料層形成工程と照射工程とを繰り返すことにより前記焼結層又は溶解層を前記造形用プレート上に積層する積層工程と、を備えた三次元形状造形物の製造方法において、前記材料として、金属粉末と高揮発性溶剤とを混合したものを用い、前記照射工程における光ビーム照射は、前記材料層形成工程において形成された材料層中の前記高揮発性溶剤が揮発した後に行なうようにしたものである。   In order to achieve the above object, the invention according to claim 1 is a material layer forming step of supplying a material for three-dimensional shape modeling onto a modeling plate to form a material layer, and irradiating the material layer with a light beam. Then, an irradiation process for forming a sintered layer or a melted layer, and a laminating process for laminating the sintered layer or the melted layer on the modeling plate by repeating the material layer forming process and the irradiation process. In the method for manufacturing a three-dimensional shaped object provided, the material is a mixture of metal powder and a highly volatile solvent, and the light beam irradiation in the irradiation step is a material formed in the material layer forming step. This is performed after the highly volatile solvent in the layer has volatilized.

請求項2の発明は、請求項1に記載の三次元形状造形物の製造方法において、前記材料は、50vol%以上70vol%以下の金属粉末と、30vol%以上50vol%以下の高揮発性溶剤と、を有するものである。   Invention of Claim 2 is the manufacturing method of the three-dimensional shape molded article of Claim 1, The said material is a metal powder of 50 vol% or more and 70 vol% or less, and a highly volatile solvent of 30 vol% or more and 50 vol% or less, , Has.

請求項3の発明は、請求項1又は請求項2に記載の三次元形状造形物の製造方法において前記金属粉末の平均粒径が1μm以上100μm以下であるものである。   A third aspect of the present invention is the method for producing a three-dimensional shaped article according to the first or second aspect, wherein the average particle size of the metal powder is 1 μm or more and 100 μm or less.

請求項4の発明は、請求項1乃至請求項3のいずれか一項に記載の三次元形状造形物の製造方法において、前記金属粉末は、鉄系粉末の構成比率が60wt%以上90wt%以下であり、ニッケル粉末及びニッケル系合金粉末の両方又はいずれか一方の構成比率が5wt%以上35wt%以下であり、銅粉末及び銅系合金粉末の両方又はいずれか一方の構成比率が5wt%以上15wt%以下であるものである。   Invention of Claim 4 is a manufacturing method of the three-dimensional shape molded article according to any one of Claims 1 to 3, wherein the metal powder has a composition ratio of iron-based powder of 60 wt% or more and 90 wt% or less. The composition ratio of either or both of the nickel powder and the nickel-based alloy powder is 5 wt% or more and 35 wt% or less, and the composition ratio of either or both of the copper powder and the copper-based alloy powder is 5 wt% or more and 15 wt%. % Or less.

請求項5の発明は、請求項1乃至請求項4のいずれか一項に記載の三次元形状造形物の製造方法において、前記材料層の厚みが1μm以上200μm以下であるものである。   A fifth aspect of the present invention is the method for producing a three-dimensional shaped article according to any one of the first to fourth aspects, wherein the thickness of the material layer is 1 μm or more and 200 μm or less.

請求項6の発明は、請求項1乃至請求項5のいずれか一項に記載の三次元形状造形物の製造方法において、前記材料層形成工程において、前記材料層を加熱して前記高揮発性溶剤を揮発させるものである。   Invention of Claim 6 is a manufacturing method of the three-dimensional shape molded article as described in any one of Claim 1 thru | or 5, In the said material layer formation process, the said material layer is heated and the said highly volatile property The solvent is volatilized.

請求項7の発明は、請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法における前記材料層形成工程において、前記材料層から揮発する前記高揮発性溶剤を吸引して回収するものである。   The invention of claim 7 provides the highly volatile solvent that volatilizes from the material layer in the material layer forming step in the method of manufacturing a three-dimensional shaped article according to any one of claims 1 to 6. It is collected by suction.

請求項8の発明は、請求項1乃至請求項7のいずれか一項に記載の三次元形状造形物の製造方法において、前記材料層は、金属線より形成された金網を有するものである。   The invention of claim 8 is the method for producing a three-dimensional shaped article according to any one of claims 1 to 7, wherein the material layer has a wire mesh formed of a metal wire.

請求項9の発明は、請求項1乃至請求項8のいずれか一項に記載の三次元形状造形物の製造方法において、前記焼結層又は溶解層の形成後に、それまでに積層して得られた三次元形状造形物の表面部及び/又は不要部分の切削除去を行なう切削工程を更に備えたものである。   The invention of claim 9 is the method for producing a three-dimensional shaped article according to any one of claims 1 to 8, wherein after the formation of the sintered layer or the melted layer, the layers are laminated up to that point. A cutting process for cutting and removing the surface portion and / or unnecessary portion of the three-dimensional shaped object thus obtained is further provided.

請求項10の発明は、三次元形状造形用の材料において、請求項1乃至請求項4のいずれか一項に記載の三次元形状造形物の製造方法に用いられ、金属粉末と高揮発性溶剤とが混合されて成るものである。   The invention of claim 10 is a material for three-dimensional shape modeling, and is used in the method for producing a three-dimensional shape molded product according to any one of claims 1 to 4, wherein the metal powder and the highly volatile solvent are used. And are mixed.

請求項1の発明によれば、金属粉末を微粉末にしても流動性が良いので、材料層を均一に薄く形成することができ、精度の良い三次元形状造形物を製造することができる。また、金属粉末が舞い上がることがなく、材料の取り扱い性が良い。また、高揮発性溶剤を揮発させており、不純物が少ないので高密度、高強度の三次元形状造形物を得ることができる。   According to the first aspect of the present invention, since the fluidity is good even if the metal powder is made into a fine powder, the material layer can be formed uniformly and thinly, and an accurate three-dimensional shaped object can be manufactured. In addition, the metal powder does not soar and the material is easy to handle. Moreover, since the highly volatile solvent is volatilized and there are few impurities, a three-dimensional shaped article with high density and high strength can be obtained.

請求項2の発明によれば、材料に適度な流動性と粘性を得ることができ、更に材料層を均一に薄く形成することができ、精度の良い三次元形状造形物を製造することができる。   According to the second aspect of the present invention, it is possible to obtain appropriate fluidity and viscosity in the material, and further to form the material layer uniformly and thinly, and it is possible to manufacture an accurate three-dimensional shaped object. .

請求項3の発明によれば、金属粉末の粒径が小さいので、更に材料層を均一に薄く形成することができ、精度の良い三次元形状造形物を製造することができる。   According to the invention of claim 3, since the particle size of the metal powder is small, the material layer can be formed evenly and thinly, and an accurate three-dimensional shaped object can be manufactured.

請求項4の発明によれば、クラックの無い高強度な三次元形状造形物を製造することができる。   According to the invention of claim 4, it is possible to produce a high-strength three-dimensional shaped article without cracks.

請求項5の発明によれば、材料層の厚みが薄いので、精度の良い三次元形状造形物を製造することができる。   According to the invention of claim 5, since the thickness of the material layer is thin, it is possible to manufacture an accurate three-dimensional shaped object.

請求項6の発明によれば、高揮発性溶剤の揮発速度が速いので、光ビーム照射の待ち時間が短かくなり、製造時間を短縮することができる。   According to the invention of claim 6, since the volatilization rate of the highly volatile solvent is fast, the waiting time of the light beam irradiation is shortened, and the manufacturing time can be shortened.

請求項7の発明によれば、光ビームが透過するレンズの汚れを防ぐことができるので、光ビームが安定し、精度の良い三次元形状造形物を製造することができる。吸引することにより、高揮発性溶剤の揮発速度も速くなり、光ビーム照射の待ち時間を短くすることができる。また、環境汚染を防止することができ、製造の安全性も高めることができる。   According to the seventh aspect of the present invention, it is possible to prevent contamination of the lens through which the light beam is transmitted, so that the light beam is stable and an accurate three-dimensional shaped article can be manufactured. By sucking, the volatilization rate of the highly volatile solvent is increased, and the waiting time of the light beam irradiation can be shortened. Moreover, environmental pollution can be prevented and the safety of production can be improved.

請求項8の発明によれば、金属材料が高密度で供給されるので、精度が良く、高密度、高強度な三次元形状造形物を製造することができる。   According to the invention of claim 8, since the metal material is supplied at a high density, it is possible to manufacture a three-dimensional shaped object with good accuracy, high density and high strength.

請求項9の発明によれば、製造される三次元形状造形物の表面粗さが細かくなり、寸法精度が向上する。   According to the ninth aspect of the present invention, the surface roughness of the manufactured three-dimensional shaped object becomes fine, and the dimensional accuracy is improved.

請求項10の発明によれば、精度の良く、クラックが無く、高密度、高強度な三次元形状造形物を製造することができる。   According to the invention of claim 10, it is possible to manufacture a three-dimensional shaped article with high accuracy, no cracks, high density and high strength.

(第1の実施形態)
本発明の第1の実施形態に係る三次元形状造形物の製造方法について図面を参照して説明する。図1は、三次元形状造形物の製造に用いる金属光造形加工機の構成を、図2は、材料に用いる金属粉末のSEM写真を示す。金属光造形加工機1は、材料となる金属ペースト21の材料層22が敷かれる造形用プレート31と、造形用プレート31を保持し、上下に昇降する造形テーブル32と、金属ペースト21を造形用プレート31に供給する筒状容器41と、矢印A方向に移動して材料層22を形成するワイパ42と、光ビームLを発する光ビーム発信器51と、光ビームLを材料層22の上にスキャニングするガルバノミラー52と、造形物の周囲を削るミーリングヘッド61と、ミーリングヘッド61を切削箇所に移動させるXY駆動機構62と、材料層22を加熱するヒータ71と、材料層22より発生するヒュームを吸引する吸引器72とを備えている。光ビーム発信器51は、例えば、炭酸ガスレーザやファイバーレーザの発信器である。ミーリングヘッド61の工具(ボールエンドミル)は直径が0.6mm(有効刃長1mm)のものを使用している。
(First embodiment)
A method for manufacturing a three-dimensional shaped object according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a metal stereolithography machine used for manufacturing a three-dimensional shaped object, and FIG. 2 shows an SEM photograph of metal powder used for the material. The metal stereolithography machine 1 is a modeling plate 31 on which a material layer 22 of a metal paste 21 as a material is laid, a modeling table 32 that holds the modeling plate 31 and moves up and down, and a metal paste 21 for modeling. A cylindrical container 41 supplied to the plate 31, a wiper 42 that moves in the direction of arrow A to form the material layer 22, a light beam transmitter 51 that emits a light beam L, and a light beam L on the material layer 22. The galvanometer mirror 52 for scanning, the milling head 61 for cutting the periphery of the modeled object, the XY drive mechanism 62 for moving the milling head 61 to the cutting location, the heater 71 for heating the material layer 22, and the fumes generated from the material layer 22 And a suction device 72 for sucking. The light beam transmitter 51 is, for example, a carbon dioxide laser or fiber laser transmitter. The milling head 61 has a tool (ball end mill) having a diameter of 0.6 mm (effective blade length 1 mm).

金属ペースト21は、50〜70vol%の金属粉末と、30〜50vol%の高揮発性溶剤とを含んでいる。金属粉末は、形状が略球状であり、平均粒径が1〜100μmで、好ましくは1〜20μmである。金属粉末は、例えば、SCM440粉末である鉄系粉末と、ニッケル粉末及び/又はニッケル系合金粉末と、例えば、CuMnNi粉末である銅粉末及び/又は銅系合金粉末とから構成されている。そして、金属粉末中における鉄系粉末の構成比率が60〜90wt%であり、ニッケル粉末及び/又はニッケル系合金粉末の構成比率が5〜35wt%であり、銅粉末及び/又は銅系合金粉末の構成比率が5〜15wt%である。高揮発性溶剤は、例えば、キシレンやトルエンのようなアルコール系溶剤であり、金属ペースト21の流動性が良くなる。また、揮発して不純物を残さない。   The metal paste 21 contains 50 to 70 vol% metal powder and 30 to 50 vol% highly volatile solvent. The metal powder has a substantially spherical shape and an average particle diameter of 1 to 100 μm, preferably 1 to 20 μm. The metal powder is composed of, for example, iron-based powder that is SCM440 powder, nickel powder and / or nickel-based alloy powder, and copper powder and / or copper-based alloy powder that is, for example, CuMnNi powder. The composition ratio of the iron-based powder in the metal powder is 60 to 90 wt%, the composition ratio of the nickel powder and / or the nickel-based alloy powder is 5 to 35 wt%, and the copper powder and / or the copper-based alloy powder The composition ratio is 5 to 15 wt%. The highly volatile solvent is, for example, an alcohol solvent such as xylene or toluene, and the fluidity of the metal paste 21 is improved. It also volatilizes and leaves no impurities.

図3は、三次元形状造形物の製造方法の動作を時系列的に示す。図3(a)に示されるように、金属光造形加工機は、周囲が囲まれた造形枠33の内部に昇降自由な造形テーブル32を備えており、造形テーブル32の上には造形物を積層する為の造形用プレート31が配設されている。図3(b)に示されるように、金属光造形加工機は、造形を開始する第1層目の高さBだけ造形テーブル32を下降させ、造形用プレート31の上に材料である金属ペースト21を、ワイパ42を矢印A方向に移動させて供給し、材料層22を形成する。この造形テーブル32を下降して金属ペースト21を供給する動作は、材料層形成工程を構成する。   FIG. 3 shows the operation of the method for manufacturing a three-dimensional shaped object in time series. As shown in FIG. 3A, the metal stereolithography machine includes a modeling table 32 that can freely move up and down inside a modeling frame 33 surrounded by a periphery, and a modeling object is placed on the modeling table 32. A modeling plate 31 for stacking is disposed. As shown in FIG. 3B, the metal stereolithography machine lowers the modeling table 32 by the height B of the first layer at which modeling is started, and a metal paste that is a material on the modeling plate 31 21 is supplied by moving the wiper 42 in the direction of arrow A to form the material layer 22. The operation of lowering the modeling table 32 and supplying the metal paste 21 constitutes a material layer forming process.

ここで、材料層形成工程の詳細について図4を参照して説明する。図4(a)に示されるように、金属粉末24と高揮発性溶剤25とを混合容器43にいれて混合し、金属ペースト21を作成する。金属ペースト21の作成は、材料層積層工程を始める直前に行ない、高揮発性溶剤25の揮発を防止するのが望ましい。図4(b)に示されるように、混合容器43の金属ペースト21を筒状容器41に入れる。筒状容器41は、下部から金属ペースト21を注出するようになっている。図4(c)に示されるように、筒状容器41は、矢印C方向に移動しながら、金属ペースト21を造形用プレート31の近傍に注出する。次に、図4(d)に示されるように、ワイパ42は、矢印D方向へ移動し、金属ペースト21を造形用プレート31の上に敷き、厚みが1μm〜200μm、好ましくは5μm〜20μmの材料層22を形成する。   Here, the details of the material layer forming step will be described with reference to FIG. As shown in FIG. 4A, the metal powder 24 and the highly volatile solvent 25 are placed in a mixing container 43 and mixed to prepare the metal paste 21. The creation of the metal paste 21 is preferably performed immediately before the material layer laminating step is started to prevent volatilization of the highly volatile solvent 25. As shown in FIG. 4B, the metal paste 21 in the mixing container 43 is put into the cylindrical container 41. The cylindrical container 41 is adapted to pour out the metal paste 21 from the lower part. As shown in FIG. 4C, the cylindrical container 41 pours the metal paste 21 in the vicinity of the modeling plate 31 while moving in the direction of arrow C. Next, as shown in FIG. 4 (d), the wiper 42 moves in the direction of arrow D, lays the metal paste 21 on the modeling plate 31, and has a thickness of 1 μm to 200 μm, preferably 5 μm to 20 μm. The material layer 22 is formed.

再び、図3に戻って、材料層22が形成された後の製造方法を説明する。図3(c)に示されるように、金属光造形加工機は、材料層22を自然乾燥させ、ヒューム23を生じて高揮発性溶剤を揮発する。次に、図3(d)に示されるように、金属光造形加工機は、造形用プレート31の上に形成された材料層22に光ビームLを照射する。照射された箇所のみが第1層目の造形物として造形用プレート31上に、接合して造形される。光ビーム発信器は、光ビームLを発し、ガルバノミラーによって材料層22の上の任意の位置にスキャニングし、材料層22を溶融し、凝固させて造形用プレート31と一体化した焼結層81を形成する。この光ビームLによって焼結層81を形成する動作は、照射工程を構成する。光ビームLの照射経路は、予め三次元CADデータから作成しておく。三次元CADモデルから生成したSTLデータを等ピッチでスライスした各断面の輪郭形状データを用いる。また、光ビームLの照射は、不活性雰囲気、又は還元性雰囲気で行なうことが望ましく、特に、高密度の三次元形状造形物の製造を行なう場合には、不活性雰囲気、又は還元性雰囲気が必要である。   Returning to FIG. 3 again, the manufacturing method after the material layer 22 is formed will be described. As shown in FIG. 3C, the metal stereolithography machine naturally drys the material layer 22 to generate a fume 23 and volatilize the highly volatile solvent. Next, as shown in FIG. 3D, the metal stereolithography machine irradiates the material layer 22 formed on the modeling plate 31 with the light beam L. Only the irradiated part is joined and modeled on the modeling plate 31 as a first-layer modeled object. The light beam transmitter emits a light beam L, is scanned to an arbitrary position on the material layer 22 by a galvanometer mirror, melts and solidifies the material layer 22, and is a sintered layer 81 integrated with the modeling plate 31. Form. The operation of forming the sintered layer 81 with the light beam L constitutes an irradiation process. The irradiation path of the light beam L is created in advance from three-dimensional CAD data. The contour shape data of each cross section obtained by slicing the STL data generated from the three-dimensional CAD model at an equal pitch is used. Further, the irradiation with the light beam L is desirably performed in an inert atmosphere or a reducing atmosphere. In particular, when a high-density three-dimensional shaped object is manufactured, the inert atmosphere or the reducing atmosphere is used. is necessary.

第1層目の造形が終了すると、図3(e)に示されるように、金属光造形加工機は、積層する高さBだけ造形テーブル32を下降させ、次の層の金属ペースト21を供給し、図3(f)に示されるように、材料層22を自然乾燥させ、ヒューム23を生じて高揮発性溶剤を揮発させ、図3(g)に示されるように、造形する箇所に光ビームLを照射する。こうして、金属ペースト21の供給と光ビームLの照射を繰り返すことにより、図3(h)に示されるように、焼結層81を積層し、三次元形状造形物82を製造する。この、焼結層81を積層する動作は、積層工程を構成する。   When modeling of the first layer is completed, as shown in FIG. 3E, the metal stereolithography machine lowers the modeling table 32 by the height B to be stacked and supplies the metal paste 21 of the next layer. Then, as shown in FIG. 3 (f), the material layer 22 is naturally dried, fume 23 is generated and the highly volatile solvent is volatilized. As shown in FIG. Irradiate the beam L. In this way, by repeating the supply of the metal paste 21 and the irradiation of the light beam L, as shown in FIG. 3 (h), the sintered layer 81 is laminated and the three-dimensional shaped object 82 is manufactured. This operation of laminating the sintered layer 81 constitutes a laminating process.

上述の製造方法においては、材料が金属粉末と高揮発性溶剤とを混錬した金属ペースト21であるので、金属粉末を微粉末にしても流動性が良く、材料層22を均一に薄く形成することができ、精度の良い三次元形状造形物82を製造することができる。また、金属粉末が舞い上がることがなく、材料の取り扱い性が良い。金属粉末と高揮発性溶剤の混合を上述の混合比としているので、適度な流動性を得ることができ、更に材料層を均一に薄く形成することができ、精度の良い三次元形状造形物82を製造することができる。光ビームLの照射の前に高揮発性溶剤を揮発させており、不純物が少ないので、高密度、高強度の三次元形状造形物を得ることができる。また、金属粉末の平均粒径を1〜100μmと細かくし、材料層22を1〜200μmと薄くしているので、更に、精度の良い三次元形状造形物82を製造することができる。   In the above-described manufacturing method, the material is the metal paste 21 obtained by kneading the metal powder and the highly volatile solvent. Therefore, even if the metal powder is a fine powder, the fluidity is good, and the material layer 22 is uniformly thinly formed. It is possible to manufacture the three-dimensional shaped object 82 with high accuracy. In addition, the metal powder does not soar and the material is easy to handle. Since the mixing ratio of the metal powder and the highly volatile solvent is set to the above-mentioned mixing ratio, an appropriate fluidity can be obtained, the material layer can be formed uniformly and thinly, and the three-dimensional shaped object 82 with high accuracy can be obtained. Can be manufactured. Since the highly volatile solvent is volatilized before the irradiation with the light beam L and there are few impurities, a three-dimensional shaped article with high density and high strength can be obtained. Moreover, since the average particle diameter of the metal powder is as fine as 1 to 100 μm and the material layer 22 is as thin as 1 to 200 μm, it is possible to manufacture the three-dimensional shaped object 82 with higher accuracy.

金属粉末が上述の組成なので、焼結層81の盛り上がりが小さくなり、次の材料層22が形成しやすい。また、製造される三次元形状造形物82の外観での割れや、内部組織のマイクロクラックの発生を抑えることができる。   Since the metal powder has the above-described composition, the rising of the sintered layer 81 is reduced, and the next material layer 22 is easily formed. Moreover, generation | occurrence | production of the crack in the external appearance of the three-dimensional shaped molded article 82 manufactured and the micro crack of an internal structure | tissue can be suppressed.

金属ペースト21が筒状容器41に入れられているので、高揮発性溶剤25が蒸発せず、組成が安定した状態で金属ペースト21を供給することができ、精度の良い三次元形状造形物82を製造することができる。また、材料の供給スペースを狭くすることができるので、金属光造形加工機を小型化することができると共に、光ビームLの照射中に供給する不活性ガスや還元性ガスを少なくすることができる。   Since the metal paste 21 is placed in the cylindrical container 41, the highly volatile solvent 25 does not evaporate, and the metal paste 21 can be supplied in a state where the composition is stable. Can be manufactured. Further, since the material supply space can be narrowed, the metal stereolithography machine can be reduced in size, and the inert gas and reducing gas supplied during irradiation with the light beam L can be reduced. .

(第2の実施形態)
本発明の第2の実施形態に係る三次元形状造形物の製造方法について説明する。図5は、本実施形態の製造方法における材料層の加熱動作を示す。本実施形態における金属光造形加工機は、第1の実施形態と同等の構成でよく、また、製造方法の各工程についても第1の実施形態と同等のものでよい(以下、同様)。本実施形態においては、材料層形成工程と照射工程の間において、材料層22をヒータ71により加熱し、高揮発性溶剤はヒューム23を生じて揮発する。自然乾燥に比べて高揮発性溶剤の揮発速度が速いので、光ビーム照射の待ち時間が短かくなり、製造時間を短縮することができる。
(Second Embodiment)
A method for manufacturing a three-dimensional shaped object according to the second embodiment of the present invention will be described. FIG. 5 shows the heating operation of the material layer in the manufacturing method of the present embodiment. The metal stereolithography machine in this embodiment may have the same configuration as that of the first embodiment, and each step of the manufacturing method may be the same as that of the first embodiment (the same applies hereinafter). In the present embodiment, the material layer 22 is heated by the heater 71 between the material layer forming step and the irradiation step, and the highly volatile solvent generates fumes 23 and volatilizes. Since the volatilization rate of the highly volatile solvent is faster than that of natural drying, the waiting time for light beam irradiation is shortened, and the manufacturing time can be shortened.

(第3の実施形態)
本発明の第3の実施形態に係る三次元形状造形物の製造方法について説明する。図6は、本実施形態の製造方法におけるヒュームの吸引動作を示す。本実施形態においては、材料層形成工程と照射工程の間において、吸引器72が材料層22より発生するヒューム23を吸引する。ヒューム23を吸引することにより、光ビームLが透過するレンズがヒューム23によって汚れないので、光ビームLが安定し、精度の良い三次元形状造形物を製造することができる。また、吸引することにより、高揮発性溶剤の揮発速度も速くなり、光ビーム照射の待ち時間が短くなり、製造時間を短縮することができる。また、環境汚染を防止することができ、製造の安全性も高めることができる。
(Third embodiment)
A method for manufacturing a three-dimensional shaped object according to the third embodiment of the present invention will be described. FIG. 6 shows a fume suction operation in the manufacturing method of the present embodiment. In the present embodiment, the suction device 72 sucks the fumes 23 generated from the material layer 22 between the material layer forming step and the irradiation step. By sucking the fume 23, the lens through which the light beam L is transmitted is not soiled by the fume 23, so that the light beam L is stable and a three-dimensional shaped object with high accuracy can be manufactured. Further, by sucking, the volatilization rate of the highly volatile solvent is increased, the waiting time for light beam irradiation is shortened, and the manufacturing time can be shortened. Moreover, environmental pollution can be prevented and the safety of production can be improved.

(第4の実施形態)
本発明の第4の実施形態に係る三次元形状造形物の製造方法について説明する。図7は、本実施形態における製造方法に用いる金網の構成を示す。本実施形態では、材料層積層工程において、金属ペーストと金網26を用いて材料層を形成する。金網26は、縦方向と横方向に並べられた金属線27により構成されており、金属線27同士は、電気溶接により接合されている。金属線27の線径Fは0.01〜0.1mmであり、金属線27間の間隔Gは、0.01〜0.1mmである。金属線27の成分は、金属粉末に含まれている金属を使用しており、金属線27と金属粉末とを合計した全体において、鉄の構成比率が60〜90wt%であり、ニッケルの構成比率が5〜35wt%であり、銅の構成比率が5〜15wt%である。
(Fourth embodiment)
A method for manufacturing a three-dimensional shaped object according to the fourth embodiment of the present invention will be described. FIG. 7 shows a configuration of a wire mesh used in the manufacturing method in the present embodiment. In the present embodiment, the material layer is formed by using the metal paste and the wire net 26 in the material layer stacking step. The metal mesh 26 is configured by metal wires 27 arranged in the vertical direction and the horizontal direction, and the metal wires 27 are joined to each other by electric welding. The wire diameter F of the metal wire 27 is 0.01 to 0.1 mm, and the gap G between the metal wires 27 is 0.01 to 0.1 mm. The component of the metal wire 27 uses the metal contained in the metal powder, and the total composition ratio of the iron wire 27 and the metal powder is 60 to 90 wt% of iron, and the composition ratio of nickel. Is 5 to 35 wt%, and the composition ratio of copper is 5 to 15 wt%.

図8は、三次元形状造形物の製造方法の動作を時系列的に示す。図8(a)に示されるように、金網26が造形用プレート31に載置される。次に、図8(b)に示されるように、金属光造形加工機は、造形を開始する第1層目の高さBだけ造形テーブル32を下降させ、ワイパ42を矢印A方向に移動させて、金属ペースト21を造形用プレート31の上に供給し、材料層22を形成する。材料層22が形成されると、図8(c)に示されるように、金属光造形加工機は、材料層22を自然乾燥させ、ヒューム23を生じて高揮発性溶剤を揮発させる。次に、図8(d)に示されるように、金属光造形加工機は、材料層22に光ビームLを照射する。照射された箇所のみが第1層目の造形物として造形用プレート31上に、接合して造形される。光ビームLによって、焼結層81と金網26とを切り離しておくと、造形が終了した時に、三次元形状造形物を取り出しやすい。   FIG. 8 shows the operation of the manufacturing method of the three-dimensional shaped object in time series. As shown in FIG. 8A, the wire net 26 is placed on the modeling plate 31. Next, as shown in FIG. 8B, the metal stereolithography machine lowers the modeling table 32 by the height B of the first layer at which modeling starts, and moves the wiper 42 in the direction of arrow A. Then, the metal paste 21 is supplied onto the modeling plate 31 to form the material layer 22. When the material layer 22 is formed, as shown in FIG. 8C, the metal stereolithography machine naturally drys the material layer 22 to generate fumes 23 to volatilize the highly volatile solvent. Next, as shown in FIG. 8D, the metal stereolithography machine irradiates the material layer 22 with the light beam L. Only the irradiated part is joined and modeled on the modeling plate 31 as a first-layer modeled object. If the sintered layer 81 and the wire net 26 are separated by the light beam L, it is easy to take out the three-dimensional shaped object when the modeling is completed.

第1層目の造形が終了すると、図8(e)に示されるように、積層する高さBだけ造形テーブル32を下降させ、次の層の金網26を載置し、金属ペースト21を供給し、図8(f)に示されるように、材料層22を自然乾燥により、高揮発性溶剤を揮発させ、図8(g)に示されるように、造形する箇所に光ビームLを照射する。こうして、金網26と金属ペースト21の供給と光ビームLの照射を繰り返すことにより焼結層81を積層し、図8(h)に示されるように、三次元形状造形物82を製造することができる。   When the formation of the first layer is completed, as shown in FIG. 8E, the modeling table 32 is lowered by the height B to be stacked, the metal mesh 26 of the next layer is placed, and the metal paste 21 is supplied. 8 (f), the material layer 22 is naturally dried to volatilize the highly volatile solvent, and the portion to be shaped is irradiated with the light beam L as shown in FIG. 8 (g). . Thus, by repeating the supply of the wire mesh 26 and the metal paste 21 and the irradiation of the light beam L, the sintered layer 81 is laminated, and as shown in FIG. it can.

本実施形態においては、金属材料として金網26と金属ペースト21とを複合して供給するので、金属ペースト21のみの場合と比較して金属を高密度で供給することができ、三次元形状造形物82を寸法精度が良く、かつ、高密度・高強度に製造することができ、また、材料の偏析が生じにくい。金属線27が細いので、材料層22の厚みを薄くすることができ、三次元形状造形物82の寸法精度を良くすることができる。また、金属線27が細すぎないので、光ビームLの照射時に金属線27が飛散しにくい。金網26が上述の組成なので、焼結層81の盛り上がりが小さくなり、次に積層する金網26を精度良く、配置することができ、また、製造される三次元形状造形物82の外観での割れや、内部組織のマイクロクラックの発生を抑えることができる。   In the present embodiment, since the metal mesh 26 and the metal paste 21 are supplied in combination as the metal material, the metal can be supplied at a higher density compared to the case of the metal paste 21 alone, and the three-dimensional shaped object can be supplied. 82 can be manufactured with high dimensional accuracy, high density and high strength, and segregation of the material hardly occurs. Since the metal wire 27 is thin, the thickness of the material layer 22 can be reduced, and the dimensional accuracy of the three-dimensional shaped object 82 can be improved. Further, since the metal wire 27 is not too thin, the metal wire 27 is unlikely to scatter when irradiated with the light beam L. Since the metal mesh 26 has the above-described composition, the swell of the sintered layer 81 is reduced, the metal mesh 26 to be laminated next can be placed with high accuracy, and cracks in the appearance of the manufactured three-dimensional shaped object 82 can be obtained. In addition, the occurrence of microcracks in the internal structure can be suppressed.

(第5の実施形態)
本発明の第5の実施形態に係る三次元形状造形物の製造方法について説明する。図9は、本実施形態における製造方法での切削工程を示す。本実施形態においては、造形物の周囲をミーリングヘッド61によって切削する。積層した焼結層の厚みがミーリングヘッド61の有効刃長1mm以下の、例えば、0.5mmになると、金属光造形加工機1は、ミーリングヘッド61を駆動し、XY駆動機構62によってミーリングヘッド61を矢印X及び矢印Y方向に移動させ(図1参照)、造形物の表面を切削する。この造形物の表面を切削する動作は、切削工程を構成する。そして、積層した焼結層の厚みが0.5mmになる度に、繰り返して造形物の表面を切削する。製造される三次元形状造形物82の表面粗さが細かくなり、寸法精度が向上する。
(Fifth embodiment)
A method for manufacturing a three-dimensional shaped object according to the fifth embodiment of the present invention will be described. FIG. 9 shows a cutting process in the manufacturing method according to this embodiment. In the present embodiment, the periphery of the model is cut by the milling head 61. When the thickness of the laminated sintered layer becomes an effective blade length of 1 mm or less of the milling head 61, for example, 0.5 mm, the metal stereolithography machine 1 drives the milling head 61 and the milling head 61 is driven by the XY drive mechanism 62. Is moved in the directions of arrows X and Y (see FIG. 1) to cut the surface of the shaped object. The operation | movement which cuts the surface of this molded article comprises a cutting process. And whenever the thickness of the laminated | stacked sintered layer becomes 0.5 mm, the surface of a molded article is cut repeatedly. The surface roughness of the manufactured three-dimensional shaped object 82 becomes fine, and the dimensional accuracy is improved.

なお、本発明は、上記各種実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変形が可能である。例えば、金網は金属線を編んで作成してもよいし、金属線を圧着により接合して作成してもよい。また、金網において、金属線を2方向でなく、3方向に組み合わせてもよい。また、金属粉末の形状は略球状でなくても、例えば、棒状や板状でもよい。金属粉末が略球状でない場合の粒径は、顕微鏡法によって測定した粒子の最大差渡し寸法をいう。   In addition, this invention is not restricted to the structure of the said various embodiment, A various deformation | transformation is possible in the range which does not change the meaning of invention. For example, the wire mesh may be created by knitting metal wires, or may be created by joining metal wires by pressure bonding. Moreover, in a wire mesh, you may combine a metal wire not in 2 directions but in 3 directions. Moreover, the shape of the metal powder may not be substantially spherical, but may be, for example, a rod shape or a plate shape. The particle size in the case where the metal powder is not substantially spherical refers to the maximum particle passing dimension measured by microscopy.

本発明の第1の実施形態に係る製造方法に用いる金属光造形加工機の斜視図。The perspective view of the metal stereolithography processing machine used for the manufacturing method which concerns on the 1st Embodiment of this invention. 同製造方法に用いる金属粉末のSEM写真。The SEM photograph of the metal powder used for the manufacturing method. 同製造方法を時系列に説明する図。The figure explaining the manufacturing method in time series. 同製造方法の材料層形成工程の詳細を説明する図。The figure explaining the detail of the material layer formation process of the manufacturing method. 本発明の第2の実施形態に係る製造方法における材料層の加熱動作を説明する図。The figure explaining the heating operation of the material layer in the manufacturing method which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る製造方法におけるヒュームの吸引動作を説明する図。The figure explaining the suction | inhalation operation | movement of a fume in the manufacturing method which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る製造方法に用いる金網の構成図。The block diagram of the wire mesh used for the manufacturing method which concerns on the 4th Embodiment of this invention. 同製造方法を時系列に説明する図。The figure explaining the manufacturing method in time series. 本発明の第5の実施形態に係る製造方法における切削工程を説明する図。The figure explaining the cutting process in the manufacturing method which concerns on the 5th Embodiment of this invention.

符号の説明Explanation of symbols

22 材料層
24 金属粉末
25 高揮発性溶剤
26 金網
27 金属線
31 造形用プレート
81 焼結層
82 三次元形状造形物
L 光ビーム

22 Material layer 24 Metal powder 25 High volatile solvent 26 Wire mesh 27 Metal wire 31 Modeling plate 81 Sintered layer 82 Three-dimensional modeled object L Light beam

Claims (10)

三次元形状造形用の材料を造形用プレート上に供給して、材料層を形成する材料層形成工程と、
前記材料層に光ビームを照射して、焼結層又は溶解層を形成する照射工程と、
前記材料層形成工程と照射工程とを繰り返すことにより前記焼結層又は溶解層を前記造形用プレート上に積層する積層工程と、を備えた三次元形状造形物の製造方法において、
前記材料として、金属粉末と高揮発性溶剤とを混合したものを用い、
前記照射工程における光ビーム照射は、前記材料層形成工程において形成された材料層中の前記高揮発性溶剤が揮発した後に行なうようにしたことを特徴とする三次元形状造形物の製造方法。
A material layer forming step of supplying a material for three-dimensional shape modeling onto the modeling plate and forming a material layer;
An irradiation step of irradiating the material layer with a light beam to form a sintered layer or a dissolved layer;
In the method for producing a three-dimensional shaped object, comprising a lamination step of laminating the sintered layer or the dissolved layer on the modeling plate by repeating the material layer forming step and the irradiation step.
As the material, a mixture of metal powder and a highly volatile solvent is used,
The method of manufacturing a three-dimensional shaped object, wherein the irradiation with the light beam is performed after the highly volatile solvent in the material layer formed in the material layer forming step is volatilized.
前記材料は、50vol%以上70vol%以下の金属粉末と、30vol%以上50vol%以下の高揮発性溶剤と、を有することを特徴とする請求項1に記載の三次元形状造形物の製造方法。   2. The method for producing a three-dimensional shaped article according to claim 1, wherein the material has a metal powder of 50 vol% or more and 70 vol% or less and a highly volatile solvent of 30 vol% or more and 50 vol% or less. 前記金属粉末の平均粒径が1μm以上100μm以下であることを特徴とする請求項1又は請求項2に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped article according to claim 1 or 2, wherein the average particle diameter of the metal powder is 1 µm or more and 100 µm or less. 前記金属粉末は、鉄系粉末の構成比率が60wt%以上90wt%以下であり、ニッケル粉末及びニッケル系合金粉末の両方又はいずれか一方の構成比率が5wt%以上35wt%以下であり、銅粉末及び銅系合金粉末の両方又はいずれか一方の構成比率が5wt%以上15wt%以下であることを特徴とする請求項1乃至請求項3のいずれか一項に記載の三次元形状造形物の製造方法。   The metal powder has a composition ratio of the iron-based powder of 60 wt% or more and 90 wt% or less, a composition ratio of either or both of the nickel powder and the nickel-based alloy powder is 5 wt% or more and 35 wt% or less, a copper powder and The method for producing a three-dimensional shaped article according to any one of claims 1 to 3, wherein the composition ratio of both or any one of the copper-based alloy powders is 5 wt% or more and 15 wt% or less. . 前記材料層の厚みが1μm以上200μm以下であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の三次元形状造形物の製造方法。   The thickness of the said material layer is 1 micrometer or more and 200 micrometers or less, The manufacturing method of the three-dimensional shaped molded article as described in any one of Claim 1 thru | or 4 characterized by the above-mentioned. 前記材料層形成工程において、前記材料層を加熱して前記高揮発性溶剤を揮発させることを特徴とする請求項1乃至請求項5のいずれか一項に記載の三次元形状造形物の製造方法。   The method for producing a three-dimensional shaped structure according to any one of claims 1 to 5, wherein in the material layer forming step, the material layer is heated to volatilize the highly volatile solvent. . 前記材料層形成工程において、前記材料層から揮発する前記高揮発性溶剤を吸引して回収することを特徴とする請求項1乃至請求項6のいずれか一項に記載の三次元形状造形物の製造方法。   In the said material layer formation process, the said highly volatile solvent volatilized from the said material layer is attracted | sucked and collect | recovered, The three-dimensional shaped molded article as described in any one of Claim 1 thru | or 6 characterized by the above-mentioned. Production method. 前記材料層は、金属線より形成された金網を有することを特徴とする請求項1乃至請求項7のいずれか一項に記載の三次元形状造形物の製造方法。   The method for manufacturing a three-dimensional shaped object according to any one of claims 1 to 7, wherein the material layer includes a wire mesh formed of a metal wire. 前記焼結層又は溶解層の形成後に、それまでに積層して得られた三次元形状造形物の表面部及び/又は不要部分の切削除去を行なう切削工程を更に備えたことを特徴とする請求項1乃至請求項8のいずれか一項に記載の三次元形状造形物の製造方法。   The method further comprises a cutting step of cutting and removing a surface portion and / or an unnecessary portion of the three-dimensionally shaped object obtained by stacking the sintered layer or the melted layer so far. The manufacturing method of the three-dimensional shape molded article as described in any one of Claim 1 thru | or 8. 請求項1乃至請求項4のいずれか一項に記載の三次元形状造形物の製造方法に用いられ、金属粉末と高揮発性溶剤とが混合されて成る三次元形状造形用の材料。

A material for three-dimensional shape modeling, which is used in the method for producing a three-dimensional shape molded product according to any one of claims 1 to 4, and is formed by mixing a metal powder and a highly volatile solvent.

JP2007016675A 2007-01-26 2007-01-26 Manufacturing method of three-dimensional shaped object Expired - Fee Related JP4915660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016675A JP4915660B2 (en) 2007-01-26 2007-01-26 Manufacturing method of three-dimensional shaped object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016675A JP4915660B2 (en) 2007-01-26 2007-01-26 Manufacturing method of three-dimensional shaped object

Publications (2)

Publication Number Publication Date
JP2008184623A true JP2008184623A (en) 2008-08-14
JP4915660B2 JP4915660B2 (en) 2012-04-11

Family

ID=39727865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016675A Expired - Fee Related JP4915660B2 (en) 2007-01-26 2007-01-26 Manufacturing method of three-dimensional shaped object

Country Status (1)

Country Link
JP (1) JP4915660B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215971A (en) * 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same
JP2013237930A (en) * 2013-07-04 2013-11-28 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and the three-dimensionally shaped article obtained thereby
JP5721886B1 (en) * 2014-06-20 2015-05-20 株式会社ソディック Additive manufacturing equipment
WO2017199388A1 (en) * 2016-05-19 2017-11-23 株式会社ソディック Metal 3d printer
WO2018181275A1 (en) 2017-03-31 2018-10-04 セイコーエプソン株式会社 Three-dimensional object production method
JP2018532613A (en) * 2015-09-01 2018-11-08 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Additive manufacturing method and apparatus
US10376957B2 (en) 2015-06-16 2019-08-13 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234637B2 (en) 2019-01-11 2023-03-08 セイコーエプソン株式会社 Manufacturing method of three-dimensional model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053847A (en) * 2001-06-22 2003-02-26 Three D Syst Inc Recoating system for using high viscosity build material in solid freeform fabrication
JP2005048234A (en) * 2003-07-28 2005-02-24 Matsushita Electric Works Ltd Metallic powder for metal light beam fabrication
JP2005533177A (en) * 2002-07-12 2005-11-04 エクス ワン コーポレーション Solid-ultra-solid liquid phase sintering of mixed powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053847A (en) * 2001-06-22 2003-02-26 Three D Syst Inc Recoating system for using high viscosity build material in solid freeform fabrication
JP2005533177A (en) * 2002-07-12 2005-11-04 エクス ワン コーポレーション Solid-ultra-solid liquid phase sintering of mixed powder
JP2005048234A (en) * 2003-07-28 2005-02-24 Matsushita Electric Works Ltd Metallic powder for metal light beam fabrication

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215971A (en) * 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same
JP2013237930A (en) * 2013-07-04 2013-11-28 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and the three-dimensionally shaped article obtained thereby
JP5721886B1 (en) * 2014-06-20 2015-05-20 株式会社ソディック Additive manufacturing equipment
US9604410B2 (en) 2014-06-20 2017-03-28 Sodick Co., Ltd. Three dimensional printer
US10376957B2 (en) 2015-06-16 2019-08-13 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method
US10625339B2 (en) 2015-06-16 2020-04-21 Seiko Epson Corporation Three-dimensional forming apparatus and three-dimensional forming method
JP2018532613A (en) * 2015-09-01 2018-11-08 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Additive manufacturing method and apparatus
WO2017199388A1 (en) * 2016-05-19 2017-11-23 株式会社ソディック Metal 3d printer
US10737326B2 (en) 2016-05-19 2020-08-11 Sodick Co., Ltd. Metal 3D printer
WO2018181275A1 (en) 2017-03-31 2018-10-04 セイコーエプソン株式会社 Three-dimensional object production method
US11383303B2 (en) 2017-03-31 2022-07-12 Seiko Epson Corporation Production method for three-dimensional shaped article

Also Published As

Publication number Publication date
JP4915660B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4925048B2 (en) Manufacturing method of three-dimensional shaped object
JP5213006B2 (en) Manufacturing method of three-dimensional shaped object
JP4915660B2 (en) Manufacturing method of three-dimensional shaped object
Jeng et al. Mold fabrication and modification using hybrid processes of selective laser cladding and milling
JP4882868B2 (en) Manufacturing method of three-dimensional shaped object
JP5555222B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
WO2012160811A1 (en) Method for producing three-dimensional shape structure
JP5230264B2 (en) Manufacturing method of three-dimensional shaped object
JP5539347B2 (en) Manufacturing method of three-dimensional shaped object and three-dimensional shaped object obtained therefrom
WO2011102382A1 (en) Method for producing three-dimensional shaped article and three-dimensional shaped article
KR102048693B1 (en) Manufacturing method of three-dimensional shape sculpture
JP2011021218A (en) Powder material for laminate molding, and powder laminate molding method
Su et al. An investigation into direct fabrication of fine-structured components by selective laser melting
JP4655063B2 (en) Manufacturing method of three-dimensional shaped object
JP5302710B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
JP2007016312A (en) Method for forming sintered compact
JP4867790B2 (en) Manufacturing method of three-dimensional shaped object
JP4737007B2 (en) Metal powder for metal stereolithography
JP2007231349A (en) Metal powder for metal laser sintering
CN105798294A (en) Rapid part prototyping method for refractory materials
JP2012241261A (en) Method for producing three-dimensionally shaped object
JP5016300B2 (en) Manufacturing method of three-dimensional shaped object
JP6726858B2 (en) Method for manufacturing three-dimensional shaped object
JP6731642B2 (en) Method for manufacturing three-dimensional shaped object
JP7215964B2 (en) Anisotropic composite material molding method, mold using anisotropic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees