JP2008175692A - Measuring method of axial power distribution of core - Google Patents

Measuring method of axial power distribution of core Download PDF

Info

Publication number
JP2008175692A
JP2008175692A JP2007009454A JP2007009454A JP2008175692A JP 2008175692 A JP2008175692 A JP 2008175692A JP 2007009454 A JP2007009454 A JP 2007009454A JP 2007009454 A JP2007009454 A JP 2007009454A JP 2008175692 A JP2008175692 A JP 2008175692A
Authority
JP
Japan
Prior art keywords
core
power distribution
axial power
formula
analytical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007009454A
Other languages
Japanese (ja)
Inventor
Hiroaki Nagano
浩明 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2007009454A priority Critical patent/JP2008175692A/en
Publication of JP2008175692A publication Critical patent/JP2008175692A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the axial power distribution of the core in various core states. <P>SOLUTION: In this measuring method, the axial power distribution of the core during operation is measured based on a measured value of a neutron detector mounted in a plurality of places along the axial direction of a pressure vessel and an expression showing the relation between the axial power distribution of the core and the measured value of the neutron detector. This measuring method comprises an analysis expression creation step of creating an analysis expression showing the relation between the axial power distribution of the core and the measured value of the neutron detector regarding, as a target, the core state whose axial power distribution of the core is actually measured, an analysis expression correction step of correcting the analysis expression created in the analysis expression creation step diverting data for correcting the analysis expression obtained using the actual operation of the nuclear reactor in another core state, and a core axial power distribution measurement step of using the measured value of the neutron detector and the expression obtained by correcting the analysis expression in the analysis expression correction step during operation of the nuclear reactor in the core state as the target of the analysis expression creation step. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は炉心の軸方向出力分布(以下、単に「軸方向出力分布」とも記す)の測定方法に関し、特にこれから測定を行なう炉心状態用に導出された解析式に、他の炉心状態について実際の運転で既に得られている解析式と実測値との相違についてのデータを基に必要な修正を行い、修正がなされた後の解析式を用いて軸方向出力分布を測定する炉心の軸方向出力分布の測定方法に関する。   The present invention relates to a method for measuring the axial power distribution of a core (hereinafter, also simply referred to as “axial power distribution”), and in particular, an analytical expression derived for a core state to be measured from now on is actually used for other core states. Make the necessary corrections based on the data about the difference between the analytical formulas already obtained in operation and the measured values, and use the analytical formulas after the corrections to measure the axial power distribution. The present invention relates to a distribution measurement method.

沸騰水型はもちろんのこと、加圧水型の原子炉においても、上下方向(以下、「軸方向」あるいは「アキシャル方向」とも記す)にも中性子の漏洩が生じること、同じく炉内の温度分布が相違すること等のため、炉心の軸方向の中性子分布が、ひいては軸方向の出力分布(アキシャルオフセット。以下、請求項の説明を除き、原則として「A.O.」と記す)が相違する。このため、原子炉の一層安全な運転や効率的な運転を行なうためには、運転中はA.O.を正確に測定する必要がある。   In boiling water reactors as well as pressurized water reactors, neutron leakage occurs in the vertical direction (hereinafter also referred to as “axial” or “axial”), and the temperature distribution in the reactor is also different. Therefore, the neutron distribution in the axial direction of the core differs from the axial power distribution (axial offset. Hereinafter, in principle, it is described as “A.O.” except for the claims). Therefore, in order to perform safer and more efficient operation of the reactor, A. O. Must be measured accurately.

そのため、特に加圧水型の原子炉においては、一般的に以下の測定方法が採用されていた。
先ず、可動型微小中性子検出器と呼ばれるセンサを燃料集合体の計装用シンブル管内に挿入し、また原子炉の圧力容器の外壁の軸方向に沿った(軸方向の位置が相違する)複数箇所にも中性子検出器を装着しておき、さらに制御棒を操作して原子炉の軸方向の出力分布を適度に振動させ、この状態で可動型微小中性子検出器を軸方向に走査して実際にA.O.を測定し、同時に圧力容器の外壁に装着した各中性子検出器(以下、「各」は、省略する)でも中性子を測定する。
For this reason, the following measurement methods have been generally employed, particularly in pressurized water reactors.
First, a sensor called a movable microneutron detector is inserted into the instrument assembly thimble tube at a plurality of locations along the axial direction of the outer wall of the reactor pressure vessel (the positions in the axial direction are different). In addition, a neutron detector is installed, and the control rod is further operated to moderately vibrate the power distribution in the axial direction of the reactor. In this state, the movable micro neutron detector is scanned in the axial direction to actually perform A . O. At the same time, neutrons are also measured by each neutron detector (hereinafter, “each” is omitted) mounted on the outer wall of the pressure vessel.

次に、可動型微小中性子検出器の測定値が正しくA.O.を測定しているものとして、各A.O.の状態において、圧力容器の外壁の軸方向に沿った複数箇所に装着されている中性子検出器が中性子の測定値としてどの様な値を出力しているかを調べる。即ち、各A.O.の状態と、対応する中性子検出器の実際の出力との関係を表すデータ(校正データ)を求める。
原子炉の定常運転時には、圧力容器の外壁の軸方向の複数箇所に装着した中性子検出器が出力する中性子の測定値と、前記の校正データを基に、A.O.の推定を行なう。従がって、間接的な測定方法が採用されている。
Next, the measured value of the movable microneutron detector is correct. O. Each A. is measured. O. In this state, the neutron detectors mounted at a plurality of locations along the axial direction of the outer wall of the pressure vessel output what values are output as neutron measurement values. That is, each A.E. O. Data (calibration data) representing the relationship between the state of and the actual output of the corresponding neutron detector.
At the time of steady operation of the reactor, based on the measured values of neutrons output from the neutron detectors mounted at a plurality of axial positions on the outer wall of the pressure vessel and the calibration data, A. O. Estimate Therefore, an indirect measurement method is adopted.

但し、この方法は、安全性確保の面から原子炉の出力を25%程度下げた状態で行なうことと、通常の運転時には生起しないキセノン振動(制御棒の軸方向の移動に伴って生じた炉心全体の出力変動と炉心の軸方向の出力分布の相違の結果、中性子を吸収するキセノンの濃度が炉心全体と炉心の軸方向で時間的に変化し、これに伴って生じる炉心全体と炉心の軸方向出力分布の時間的変化)を意図的に生起させる必要があり、設備費が極めて高い原子炉の運転の経済性等の面からは好ましくない。   However, this method is performed with the reactor power reduced by about 25% from the viewpoint of ensuring safety, and xenon vibration that does not occur during normal operation (core generated with the axial movement of the control rod). As a result of the difference between the overall power fluctuation and the power distribution in the axial direction of the core, the concentration of xenon that absorbs neutrons changes with time in the whole core and the axial direction of the core, and the resulting core and core axes are generated accordingly. It is not desirable from the viewpoint of the economics of the operation of the nuclear reactor that the equipment cost is extremely high.

そこで、図2に概念的に示す様に、解析的な手法を採り入れて測定する発明がなされ、実用化されている(特許文献1)。以下、図2を参照しつつその技術内容を説明する。
先ず、炉内を軸方向に幾箇所かに仮想的に分割し、分割された各箇所の中性子の密度と、圧力容器の外壁の軸方向に沿った複数箇所に装着されている中性子検出器の測定値とが、どの様に関係するかを解析により求める。
Therefore, as conceptually shown in FIG. 2, an invention for measuring by adopting an analytical technique has been made and put into practical use (Patent Document 1). The technical contents will be described below with reference to FIG.
First, the inside of the reactor is virtually divided into several locations in the axial direction, and the neutron density at each of the divided locations and the neutron detectors installed at multiple locations along the axial direction of the outer wall of the pressure vessel Analyze how the measured values relate to each other.

この様子を、図2の(1)と(2)に示す。
図2の(1)において、10は加圧水型の原子炉の炉心であり、20は炉心10近くの原子炉の圧力容器壁である。炉心10近くの原子炉圧力容器壁20の外周には、上から順に、例えば5箇所に中性子検出器21、22、23、24、25が装着されている。
This state is shown in (1) and (2) of FIG.
In FIG. 2 (1), 10 is the core of a pressurized water reactor, and 20 is the pressure vessel wall of the reactor near the core 10. On the outer periphery of the reactor pressure vessel wall 20 near the core 10, neutron detectors 21, 22, 23, 24, 25 are mounted, for example, at five locations in order from the top.

炉心10の軸方向出力分布と各中性子検出器21、22、23、24、25の測定値との関係を表す式を解析的に導出するために、図2の(1)に示す様に、炉心は上から順に11、12、13、14、15で示す5つの領域に、仮想的に分割されている(実際の炉心は、一体構造である)。
また、J1、J2、J3、J4、J5は、各々上から順に5つに分割された炉心10の各領域の出力状態であり、C1、C2、C3、C4、C5は、各々上から順に、原子炉圧力容器20に装着された中性子検出器21、22、23、24、25の測定値である。
In order to analytically derive the expression representing the relationship between the axial power distribution of the core 10 and the measured values of the neutron detectors 21, 22, 23, 24, 25, as shown in (1) of FIG. The core is virtually divided into five regions indicated by 11, 12, 13, 14, and 15 in order from the top (the actual core has an integral structure).
Further, J1, J2, J3, J4, and J5 are the output states of the respective regions of the core 10 that are divided into five in order from the top, and C1, C2, C3, C4, and C5 are respectively in order from the top. The measured values of the neutron detectors 21, 22, 23, 24, and 25 attached to the reactor pressure vessel 20.

なお、図2の(1)では、説明の便宜上炉心の上下方向の仮想的な分割数とその近くの原子炉圧力容器の外周壁に上下方向に並んで装着されている中性子検出器の個数は共に5としているが、これらは5に限定されず、また相互に相違していても良い。実際の原子炉の場合、一般的に軸方向2箇所に、かつ上部の同じ高さの位置に4個、下部の同じ高さの位置に4個、合計8個である。   In FIG. 2 (1), for the convenience of explanation, the number of virtual divisions in the vertical direction of the core and the number of neutron detectors mounted in the vertical direction on the outer peripheral wall of the nearby reactor pressure vessel are as follows. Although both are set to 5, these are not limited to 5 and may be different from each other. In the case of an actual nuclear reactor, there are generally eight in two axial directions, four at the same height in the upper part and four at the same height in the lower part.

以上の下で、同じ炉心状態で、2次元輸送コード等を使用して、炉内の軸方向の出力分布が、ひいては中性子分布が異なる場合を幾ケースか想定する。次いで、各ケースで圧力容器の外壁の軸方向に沿った複数の箇所に装着されている中性子検出器21、22、23、24、25の測定値C1、C2、C3、C4、C5がどの様になるか、あるいはどの様な測定値を出力するかを、中性子の検出器と中性子源との距離、中性子の検出器が中性子源に対して占める角度、冷却水中の硼素による中性子の吸収等を考慮して、各ケースについて解析により求める。   Based on the above, several cases are assumed in which the power distribution in the axial direction in the reactor, and thus the neutron distribution, is different using the two-dimensional transport code or the like in the same core state. Next, in each case, how are the measured values C1, C2, C3, C4, C5 of the neutron detectors 21, 22, 23, 24, 25 mounted at a plurality of locations along the axial direction of the outer wall of the pressure vessel? Or the measurement value to be output, the distance between the neutron detector and the neutron source, the angle that the neutron detector occupies with respect to the neutron source, the absorption of neutrons by boron in cooling water, etc. In consideration, each case is obtained by analysis.

求めた結果を、以下の(1)式に示す。
Rc=A×A.O.+B ・・・(1)
ここに、Rcは、圧力容器の外壁の軸方向に沿った複数箇所に装着されている中性子検出器により測定される(出力される)中性子束(炉外へ逃げる中性子の流れ)の強度の分布、即ちC1、C2、C3、C4、C5が縦方向に一列に並んだ1次元のベクトルで表現される炉外検出器応答である。
また、A.O.は、仮想的に分割した炉心の軸方向の各領域の出力分布J1、J2、J3、J4、J5、即ち炉心の軸方向の中性子の分布であり、これも縦方向の1次元のベクトルで表現される。
図2の(2)に、(1)式におけるRcとAとA.O.とBからなる行列式の内容を視覚的に示す。
The obtained results are shown in the following formula (1).
Rc = A × A. O. + B (1)
Here, Rc is a distribution of intensity of neutron flux (flow of neutrons escaping outside the reactor) measured (output) by neutron detectors mounted at a plurality of locations along the axial direction of the outer wall of the pressure vessel. That is, C1, C2, C3, C4, and C5 are out-of-core detector responses expressed by a one-dimensional vector arranged in a line in the vertical direction.
A. O. Is the power distribution J1, J2, J3, J4, J5 of each region in the axial direction of the virtually divided core, that is, the distribution of neutrons in the axial direction of the core, which is also expressed by a one-dimensional vector in the longitudinal direction. Is done.
(2) of FIG. O. The contents of the determinant consisting of B and B are shown visually.

なお、炉内の軸方向の中性子分布が異なる状態を複数ケース想定して計算を行ったため、図2の(1)に示す、J1、J2、J3、J4、J5が、ひいてはC1、C2、C3、C4、C5が相互に異なる複数の状態を計算し、計算値を平均化する、最小二乗法を用いる等して、図2の(2)に示すAとBを求める。
またこのため、Bは0の場合もあり得る。
Since calculations were performed assuming a plurality of cases in which the axial neutron distribution in the furnace is different, J1, J2, J3, J4, and J5 shown in FIG. 2 (1) are eventually C1, C2, and C3. A and B shown in (2) of FIG. 2 are obtained by calculating a plurality of states in which C4 and C5 are different from each other, averaging the calculated values, and using the least square method.
For this reason, B may be zero.

なお、中性子検出器による中性子束の測定は、実際には電流値として出力されるだけでなく、中性子束のスペクトル(中性子のエネルギー分布)等によって感度も相違する。さらに、2次元輸送理論や中性子束の減衰の仮定等の解析そのものや解析に用いる定数の精度等から生じる一定の限界がある。これらのため、実際の運転を利用して解析で作成された式の修正、即ち中性子束と測定された電流値の間に生じるずれの補償等を行なう必要がある。そこで、最後に、現実の原子炉で1サイクルの運転が終了し、燃料取替え後の次のサイクルでの初回起動時に実際にRcとA.O.の確認を行い、AとBに必要な修正を行なう。   Note that the neutron flux measurement by the neutron detector is not only actually output as a current value, but also has different sensitivities depending on the neutron flux spectrum (neutron energy distribution) and the like. Furthermore, there are certain limits that arise from the analysis itself, such as the two-dimensional transport theory and the assumption of neutron flux decay, and the accuracy of the constants used in the analysis. For these reasons, it is necessary to correct an equation created by analysis using actual operation, that is, to compensate for a deviation generated between the neutron flux and the measured current value. Therefore, finally, the operation of one cycle is completed in the actual nuclear reactor, and when Rc and A.I. O. And make necessary corrections for A and B.

なお、前記(1)式を補正して後に示す(2)式を得るための補正係数は、AとBについて各1個必要となるが、条件によっては、Aのみ補正しても良い。この場合には、補正計数をK、測定電流をIとすると、K=I/(Rc)となる。   Note that one correction coefficient is required for each of A and B to correct equation (1) and obtain equation (2) shown later, but only A may be corrected depending on conditions. In this case, if the correction count is K and the measurement current is I, K = I / (Rc).

修正後の式を、図2の(3)に示す。
修正後の(1)式は、Rc=A’×A.O.+B’と表すことができる。これを、(2)式とする。
ここに、A’は、a11、・・・、a55を修正した後のa’11、・・・、a’55からなる行列であり、B’はb1、・・・、b5を修正した後のb’1、・・・、b’5からなる縦方向の1次元ベクトルである。
The corrected formula is shown in (3) of FIG.
The corrected equation (1) is expressed as Rc = A ′ × A. O. It can be expressed as + B ′. This is defined as equation (2).
Here, A ′ is a matrix composed of a′11,..., A′55 after correcting a11,..., A55, and B ′ is after correcting b1,. Is a one-dimensional vector in the vertical direction composed of b′1,..., B′5.

以上の下で、原子炉の運転中にRcを測定し、前記(2)式により、運転中の炉心のA.O.を間接的に測定することとなる。   Under the above, Rc is measured during the operation of the nuclear reactor, and A. O. Will be measured indirectly.

また、前記特許文献1では、「A.O.」に換えて「AO」が用いられ、AOは以下の様に定義されている。
AO=(Pr―Ps)/(Pr+Ps)
ここに、Prは原子炉の上半部の出力であり、Psは下半部の出力である。即ち、軸方向出力分布の測定は、炉心を上下2つに分割してなされている。これも、前記の炉心を軸方向に5箇所に分割し、各分割箇所の出力が相違するものとして説明したことと本質的な相違はない。
In Patent Document 1, “AO” is used instead of “A.O.”, and AO is defined as follows.
AO = (Pr−Ps) / (Pr + Ps)
Here, Pr is the output of the upper half of the reactor, and Ps is the output of the lower half. In other words, the axial power distribution is measured by dividing the core into two parts. This is not essentially different from the description that the core is divided into five parts in the axial direction and the output of each divided part is different.

特公平4−33000号公報Japanese Patent Publication No. 4-33000

ところで、前記の発明では、A.O.の測定は、軸方向出力分布が異なる複数の状態を幾ケースか想定して解析式を作成し、実際の運転で修正を行なうとはいえ、基本的にはある特定の1の炉心状態を基に、例えば100%出力が持続されている等の1の運転状態を基に作成された解析式を校正した式(校正式、あるいは校正データ)が用いられている。   By the way, in the above invention, A. O. In this measurement, an analytical expression is created assuming several cases with different axial power distributions, and correction is made in actual operation, but basically it is based on one specific core state. In addition, for example, an equation (calibration equation or calibration data) obtained by calibrating an analytical equation created based on one operation state in which 100% output is maintained is used.

しかしながら、現実の原子炉においては、炉心の各種の状態は種々変化し、複雑である。このため、炉出力、燃焼度、硼素濃度等の様々なパラメータは、従来以上に複雑に変化する様になっている。例えば、冷却水中の硼素濃度が相違すれば、解析に使用する中性子の吸収係数が相違する。その結果、解析式に用いる各種の定数も相違することとなる。   However, in an actual nuclear reactor, various states of the core are variously changed and complicated. For this reason, various parameters such as furnace power, burnup, and boron concentration change more complicatedly than before. For example, if the boron concentration in the cooling water is different, the absorption coefficient of neutrons used in the analysis is different. As a result, various constants used in the analytical expression are also different.

また、運転状態や炉出力の如何により中性子を吸収する制御棒の炉内での位置が変化しうること、同じく炉内上部の冷却用流体、例えば軽水の温度が相違すること等のため、原子炉の圧力容器の外壁の軸方向に沿った複数箇所に装着してある中性子検出器は、炉心の上部と下部で複雑に相違した応答特性を有していることもある。
それらの結果、炉心出力と中性子検出器が電流値として出力する中性子束の強度は、単純な比例関係ではなく、例えば炉出力が50%から100%になれば、全体として電流値が正確に2倍となるわけではない。即ち、炉心の状態で複雑に変化する。
これらのため、炉心の軸方向出力分布と軸方向に沿った複数箇所に装備されている中性子検出器の測定値の関係も、これらに応じて複雑に変化することとなる。
In addition, the position of the control rod that absorbs neutrons in the furnace can be changed depending on the operating state and the furnace power, and the temperature of the cooling fluid in the upper part of the furnace, such as light water, is also different. The neutron detectors mounted at a plurality of locations along the axial direction of the outer wall of the reactor pressure vessel may have complex and different response characteristics at the upper and lower portions of the core.
As a result, the intensity of the neutron flux output from the core power and the neutron detector as a current value is not a simple proportional relationship. For example, when the reactor power is changed from 50% to 100%, the current value as a whole is accurately 2 It doesn't double. That is, it changes complicatedly in the state of the core.
For this reason, the relationship between the axial power distribution of the core and the measured values of the neutron detectors installed at a plurality of locations along the axial direction also changes in a complicated manner.

即ち、前記の発明における校正式は、ある特定の1の炉心状態を基に作成されているため、それと大きく異なる炉心状態では、精度に一定の限界が生じる。
このため、校正がなされた炉心状態と大きく異なる炉心状態においては、定常運転中に炉内外で校正を行う必要があった。
さらに、種々の(あるいは新しい)炉心の状態においても、精度良くA.O.を測定できる技術の開発が望まれていた。
That is, since the calibration formula in the above invention is created based on one specific core state, there is a certain limit in accuracy in a core state that is significantly different from that.
For this reason, in a core state that is significantly different from the core state that has been calibrated, it has been necessary to perform calibration inside and outside the reactor during steady operation.
Furthermore, the A.A. O. Development of technology that can measure

本発明は、以上の課題を解決することを目的としてなされたものであり、新たな炉心状態における炉心の軸方向出力分布を測定するためにその炉心状態用に新たに導出された解析式に、他の炉心状態における運転時の実際の測定を利用して得られた解析式を修正するためのデータを流用して必要な修正を行い、修正後の解析式を用いて軸方向出力分布を測定する様にしたものである。以下、各請求項の発明を説明する。   The present invention has been made for the purpose of solving the above problems, and in order to measure the axial power distribution of the core in a new core state, an analytical expression newly derived for the core state, Make necessary corrections using the data to correct the analytical formula obtained using actual measurements during operation in other core conditions, and measure the axial power distribution using the revised analytical formula. This is what I did. The invention of each claim will be described below.

請求項1に記載の発明は、
圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値と、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式とを基に、運転中の炉心の軸方向出力分布を測定する方法であって、
実際に炉心の軸方向出力分布を測定することとなる炉心状態を対象として、炉心の軸方向出力分布と、前記中性子検出器の測定値との関係を表す解析式を作成する解析式作成ステップと、
他の炉心状態における原子炉の実際の運転を利用して得られている解析式を修正するデータを流用して、前記解析式作成ステップで作成された解析式に修正を行なう解析式修正ステップと、
前記解析式作成ステップが対象としている炉心状態の原子炉の運転中に、前記中性子検出器による測定値と、前記解析式修正ステップで解析式を修正して得られた式とを用いて、炉心の軸方向出力分布を測定する測定ステップを有していることを特徴とする炉心の軸方向出力分布の測定方法である。
The invention described in claim 1
Based on the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel and the formula representing the relationship between the axial power distribution of the core and the measured values of the neutron detector A method for measuring the axial power distribution of the core of
Analytical expression creating step for creating an analytical expression representing the relationship between the axial power distribution of the core and the measured value of the neutron detector for the core state that will actually measure the axial power distribution of the core; ,
An analytical formula correction step for correcting the analytical formula created in the analytical formula creation step by using data for correcting the analytical formula obtained by utilizing the actual operation of the reactor in another core state, ,
During the operation of the reactor in the core state targeted by the analytical formula creation step, the measured value by the neutron detector and the formula obtained by correcting the analytical formula in the analytical formula correction step are used. A measuring step of measuring the axial power distribution of the core.

本請求項の発明においては、原子炉の運転中に行なわれる炉心の軸方向出力分布の測定は、圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の実際の測定値と、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式とを基に間接的に行なわれるが、この際目下測定対象となっている炉心状態を対象に作成された解析式に、他の炉心状態における運転時の実際の測定を利用して得られている解析式を修正するためのデータを流用して必要な修正を行い、修正後の解析式を用いて軸方向出力分布を測定する様にしたため、種々の炉心状態における炉心の軸方向出力分布の測定精度が良好になる。   In the invention of this claim, the measurement of the axial power distribution of the core performed during the operation of the nuclear reactor is performed by measuring actual measured values of neutron detectors installed at a plurality of locations along the axial direction of the pressure vessel. This is done indirectly based on the equation representing the relationship between the axial power distribution of the core and the measured value of the neutron detector. At this time, an analysis created for the core state that is currently being measured Make necessary corrections to the formula to correct the analytical formula obtained by using actual measurements during operation in other core conditions, and use the corrected analytical formula to perform the axial direction. Since the power distribution is measured, the measurement accuracy of the axial power distribution of the core in various core states is improved.

また、測定精度が向上するため、従来実施していた定常運転中での炉内外での校正が不必要となったり、校正回数を削減したりすることが可能となる。   Further, since the measurement accuracy is improved, it is possible to eliminate the need for calibration inside and outside the furnace during steady operation, which has been conventionally performed, and to reduce the number of calibrations.

ここに、「炉心状態」とは、継続して運転される炉心の平均出力や最大出力、継続運転時の出力変動の有無、炉内燃料の種類や最大燃焼度や現在の燃焼度、炉内での各燃料(集合体)の配置の如何や種類、冷却水中の硼素濃度、制御棒の位置等をパラメータとする炉心の状態や運転中の状態である。
なお、「他の炉心状態における運転」とは、解析式を修正するためのデータを流用し得る限り、他の原子炉であっても良い。
Here, the “core state” means the average output and maximum output of the core that is continuously operated, whether there is output fluctuation during continuous operation, the type of fuel in the reactor, maximum burnup, current burnup, The state of the core and the state of operation using parameters such as the type and arrangement of each fuel (aggregate), the boron concentration in the cooling water, the position of the control rod, and the like.
The “operation in another core state” may be another nuclear reactor as long as data for correcting the analytical expression can be used.

また、各炉心状態における解析式の作成は、対象としている炉心状態の下で妥当と思われる範囲内で炉心の軸方向出力分布を適当に想定してなされるが、解析の手法あるいは基本的な考え方が同じであれば、細部は相違していても良い。例えば、炉心の軸方向の仮想的な分割数は、同じ数であっても良いし、相違していても良い。また、適当に想定する炉心の軸方向出力分布のケース数も同じケース数であっても良いし、異なっていても良い。   In addition, the analytical formulas for each core state are created by appropriately assuming the axial power distribution of the core within the range that seems to be appropriate under the target core state. If the idea is the same, the details may be different. For example, the number of virtual divisions in the axial direction of the core may be the same or different. In addition, the number of cases of the axial power distribution of the core that is appropriately assumed may be the same or different.

さらに、想定する炉心の軸方向出力分布は、経験則を基に想定しても良い。
また、「解析式」とは、純粋な理論や計算の他に、既に得られている経験則、実測データ等を反映して作成された式をも含む。
また、「他の炉心状態における原子炉の実際の運転を利用して得られている解析式を修正するデータ」とは、中性子測定機器における実際の中性子束と測定値として出力する電流値の間に生じる誤差を実測に基づいて補償するためのデータ等をも含む。
また、他の炉心状態における原子炉の実際の運転を利用して得られている解析式を修正するデータを流用して必要な修正を行った式を用いて軸方向出力分布を測定するという本発明の趣旨の下、複数の炉心状態における実測と解析式との相違の検討が行なわれており、このため解析式を修正するためのデータも複数あり、それら複数のデータを用いてこれから測定する炉心状態用の解析式の修正がなされても良い。
Further, the assumed axial power distribution of the core may be assumed based on empirical rules.
The “analytic expression” includes not only pure theory and calculation but also an expression created by reflecting already obtained empirical rules, actual measurement data, and the like.
In addition, “data that corrects the analytical formula obtained by using the actual operation of the reactor in other core states” means the actual neutron flux in the neutron measuring instrument and the current value output as the measured value. In addition, data for compensating for an error occurring in is based on actual measurement.
In addition, a book that measures the axial power distribution using a formula that has been corrected by using the data that corrects the analytical formula obtained by utilizing the actual operation of the reactor in other core conditions. Under the spirit of the invention, the difference between the actual measurement and the analytical expression in a plurality of core states has been studied, and therefore there are a plurality of data for correcting the analytical expression, and measurement will be performed using these multiple data. The analytical expression for the core state may be modified.

請求項2に記載の発明は、前記の炉心の軸方向出力分布の測定方法であって、
前記解析式修正ステップは、
他の炉心状態を対象として、炉心の軸方向出力分布と、圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値との関係を表す解析式を求める解析式作成手順と、
前記他の炉心状態における原子炉の運転を利用して、その炉心状態の炉心の軸方向出力分布と前記中性子検出器の測定値との関係を実際に測定し、前記解析式作成手順により作成された解析式が正しい関係を表すこととなる様に修正するためのデータを取得する修正用データ取得手順と、
前記解析式作成ステップにて作成された解析式を、前記修正用データ取得手順にて得られたデータを流用して修正する修正手順を有していることを特徴とする炉心の軸方向出力分布の測定方法である。
The invention according to claim 2 is a method of measuring the axial power distribution of the core,
The analytical formula correcting step includes:
Analytical formula creation procedure for obtaining analytical formulas representing the relationship between the axial power distribution of the core and the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel for other core conditions When,
Using the operation of the reactor in the other core state, the relationship between the axial power distribution of the core in the core state and the measured value of the neutron detector is actually measured and created by the analytical formula creation procedure. A data acquisition procedure for correction to acquire data for correction so that the analytical expression represents a correct relationship;
The axial power distribution of the reactor core has a correction procedure for correcting the analytical formula created in the analytical formula creation step by diverting the data obtained in the correction data acquisition procedure This is a measurement method.

本請求項の発明においては、実際に炉心の軸方向出力分布を測定することとなる炉心状態を対象として作成された解析式の修正は、他の炉心状態を対象として、炉心の軸方向出力分布と、圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値との関係を表す解析式を求め、さらにその炉心状態における原子炉の運転を利用して、その炉心状態の炉心の軸方向出力分布と中性子検出器の測定値との関係を実際に測定し、解析式が正しい関係を表すこととなる様に修正するためのデータを取得し、そのデータを流用して新たな測定対象である炉心状態を対象として解析により作成された式を修正することによりなされるため、修正が適切となる。   In the invention of this claim, the correction of the analytical expression created for the core state that will actually measure the axial power distribution of the core is the axial power distribution of the core for other core states. And an analytical expression representing the relationship between the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel, and further using the operation of the reactor in the core state, Actually measure the relationship between the axial power distribution of the reactor core and the measured value of the neutron detector, acquire data to correct the analytical formula to represent the correct relationship, and use that data. The correction is appropriate because it is made by correcting an expression created by analysis for the core state as a new measurement target.

請求項3に記載の発明は、
圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値と、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式とを基に、運転中の炉心の軸方向出力分布を測定する方法であって、
原子炉の運転時の測定を基に実際に適合する様に修正した式が既に得られている第1の炉心状態と、これから実際に測定を行なう第2の炉心状態とにおいて、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す解析式に生じる相違を検討する検討ステップと、
前記検討ステップにおける検討結果を基に、前記第1の炉心状態を対象として実際に適合する様に修正した式を、第2の炉心状態を対象にした炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式に修正する修正ステップと、
前記第2の炉心状態の原子炉の運転中に、前記中性子検出器による測定値と、前記修正ステップで修正された式とを用いて、軸方向の炉心の出力分布を測定する測定ステップを有していることを特徴とする炉心の軸方向出力分布の測定方法である。
The invention described in claim 3
Based on the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel and the formula representing the relationship between the axial power distribution of the core and the measured values of the neutron detector A method for measuring the axial power distribution of the core of
The axial direction of the core in the first core state in which a formula corrected to be actually adapted based on the measurement during the operation of the nuclear reactor has already been obtained and in the second core state in which the actual measurement will be performed from now on An examination step for examining a difference occurring in an analytical expression representing a relationship between an output distribution and a measurement value of the neutron detector,
Based on the result of the examination in the examination step, the equation corrected so as to be actually adapted to the first core state, the axial power distribution of the core intended for the second core state, and the neutron detector A correction step that corrects the relationship to the measured value of
During the operation of the reactor in the second core state, there is a measurement step for measuring the power distribution of the core in the axial direction using the measurement value by the neutron detector and the formula corrected in the correction step. It is the measuring method of the axial direction power distribution of the core characterized by the above-mentioned.

本請求項の発明は、これから測定を行なう炉心状態のA.O.の測定に使用する式を、炉心状態は異なるが実際の運転における実測により修正がなされた式を基に、炉心状態の相違により解析式に生じる相違を検討し、修正された式に必要な再修正を行って作成するため、新しい炉心状態における炉心の軸方向出力分布の測定精度が良好になる。   The invention according to the present invention relates to an A.D. O. Based on the equation used for the measurement of the core, but the core state is different but has been corrected by actual measurement in actual operation, the difference that occurs in the analytical equation due to the difference in the core state is examined, and Since the correction is made, the measurement accuracy of the axial power distribution of the core in the new core state is improved.

また、測定精度が向上するため、従来実施していた定常運転中での炉内外での校正が不必要となったり、校正回数を削減したりすることが可能となる。   Further, since the measurement accuracy is improved, it is possible to eliminate the need for calibration inside and outside the furnace during steady operation, which has been conventionally performed, and to reduce the number of calibrations.

請求項4に記載の発明は、
圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値と、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式とを基に、運転中の炉心の軸方向出力分布を測定する方法であって、
第1の炉心状態における炉心の軸方向出力分布と、前記中性子検出器の測定値との関係を表す解析式を求める解析式作成ステップと、
前記第1の炉心状態における原子炉の運転を利用して、第1の炉心状態における炉心の軸方向出力分布と前記中性子検出器の測定値との関係を実際に測定し、前記解析式が正しい関係を表すこととなる様に修正する解析式修正ステップと、
実際に測定したい炉心状態である第2の炉心状態と前記第1の炉心状態との相違を検討し、検討結果を基に前記解析式修正ステップで修正された解析式にさらに修正を行い、第2の炉心状態における炉心の軸方向出力分布と前記中性子検出器の測定値との関係を正しく表す式を得る式作成ステップと、
前記第2の炉心状態の原子炉の運転中に、前記中性子検出器により実際に測定された測定値と、前記式作成ステップで得られた式とを用いて、第2の炉心状態の炉心の軸方向出力分布を測定する測定ステップを有していることを特徴とする炉心の軸方向出力分布の測定方法である。
The invention according to claim 4
Based on the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel and the formula representing the relationship between the axial power distribution of the core and the measured values of the neutron detector A method for measuring the axial power distribution of the core of
An analytical expression creating step for obtaining an analytical expression representing the relationship between the axial power distribution of the core in the first core state and the measured value of the neutron detector;
Using the operation of the reactor in the first core state, the relationship between the axial power distribution of the core in the first core state and the measured value of the neutron detector is actually measured, and the analytical expression is correct Analytical formula correction step for correcting the relationship to be expressed,
Examining the difference between the second core state, which is the core state to be actually measured, and the first core state, further modifying the analytical formula corrected in the analytical formula correcting step based on the examination results, A formula creating step for obtaining a formula that correctly represents the relationship between the axial power distribution of the core in the core state of 2 and the measured value of the neutron detector;
During the operation of the reactor in the second core state, the measured value actually measured by the neutron detector and the formula obtained in the formula creation step are used to calculate the core in the second core state. It is a measuring method of the axial power distribution of a core characterized by having a measurement step which measures axial power distribution.

本請求項の発明は、第1の炉心状態における炉心の軸方向出力分布と、圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値との関係を表す解析式を、その炉心状態における原子炉の運転を利用した炉心の軸方向出力分布と中性子検出器の測定値との実際の測定結果を反映して修正し、修正後の式に実際に測定したい炉心状態である第2の炉心状態と第1の炉心状態との相違を解析してさらに修正を行い、第2の炉心状態における炉心の軸方向出力分布と中性子検出器の測定値との関係を表す式としているため、新しい炉心状態における炉心の軸方向出力分布の測定精度が良好になる。   The invention of this claim provides an analytical expression representing the relationship between the axial power distribution of the core in the first core state and the measured values of the neutron detectors installed at a plurality of locations along the axial direction of the pressure vessel. , Corrected to reflect the actual measurement results of the axial power distribution of the core and the measured values of the neutron detector using the operation of the reactor in the core state, and in the core state to be actually measured in the revised formula Analyzing the difference between the second core state and the first core state, making further corrections, and expressing the relationship between the axial power distribution of the core and the measured value of the neutron detector in the second core state Therefore, the measurement accuracy of the axial power distribution of the core in the new core state is improved.

また、測定精度が向上し、従来実施していた定常運転中での炉内外での校正が不必要となったり、校正回数を削減したりすることが可能となる。   In addition, the measurement accuracy is improved, and it is possible to eliminate the need for calibration inside and outside the furnace during steady operation, which has been conventionally performed, or to reduce the number of calibrations.

請求項5に記載の発明は、前記の炉心の軸方向出力分布の測定方法であって、
前記圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器は、少なくともその一部は、圧力容器の外壁若しくは外側に装備されていることを特徴とする炉心の軸方向出力分布の測定方法である。
The invention according to claim 5 is a method of measuring the axial power distribution of the core,
The neutron detectors installed at a plurality of locations along the axial direction of the pressure vessel are at least partially equipped on the outer wall or outside of the pressure vessel, and the axial power distribution of the reactor is characterized in that This is a measurement method.

本請求項の発明においては、軸方向の幾箇所かに装備された中性子検出器は、少なくともその一部は、原子炉圧力容器の外壁若しくは外側に装備されているため、原子炉運転中に中性子検出器の装着、調整が可能となり、運転中における測定に融通性が増し、精度も一層良好とすることが可能となり、また,常時炉心を監視することも可能となる。   In the invention of this claim, the neutron detectors installed at several locations in the axial direction are provided at least partially on the outer wall or outside of the reactor pressure vessel. Detectors can be mounted and adjusted, flexibility in measurement during operation can be increased, accuracy can be improved, and the core can be monitored constantly.

本発明においては、他の炉心状態とはいえ実際の測定で得られた解析式を修正するためのデータを使用して必要な修正を行い、修正後の解析式を用いて新たな炉心状態の軸方向出力分布を測定するため、種々の炉心状態における炉心の軸方向出力分布の測定精度が良好になる。
またそのため、従来実施していた定常運転中での炉内外での校正が不必要となったり、校正回数を削減したりすることが可能となる。
In the present invention, necessary correction is performed using the data for correcting the analytical expression obtained in the actual measurement in spite of other core states, and a new core state is determined using the corrected analytical expression. Since the axial power distribution is measured, the measurement accuracy of the axial power distribution of the core in various core states is improved.
For this reason, calibration inside and outside the furnace during steady operation, which has been conventionally performed, becomes unnecessary, and the number of calibrations can be reduced.

以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(第1の実施の形態)
本実施の形態は、ある炉心状態を対象にして解析で作成した式に、他の炉心状態における実際の測定で得られた解析式を修正するためのデータを流用して必要な修正を施すことに関する。
(First embodiment)
In the present embodiment, necessary corrections are made by diverting data for correcting analytical formulas obtained by actual measurements in other core states to formulas created by analysis for a certain core state. About.

図1に、本発明の実施の形態の手順を、概念的に示す。なお、図1の(1)から(3)に示す手順は、図2の(1)から(3)に示す手順と同じである。
図1の(1)に示す様に、標準的な炉心の状態(以下、この炉心状態を、「炉心状態1」と記す)を想定し、この炉心状態において複数のケースのA.O.を想定する。
FIG. 1 conceptually shows the procedure of the embodiment of the present invention. The procedure shown in (1) to (3) of FIG. 1 is the same as the procedure shown in (1) to (3) of FIG.
As shown in (1) of FIG. 1, assuming a standard core state (hereinafter, this core state is referred to as “core state 1”), a plurality of cases of A.D. O. Is assumed.

図1の(2)に示す様に、この想定した複数のケースのA.O.の状態を基に、背景技術欄で説明したのと同じく解析により炉外検出器応答(以下、この炉心状態1のRcを、「Rc1」と記す)とA.O.の関係を示す式を作成する。
即ち、Rc1=A1×A.O.+B1を求める。なおここに、A1とB1は、各々図1の(2)に示すAとBに同じであるが、後の説明の都合もあり、この様に記す。
As shown in (2) of FIG. O. As described in the background art section, the out-of-core detector response (hereinafter, Rc in the core state 1 is referred to as “Rc1”) and A. O. Create an expression that shows the relationship.
That is, Rc1 = A1 × A. O. + B1 is obtained. Here, A1 and B1 are the same as A and B shown in (2) of FIG. 1, respectively, but are described in this way for convenience of later explanation.

図1の(3)に示す様に、現実の原子炉で1サイクルの運転が終了し、燃料取替え後の次のサイクルでの初回起動時に実際にRc1とA.O.を測定して、求めたA1とB1に必要な修正を行なう。
これにより、炉心状態1における炉外検出器応答(以下、これを「Rc1」と記す)とA.O.の関係式、Rc1=A1’×A.O.+B1’を得る。なおここに、A1’とB1’も、おのおの図1の(3)に示すA’とB’と同じであるが、後の説明の都合もあり、この様に記す。
従って、ここまでは図2の(1)から(3)を参照しつつ説明した背景技術欄と同じである。
As shown in (3) of FIG. 1, one cycle of operation is completed in an actual nuclear reactor, and when Rc1 and A.I. are actually started for the first time in the next cycle after fuel replacement. O. Is measured, and necessary corrections are made to the obtained A1 and B1.
As a result, the out-of-core detector response in the core state 1 (hereinafter referred to as “Rc1”) and the A.D. O. Rc1 = A1 ′ × A. O. + B1 ′ is obtained. Here, A1 ′ and B1 ′ are the same as A ′ and B ′ shown in FIG. 1 (3) respectively, but are also described in this way for convenience of later explanation.
Therefore, the steps so far are the same as those in the background art section described with reference to (1) to (3) in FIG.

図1の(4)に示す様に、修正用データASとBSを得る。ここに、AS=A1’/A1であり、BS=B1’/B1である。   As shown in (4) of FIG. 1, correction data AS and BS are obtained. Here, AS = A1 '/ A1 and BS = B1' / B1.

図1の(5)に示す様に、図1の(1)と同様に、運転中にA.O.を測定したい実際の炉心の状態(以下、この炉心状態を、「炉心状態2」と記す)を想定する。
図1の(6)に示す様に、図1の(2)と同様に、炉心状態2において複数のA.O.の状態を想定し、この想定した複数のA.O.の状態を基に、炉外検出器応答(以下、この炉心状態2のRcを、「Rc2」と記す)とA.O.の関係を算出する。
As shown in FIG. 1 (5), as in (1) of FIG. O. Is assumed to be an actual core state (hereinafter referred to as “core state 2”).
As shown in (6) of FIG. 1, a plurality of A.D. O. A plurality of A.S. O. On the basis of the state of the reactor (hereinafter, Rc in the core state 2 is referred to as “Rc2”) and A. O. Is calculated.

即ち、Rc2=A2×A.O.+B2を求める。なおここに、A2とB2は、おのおの図1の(2)に示すA1とB1に同じ方法で求められるが、運転状態1と運転状態2では炉心の状態が相違しており、想定したA.O.が相違するため、異なる値であることが多い。   That is, Rc2 = A2 × A. O. + B2 is obtained. Here, A2 and B2 are obtained by the same method as A1 and B1 shown in FIG. 1 (2), but the operating state 1 and operating state 2 have different core states. O. Are often different values.

図1の(7)に示す様に、図1の(4)で説明した修正用データASとBSを用いて、A2とB2に以下の修正を施す。修正後のA2とB2を各々A2’とB2’と記すと、
A2’=A2×AS=A2×(A1’/A1) であり、
B2’=B2×BS=B2×(B1’/B1) である。
As shown in (7) of FIG. 1, the following correction is performed on A2 and B2 using the correction data AS and BS described in (4) of FIG. A2 and B2 after correction are denoted as A2 ′ and B2 ′, respectively.
A2 ′ = A2 × AS = A2 × (A1 ′ / A1)
B2 ′ = B2 × BS = B2 × (B1 ′ / B1)

図1の(8)に示す様に、炉心状態2においては、炉外検出器応答Rc2とA.O.の関係は、以下の式で表すことができる。
Rc2=A2’×A.O.+B2’
As shown in FIG. 1 (8), in the reactor core state 2, the out-of-core detector response Rc2 and the A.D. O. This relationship can be expressed by the following equation.
Rc2 = A2 ′ × A. O. + B2 '

なお、炉内の出力分布を中性子束の強度として捉えているが、実際には中性子検出器は中性子の強度を電流値の強度として出力するため、この電流値に対して前記の修正がなされ、炉心状態2のA.O.の測定(推定による間接的な測定)がなされることとなる。
また、本実施の形態では原子炉のタイプに捉われず一般的に本発明の好ましい形態、技術内容を説明しているが、国内の発電用の加圧水型炉においては、通常炉心の上半分と下半分の軸方向の出力分布を測定し、監視している。このため、本実施の形態の如く軸方向の多数箇所に中性子検出器を配置した場合には、それらの測定値を基に炉心の上下2箇所のA.O.を得ることとなるが、そのための電気回路等は容易であるため、説明は省略する。
In addition, although the power distribution in the reactor is regarded as the intensity of the neutron flux, the neutron detector actually outputs the intensity of the neutron as the intensity of the current value. Core state 2 A.E. O. Measurement (indirect measurement by estimation) will be performed.
Further, in the present embodiment, the preferred form and technical contents of the present invention are generally described without being restricted by the type of the reactor, but in a pressurized water reactor for domestic power generation, The power distribution in the lower half axial direction is measured and monitored. For this reason, when neutron detectors are arranged at a number of locations in the axial direction as in the present embodiment, A.A. O. However, since the electric circuit for that purpose is easy, the description is omitted.

(第2の実施の形態)
本実施の形態は、解析式に実測に基づく修正がなされた式が既に得られている場合に、その式に、他の炉心状態の測定に使用するために炉心状態の相違を反映して必要な修正を施すことに関する。
(Second Embodiment)
In the present embodiment, when an analytical formula that has been corrected based on actual measurement has already been obtained, it is necessary to reflect the difference in the core state in order to use it in the measurement of other core states. On making various corrections.

ある原子炉が、最初の数ヶ月は、100%負荷で継続して運転されていたとする。この状態を、炉心状態1とする。この際の炉心の軸方向出力分布の測定には、100%負荷で継続して運転されていることを前提にして作成された解析式に、当該原子炉を起動させた時を利用して実測された軸方向炉心分布と軸方向に沿った複数箇所に装備されている中性子測定器の測定値を基に、必要な修正を施した式が使用されている。   Suppose a reactor has been operating continuously at 100% load for the first few months. This state is referred to as core state 1. At this time, the axial power distribution of the core is measured using the analytical formula created on the assumption that it is continuously operated at 100% load, using the time when the reactor is started. Based on the measured axial core distribution and the measured values of the neutron measuring instruments installed at multiple locations along the axial direction, the formula with the necessary corrections is used.

この原子炉が、他の原子炉の運転開始や電力需要の減少等の何らかの理由により、70%負荷で継続して運転を行なうことになったとする。この状態を、炉心状態2とする。
この場合には、中性子源即ち炉心各部の中性子密度が小さくなり、また冷却材中の硼素濃度が増加するため途中での中性子の吸収が多くなる等の炉内状態の変化が生じ、その結果中性子測定器の測定値が小さくなるが、どの程度小さくなるかは解析を中心とする検討で容易に求められる。このため、前記100%負荷で継続して運転されている炉心状態1を対象として用いられていた式に、検討結果を反映して修正を行ない、70%負荷で継続して運転を行なう炉心状態2での軸方向出力分布の測定に使用することとなる。
It is assumed that this nuclear reactor is continuously operated at a load of 70% for some reason such as the start of operation of another nuclear reactor or a reduction in power demand. This state is referred to as core state 2.
In this case, the neutron source, that is, the neutron density in each part of the core is reduced, and the boron concentration in the coolant is increased, resulting in a change in the internal state of the reactor, such as an increase in neutron absorption along the way. Although the measurement value of the measuring instrument becomes small, how much it becomes small can be easily obtained by examination centering on analysis. Therefore, the equation used for the core state 1 that is continuously operated at the 100% load is corrected to reflect the examination result, and the core state in which the operation is continuously performed at the 70% load. 2 will be used to measure the axial output distribution.

即ち、炉心状態1の補正係数をK、炉心状態2の補正係数(改良された補正係数)をK’とすれば、K’=K×Cとなる。ここに、C=炉心状態1と炉心状態2の差異を示す値である。
あるいは、K’={炉心状態1の測定されたI/(炉心状態1の測定されたRc)}{解析で算出された炉心状態2のI/解析で算出された炉心状態1のI}/{解析で算出された炉心状態2のRc/解析で算出された炉心状態1のRc}となる。
That is, if the correction factor for core state 1 is K and the correction factor for core state 2 (improved correction factor) is K ′, then K ′ = K × C. Here, C = a value indicating the difference between the core state 1 and the core state 2.
Alternatively, K ′ = {measured I of core state 1 / (measured Rc of core state 1)} {I of core state 2 calculated by analysis / I of core state 1 calculated by analysis} / {Rc of core state 2 calculated by analysis / Rc of core state 1 calculated by analysis}.

本発明の実施の形態における炉外検出器応答とA.O.の関係を示す式を求める手順を、概念的に示す図である。In-furnace detector response and A. O. It is a figure which shows notionally the procedure which calculates | requires the formula which shows these relationships. 従来技術の炉外検出器応答とA.O.の関係を示す式を求める手順を、概念的に示す図である。A prior art out-of-core detector response and A.I. O. It is a figure which shows notionally the procedure which calculates | requires the formula which shows these relationships.

符号の説明Explanation of symbols

10 炉心
11、12、13、14、15 軸方向に仮想的に分割された炉心の各領域
20 原子炉圧力容器壁
21、22、23、24、25 中性子検出器
10 Core 11, 12, 13, 14, 15 Each region of the core virtually divided in the axial direction 20 Reactor pressure vessel walls 21, 22, 23, 24, 25 Neutron detector

Claims (5)

圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値と、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式とを基に、運転中の炉心の軸方向出力分布を測定する方法であって、
実際に炉心の軸方向出力分布を測定することとなる炉心状態を対象として、炉心の軸方向出力分布と、前記中性子検出器の測定値との関係を表す解析式を作成する解析式作成ステップと、
他の炉心状態における原子炉の実際の運転を利用して得られている解析式を修正するデータを流用して、前記解析式作成ステップで作成された解析式に修正を行なう解析式修正ステップと、
前記解析式作成ステップが対象としている炉心状態の原子炉の運転中に、前記中性子検出器による測定値と、前記解析式修正ステップで解析式を修正して得られた式とを用いて、炉心の軸方向出力分布を測定する測定ステップを有していることを特徴とする炉心の軸方向出力分布の測定方法。
Based on the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel and the formula representing the relationship between the axial power distribution of the core and the measured values of the neutron detector A method for measuring the axial power distribution of the core of
Analytical expression creating step for creating an analytical expression representing the relationship between the axial power distribution of the core and the measured value of the neutron detector for the core state that will actually measure the axial power distribution of the core; ,
An analytical formula correction step for correcting the analytical formula created in the analytical formula creation step by using data for correcting the analytical formula obtained by utilizing the actual operation of the reactor in another core state, ,
During the operation of the reactor in the core state targeted by the analytical formula creation step, the measured value by the neutron detector and the formula obtained by correcting the analytical formula in the analytical formula correction step are used. A measuring method for measuring the axial power distribution of the core, comprising the step of measuring the axial power distribution of the core.
前記解析式修正ステップは、
他の炉心状態を対象として、炉心の軸方向出力分布と、圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値との関係を表す解析式を求める解析式作成手順と、
前記他の炉心状態における原子炉の運転を利用して、その炉心状態の炉心の軸方向出力分布と前記中性子検出器の測定値との関係を実際に測定し、前記解析式作成手順により作成された解析式が正しい関係を表すこととなる様に修正するためのデータを取得する修正用データ取得手順と、
前記解析式作成ステップにて作成された解析式を、前記修正用データ取得手順にて得られたデータを流用して修正する修正手順を有していることを特徴とする請求項1に記載の炉心の軸方向出力分布の測定方法。
The analytical formula correcting step includes:
Analytical formula creation procedure for obtaining analytical formulas representing the relationship between the axial power distribution of the core and the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel for other core conditions When,
Using the operation of the reactor in the other core state, the relationship between the axial power distribution of the core in the core state and the measured value of the neutron detector is actually measured and created by the analytical formula creation procedure. A data acquisition procedure for correction to acquire data for correction so that the analytical expression represents a correct relationship;
2. The method according to claim 1, further comprising a correction procedure for correcting the analytical formula created in the analytical formula creation step by diverting the data obtained in the correction data acquisition procedure. A method for measuring the axial power distribution of the core.
圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値と、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式とを基に、運転中の炉心の軸方向出力分布を測定する方法であって、
原子炉の運転時の測定を基に実際に適合する様に修正した式が既に得られている第1の炉心状態と、これから実際に測定を行なう第2の炉心状態とにおいて、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す解析式に生じる相違を検討する検討ステップと、
前記検討ステップにおける検討結果を基に、前記第1の炉心状態を対象として実際に適合する様に修正した式を、第2の炉心状態を対象にした炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式に修正する修正ステップと、
前記第2の炉心状態の原子炉の運転中に、前記中性子検出器による測定値と、前記修正ステップで修正された式とを用いて、軸方向の炉心の出力分布を測定する測定ステップを有していることを特徴とする炉心の軸方向出力分布の測定方法。
Based on the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel and the formula representing the relationship between the axial power distribution of the core and the measured values of the neutron detector A method for measuring the axial power distribution of the core of
The axial direction of the core in the first core state in which a formula corrected to be actually adapted based on the measurement during the operation of the nuclear reactor has already been obtained and in the second core state in which the actual measurement will be performed from now on An examination step for examining a difference occurring in an analytical expression representing a relationship between an output distribution and a measurement value of the neutron detector,
Based on the result of the examination in the examination step, the equation corrected so as to be actually adapted to the first core state, the axial power distribution of the core intended for the second core state, and the neutron detector A correction step that corrects the relationship to the measured value of
During the operation of the reactor in the second core state, there is a measurement step for measuring the power distribution of the core in the axial direction using the measurement value by the neutron detector and the formula corrected in the correction step. A method of measuring the axial power distribution of the core, characterized in that
圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器の測定値と、炉心の軸方向出力分布と前記中性子検出器の測定値との関係を表す式とを基に、運転中の炉心の軸方向出力分布を測定する方法であって、
第1の炉心状態における炉心の軸方向出力分布と、前記中性子検出器の測定値との関係を表す解析式を求める解析式作成ステップと、
前記第1の炉心状態における原子炉の運転を利用して、第1の炉心状態における炉心の軸方向出力分布と前記中性子検出器の測定値との関係を実際に測定し、前記解析式が正しい関係を表すこととなる様に修正する解析式修正ステップと、
実際に測定したい炉心状態である第2の炉心状態と前記第1の炉心状態との相違を検討し、検討結果を基に前記解析式修正ステップで修正された解析式にさらに修正を行い、第2の炉心状態における炉心の軸方向出力分布と前記中性子検出器の測定値との関係を正しく表す式を得る式作成ステップと、
前記第2の炉心状態の原子炉の運転中に、前記中性子検出器により実際に測定された測定値と、前記式作成ステップで得られた式とを用いて、第2の炉心状態の炉心の軸方向出力分布を測定する測定ステップを有していることを特徴とする炉心の軸方向出力分布の測定方法。
Based on the measured values of the neutron detectors installed at multiple locations along the axial direction of the pressure vessel and the formula representing the relationship between the axial power distribution of the core and the measured values of the neutron detector A method for measuring the axial power distribution of the core of
An analytical expression creating step for obtaining an analytical expression representing the relationship between the axial power distribution of the core in the first core state and the measured value of the neutron detector;
Using the operation of the reactor in the first core state, the relationship between the axial power distribution of the core in the first core state and the measured value of the neutron detector is actually measured, and the analytical expression is correct Analytical formula correction step for correcting the relationship to be expressed,
Examining the difference between the second core state, which is the core state to be actually measured, and the first core state, further modifying the analytical formula corrected in the analytical formula correcting step based on the examination results, A formula creating step for obtaining a formula that correctly represents the relationship between the axial power distribution of the core in the core state of 2 and the measured value of the neutron detector;
During the operation of the reactor in the second core state, the measured value actually measured by the neutron detector and the formula obtained in the formula creation step are used to calculate the core in the second core state. A measuring method of an axial power distribution of a core, comprising a measuring step of measuring an axial power distribution.
前記圧力容器の軸方向に沿った複数箇所に装備されている中性子検出器は、少なくともその一部は、圧力容器の外壁若しくは外側に装備されていることを特徴とする請求項1ないし請求項4のいずれかに記載の炉心の軸方向出力分布の測定方法。   5. The neutron detectors installed at a plurality of locations along the axial direction of the pressure vessel are at least partially provided on the outer wall or outside of the pressure vessel. A method for measuring the axial power distribution of the core according to any one of the above.
JP2007009454A 2007-01-18 2007-01-18 Measuring method of axial power distribution of core Pending JP2008175692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009454A JP2008175692A (en) 2007-01-18 2007-01-18 Measuring method of axial power distribution of core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009454A JP2008175692A (en) 2007-01-18 2007-01-18 Measuring method of axial power distribution of core

Publications (1)

Publication Number Publication Date
JP2008175692A true JP2008175692A (en) 2008-07-31

Family

ID=39702820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009454A Pending JP2008175692A (en) 2007-01-18 2007-01-18 Measuring method of axial power distribution of core

Country Status (1)

Country Link
JP (1) JP2008175692A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256328A (en) * 2009-04-22 2010-11-11 Korea Electric Power Corp Prediction method for monitoring performance of power plant measuring instrument
JP2013525796A (en) * 2010-04-30 2013-06-20 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Calibration method for reactor out-of-core detector
TWI773001B (en) * 2019-12-06 2022-08-01 美商西屋電器公司 Method and apparatus employing vanadium neutron detectors
CN115862912A (en) * 2023-02-27 2023-03-28 西安交通大学 Method for measuring reactor core power distribution of pressurized water reactor under dynamic xenon condition

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107496A (en) * 1976-03-05 1977-09-09 Westinghouse Electric Corp Method and device for monitoring axial output distribution of reactor core out of reactor core
JPS57106900A (en) * 1980-12-24 1982-07-02 Mitsubishi Atomic Power Ind Method of monitoring axial power distribution by using axial offset signal
JPS57156592A (en) * 1981-03-24 1982-09-27 Mitsubishi Atomic Power Ind Method of monitoring axial power distribution
JPS57189100A (en) * 1981-05-18 1982-11-20 Mitsubishi Atomic Power Ind Method of monitoring axial power distribution
JPS59214795A (en) * 1983-05-20 1984-12-04 三菱電機株式会社 Neutron detector for measuring nuclear away from reactor
JPS6283696A (en) * 1985-10-09 1987-04-17 三菱原子力工業株式会社 Method of monitoring axial output distribution in reactor
JPS62174693A (en) * 1986-01-29 1987-07-31 三菱電機株式会社 Method of measuring output from nuclear reactor
JPH01169399A (en) * 1987-12-25 1989-07-04 Mitsubishi Electric Corp Measuring apparatus for nuclear reactor output distribution
JPH03214099A (en) * 1989-06-29 1991-09-19 Framatome Et Cogema <Fragema> Method of determining output distribution in nuclear reactor core and method of calibrating neutron detector around reactor core
JPH0462498A (en) * 1990-06-29 1992-02-27 Mitsubishi Atom Power Ind Inc Measuring method for neutron flux distribution in nuclear reactor
JPH07128484A (en) * 1993-11-02 1995-05-19 Mitsubishi Atom Power Ind Inc Operation monitoring and protection method for reactor
JPH08271680A (en) * 1995-03-28 1996-10-18 Japan Atom Power Co Ltd:The Collation calibration method for nuclear instrumentation in and out of reactor
JP2000121779A (en) * 1998-10-13 2000-04-28 Mitsubishi Heavy Ind Ltd Power distribution control method for reactor core
JP2004012211A (en) * 2002-06-05 2004-01-15 Nuclear Fuel Ind Ltd Method for evaluating behavior of neutron flux in nuclear reactor
JP2005241604A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Creation method of data for nuclear instrumentation calibration of inside and outside of reactor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107496A (en) * 1976-03-05 1977-09-09 Westinghouse Electric Corp Method and device for monitoring axial output distribution of reactor core out of reactor core
JPS57106900A (en) * 1980-12-24 1982-07-02 Mitsubishi Atomic Power Ind Method of monitoring axial power distribution by using axial offset signal
JPS57156592A (en) * 1981-03-24 1982-09-27 Mitsubishi Atomic Power Ind Method of monitoring axial power distribution
JPS57189100A (en) * 1981-05-18 1982-11-20 Mitsubishi Atomic Power Ind Method of monitoring axial power distribution
JPS59214795A (en) * 1983-05-20 1984-12-04 三菱電機株式会社 Neutron detector for measuring nuclear away from reactor
JPS6283696A (en) * 1985-10-09 1987-04-17 三菱原子力工業株式会社 Method of monitoring axial output distribution in reactor
JPS62174693A (en) * 1986-01-29 1987-07-31 三菱電機株式会社 Method of measuring output from nuclear reactor
JPH01169399A (en) * 1987-12-25 1989-07-04 Mitsubishi Electric Corp Measuring apparatus for nuclear reactor output distribution
JPH03214099A (en) * 1989-06-29 1991-09-19 Framatome Et Cogema <Fragema> Method of determining output distribution in nuclear reactor core and method of calibrating neutron detector around reactor core
JPH0462498A (en) * 1990-06-29 1992-02-27 Mitsubishi Atom Power Ind Inc Measuring method for neutron flux distribution in nuclear reactor
JPH07128484A (en) * 1993-11-02 1995-05-19 Mitsubishi Atom Power Ind Inc Operation monitoring and protection method for reactor
JPH08271680A (en) * 1995-03-28 1996-10-18 Japan Atom Power Co Ltd:The Collation calibration method for nuclear instrumentation in and out of reactor
JP2000121779A (en) * 1998-10-13 2000-04-28 Mitsubishi Heavy Ind Ltd Power distribution control method for reactor core
JP2004012211A (en) * 2002-06-05 2004-01-15 Nuclear Fuel Ind Ltd Method for evaluating behavior of neutron flux in nuclear reactor
JP2005241604A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Creation method of data for nuclear instrumentation calibration of inside and outside of reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256328A (en) * 2009-04-22 2010-11-11 Korea Electric Power Corp Prediction method for monitoring performance of power plant measuring instrument
JP2013525796A (en) * 2010-04-30 2013-06-20 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Calibration method for reactor out-of-core detector
TWI773001B (en) * 2019-12-06 2022-08-01 美商西屋電器公司 Method and apparatus employing vanadium neutron detectors
CN115862912A (en) * 2023-02-27 2023-03-28 西安交通大学 Method for measuring reactor core power distribution of pressurized water reactor under dynamic xenon condition
CN115862912B (en) * 2023-02-27 2023-05-02 西安交通大学 Method for measuring power distribution of pressurized water reactor core under dynamic xenon condition

Similar Documents

Publication Publication Date Title
JP5954902B2 (en) How to monitor the power distribution of a reactor core
JPH11264887A (en) Reactor nuclear instrumentation system, reactor power distribution monitoring system provided with this system and reactor power monitoring method
KR100991441B1 (en) Renormalization Method of Excore Neutron Detectors
JPS62229097A (en) Method of calibrating on-line core-performance predictor
JP2008175692A (en) Measuring method of axial power distribution of core
JP5580525B2 (en) How to collect data on the operating condition of the reactor core
CN112509716A (en) Reactor three-dimensional power probability distribution monitoring method based on information fusion theory
KR101628404B1 (en) Method of producing mixed in-core maps and application to the calibration of fixed instrumentation
JP2009156745A (en) Reactor core performance calculating device
KR102087902B1 (en) Method for extending life-time of rhodium detector
JP2005283269A (en) Transient boiling transition monitoring system for boiling water nuclear reactor and monitoring method
KR101633232B1 (en) method of reducing the error of shape annealing function for ex-core detector of nuclear power plant
JP5443901B2 (en) Nuclear instrumentation system
JP4008926B2 (en) Core performance calculator
JP4966900B2 (en) Method and apparatus for calculating core performance of boiling water reactor
JP4918345B2 (en) Subcriticality measuring method, subcriticality measuring program, and subcriticality measuring apparatus
JP5512497B2 (en) Boiling water reactor core
JP2017049012A (en) Nuclear reactor instrumentation system and nuclear reactor
JPH1010275A (en) Core performance calculator
JP4461911B2 (en) Reactor power measuring device
CN110749919A (en) Method and device for calibrating nuclear reactor out-of-pile detector
JP2004309401A (en) Nuclear reactor core monitoring system
KR20200088273A (en) Nuclear measurement isolated output signal scaling method and system using same
WO2016203661A1 (en) Nuclear-fuel-axial-direction measurement value reconstruction device and method
JPH04232497A (en) Apparatus for monitoring output distribution of core, reactor protecting apparatus, detector apparatus for core of reactor and method for monitoring coreof reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108