JP2008180692A - Electromotive force computing device and charge state estimation device - Google Patents

Electromotive force computing device and charge state estimation device Download PDF

Info

Publication number
JP2008180692A
JP2008180692A JP2007293652A JP2007293652A JP2008180692A JP 2008180692 A JP2008180692 A JP 2008180692A JP 2007293652 A JP2007293652 A JP 2007293652A JP 2007293652 A JP2007293652 A JP 2007293652A JP 2008180692 A JP2008180692 A JP 2008180692A
Authority
JP
Japan
Prior art keywords
electromotive force
secondary battery
voltage
current
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007293652A
Other languages
Japanese (ja)
Other versions
JP5090865B2 (en
Inventor
Norihito Yamabe
律人 山邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Panasonic EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic EV Energy Co Ltd filed Critical Panasonic EV Energy Co Ltd
Priority to JP2007293652A priority Critical patent/JP5090865B2/en
Priority to US11/960,617 priority patent/US7750640B2/en
Publication of JP2008180692A publication Critical patent/JP2008180692A/en
Application granted granted Critical
Publication of JP5090865B2 publication Critical patent/JP5090865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce an error in an electromotive force Ve of a secondary battery which is calculated based on a polarized voltage Vp. <P>SOLUTION: A polarized voltage computing part 214 acquires over a predetermined period a plurality of data pairs of a current I flowing through the secondary battery and a terminal voltage V of the secondary battery with respect to the current I, calculates an integrated quantity Q by integrating the acquired current I over the predetermined period, computes the polarized voltage Vp of the secondary battery from the integrated quantity Q. A no-load voltage computing part 212 computes a no-load voltage V0 on the basis of the plurality of data pairs. A subtractor 216 computes the electromotive force Ve of the secondary battery by subtracting the polarized voltage Vp from the no-load voltage V0. An electromotive force correcting part 217 performs correction with respect to a presently computed electromotive force Ve so that a change amount between a previously computed electromotive force Veb and the presently computed electromotive force Ve does not exceed a predetermined limiting value Vt. Further, a SOC estimating part 230 estimates the charge state of the secondary battery from the post-correction electromotive force Ve'. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二次電池の起電力を演算する起電力演算装置および起電力演算装置で演算された二次電池の起電力に基づいて二次電池の充電状態を推定する充電状態推定装置に関する。   The present invention relates to an electromotive force calculation device that calculates an electromotive force of a secondary battery, and a charge state estimation device that estimates a charge state of the secondary battery based on the electromotive force of the secondary battery calculated by the electromotive force calculation device.

電動機により車両駆動力を得ている電気自動車(PEV)やハイブリッド自動車(HEV)等の電動車両は、二次電池を搭載し、この二次電池に蓄えられた電力により電動機を駆動している。このような電動車両は、回生制動、すなわち、車両制動時に電動機を発電機として機能させ、車両の運動エネルギを電気エネルギに変換することにより制動する機能を備えている。ここで変換された電気エネルギは二次電池に蓄えられ、加速を行う時などに再利用される。   An electric vehicle such as an electric vehicle (PEV) or a hybrid vehicle (HEV) that obtains a vehicle driving force by an electric motor is equipped with a secondary battery, and the electric motor is driven by electric power stored in the secondary battery. Such an electric vehicle has a function of braking by regenerative braking, that is, by causing the motor to function as a generator during vehicle braking and converting the kinetic energy of the vehicle into electric energy. The converted electric energy is stored in the secondary battery and reused for acceleration.

二次電池は過放電、過充電を行うと電池性能を劣化させることになるため、二次電池の充電状態(SOC;state of charge)を把握し充電あるいは放電を調節する必要がある。特に、車載された熱機関により発電機を駆動して電力を発生し、これを二次電池に充電することができる形式のハイブリッド電気自動車においては、二次電池が回生電力を受け入れられるように、また要求があれば直ちに電動機に対して電力を供給できるようにするために、その充電状態を満蓄電の状態(100%)と、全く蓄電されていない状態(0%)のおおよそ中間付近(50〜60%)に制御される場合がある。この場合、二次電池のSOCをより正確に検出することが望まれる。   If the secondary battery is overdischarged or overcharged, the battery performance is deteriorated. Therefore, it is necessary to grasp the state of charge (SOC) of the secondary battery and adjust the charging or discharging. In particular, in a hybrid electric vehicle of a type that can generate electric power by driving a generator with an on-board heat engine and charge the secondary battery, so that the secondary battery can accept regenerative power, Also, in order to be able to supply electric power to the motor as soon as requested, the state of charge is approximately in the middle between the fully charged state (100%) and the state where no charge is stored (0%) (50 ˜60%). In this case, it is desired to detect the SOC of the secondary battery more accurately.

特許文献1には、二次電池に対する充放電電流を測定し、その電流値(充電の場合はマイナス、放電の場合はプラスの符号を有する)に所定の充電効率ηを乗算し、その乗算値をある時間期間に亘って積算することにより、積算容量を計算し、この積算容量に基づいてSOCを推定する方法が開示されている。   In Patent Document 1, a charge / discharge current for a secondary battery is measured, and the current value (having a minus sign for charging and a plus sign for discharging) is multiplied by a predetermined charging efficiency η, and the multiplied value is obtained. A method is disclosed in which the integrated capacity is calculated by integrating over a period of time, and the SOC is estimated based on the integrated capacity.

特許文献1では、二次電池の起電力Veに応じて充電効率ηを補正することで、推定されるSOCの精度を向上させているが、このように充電効率ηを補正することでSOCの精度を向上させるためには、充電効率ηの補正パラメータとなる起電力Veを精度よく算出することが重要となる。   In Patent Document 1, the accuracy of the estimated SOC is improved by correcting the charging efficiency η according to the electromotive force Ve of the secondary battery, but the SOC of the SOC is corrected by correcting the charging efficiency η in this way. In order to improve the accuracy, it is important to accurately calculate the electromotive force Ve as a correction parameter for the charging efficiency η.

起電力Veは、例えば、次のように求められる。すなわち、所定期間(例えば、60sec)に二次電池の端子電圧Vと充放電電流Iとのペアデータを複数個取得して記憶し、そのペアデータから、回帰分析により1次の近似直線(電圧V−電流I近似直線)を求め、V−I近似直線のV切片を無負荷電圧V0として求める。また、電流Iを所定期間積算することで積算容量Qを計算し、当該所定期間における積算容量Qの変化量ΔQと電池温度Tとに基づいて電池の分極電圧Vpを求め、無負荷電圧V0から分極電圧Vpを減算して、起電力Veを求める(特許文献2などを参照)。   The electromotive force Ve is obtained, for example, as follows. That is, a plurality of pair data of the terminal voltage V and the charge / discharge current I of the secondary battery are acquired and stored in a predetermined period (for example, 60 sec), and a first-order approximation straight line (voltage) is obtained from the pair data by regression analysis. V-current I approximate line) is obtained, and the V intercept of the VI approximate line is obtained as the no-load voltage V0. Further, the integrated capacity Q is calculated by integrating the current I for a predetermined period, and the polarization voltage Vp of the battery is obtained based on the change amount ΔQ of the integrated capacity Q and the battery temperature T in the predetermined period, and from the no-load voltage V0. The electromotive force Ve is obtained by subtracting the polarization voltage Vp (see Patent Document 2).

上記のように、分極電圧Vpを考慮して起電力Veを算出することで、算出される起電力Veの精度を向上させることができる。しかし、特許文献2の図2に示すように、分極電圧Vpは、積算容量の変化量ΔQから数十秒遅れて変化する。この遅れは、無負荷電圧V0と分極電圧Vpとの関係においても時間的なずれを発生させる。よって、この時間的なずれを考慮しなければ、無負荷電圧V0から分極電圧Vpを減算して得られる起電力Veには誤差が生じることになる。   As described above, by calculating the electromotive force Ve in consideration of the polarization voltage Vp, the accuracy of the calculated electromotive force Ve can be improved. However, as shown in FIG. 2 of Patent Document 2, the polarization voltage Vp changes with a delay of several tens of seconds from the change amount ΔQ of the integrated capacitance. This delay also causes a time lag in the relationship between the no-load voltage V0 and the polarization voltage Vp. Therefore, if this time lag is not taken into account, an error occurs in the electromotive force Ve obtained by subtracting the polarization voltage Vp from the no-load voltage V0.

そこで、特許文献1や2では、起電力Veの算出工程において、分極電圧Vpに対して時間遅延を補正する処理を行うことが開示されている。   Therefore, Patent Documents 1 and 2 disclose performing a process of correcting the time delay on the polarization voltage Vp in the step of calculating the electromotive force Ve.

特開2003−197272号公報JP 2003-197272 A 特開2003−197275号公報JP 2003-197275 A 特開2005−65482号公報Japanese Patent Laid-Open No. 2005-65482 特開2000−323183号公報JP 2000-323183 A 特開2003−149307号公報JP 2003-149307 A

しかしながら、特許文献1、2のように、起電力Veを算出する際に、分極電圧Vpに対して時間遅延を補正する処理を行ったとしても、その補正が十分でなく、算出される起電力Veに誤差が生じることがある。   However, as in Patent Documents 1 and 2, even when processing for correcting the time delay is performed on the polarization voltage Vp when calculating the electromotive force Ve, the correction is not sufficient, and the calculated electromotive force is calculated. An error may occur in Ve.

本発明は、演算により求められる二次電池の起電力Veの誤差を低減することを目的とする。   An object of the present invention is to reduce an error in an electromotive force Ve of a secondary battery obtained by calculation.

本発明に係る起電力演算装置は、二次電池に流れる電流がゼロの時における前記二次電池の端子電圧を表す無負荷電圧V0と、前記二次電池の分極電圧Vpとに基づいて、前記二次電池の起電力を計時的に演算する起電力演算部と、前回演算された起電力Vebに対する今回演算された起電力Veの変化量が所定の制限値Vtを超える場合、前記変化量が前記制限値Vtを超えないように、前記起電力Veを補正する起電力補正部と、を備えることを特徴とする。   The electromotive force calculation device according to the present invention is based on the no-load voltage V0 representing the terminal voltage of the secondary battery when the current flowing through the secondary battery is zero, and the polarization voltage Vp of the secondary battery, When the change amount of the electromotive force Ve calculated this time with respect to the electromotive force Veb calculated last time exceeds a predetermined limit value Vt, the change amount is calculated. And an electromotive force correction unit that corrects the electromotive force Ve so as not to exceed the limit value Vt.

本発明に係る起電力演算装置の1つの態様では、前記起電力演算部は、前記二次電池に流れる電流Iと、前記電流Iに対応する前記二次電池の端子電圧Vとの組データを所定期間に亘って複数個取得し、取得した複数個の組データに基づく統計処理により前記無負荷電圧V0を演算する無負荷電圧演算部と、前記電流Iを前記所定期間に亘って積算して積算容量Qを算出し、前回の積算容量Qとの差である積算容量変化量ΔQに基づいて前記分極電圧Vpを演算する分極電圧演算部と、を備えることを特徴とする。   In one aspect of the electromotive force calculation device according to the present invention, the electromotive force calculation unit obtains a set data of a current I flowing through the secondary battery and a terminal voltage V of the secondary battery corresponding to the current I. A plurality of data is acquired over a predetermined period, and a no-load voltage calculation unit that calculates the no-load voltage V0 by statistical processing based on the acquired plurality of sets of data, and the current I is integrated over the predetermined period. And a polarization voltage calculating unit that calculates the integrated voltage Q and calculates the polarization voltage Vp based on an integrated capacity change amount ΔQ that is a difference from the previous integrated capacity Q.

本発明に係る起電力演算装置の1つの態様では、前記起電力補正部は、前記二次電池が充電時には、前記起電力Vebに前記制限値Vtを加算することで補正し、前記二次電池が放電時には、前記起電力Vebから前記制限値Vtを減算することで補正することを特徴とする。   In one aspect of the electromotive force calculation device according to the present invention, the electromotive force correction unit corrects the secondary battery by adding the limit value Vt to the electromotive force Veb when the secondary battery is charged. Is corrected by subtracting the limit value Vt from the electromotive force Veb during discharge.

本発明に係る起電力演算装置の1つの態様では、前記起電力補正部は、前記起電力Veb、前記所定期間における前記二次電池の積算容量Qの変化量ΔQ、前記二次電池の電池温度、前記二次電池の充電状態の少なくとも1つをパラメータとして前記制限値Vtを設定することを特徴とする。   In one aspect of the electromotive force calculation device according to the present invention, the electromotive force correction unit includes the electromotive force Veb, a change amount ΔQ of the accumulated capacity Q of the secondary battery in the predetermined period, and a battery temperature of the secondary battery. The limit value Vt is set using at least one of the charged states of the secondary battery as a parameter.

本発明に係る起電力演算装置は、充電状態を所定の許容範囲に維持するように充電あるいは放電が制御される二次電池の起電力を計時的に演算する起電力演算部と、前回演算された起電力Vebに対する今回演算された起電力Veの変化量が、前記二次電池の充電状態に応じて設定される制限値Vtを超えないように、前記起電力Veを補正する起電力補正部と、を備えることを特徴とする。   An electromotive force calculation device according to the present invention is calculated last time with an electromotive force calculation unit that time-wise calculates an electromotive force of a secondary battery whose charge or discharge is controlled so as to maintain a charged state within a predetermined allowable range. The electromotive force correction unit that corrects the electromotive force Ve so that the amount of change of the electromotive force Ve calculated this time relative to the electromotive force Veb does not exceed the limit value Vt set according to the state of charge of the secondary battery. And.

本発明に係る充電状態推定装置は、前記起電力演算装置から取得した二次電池の起電力に基づいて前記二次電池の充電状態を推定する充電状態推定装置であって、前記起電力の変化量が前記制限値Vtを超える場合、補正後の起電力Ve’に基づいて前記二次電池の充電状態を推定し、前記起電力の変化量が前記制限値Vt以内の場合、前記起電力Veに基づいて前記二次電池の充電状態を推定することを特徴とする。   The charging state estimation device according to the present invention is a charging state estimation device that estimates the charging state of the secondary battery based on the electromotive force of the secondary battery acquired from the electromotive force calculation device, and the change in the electromotive force When the amount exceeds the limit value Vt, the state of charge of the secondary battery is estimated based on the corrected electromotive force Ve ′, and when the amount of change in the electromotive force is within the limit value Vt, the electromotive force Ve The charging state of the secondary battery is estimated based on the above.

本発明によれば、演算により求められる二次電池の起電力Veの誤差を低減することができる。   According to the present invention, it is possible to reduce the error of the electromotive force Ve of the secondary battery obtained by calculation.

また、本発明の1つの態様によれば、無負荷電圧V0と分極電圧Vpとに基づいて演算された起電力Veに対して、前回起電力Vebを基準として許容できる変化量を超えないように補正を行う。これにより、無負荷電圧V0と分極電圧Vpとの時間的なずれにより生じる起電力Veの誤差を抑制することができる。   In addition, according to one aspect of the present invention, an electromotive force Ve calculated based on the no-load voltage V0 and the polarization voltage Vp does not exceed an allowable change amount based on the previous electromotive force Veb. Make corrections. Thereby, the error of the electromotive force Ve caused by the time lag between the no-load voltage V0 and the polarization voltage Vp can be suppressed.

本発明を実施するための最良の形態を具体的に示した実施形態について、ハイブリッド電気自動車を例に、図面を参照して説明する。なお、本実施形態では、電動車両の1つであるハイブリッド電気自動車を例に説明するが、駆動源としてモータジェネレータを備える他の電動車両にも本実施形態は適用可能である。   An embodiment specifically showing the best mode for carrying out the present invention will be described with reference to the drawings, taking a hybrid electric vehicle as an example. In addition, although this embodiment demonstrates the hybrid electric vehicle which is one of the electric vehicles as an example, this embodiment is applicable also to the other electric vehicle provided with a motor generator as a drive source.

図1は、本実施形態に係るハイブリッド電気自動車の概略構成を示す図である。図1において、電池電子制御ユニット(以下、電池ECUと称す)20は、二次電池10から電池電圧、電池温度などの情報を受けて、二次電池10のSOCを計時的に推定し、推定したSOCや電池電圧、電池温度などの情報をハイブリッド電子制御ユニット(以下、HV−ECUと称す)40に送信する。HV−ECU40は、インバータ50、駆動力分配機構56、エンジン60を制御する。   FIG. 1 is a diagram illustrating a schematic configuration of a hybrid electric vehicle according to the present embodiment. In FIG. 1, a battery electronic control unit (hereinafter referred to as a battery ECU) 20 receives information such as battery voltage and battery temperature from the secondary battery 10 to estimate the SOC of the secondary battery 10 in a timely manner. Information such as the SOC, battery voltage, and battery temperature transmitted to the hybrid electronic control unit (hereinafter referred to as HV-ECU) 40 is transmitted. The HV-ECU 40 controls the inverter 50, the driving force distribution mechanism 56, and the engine 60.

二次電池10は、複数の電池ブロックを直列に接続して構成される。各電池ブロックはそれぞれ、2個の電池モジュールを電気的に直列接続して構成されており、更に、各電池モジュールは、6個の単電池を電気的に直列に接続して構成されている。なお、電池ブロック、電池モジュール、単電池の数は特に限定されるものではない。二次電池の構成も上記した例に限定されるものではない。二次電池10は、具体的には、ニッケル水素二次電池、リチウムイオン二次電池などである。   The secondary battery 10 is configured by connecting a plurality of battery blocks in series. Each battery block is configured by electrically connecting two battery modules in series, and each battery module is configured by electrically connecting six unit cells in series. In addition, the number of battery blocks, battery modules, and single cells is not particularly limited. The configuration of the secondary battery is not limited to the above example. Specifically, the secondary battery 10 is a nickel metal hydride secondary battery, a lithium ion secondary battery, or the like.

二次電池10は、リレー38、インバータ50を介してモータジェネレータ(M/G)52に接続される。モータジェネレータ52は、遊星ギア機構を含む駆動力分配機構56を介してエンジン(内燃機関)60と接続される。   Secondary battery 10 is connected to motor generator (M / G) 52 via relay 38 and inverter 50. The motor generator 52 is connected to an engine (internal combustion engine) 60 via a driving force distribution mechanism 56 including a planetary gear mechanism.

また、温度センサ32は、二次電池10の少なくとも1箇所に設けられ、二次電池10の所定部位の電池温度Tbを検知する。温度センサ32を複数設ける場合、温度センサ32は、例えば、比較的温度が近い複数の電池ブロックを1つのグループとしてグループごとに1つずつ配置される。あるいは比較的温度差がある電池ブロックごとに1つずつ配置してもよい。グループ分けや検知対象の電池ブロックの選択は、事前の実験等によって各電池ブロックの温度を測定することによって行えばよい。   Further, the temperature sensor 32 is provided in at least one location of the secondary battery 10 and detects the battery temperature Tb of a predetermined portion of the secondary battery 10. In the case where a plurality of temperature sensors 32 are provided, the temperature sensors 32 are arranged, for example, one for each group with a plurality of battery blocks having relatively close temperatures as one group. Or you may arrange | position one for every battery block with a comparatively temperature difference. The grouping or selection of the battery blocks to be detected may be performed by measuring the temperature of each battery block by a prior experiment or the like.

また、電圧センサ34は、電池ブロックごとに設けられ、各電池ブロックの端子電圧Vbを検知する。さらに、電流センサ36は、二次電池10に流れる充放電電流Iを検知する。   Moreover, the voltage sensor 34 is provided for every battery block, and detects the terminal voltage Vb of each battery block. Furthermore, the current sensor 36 detects the charge / discharge current I flowing through the secondary battery 10.

温度センサ32、電圧センサ34、電流センサ36から出力された温度データTb(n)、端子電圧データVb(n)、電流データI(n)は、それぞれ所定のサンプリング周期(例えば、100msec)で電池ECU20に入力され、電池ECU20は、各センサから入力された各データに基づいて二次電池10のSOCを推定する。   The temperature data Tb (n), terminal voltage data Vb (n), and current data I (n) output from the temperature sensor 32, the voltage sensor 34, and the current sensor 36 are respectively stored at a predetermined sampling period (for example, 100 msec). Input to the ECU 20, the battery ECU 20 estimates the SOC of the secondary battery 10 based on each data input from each sensor.

次に、本実施形態における電池ECU20の構成について、図2に示す機能ブロック図を用いて説明する。   Next, the configuration of the battery ECU 20 in the present embodiment will be described using the functional block diagram shown in FIG.

電圧測定部202は、各電圧センサ34により検出された各電池ブロックの端子電圧Vbを所定のサンプリング周期(例えば、100msec)で端子電圧データVb(n)として測定し、各電池ブロックの端子電圧データVb(n)を合計して二次電池10の電圧データV(n)を測定する。電流測定部204は、電流センサ36により検出された二次電池10の充放電電流を所定のサンプリング周期(例えば、100msec)で電流データI(n)(その符号は充電方向か放電方向かを表す)として測定する。温度測定部206は、各温度センサ32により検出された温度データTb(n)の代表値(例えば、平均値)を二次電池10の温度データT(n)として測定する。   The voltage measuring unit 202 measures the terminal voltage Vb of each battery block detected by each voltage sensor 34 as terminal voltage data Vb (n) at a predetermined sampling period (for example, 100 msec), and the terminal voltage data of each battery block. The voltage data V (n) of the secondary battery 10 is measured by summing Vb (n). The current measurement unit 204 calculates the charge / discharge current of the secondary battery 10 detected by the current sensor 36 as current data I (n) (a sign indicates whether it is a charge direction or a discharge direction) at a predetermined sampling period (for example, 100 msec). ) To measure. The temperature measuring unit 206 measures a representative value (for example, an average value) of the temperature data Tb (n) detected by each temperature sensor 32 as the temperature data T (n) of the secondary battery 10.

起電力演算部210は、無負荷電圧V0を算出するための組データ選別部211、無負荷電圧演算部212、及び無負荷電圧判定部213を含み、さらに、分極電圧Vpを算出するための分極電圧演算部214を含む。   The electromotive force calculation unit 210 includes a set data selection unit 211 for calculating the no-load voltage V0, a no-load voltage calculation unit 212, and a no-load voltage determination unit 213, and further a polarization for calculating the polarization voltage Vp. A voltage calculation unit 214 is included.

電圧測定部202からの電圧データV(n)と、電流測定部204からの電流データI(n)は、組データとして、組データ選別部211に入力される。組データ選別部211では、選別条件として、充電方向(−)と放電方向(+)における電流データI(n)の値が所定の範囲内(例えば、±50A)にあり、充電方向と放電方向における電流データI(n)の個数が所定数以上(例えば、60サンプル中の各10個)あり、また組データ取得中の積算容量の変化量ΔQが所定の範囲内(例えば、0.3Ah)にある場合に、電圧データV(n)と電流データI(n)の組データが有効であると判断され、それらを選択して有効な組データS(V(n),I(n))として出力される。   The voltage data V (n) from the voltage measurement unit 202 and the current data I (n) from the current measurement unit 204 are input to the set data selection unit 211 as set data. In the group data selection unit 211, as the selection condition, the value of the current data I (n) in the charging direction (−) and the discharging direction (+) is within a predetermined range (for example, ± 50 A), and the charging direction and the discharging direction. The number of current data I (n) at a predetermined number is greater than or equal to a predetermined number (for example, 10 out of 60 samples), and the amount of change ΔQ of the accumulated capacity during the acquisition of set data is within a predetermined range (for example, 0.3 Ah) If it is determined that the group data of the voltage data V (n) and the current data I (n) is valid, the group data S (V (n), I (n)) is selected by selecting them. Is output as

さて、組データ選別部211から出力される有効な組データS(V(n),I(n))は、無負荷電圧演算部212に入力される。無負荷電圧演算部212では、図3に示すように、有効な組データS(V(n),I(n))から、最小二乗法を用いた統計処理により、1次の電圧−電流直線(近似直線)が求められ、電流がゼロの時の電圧値(電圧(V)切片)である無負荷電圧V0が算出される。   The effective set data S (V (n), I (n)) output from the set data selection unit 211 is input to the no-load voltage calculation unit 212. In the no-load voltage calculation unit 212, as shown in FIG. 3, the primary voltage-current straight line is obtained from the effective set data S (V (n), I (n)) by statistical processing using the least square method. An (approximate straight line) is obtained, and a no-load voltage V0 that is a voltage value (voltage (V) intercept) when the current is zero is calculated.

無負荷電圧演算部212から出力された無負荷電圧V0は、次に、無負荷電圧判定部213に入力される。無負荷電圧判定部213では、判定条件として、近似直線に対する組データS(V(n),I(n))の分散値が求められ、この分散値が所定の範囲内にあるか、または近似直線と組データS(V(n),I(n))との相関係数を求め、この相関係数が所定値以上である場合に、算出された無負荷電圧V0が有効であると判断し、出力する。   The no-load voltage V0 output from the no-load voltage calculation unit 212 is then input to the no-load voltage determination unit 213. In the no-load voltage determination unit 213, as a determination condition, a dispersion value of the set data S (V (n), I (n)) with respect to the approximate straight line is obtained, and the dispersion value is within a predetermined range or approximate. A correlation coefficient between the straight line and the set data S (V (n), I (n)) is obtained, and when the correlation coefficient is equal to or greater than a predetermined value, it is determined that the calculated no-load voltage V0 is valid. And output.

なお、無負荷電圧演算部212における無負荷電圧V0の算出方法は上記の方法に限定されるものではない。   In addition, the calculation method of the no-load voltage V0 in the no-load voltage calculation part 212 is not limited to said method.

一方、分極電圧演算部214は、二次電池10の分極電圧Vpを演算する。分極電圧Vpは、図4Aに示すように、例えば、二次電池10の定電流による充電を継続すると、徐々に増加し、充電が終了した後も直ちに解消せずに、徐々に減少しながら0へ向かう。つまり、分極電圧Vpは、定電流による充電を開始してから終了するまでの成分である分極発生成分Vpoと充電停止以降の成分である分極減衰成分Vpd(分極発生成分Vpoに対しマイナス符号を有する)とを含む。なお、図4Aにおいて、電圧Virは、二次電池10の定電流による充電を開始した際に、二次電池10の内部抵抗により生じる電圧を示す。なお、二次電池10の定電流による放電を継続した場合には、図4Aの横軸に対してほぼ対照的な電圧の経時変化を示すので詳細な説明は省略する。   On the other hand, the polarization voltage calculation unit 214 calculates the polarization voltage Vp of the secondary battery 10. As shown in FIG. 4A, the polarization voltage Vp gradually increases, for example, when charging of the secondary battery 10 with a constant current is continued. Head to. That is, the polarization voltage Vp has a minus sign with respect to the polarization generation component Vpo that is a component from the start to the end of charging with a constant current and the polarization decay component Vpd that is a component after the stop of charging (the polarization generation component Vpo). ). In FIG. 4A, the voltage Vir indicates a voltage generated by the internal resistance of the secondary battery 10 when charging of the secondary battery 10 with a constant current is started. In addition, when the secondary battery 10 is continuously discharged with a constant current, the change with time of the voltage is substantially contrasted with respect to the horizontal axis of FIG.

そこで、分極電圧演算部214は、例えば、分極発生成分Vpoと分極減衰成分Vpdとをそれぞれ演算し、それらを加算することで分極電圧Vpを演算する。   Therefore, for example, the polarization voltage calculation unit 214 calculates a polarization generation component Vpo and a polarization decay component Vpd, and calculates the polarization voltage Vp by adding them.

ハイブリッド電気自動車に搭載された二次電池10の充放電制御は、実際には定電流ではなく、短時間で充電または放電を頻繁に繰り返すため、分極発生成分Vpoは、近似的に一定時間内の充放電電流Iの積分量に係数hを乗算し、ある値で制限することで得られるため、分極電圧演算部214は、分極発生成分Vpoを次式(1)により算出する。   The charge / discharge control of the secondary battery 10 mounted on the hybrid electric vehicle is not actually a constant current, but is repeatedly charged or discharged in a short time. Therefore, the polarization generating component Vpo is approximately within a certain time. Since the integration amount of the charge / discharge current I is multiplied by a coefficient h and limited by a certain value, the polarization voltage calculation unit 214 calculates the polarization generation component Vpo by the following equation (1).

Vpo=h×∫I ・・・(1)
ここで、hは、電池温度をパラメータとして、予め実験等により求められた関数f(T)に基づいて算出される分極電圧発生係数であり、∫Iは、電流データI(n)の電流積算値、つまり、積算容量Qを示す。
Vpo = h × ∫I (1)
Here, h is a polarization voltage generation coefficient calculated based on a function f (T) obtained in advance by experiments or the like using the battery temperature as a parameter, and ∫I is a current integration of current data I (n). The value, that is, the integrated capacity Q is shown.

また、一般的に電池の分極減衰成分Vpdは、図4Bに示すように、短期的に減衰する成分から長期的に減衰する成分までn個の成分(A1,A2,・・・,An)を合成したものである。ここで、各成分の分極減衰率は、exp(−t/Tn)で表されるため、各成分を合成した分極電圧の分極減衰率は、次式(2)により表される。   In general, as shown in FIG. 4B, the polarization attenuation component Vpd of the battery includes n components (A1, A2,..., An) from a component that attenuates in a short period to a component that attenuates in a long period. It is synthesized. Here, since the polarization decay rate of each component is represented by exp (−t / Tn), the polarization decay rate of the polarization voltage obtained by synthesizing each component is represented by the following equation (2).

分極減衰率=A1×exp(−t/T1)+A2×exp(−t/T2)+A3×exp(−t/T3)+・・・+Anexp(−t/Tn) ・・・(2)
ここで、(A1,A2,・・・・An)>0であり、A1+A2+・・・+An=1である。また、A1〜AnおよびT1〜Tnは、電池特性により予め実験等により求める値である。さらに、tは、二次電池10の充電あるいは放電が終了してからの経過時間を示す。
Polarization decay rate = A1 × exp (−t / T1) + A2 × exp (−t / T2) + A3 × exp (−t / T3) +... + Anex (−t / Tn) (2)
Here, (A1, A2,... ・ An)> 0 and A1 + A2 +... + An = 1. Further, A1 to An and T1 to Tn are values obtained in advance through experiments or the like based on battery characteristics. Furthermore, t indicates the elapsed time since the end of charging or discharging of the secondary battery 10.

さて、分極電圧は、充電あるいは放電の間に発生した分極電圧に対して減衰するので、分極減衰成分Vpdは次式(3)により算出することができる。   Since the polarization voltage attenuates with respect to the polarization voltage generated during charging or discharging, the polarization attenuation component Vpd can be calculated by the following equation (3).

Vpd=Vpo×(A1×exp(−t/T1)+A2×exp(−t/T2)+A3×exp(−t/T3)+・・・+Anexp(−t/Tn)) ・・・(3)   Vpd = Vpo × (A1 × exp (−t / T1) + A2 × exp (−t / T2) + A3 × exp (−t / T3) +... + Anexp (−t / Tn)) (3)

以上の通り、分極電圧演算部214は、式(1)および式(3)に基づいて、分極発生成分Vpoと分極減衰成分Vpdとを演算した後、これらを加算することで、分極電圧Vp(=Vpo+Vpd)を演算する。   As described above, the polarization voltage calculation unit 214 calculates the polarization generation component Vpo and the polarization decay component Vpd on the basis of the expressions (1) and (3), and then adds them to obtain the polarization voltage Vp ( = Vpo + Vpd).

また、分極電圧演算部214は、上記の算出方法以外に、例えば、次のように分極電圧Vpを算出してもよい。   In addition to the above calculation method, the polarization voltage calculation unit 214 may calculate the polarization voltage Vp as follows, for example.

すなわち、分極電圧演算部214は、電流測定部204から入力された電流データI(n)の所定期間(例えば、60sec)における電流積算に基づいて今回の積算容量Qを算出し、前回の所定期間(例えば、60sec)における積算容量Qとの差である積算容量の変化量ΔQを求める。次いで、分極電圧演算部214は、参照テーブル(LUT)に予め記憶されている、温度をパラメータとして積算容量の変化量ΔQに対する分極電圧Vpの特性曲線または式から温度データT(n)に基づいて分極電圧Vpを算出する。ここで、図5に、温度が25℃の場合のΔQに対する分極電圧Vpの特性曲線を示す。なお、図5には、25℃の場合の特性曲線しか示していないが、実際には、例えば、ハイブリッド電気自動車用途の場合、−30℃〜+60℃までの範囲をカバーできるような特性曲線が参照データとしてLUTに格納されている。   That is, the polarization voltage calculation unit 214 calculates the current integrated capacity Q based on the current integration in a predetermined period (for example, 60 sec) of the current data I (n) input from the current measurement unit 204, and the previous predetermined period. A change amount ΔQ of the integrated capacity, which is a difference from the integrated capacity Q in (for example, 60 sec), is obtained. Next, the polarization voltage calculation unit 214 is based on the temperature data T (n) from the characteristic curve or expression of the polarization voltage Vp with respect to the change amount ΔQ of the integrated capacity, using the temperature as a parameter, which is stored in advance in the reference table (LUT). A polarization voltage Vp is calculated. FIG. 5 shows a characteristic curve of the polarization voltage Vp with respect to ΔQ when the temperature is 25 ° C. FIG. 5 shows only a characteristic curve at 25 ° C., but actually, for example, in the case of a hybrid electric vehicle application, there is a characteristic curve that can cover a range from −30 ° C. to + 60 ° C. It is stored in the LUT as reference data.

なお、分極電圧演算部214における分極電圧Vpの算出方法は上記の方法に限定されるものではない。   In addition, the calculation method of the polarization voltage Vp in the polarization voltage calculating part 214 is not limited to said method.

以上のように分極電圧Vpを算出した後、分極電圧演算部214は、算出した分極電圧Vpに対して時間遅延処理を行い、無負荷電圧V0とのタイミング合わせを行った後、分極電圧Vpを出力する。後述するが、本実施形態では、分極電圧演算部214において時間遅延処理が十分に行われずに、無負荷電圧V0と分極電圧Vpとの時間的なずれが発生した場合に、これらに基づいて算出される起電力Veの誤差を抑制する。   After calculating the polarization voltage Vp as described above, the polarization voltage calculation unit 214 performs time delay processing on the calculated polarization voltage Vp, performs timing adjustment with the no-load voltage V0, and then calculates the polarization voltage Vp. Output. As will be described later, in the present embodiment, when the time delay process is not sufficiently performed in the polarization voltage calculation unit 214 and a time lag occurs between the no-load voltage V0 and the polarization voltage Vp, the calculation is performed based on these. The error of the generated electromotive force Ve is suppressed.

減算器216は、無負荷電圧判定部213から出力された無負荷電圧V0から、分極電圧演算部214から出力された分極電圧Vpを減算することで得られる起電力Veを出力する。減算器216から出力された起電力Veは、起電力補正部217に入力される。   The subtractor 216 outputs an electromotive force Ve obtained by subtracting the polarization voltage Vp output from the polarization voltage calculation unit 214 from the no-load voltage V0 output from the no-load voltage determination unit 213. The electromotive force Ve output from the subtractor 216 is input to the electromotive force correction unit 217.

起電力補正部217は、無負荷電圧V0と分極電圧Vpとの時間的なずれにより起電力Veに生じる誤差を抑制するように起電力Veに対して補正を行い、補正後の起電力Ve’を出力する。   The electromotive force correction unit 217 corrects the electromotive force Ve so as to suppress an error generated in the electromotive force Ve due to a time lag between the no-load voltage V0 and the polarization voltage Vp, and the corrected electromotive force Ve ′. Is output.

図6は、二次電池10としてニッケル水素電池を用いた場合におけるSOCと起電力Veとの関係を示す図である。図6に示す通り、起電力Veの変化量はSOCの変化量に依存する。例えば、ハイブリッド電気自動車の場合、SOCを所定の許容範囲を示す中間領域に維持しながら二次電池10の充電あるいは放電を制御するが、図6に示す通り、SOCの中間領域では起電力の変化は小さい。よって、例えば、SOCが50%前後であるにも拘わらず、急激に起電力が増減することは通常の制御では起こることは希である。そのため、例えば、SOCが50%前後であるにも拘わらず、前回算出された起電力Vebに対して、比較的短期間(例えば、60sec)後に算出された今回の起電力Veがあまりにも大きい場合、つまり、起電力の変化量があまりにも大きい場合、算出された起電力Veは誤差を多く含むことが考えられる。   FIG. 6 is a diagram showing the relationship between the SOC and the electromotive force Ve when a nickel metal hydride battery is used as the secondary battery 10. As shown in FIG. 6, the amount of change in electromotive force Ve depends on the amount of change in SOC. For example, in the case of a hybrid electric vehicle, the charging or discharging of the secondary battery 10 is controlled while maintaining the SOC in an intermediate region indicating a predetermined allowable range. As shown in FIG. Is small. Therefore, for example, although the SOC is around 50%, a sudden increase or decrease in electromotive force rarely occurs in normal control. Therefore, for example, even though the SOC is around 50%, the current electromotive force Ve calculated after a relatively short period (for example, 60 sec) is too large compared to the electromotive force Veb calculated last time. In other words, when the amount of change in electromotive force is too large, the calculated electromotive force Ve may contain a lot of errors.

そこで、本実施形態では、上記のようなSOCと起電力との関係を考慮して、起電力補正部217は、前回起電力記憶部218に記憶されている前回起電力Vebと今回の起電力Veとを比較し、その変化量が所定の変化制限値Vtより大きい場合には、前回起電力Vebからの変化量を変化制限値Vt以内に制限する。   Therefore, in the present embodiment, in consideration of the relationship between the SOC and the electromotive force as described above, the electromotive force correction unit 217 includes the previous electromotive force Veb stored in the previous electromotive force storage unit 218 and the current electromotive force. Ve is compared, and if the change amount is larger than the predetermined change limit value Vt, the change amount from the previous electromotive force Veb is limited to the change limit value Vt.

より具体的には、充電側において、起電力Veから前回起電力Vebを減算した値の絶対値(|Ve−Veb|)が変化制限値Vtを超えていれば、補正後の起電力Ve’をVeb+Vtとする。一方、放電側において、絶対値(|Ve−Veb|)が変化制限値Vtを超えていれば、補正後の起電力Ve’をVeb−Vtとする。なお、|Ve−Veb|)が変化制限値Vt以内であれば、補正後の起電力Ve’は、そのままVeとする。ここで二次電池が充電側か放電側かの判断は、電流データI(n)に基づいて行えばよい。すなわち、前回の起電力Vebを算出してから今回の起電力Veを算出するまでの間に測定された電流データI(n)の積算値の符号がマイナスであれば充電側、逆にプラスであれば放電側と判断すればよい。   More specifically, on the charging side, if the absolute value (| Ve−Veb |) of the value obtained by subtracting the previous electromotive force Veb from the electromotive force Ve exceeds the change limit value Vt, the corrected electromotive force Ve ′. Is Veb + Vt. On the other hand, if the absolute value (| Ve−Veb |) exceeds the change limit value Vt on the discharge side, the corrected electromotive force Ve ′ is set to Veb−Vt. If | Ve−Veb |) is within the change limit value Vt, the corrected electromotive force Ve ′ is set to Ve as it is. Here, the determination of whether the secondary battery is on the charging side or the discharging side may be made based on the current data I (n). That is, if the sign of the integrated value of the current data I (n) measured between the time when the previous electromotive force Veb is calculated and the time when the current electromotive force Ve is calculated is negative, the charge side is positive. If there is, it may be determined as the discharge side.

なお、前回起電力Vebからの変化量が変化制限値Vt以内に制限されていればよいため、必ずしも充電側では補正後の起電力Ve’をVeb+Vtとし、放電側では補正後の起電力Ve’をVeb−Vtとしなくてもよい。   Since the amount of change from the previous electromotive force Veb only needs to be limited to the change limit value Vt, the corrected electromotive force Ve ′ is always set to Veb + Vt on the charging side and the corrected electromotive force Ve ′ on the discharging side. May not be Veb−Vt.

許容できる起電力の変化量は、二次電池10のSOC値やSOCの変化量によって異なる。また、SOC値は起電力と相関関係があり、SOCの変化量は積算容量Qの変化量ΔQと相関関係がある。つまり、許容できる起電力の変化量は、前回起電力Vebの大きさや、前回起電力Vebを算出してから今回の起電力Veを算出するまでの間における積算容量Qの変化量ΔQに応じて異なる。そのため、変化制限値Vtは、前回起電力Vebの大きさや、積算容量Qの変化量ΔQに応じて変更することが好ましい。   The allowable amount of change in electromotive force varies depending on the SOC value of the secondary battery 10 and the amount of change in SOC. Further, the SOC value has a correlation with the electromotive force, and the change amount of the SOC has a correlation with the change amount ΔQ of the integrated capacity Q. That is, the allowable amount of change in electromotive force depends on the magnitude of the previous electromotive force Veb and the amount of change ΔQ of the accumulated capacity Q from the time when the previous electromotive force Veb is calculated until the time when the current electromotive force Ve is calculated. Different. For this reason, the change limit value Vt is preferably changed according to the previous electromotive force Veb and the change amount ΔQ of the integrated capacity Q.

そこで、本実施形態では、起電力補正部217は、変化制限値Vtを、図7Aや図7Bに示す参照テーブル(LUT)に基づいて決定する。図7Aは、放電時に参照される参照テーブルであり、図7Bは、充電時に参照される参照テーブルである。図7A、図7Bに示すように、変化制限値Vtは、前回起電力Vebの大きさや、変化量ΔQをパラメータとして求められる。例えば、図7Aにおいて、前回起電力Vebの大きさがV5からV6の間であり、変化量ΔQが1.5Ahから2.0Ahの間であれば、この時の変化制限値Vtは0.02Vとなる。   Therefore, in the present embodiment, the electromotive force correction unit 217 determines the change limit value Vt based on a reference table (LUT) illustrated in FIGS. 7A and 7B. FIG. 7A is a reference table that is referred to during discharging, and FIG. 7B is a reference table that is referred to during charging. As shown in FIGS. 7A and 7B, the change limit value Vt is obtained using the magnitude of the previous electromotive force Veb and the change amount ΔQ as parameters. For example, in FIG. 7A, if the magnitude of the previous electromotive force Veb is between V5 and V6 and the change amount ΔQ is between 1.5 Ah and 2.0 Ah, the change limit value Vt at this time is 0.02 V. It becomes.

さらに、想定される起電力の変化量は、電池温度によっても異なる。例えば、低温時(−30℃)でSOCが高い状態における起電力の変化量は、常温時(25℃)での起電力の変化量に比べて大きくなる。したがって、電池温度によっても変化制限値Vtを変更することが好ましい。そこで、図8に示すように、電池温度によって、各変化制限値Vtに対応する前回起電力Vebの大きさを変更してもよい。例えば、電池温度が0℃以上の場合には、図7Aや図7Bに示す参照テーブル中のV5を16.0V、V6を16.2Vに設定し、電池温度が−15℃以上0℃未満の場合には、V5を16.1、V6を16.4に設定する。   Further, the assumed amount of change in electromotive force varies depending on the battery temperature. For example, the amount of change in electromotive force when SOC is high at low temperatures (−30 ° C.) is larger than the amount of change in electromotive force at normal temperatures (25 ° C.). Therefore, it is preferable to change the change limit value Vt also depending on the battery temperature. Therefore, as shown in FIG. 8, the magnitude of the previous electromotive force Veb corresponding to each change limit value Vt may be changed depending on the battery temperature. For example, when the battery temperature is 0 ° C. or higher, V5 in the reference table shown in FIG. 7A or 7B is set to 16.0V, V6 is set to 16.2V, and the battery temperature is −15 ° C. or higher and lower than 0 ° C. In this case, V5 is set to 16.1 and V6 is set to 16.4.

以上の通り、起電力補正部217において、起電力Veを補正することで、たとえ無負荷電圧V0と分極電圧Vpとの時間的なずれが発生した場合であっても、これらに基づいて算出される起電力Veの誤差を抑制することができる。   As described above, the electromotive force correction unit 217 corrects the electromotive force Ve, and even if a time lag between the no-load voltage V0 and the polarization voltage Vp occurs, it is calculated based on these. The error of the electromotive force Ve can be suppressed.

なお、上記の通り、起電力Veの変化量はSOCの変化量に依存する。よって、例えば、SOCと変化制限値Vtとの相関関係を示す参照テーブル(LUT)を予め用意しておき、当該参照テーブルを参照して変化制限値VtをSOCの大きさに応じて設定しても構わない。   As described above, the amount of change in electromotive force Ve depends on the amount of change in SOC. Therefore, for example, a reference table (LUT) indicating the correlation between the SOC and the change limit value Vt is prepared in advance, and the change limit value Vt is set according to the SOC size with reference to the reference table. It doesn't matter.

さて、上記の通り、起電力補正部217で補正され出力された起電力Ve’は、前回起電力記憶部218に入力されるとともに、電流積算係数補正部220に入力される。前回起電力記憶部218は、新たな起電力Ve’が入力されると、現在記憶している前回起電力Vebを、新たに入力された起電力Ve’に書き換える。また、電流積算係数補正部220は、起電力Ve’に応じて、電流積算係数kに対する補正量αを決定する。起電力Ve’に対する補正量αは1次式で表され、この1次式は系の収束性を考慮して決定される。電流積算係数補正部220で求められた補正量αは、充電効率算出部222から出力される充電効率ηと加算器224により加算または減算あるいは乗算されて、電流積算係数kとなる。   As described above, the electromotive force Ve ′ corrected and output by the electromotive force correction unit 217 is input to the previous electromotive force storage unit 218 and to the current integration coefficient correction unit 220. When a new electromotive force Ve ′ is input, the previous electromotive force storage unit 218 rewrites the currently stored previous electromotive force Veb to the newly input electromotive force Ve ′. Further, the current integration coefficient correction unit 220 determines a correction amount α for the current integration coefficient k in accordance with the electromotive force Ve ′. The correction amount α for the electromotive force Ve ′ is expressed by a linear expression, which is determined in consideration of the convergence of the system. The correction amount α obtained by the current integration coefficient correction unit 220 is added, subtracted or multiplied by the charging efficiency η output from the charging efficiency calculation unit 222 and the adder 224 to obtain a current integration coefficient k.

加算器224からの電流積算係数kは、SOC推定部230に入力される。SOC推定部230では、電流測定部204からの電流データI(n)に電流積算係数kが乗算されて、所定期間における電流積算により、残存容量SOCが推定される。   The current integration coefficient k from the adder 224 is input to the SOC estimation unit 230. In the SOC estimation unit 230, the current data I (n) from the current measurement unit 204 is multiplied by the current integration coefficient k, and the remaining capacity SOC is estimated by current integration in a predetermined period.

また、このSOC推定値は、上記の充電効率算出部222に入力され、充電効率算出部222では、予め記憶されている、温度をパラメータとしたSOC推定値に対する充電効率ηの特性曲線から、温度測定部206で測定された温度データT(n)に基づいて、充電効率ηが算出される。なお、二次電池10が放電状態にある場合は、充電効率ηは1に固定され、二次電池10が充電状態にある場合に、充電効率算出部222により算出された充電効率ηが用いられる。   The estimated SOC value is input to the charging efficiency calculation unit 222. The charging efficiency calculation unit 222 calculates the temperature from the characteristic curve of the charging efficiency η with respect to the estimated SOC value using the temperature as a parameter. Based on the temperature data T (n) measured by the measuring unit 206, the charging efficiency η is calculated. Note that when the secondary battery 10 is in a discharged state, the charging efficiency η is fixed to 1, and when the secondary battery 10 is in a charged state, the charging efficiency η calculated by the charging efficiency calculating unit 222 is used. .

以上のように、電池ECU20の内部に設けられる各部がそれぞれ処理を実行することで、電池ECU20は、温度センサ32、電圧センサ34、電流センサ36から出力された温度データTb(n)、端子電圧データVb(n)、電流データI(n)に基づいて二次電池10のSOCを推定する。   As described above, each unit provided in the battery ECU 20 executes the process, so that the battery ECU 20 has the temperature data Tb (n) and the terminal voltage output from the temperature sensor 32, the voltage sensor 34, and the current sensor 36. The SOC of the secondary battery 10 is estimated based on the data Vb (n) and the current data I (n).

次に、以上のように構成された電池ECU20が二次電池のSOCを推定する際の処理手順について、図9のフローチャートを参照して説明する。   Next, a processing procedure when the battery ECU 20 configured as described above estimates the SOC of the secondary battery will be described with reference to the flowchart of FIG. 9.

図9において、まず、電圧データV(n)と電流データI(n)を組データとして測定する(S100)。次に、ステップS100で測定された電圧データV(n)と電流データI(n)の組データが、有効な組データであるか否かを調べるために、それらが上記したような選別条件を満たすか否かを判断する(S102)。ステップS102の判断で、選別条件を満たさない場合(ステップS102の判定結果が、否定「N」)、ステップS100に戻って、電圧データV(n)と電流データI(n)の組データを再度測定する。一方、ステップS102の判断で、選別条件を満たす場合(ステップS102の判定結果が、肯定「Y」)、複数個(例えば、60サンプル中の充電および放電方向で各10個)の有効な組データS(V(n),I(n))を取得する(S104)。   In FIG. 9, first, voltage data V (n) and current data I (n) are measured as set data (S100). Next, in order to check whether or not the set data of the voltage data V (n) and current data I (n) measured in step S100 is valid set data, they are subjected to the selection conditions as described above. It is determined whether or not it is satisfied (S102). If the selection condition is not satisfied in the determination in step S102 (the determination result in step S102 is negative “N”), the process returns to step S100, and the set data of the voltage data V (n) and the current data I (n) is again obtained. taking measurement. On the other hand, if the selection condition is satisfied in the determination in step S102 (the determination result in step S102 is affirmative “Y”), a plurality (for example, 10 in each of the 60 samples in the charge and discharge directions) valid set data. S (V (n), I (n)) is acquired (S104).

次に、有効な組データS(V(n),I(n))から、最小二乗法を用いた統計処理により、1次の近似直線(V−I直線)を求め、その近似直線のV切片を無負荷電圧V0として算出する(S106)。次に、無負荷電圧V0が有効であるか否かを調べるために、無負荷電圧V0が上記したような判定条件を満たすか否かを判断する(S108)。ステップS108の判断で、判定条件を満たさない場合(ステップS108の判定結果が、否定「N」)、ステップS104に戻って、別の複数個(例えば、60サンプル中の別の各10個)の有効な組データS(V(n),I(n))を取得して、ステップS104、S106を繰り返す。一方、ステップS108の判断で、算出した無負荷電圧V0が判定条件を満たす場合(ステップS108の判定結果が、肯定「Y」)、算出した無負荷電圧V0を起電力Veの算出に採用する。   Next, a primary approximate straight line (V-I straight line) is obtained from valid set data S (V (n), I (n)) by statistical processing using the least square method, and V of the approximate straight line is obtained. The intercept is calculated as no-load voltage V0 (S106). Next, in order to check whether or not the no-load voltage V0 is valid, it is determined whether or not the no-load voltage V0 satisfies the determination condition as described above (S108). If it is determined in step S108 that the determination condition is not satisfied (the determination result in step S108 is negative “N”), the process returns to step S104, and another plurality (for example, another 10 in 60 samples) is returned. Valid set data S (V (n), I (n)) is acquired, and steps S104 and S106 are repeated. On the other hand, if it is determined in step S108 that the calculated no-load voltage V0 satisfies the determination condition (the determination result in step S108 is affirmative “Y”), the calculated no-load voltage V0 is employed in the calculation of the electromotive force Ve.

次いで、ステップS100で測定された電流データI(n)から過去の所定期間(例えば、60sec)における積算容量Qを算出し、その積算容量Qに基づいて、上記の通り、分極電圧Vpを算出する(S110)。次に、無負荷電圧V0から分極電圧Vpを減算することで、起電力Veを算出し(S112)、さらに、起電力Veの補正処理を実行する(S114)。   Next, the accumulated capacity Q in the past predetermined period (for example, 60 sec) is calculated from the current data I (n) measured in step S100, and the polarization voltage Vp is calculated based on the accumulated capacity Q as described above. (S110). Next, the electromotive force Ve is calculated by subtracting the polarization voltage Vp from the no-load voltage V0 (S112), and the electromotive force Ve is corrected (S114).

ここで、起電力Veの補正処理の手順について、図10に示すフローチャートを用いてさらに説明する。   Here, the procedure of the electromotive force Ve correction process will be further described with reference to the flowchart shown in FIG.

まず、Veフラグがオンか否かの判定を行うことで、起電力Veが算出されたか否かを判定する(S200)。ここで、Veフラグは、起電力Veが算出されるとオンになるフラグである。上記の通り、起電力Veを算出するには、無負荷電圧V0を算出する必要があり、無負荷電圧V0は、複数個の端子電圧Vと電流Iとのペアデータを用いて統計処理により求められる。つまり、無負荷電圧V0は常時算出されているわけでない。そこで、まず、Veフラグがオンか否かの判定を行う。そして、Veフラグがオフであれば(ステップS200の判定結果が、否定「N」)、そのまま処理を終了する。   First, it is determined whether or not the electromotive force Ve has been calculated by determining whether or not the Ve flag is on (S200). Here, the Ve flag is a flag that is turned on when the electromotive force Ve is calculated. As described above, in order to calculate the electromotive force Ve, it is necessary to calculate the no-load voltage V0. The no-load voltage V0 is obtained by statistical processing using pair data of a plurality of terminal voltages V and currents I. It is done. That is, the no-load voltage V0 is not always calculated. Therefore, first, it is determined whether or not the Ve flag is on. If the Ve flag is off (determination result in step S200 is negative “N”), the process ends.

一方、Veフラグがオンであれば(ステップS200の判定結果が、肯定「Y」)、次に、補正対象の起電力Veがイグニッションスイッチをオンしてから最初に算出された起電力か否かを判定する(S202)。判定の結果、最初であれば(ステップS202の判定結果が、肯定「Y」)、前回の起電力Veは存在しないため、起電力Veの補正は行わずに(S214)、処理を終了する。   On the other hand, if the Ve flag is on (the determination result of step S200 is affirmative “Y”), then whether or not the electromotive force Ve to be corrected is the electromotive force calculated first after turning on the ignition switch. Is determined (S202). If it is the first as a result of the determination (the determination result in step S202 is affirmative “Y”), the previous electromotive force Ve does not exist, so the electromotive force Ve is not corrected (S214), and the process is terminated.

一方、最初でなければ(ステップS202の判定結果が、否定「N」)、上記の通り、前回起電力Vebの大きさ、積算容量Qの変化量ΔQ、温度データT(n)に基づいて、変化制限値Vtを設定する(S204)。   On the other hand, if it is not the first (the determination result in step S202 is negative “N”), as described above, based on the magnitude of the previous electromotive force Veb, the change amount ΔQ of the integrated capacity Q, and the temperature data T (n), A change limit value Vt is set (S204).

次いで、起電力Veから前回起電力Vebを減算した値の絶対値(|Ve−Veb|)が変化制限値Vtを超えているか否を判定し(S206)、変化制限値Vt以内であれば、起電力Veの補正は行わずに(S214)、処理を終了する。   Next, it is determined whether or not the absolute value (| Ve−Veb |) of the value obtained by subtracting the previous electromotive force Veb from the electromotive force Ve exceeds the change limit value Vt (S206). The process is terminated without correcting the electromotive force Ve (S214).

一方、変化制限値Vtを超えていれば、起電力Veは、二次電池10が放電時に算出されたか、充電時に算出されたかを判定し(S208)、放電時であれば、補正後の起電力Ve’をVeb−Vtとする(S210)。また、充電時であれば、補正後の起電力Ve’をVeb+Vtとする(S212)。   On the other hand, if the change limit value Vt is exceeded, the electromotive force Ve is determined whether the secondary battery 10 is calculated at the time of discharging or at the time of charging (S208). The electric power Ve ′ is set to Veb−Vt (S210). If it is during charging, the corrected electromotive force Ve ′ is set to Veb + Vt (S212).

以上のように、補正後の起電力Ve’を求めた後、前回起電力記憶部218に記憶されている前回起電力Vebを補正後の起電力Ve’に置き換えることで、前回起電力Vebを更新し(S216)、起電力Veの補正処理を終了する。   As described above, after obtaining the corrected electromotive force Ve ′, the previous electromotive force Veb stored in the previous electromotive force storage unit 218 is replaced with the corrected electromotive force Ve ′, thereby changing the previous electromotive force Veb. Update (S216), and the correction process of the electromotive force Ve ends.

さて、図9に戻り、上記の通り、起電力Veの補正処理が行われた後、補正後の起電力Ve’に応じて、電流積算係数kに対する補正量αを算出する(S116)。また、測定した温度データT(n)に基づいて、現在推定しているSOC推定値から充電効率ηを算出する(S118)。次に、ステップS118で求めた補正量αとステップS120で求めた充電効率ηとを加算して、電流積算係数kを算出する(S120)。最後に、電流積算係数kを電流データI(n)に乗算して、所定期間における電流積算により、SOCを推定する(122)。   Returning to FIG. 9, after the electromotive force Ve correction processing is performed as described above, the correction amount α for the current integration coefficient k is calculated according to the electromotive force Ve ′ after correction (S116). Further, based on the measured temperature data T (n), the charging efficiency η is calculated from the currently estimated SOC estimated value (S118). Next, the current integration coefficient k is calculated by adding the correction amount α obtained in step S118 and the charging efficiency η obtained in step S120 (S120). Finally, the current integration coefficient k is multiplied by the current data I (n), and the SOC is estimated by current integration over a predetermined period (122).

以上のように、本実施形態によれば、無負荷電圧V0から分極電圧Vpを減算することで求められた起電力Veに対して、前回起電力Vebを基準として許容できる変化量を超えないように補正を行う。これにより、無負荷電圧V0と分極電圧Vpとの時間的なずれにより生じる起電力Veの誤差を抑制することができる。よって、起電力Veに基づいて推定されるSOCの精度の向上を図ることができる。   As described above, according to this embodiment, the electromotive force Ve obtained by subtracting the polarization voltage Vp from the no-load voltage V0 does not exceed an allowable change amount based on the previous electromotive force Veb. Make corrections. Thereby, the error of the electromotive force Ve caused by the time lag between the no-load voltage V0 and the polarization voltage Vp can be suppressed. Therefore, it is possible to improve the accuracy of the SOC estimated based on the electromotive force Ve.

なお、上記の実施形態では、演算された起電力に基づいてSOCを推定する場合を例に説明したが、起電力はSOCを推定する際のパラメータ以外の用途に利用しても構わない。   In the above-described embodiment, the case where the SOC is estimated based on the calculated electromotive force has been described as an example. However, the electromotive force may be used for purposes other than the parameters used when estimating the SOC.

本実施形態に係るハイブリッド電気自動車の概略構成を示す図である。It is a figure which shows schematic structure of the hybrid electric vehicle which concerns on this embodiment. 本実施形態に係る電池ECUの機能ブロックを示す図である。It is a figure which shows the functional block of battery ECU which concerns on this embodiment. 本実施形態における、電圧データと電流データとの組データと、それから統計処理により無負荷電圧を求めるための近似直線とを示す図である。It is a figure which shows the set data of voltage data and current data in this embodiment, and the approximate straight line for calculating | requiring a no-load voltage by statistical processing from it. 二次電池の分極電圧Vpの演算手法について説明するための図である。It is a figure for demonstrating the calculation method of the polarization voltage Vp of a secondary battery. 二次電池の分極電圧Vpの演算手法について説明するための図である。It is a figure for demonstrating the calculation method of the polarization voltage Vp of a secondary battery. 本実施形態における、温度をパラメータとした変化量ΔQに対する分極電圧pの特性曲線の一例を示す図である。It is a figure which shows an example of the characteristic curve of the polarization voltage p with respect to variation | change_quantity (DELTA) Q which used temperature as the parameter in this embodiment. 二次電池の起電力とSOCとの関係を示す図である。It is a figure which shows the relationship between the electromotive force of a secondary battery, and SOC. 変化制限値Vtを決定する際に参照される放電時の参照テーブルの一例を示す図である。It is a figure which shows an example of the reference table at the time of the discharge referred when determining the change limiting value Vt. 変化制限値Vtを決定する際に参照される充電時の参照テーブルの一例を示す図である。It is a figure which shows an example of the reference table at the time of charge referred when determining the change limiting value Vt. 各変化制限値Vtに対応する前回起電力Vebの大きさを設定する際に参照する参照テーブルの一例を示す図である。It is a figure which shows an example of the reference table referred when setting the magnitude | size of the last electromotive force Veb corresponding to each change limitation value Vt. 本実施形態において、電池ECUが二次電池のSOCを推定する際に実行する処理手順を示すフローチャートである。In this embodiment, it is a flowchart which shows the process sequence performed when battery ECU estimates SOC of a secondary battery. 本実施形態において、電池ECUが起電力の補正を行う際に実行する処理手順を示すフローチャートである。In this embodiment, it is a flowchart which shows the process sequence performed when battery ECU correct | amends an electromotive force.

符号の説明Explanation of symbols

10 二次電池、20 電池ECU、32 温度センサ、34 電圧センサ、36 電流センサ、38 リレー、50 インバータ、52 モータジェネレータ、56 駆動力分配機構、60 エンジン、202 電圧測定部、204 電流測定部、206 温度測定部、210 起電力演算部、211 組データ選別部、212 無負荷電圧演算部、213 無負荷電圧判定部、214 分極電圧演算部、216 減算器、217 起電力補正部、218 前回起電力記憶部、220 電流積算係数補正部、222 充電効率算出部、224 加算器、230 SOC推定部。   10 secondary battery, 20 battery ECU, 32 temperature sensor, 34 voltage sensor, 36 current sensor, 38 relay, 50 inverter, 52 motor generator, 56 driving force distribution mechanism, 60 engine, 202 voltage measurement unit, 204 current measurement unit, 206 Temperature measurement unit, 210 Electromotive force calculation unit, 211 Set data selection unit, 212 No load voltage calculation unit, 213 No load voltage determination unit, 214 Polarization voltage calculation unit, 216 Subtractor, 217 Electromotive force correction unit, 218 Power storage unit, 220 current integration coefficient correction unit, 222 charge efficiency calculation unit, 224 adder, 230 SOC estimation unit.

Claims (6)

二次電池に流れる電流がゼロの時における前記二次電池の端子電圧を表す無負荷電圧V0と、前記二次電池の分極電圧Vpとに基づいて、前記二次電池の起電力を計時的に演算する起電力演算部と、
前回演算された起電力Vebに対する今回演算された起電力Veの変化量が所定の制限値Vtを超える場合、前記変化量が前記制限値Vtを超えないように、前記起電力Veを補正する起電力補正部と、
を備えることを特徴とする起電力演算装置。
Based on the no-load voltage V0 representing the terminal voltage of the secondary battery when the current flowing through the secondary battery is zero and the polarization voltage Vp of the secondary battery, the electromotive force of the secondary battery is measured in time. An electromotive force calculation unit to calculate,
When the change amount of the electromotive force Ve calculated this time with respect to the electromotive force Veb calculated last time exceeds a predetermined limit value Vt, the electromotive force Ve is corrected so that the change amount does not exceed the limit value Vt. A power correction unit;
An electromotive force calculation device comprising:
請求項1に記載の起電力演算装置において、
前記起電力演算部は、
前記二次電池に流れる電流Iと、前記電流Iに対応する前記二次電池の端子電圧Vとの組データを所定期間に亘って複数個取得し、取得した複数個の組データに基づく統計処理により前記無負荷電圧V0を演算する無負荷電圧演算部と、
前記電流Iを前記所定期間に亘って積算して積算容量Qを算出し、前回の積算容量Qとの差である積算容量変化量ΔQに基づいて前記分極電圧Vpを演算する分極電圧演算部と、
を備えることを特徴とする起電力演算装置。
In the electromotive force calculation apparatus according to claim 1,
The electromotive force calculator is
Statistical data based on the plurality of set data obtained by acquiring a plurality of set data of the current I flowing through the secondary battery and the terminal voltage V of the secondary battery corresponding to the current I over a predetermined period A no-load voltage calculation unit for calculating the no-load voltage V0 by:
A polarization voltage calculation unit that calculates the integrated capacity Q by integrating the current I over the predetermined period, and calculates the polarization voltage Vp based on an integrated capacity change amount ΔQ that is a difference from the previous integrated capacity Q; ,
An electromotive force calculation device comprising:
請求項1または2に記載の起電力演算装置において、
前記起電力補正部は、
前記二次電池が充電時には、前記起電力Vebに前記制限値Vtを加算することで補正し、
前記二次電池が放電時には、前記起電力Vebから前記制限値Vtを減算することで補正する、
ことを特徴とする起電力演算装置。
In the electromotive force calculation apparatus according to claim 1 or 2,
The electromotive force correction unit is
When the secondary battery is charged, it is corrected by adding the limit value Vt to the electromotive force Veb,
When the secondary battery is discharged, correction is performed by subtracting the limit value Vt from the electromotive force Veb.
An electromotive force calculation apparatus characterized by that.
請求項1乃至3のいずれか1つに記載の起電力演算装置において、
前記起電力補正部は、
前記起電力Veb、前記所定期間における前記二次電池の積算容量Qの変化量ΔQ、前記二次電池の電池温度、前記二次電池の充電状態の少なくとも1つをパラメータとして前記制限値Vtを設定する、
ことを特徴とする起電力演算装置。
In the electromotive force calculating device according to any one of claims 1 to 3,
The electromotive force correction unit is
The limit value Vt is set using at least one of the electromotive force Veb, the change amount ΔQ of the accumulated capacity Q of the secondary battery during the predetermined period, the battery temperature of the secondary battery, and the charge state of the secondary battery as parameters. To
An electromotive force calculation apparatus characterized by that.
充電状態を所定の許容範囲に維持するように充電あるいは放電が制御される二次電池の起電力を計時的に演算する起電力演算部と、
前回演算された起電力Vebに対する今回演算された起電力Veの変化量が、前記二次電池の充電状態に応じて設定される制限値Vtを超えないように、前記起電力Veを補正する起電力補正部と、
を備えることを特徴とする起電力演算装置。
An electromotive force calculation unit that timely calculates an electromotive force of a secondary battery in which charging or discharging is controlled so as to maintain a charged state within a predetermined allowable range;
An electromotive force that corrects the electromotive force Ve so that a change amount of the electromotive force Ve calculated this time with respect to the electromotive force Veb calculated previously does not exceed a limit value Vt that is set according to a charge state of the secondary battery. A power correction unit;
An electromotive force calculation device comprising:
請求項1乃至5のいずれか1つに記載の起電力演算装置から取得した二次電池の起電力に基づいて前記二次電池の充電状態を推定する充電状態推定装置であって、
前記起電力の変化量が前記制限値Vtを超える場合、補正後の起電力Ve’に基づいて前記二次電池の充電状態を推定し、
前記起電力の変化量が前記制限値Vt以内の場合、前記起電力Veに基づいて前記二次電池の充電状態を推定する、
ことを特徴とする充電状態推定装置。
A charging state estimation device that estimates a charging state of the secondary battery based on an electromotive force of the secondary battery acquired from the electromotive force calculation device according to any one of claims 1 to 5,
When the amount of change in the electromotive force exceeds the limit value Vt, the state of charge of the secondary battery is estimated based on the corrected electromotive force Ve ′,
When the amount of change in the electromotive force is within the limit value Vt, the state of charge of the secondary battery is estimated based on the electromotive force Ve.
The charge state estimation apparatus characterized by the above-mentioned.
JP2007293652A 2006-12-27 2007-11-12 Electromotive force calculation device and charging state estimation device Expired - Fee Related JP5090865B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007293652A JP5090865B2 (en) 2006-12-27 2007-11-12 Electromotive force calculation device and charging state estimation device
US11/960,617 US7750640B2 (en) 2006-12-27 2007-12-19 Electromotive force computing device and state of charge estimating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006353250 2006-12-27
JP2006353250 2006-12-27
JP2007293652A JP5090865B2 (en) 2006-12-27 2007-11-12 Electromotive force calculation device and charging state estimation device

Publications (2)

Publication Number Publication Date
JP2008180692A true JP2008180692A (en) 2008-08-07
JP5090865B2 JP5090865B2 (en) 2012-12-05

Family

ID=39724691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293652A Expired - Fee Related JP5090865B2 (en) 2006-12-27 2007-11-12 Electromotive force calculation device and charging state estimation device

Country Status (1)

Country Link
JP (1) JP5090865B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942882A1 (en) * 2009-03-09 2010-09-10 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE CHARGE STATE OF AN ELECTROCHEMICAL SOURCE FOR THE ELECTRICAL TRACTION OF VEHICLES
JP2011047918A (en) * 2009-03-31 2011-03-10 Primearth Ev Energy Co Ltd Control device of secondary battery, and correction method of map
US8415954B2 (en) 2009-12-25 2013-04-09 Primearth Ev Energy Co., Ltd. Apparatus for calculating polarization voltage of secondary battery and apparatus for estimating state of charge of the same
US10732224B2 (en) 2010-04-22 2020-08-04 Enerdel, Inc. Monitoring battery state of charge
CN113659447A (en) * 2021-07-20 2021-11-16 许继集团有限公司 Method for automatically correcting voltage sampling polarity of series side of in-phase power supply device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197275A (en) * 2001-12-27 2003-07-11 Panasonic Ev Energy Co Ltd Estimating method of polarized voltage of secondary battery, estimating method and device of residual capacity of secondary battery, as well as battery pack system
JP2005345254A (en) * 2004-06-02 2005-12-15 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197275A (en) * 2001-12-27 2003-07-11 Panasonic Ev Energy Co Ltd Estimating method of polarized voltage of secondary battery, estimating method and device of residual capacity of secondary battery, as well as battery pack system
JP2005345254A (en) * 2004-06-02 2005-12-15 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942882A1 (en) * 2009-03-09 2010-09-10 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING THE CHARGE STATE OF AN ELECTROCHEMICAL SOURCE FOR THE ELECTRICAL TRACTION OF VEHICLES
WO2010103216A1 (en) * 2009-03-09 2010-09-16 Peugeot Citroën Automobiles SA Method for determining the state of charge of an electrochemical source for electric vehicle traction
JP2011047918A (en) * 2009-03-31 2011-03-10 Primearth Ev Energy Co Ltd Control device of secondary battery, and correction method of map
US8415954B2 (en) 2009-12-25 2013-04-09 Primearth Ev Energy Co., Ltd. Apparatus for calculating polarization voltage of secondary battery and apparatus for estimating state of charge of the same
US10732224B2 (en) 2010-04-22 2020-08-04 Enerdel, Inc. Monitoring battery state of charge
CN113659447A (en) * 2021-07-20 2021-11-16 许继集团有限公司 Method for automatically correcting voltage sampling polarity of series side of in-phase power supply device

Also Published As

Publication number Publication date
JP5090865B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5379672B2 (en) Secondary battery polarization voltage calculation device and charging state estimation device
JP5009721B2 (en) Secondary battery charge state estimation device and program
US7750640B2 (en) Electromotive force computing device and state of charge estimating device
US8589096B2 (en) Method for estimating remaining capacity of battery
JP4097183B2 (en) Secondary battery remaining capacity estimation method and apparatus, and battery pack system
US7646176B2 (en) Controller for rechargeable battery and temperature estimation method and deterioration determination method for rechargeable battery
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
JP5393837B2 (en) Battery charge rate estimation device
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
US7557584B2 (en) Method and device for estimating charge/discharge electricity amount of secondary cell
EP2442126A2 (en) Battery management system and method of estimating battery state of charge
JP5719236B2 (en) Secondary battery control device
US10557891B2 (en) Battery system and control method thereof
US11754631B2 (en) Chargeable battery temperature estimation apparatus and chargeable battery temperature estimation method
JP5126150B2 (en) Storage capacity estimation device and storage capacity estimation method
JP5090865B2 (en) Electromotive force calculation device and charging state estimation device
JP2006320069A (en) Control device for secondary battery
JP4866156B2 (en) Secondary battery charge state estimation device, charge state estimation method, and program
JP5886225B2 (en) Battery control device and battery control method
JP4874646B2 (en) Battery control device, electric vehicle, and secondary battery control method
JP5975925B2 (en) Battery control device, power storage device
JP7233270B2 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
JP6658341B2 (en) Battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5090865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees