JP2008151648A - Device for evaluating transmittance characteristics of fluid - Google Patents

Device for evaluating transmittance characteristics of fluid Download PDF

Info

Publication number
JP2008151648A
JP2008151648A JP2006339979A JP2006339979A JP2008151648A JP 2008151648 A JP2008151648 A JP 2008151648A JP 2006339979 A JP2006339979 A JP 2006339979A JP 2006339979 A JP2006339979 A JP 2006339979A JP 2008151648 A JP2008151648 A JP 2008151648A
Authority
JP
Japan
Prior art keywords
porous plate
elastic sealing
fluid
sealing material
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339979A
Other languages
Japanese (ja)
Other versions
JP4725506B2 (en
Inventor
Koichi Kita
晃一 喜多
Masahiro Wada
正弘 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006339979A priority Critical patent/JP4725506B2/en
Publication of JP2008151648A publication Critical patent/JP2008151648A/en
Application granted granted Critical
Publication of JP4725506B2 publication Critical patent/JP4725506B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable easy execution of evaluation of transmittance characteristics of fluid in a porous plate. <P>SOLUTION: The device 1 for evaluating transmittance characteristics of fluid is provided, which includes a mounting stand 5 with a placing plane 5a for mounting a porous plate 3, a pressing member 7 for pressing the porous plate 3 from above the mounting stand 5 and an elastically deformable, elastic sealing member 9 fixed to the pressing member 7 so as to face the placing plane 5a of the mounting stand 5. The elastic sealing member 9 elastically deforms so as to contact to the placing plane 5a and therewith tightly cover the outer surfaces 3a, 3b, 3c of the porous plate 3 except for the passage of the fluid that is passed in the porous plate 3, in the surface direction, under the condition that the porous plate 3 is pressed by the pressing member 7. Further, the compressive elastic modulus of the elastic sealing member 9 is smaller than that of the porous plate 3 and the thickness of the member 9 is twice that of the plate 3 or greater, and the pressing force of the member 9 to the plane 5 is twice the pressure of the fluid flowing into the plate 3 or greater. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、三次元網目構造を有する多孔質板の内部を通過する流体の透過特性を評価する流体透過特性評価装置に関するものである。   The present invention relates to a fluid permeation characteristic evaluation apparatus for evaluating the permeation characteristic of a fluid passing through a porous plate having a three-dimensional network structure.

三次元網目構造を有する多孔質板は、フィルタ、ガス拡散部材、放熱部材、給水部材等として種々の装置に組み込まれており、例えば特許文献1のように、多孔質板の内部でその面方向に空気や燃料ガス(流体)を流すように多孔質板を組み込んだ燃料電池がある。上述した用途の多孔質板を各種装置に組み込む場合には、予め多孔質板の面方向に通過する流体の透過特性(例えば流体の圧力損失や流体の濃度変化)を評価しておく必要がある。
多孔質板の面方向に通過する流体の透過特性を評価する方法としては、例えば特許文献1のように、多孔質板の主面に対して流体を強制的に流入・流出させる方法がある。なお、この評価方法を実施する際には、多孔質板の内部を通過させる流体の流路を除き、多孔質板の外面を密閉する必要がある。
A porous plate having a three-dimensional network structure is incorporated in various devices as a filter, a gas diffusion member, a heat radiating member, a water supply member, and the like. There is a fuel cell in which a porous plate is incorporated so that air or fuel gas (fluid) flows through the inside. When the porous plate for the above-described use is incorporated in various apparatuses, it is necessary to evaluate in advance the permeation characteristics of the fluid that passes in the surface direction of the porous plate (for example, the pressure loss of the fluid or the concentration change of the fluid). .
As a method for evaluating the permeation characteristics of fluid passing in the surface direction of the porous plate, for example, as disclosed in Patent Document 1, there is a method of forcibly inflowing / outflowing fluid with respect to the main surface of the porous plate. In carrying out this evaluation method, it is necessary to seal the outer surface of the porous plate except for the flow path of the fluid that passes through the inside of the porous plate.

この場合、一般には、一対の狭持部材により多孔質板をその厚さ方向から挟み込むと共に、多孔質板の側面が露出する一対の狭持部材の隙間に接着剤や樹脂材料等のシール材を埋め込むことで、多孔質板の外面の密閉を図ることが考えられる。また、シール材を使用する代わりに、多孔質板の周囲を囲繞するOリングを多孔質板と共に一対の狭持部材で挟み込むことで、多孔質板の外面の密閉を図ることが考えられる。
特開2006−216426号公報 特開2004−303558号公報
In this case, in general, the porous plate is sandwiched between the pair of holding members from the thickness direction, and a sealing material such as an adhesive or a resin material is provided in the gap between the pair of holding members where the side surfaces of the porous plate are exposed. It is conceivable to seal the outer surface of the porous plate by embedding. Further, instead of using a sealing material, it is conceivable to seal the outer surface of the porous plate by sandwiching an O-ring surrounding the periphery of the porous plate with a pair of holding members together with the porous plate.
JP 2006-216426 A JP 2004-303558 A

しかしながら、Oリングを使用して多孔質板の密閉を図る場合には、多孔質板の厚さ寸法等の大きさに応じてOリングを交換する必要がある。また、シール材を使用して多孔質板の密閉を図る場合には、透過特性の評価を1回行う毎にシール材の埋め込みを実施する必要があるため、透過特性の評価を行うためのセッティングが面倒になるという問題がある。   However, when an O-ring is used to seal the porous plate, it is necessary to replace the O-ring according to the thickness dimension of the porous plate. Also, when sealing a porous plate using a sealing material, it is necessary to embed the sealing material every time the permeation characteristics are evaluated, so settings for evaluating the permeation characteristics are required. There is a problem that becomes troublesome.

本発明は、以上の課題に鑑みてなされたものであって、多孔質板における流体の透過特性評価を容易に実施することができるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to enable easy evaluation of fluid permeation characteristics in a porous plate.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の流体透過特性評価装置は、三次元網目構造を有する多孔質板の内部でその面方向に流体を通過させ、前記多孔質板における前記流体の透過特性を評価する流体透過特性評価装置であって、前記多孔質板を載置する載置平面を有する載置台と、該載置台の上方から前記多孔質板を押さえつける押付部材と、前記載置台の載置平面に対向するように前記押付部材の下部と前記多孔質板との間に静置された弾性変形可能な弾性シール材とを備え、前記弾性シール材は、前記押付部材により前記載置平面に載置された前記多孔質板を押さえつけた状態で、前記多孔質板の内部に通過させる前記流体の流路を除いて、前記載置平面に当接すると共に前記多孔質板の外面を気密に覆うように弾性変形するものであり、前記弾性シール材の圧縮弾性率が前記多孔質板の圧縮弾性率よりも低く、かつ、前記弾性シール材の厚さ寸法が前記多孔質板の厚さ寸法の2倍以上であり、さらに、前記載置平面に対する前記弾性シール材の押し付け圧力が前記多孔質板の内部に流入する前記流体の圧力の2倍以上であることを特徴とする。   The fluid permeation characteristic evaluation apparatus according to the present invention is a fluid permeation characteristic evaluation apparatus that allows a fluid to pass in a plane direction inside a porous plate having a three-dimensional network structure and evaluates the permeation characteristic of the fluid in the porous plate. A mounting table having a mounting plane for mounting the porous plate; a pressing member for pressing the porous plate from above the mounting table; and the pressing so as to face the mounting plane of the mounting table. An elastically deformable elastic sealing material stationary between a lower part of the member and the porous plate, wherein the elastic sealing material is placed on the mounting plane by the pressing member. The elastic plate is elastically deformed so as to abut against the mounting plane and to cover the outer surface of the porous plate in an airtight manner, except for the flow path of the fluid that is passed through the porous plate in a pressed state. Compressive elasticity of the elastic sealing material Is lower than the compressive elastic modulus of the porous plate, the thickness dimension of the elastic sealing material is at least twice the thickness dimension of the porous plate, and the elastic sealing material with respect to the mounting plane described above The pressing pressure is not less than twice the pressure of the fluid flowing into the porous plate.

なお、弾性シール材は押付部材に固定されていることがより望ましい。
本発明によれば、押付部材により多孔質板を押さえつけるだけで、弾性シール材のうち多孔質板の上面に当接した部分を圧縮変形させて、弾性シール材のうち多孔質板の上面周囲に位置する部分を載置平面に当接させることができる。また、この際には、載置平面に当接した弾性シール材が圧縮変形し、これによって載置平面に対する弾性シール材の押し付け圧力を十分な大きさで得ることができる。これにより、多孔質板内部を通過する流体が載置平面と弾性シール材との間から漏れ出すことを防止することができる。
以上のことから、多孔質板の厚さ寸法等の大きさに関わらず、押付部材を多孔質板に押しつけるだけで、流路を除いた多孔質板の外面を密閉して、多孔質板における流体の透過特性の評価を容易に行うことが可能となる。
It is more desirable that the elastic sealing material is fixed to the pressing member.
According to the present invention, simply pressing the porous plate with the pressing member compresses and deforms the portion of the elastic sealing material that is in contact with the upper surface of the porous plate, and around the upper surface of the porous plate of the elastic sealing material. The part to be positioned can be brought into contact with the mounting plane. Further, at this time, the elastic sealing material in contact with the mounting plane is compressed and deformed, whereby the pressing pressure of the elastic sealing material against the mounting plane can be obtained with a sufficient magnitude. Thereby, it can prevent that the fluid which passes the inside of a porous board leaks out from between a mounting plane and an elastic sealing material.
From the above, the outer surface of the porous plate excluding the flow path is hermetically sealed only by pressing the pressing member against the porous plate regardless of the thickness dimension or the like of the porous plate. It is possible to easily evaluate the fluid permeation characteristics.

ここで、弾性シール材は、その圧縮永久歪みを10%以下としてもよい。
この場合には、押付部材による押さえつけを解除した際に、弾性シール材が良好に弾性復帰するため、同一の弾性シール材を用いても、透過特性評価を多数回にわたって繰り返し実施することができ、透過特性の評価結果の再現性も良好に保つことができる。
Here, the elastic sealing material may have a compression set of 10% or less.
In this case, when the pressing by the pressing member is released, the elastic sealing material recovers elastically well, so even if the same elastic sealing material is used, the permeation characteristic evaluation can be repeatedly performed many times. The reproducibility of the evaluation result of the transmission characteristics can also be kept good.

また、弾性シール材は、その内部に閉気孔を含んだ多孔質状に形成されたものとしてもよい。
この場合には、弾性シール材を小さな荷重で多孔質板に押しつけても容易に弾性変形できるため、多孔質板の外面を確実に気密に覆うことができる。また、弾性シール材が閉気孔を含んで多孔質体をなすように構成されている場合には、多孔質板内部を通過する流体が弾性シール材を介して外部に漏れることを防ぐことができる。また、この場合には、流体が多孔質板から弾性シール材内部に侵入・透過することで多孔質板の外側に流体の流路が形成されることを防止し、この流路形成に基づいて透過特性の評価精度が損なわれてしまうことも回避できる。
The elastic sealing material may be formed in a porous shape including closed pores therein.
In this case, since the elastic seal material can be easily elastically deformed even when pressed against the porous plate with a small load, the outer surface of the porous plate can be surely covered airtightly. Further, when the elastic sealing material is configured to form a porous body including closed pores, it is possible to prevent the fluid passing through the porous plate from leaking outside through the elastic sealing material. . Further, in this case, the fluid can be prevented from entering and permeating the elastic sealing material from the porous plate to form a fluid flow path outside the porous plate. It can also be avoided that the evaluation accuracy of the transmission characteristics is impaired.

なお、本発明の流体透過特性評価装置においては、弾性シール材の厚さを25%圧縮するために要する圧縮応力(25%圧縮応力)を、10kPa以上350kPa以下とすることがより好ましい。
これは、弾性シール材の25%圧縮応力が10kPa未満となると、多孔質板内部に流入した流体の圧力によって弾性シール材が容易に圧縮変形して多孔質板の外面から押し上げられ、多孔質板の外面と弾性シール材との間に大きな隙間が生じるためである。また、弾性シール材の25%圧縮応力が350kPaよりも大きくなると、押付部材により載置平面に載置された多孔質板を押さえつけた状態において、多孔質板の外形形状に対する弾性シール材の追従性が不足して、多孔質板の外面と弾性シール材との間に大きな隙間が生じるためである。
In the fluid permeation characteristic evaluation apparatus of the present invention, it is more preferable that the compressive stress (25% compressive stress) required for compressing the thickness of the elastic sealing material by 25% is 10 kPa or more and 350 kPa or less.
This is because when the elastic sealing material has a 25% compressive stress of less than 10 kPa, the elastic sealing material is easily compressed and deformed by the pressure of the fluid flowing into the porous plate and pushed up from the outer surface of the porous plate. This is because a large gap is generated between the outer surface of the elastic sealing material and the elastic sealing material. Further, when the 25% compressive stress of the elastic sealing material is larger than 350 kPa, the elastic sealing material can follow the outer shape of the porous plate in a state where the porous plate placed on the mounting plane is pressed by the pressing member. This is because the gap is insufficient and a large gap is formed between the outer surface of the porous plate and the elastic sealing material.

このような大きな隙間があると、多孔質板内部に流入した流体が多孔質内部だけではなく隙間も通過するため、多孔質板における流体の透過特性を精度良く評価することが困難となる。
したがって、弾性シール材の25%圧縮応力を10kPa以上350kPa以下とすることで、流体の圧力による弾性シール材の浮き上がりを抑制すると共に多孔質板の外形形状に対する弾性シール材の追従性を向上させて、上述した隙間を小さく抑えることができ、多孔質板における流体の透過特性を精度良く評価することが可能となる。
If there is such a large gap, the fluid flowing into the porous plate passes not only inside the porous plate but also through the gap, so that it is difficult to accurately evaluate the fluid permeation characteristics in the porous plate.
Therefore, by setting the 25% compression stress of the elastic sealing material to 10 kPa or more and 350 kPa or less, the elastic sealing material can be prevented from being lifted by the pressure of the fluid, and the followability of the elastic sealing material to the outer shape of the porous plate can be improved. The gaps described above can be kept small, and the fluid permeation characteristics of the porous plate can be accurately evaluated.

本発明によれば、多孔質板の厚さ寸法等の大きさに関わらず、同一の弾性シール材を固定した押付部材により載置台に載置された多孔質板を押さえつけるだけで、流路を除いた多孔質板の外面を密閉することが可能となるため、多孔質板における流体の透過特性評価を容易に実施することができる。   According to the present invention, regardless of the thickness of the porous plate such as the thickness dimension, the flow path can be formed simply by pressing the porous plate placed on the mounting table with the pressing member to which the same elastic sealing material is fixed. Since it is possible to seal the outer surface of the removed porous plate, it is possible to easily evaluate the fluid permeation characteristics in the porous plate.

以下、本発明の実施形態に係る流体透過特性評価装置について説明する。
なお、以下に説明する各実施形態の流体透過特性評価装置は、三次元網目構造を有する多孔質板の内部で、その面方向に流体を通過させ、多孔質板における流体(気体、液体)の透過特性を評価するものである。
Hereinafter, a fluid permeation characteristic evaluation apparatus according to an embodiment of the present invention will be described.
In addition, the fluid permeation characteristic evaluation apparatus of each embodiment described below allows a fluid to pass in the surface direction inside a porous plate having a three-dimensional network structure, and allows fluid (gas, liquid) in the porous plate to pass. The transmission characteristics are evaluated.

〔第1実施形態〕
はじめに、第1実施形態に係る流体透過特性評価装置について説明する。
図1に示すように、この実施形態に係る流体透過特性評価装置1は、平面視略矩形状の多孔質板3を載置する載置平面5aを有する載置台5と、載置台5の上方から多孔質板3を押さえつけるための押付部材7と、上記載置平面5aに対向するように押付部材7に固定された弾性変形可能な弾性シール材9とを備えている。
載置台5及び押付部材7は、多孔質板3をその厚さ方向(Z軸方向)から挟み込む際に変形しない剛性の高い材料からなり、この実施形態においては平面視略矩形状に形成されている。また、載置台5及び押付部材7は、その長手方向(X軸方向)及び幅方向(Y軸方向)の寸法が多孔質板3よりも大きくなるように形成されている。さらに、後述する弾性シール材9を固定する押付部材7の固定面7aは平坦に形成されている。そして、押付部材7により多孔質板3を押さえつけた状態においては、固定面7aと載置台5の載置平面5aとが平行に保持されるようになっている。
[First Embodiment]
First, the fluid permeation characteristic evaluation apparatus according to the first embodiment will be described.
As shown in FIG. 1, a fluid permeation characteristic evaluation apparatus 1 according to this embodiment includes a mounting table 5 having a mounting plane 5a on which a porous plate 3 having a substantially rectangular shape in plan view is mounted, and an upper side of the mounting table 5. Are provided with a pressing member 7 for pressing the porous plate 3 and an elastically deformable elastic sealing material 9 fixed to the pressing member 7 so as to face the mounting plane 5a.
The mounting table 5 and the pressing member 7 are made of a highly rigid material that does not deform when sandwiching the porous plate 3 from its thickness direction (Z-axis direction). In this embodiment, the mounting table 5 and the pressing member 7 are formed in a substantially rectangular shape in plan view. Yes. Further, the mounting table 5 and the pressing member 7 are formed such that the dimensions in the longitudinal direction (X-axis direction) and the width direction (Y-axis direction) are larger than those of the porous plate 3. Furthermore, the fixing surface 7a of the pressing member 7 for fixing the elastic sealing material 9 described later is formed flat. And in the state which pressed down the porous board 3 with the pressing member 7, the fixed surface 7a and the mounting plane 5a of the mounting base 5 are hold | maintained in parallel.

弾性シール材9は、その内部に閉気孔を含んだ多孔質状に形成され、発泡樹脂や発泡ゴムによって構成されている。具体的な発泡樹脂や発泡ゴムとしては、例えばウレタンゴム(例えば、商品名:ポロン(ロジャースイノアック社製)、商品名:薄層クリーンフォームSCF(日東電工社製))、シリコーンゴム(例えば、商品名:NPゲル(ジェルテック社製))、ポリオレフィン樹脂(例えば、イノアックエラストマー社製のRLシリーズ)、ポリエチレン樹脂、エチレンゴム(例えば、エチレンプロピレンゴム(EPDM))等が挙げられる。また、この弾性シール材9では、圧縮永久歪みが10%以下に設定されており、また、圧縮弾性率が多孔質板3よりも低く設定されている。
そして、弾性シール材9は、平面視略矩形状に形成され、多孔質板3と略同等の長さ寸法を有している。また、弾性シール材9の幅寸法は、載置台5及び押付部材7と略同等に設定されており、載置平面5aに配された多孔質板3の両側部から幅方向に突出するように形成されている。さらに、弾性シール材9の厚さ寸法は、多孔質板3の厚さ寸法の2倍以上に設定されている。
The elastic sealing material 9 is formed in a porous shape including closed pores therein, and is made of foamed resin or foamed rubber. Specific foamed resins and foamed rubbers include, for example, urethane rubber (for example, trade name: PORON (manufactured by Roger Sinoac), trade name: thin-layer clean foam SCF (manufactured by Nitto Denko Corporation)), silicone rubber (for example, product) Name: NP gel (manufactured by Geltech), polyolefin resin (for example, RL series manufactured by Inoac Elastomer), polyethylene resin, ethylene rubber (for example, ethylene propylene rubber (EPDM)), and the like. Further, in the elastic sealing material 9, the compression set is set to 10% or less, and the compression elastic modulus is set to be lower than that of the porous plate 3.
The elastic sealing material 9 is formed in a substantially rectangular shape in plan view and has a length dimension substantially equal to that of the porous plate 3. The width dimension of the elastic seal material 9 is set to be substantially the same as that of the mounting table 5 and the pressing member 7 so as to protrude in the width direction from both sides of the porous plate 3 disposed on the mounting plane 5a. Is formed. Furthermore, the thickness dimension of the elastic sealing material 9 is set to be twice or more the thickness dimension of the porous plate 3.

以上のように構成された流体透過特性評価装置1を用いて、多孔質板3における流体の透過特性を評価する場合には、多孔質板3及び弾性シール材9の長手方向の両端部が略一致するように、多孔質板3を載置台5の載置平面5aの中央部分に配し、押付部材7により多孔質板3を押さえつける。
この押さえつけの際には、弾性シール材9の中央部分が多孔質板3の上面3aに当接して圧縮変形されると共に、弾性シール材9のうち多孔質板3の両側部から幅方向に突出する部分が載置平面5aに当接することになる。また、この際には、載置平面5aに当接した弾性シール材9も圧縮変形する。なお、この圧縮変形によって載置平面5aに対する弾性シール材9の押し付け圧力が発生する。
When the fluid permeation characteristics of the porous plate 3 are evaluated using the fluid permeation characteristic evaluation apparatus 1 configured as described above, both end portions in the longitudinal direction of the porous plate 3 and the elastic seal material 9 are substantially the same. The porous plate 3 is arranged in the center portion of the mounting plane 5 a of the mounting table 5 so as to match, and the porous plate 3 is pressed by the pressing member 7.
At the time of pressing, the central portion of the elastic sealing material 9 abuts on the upper surface 3a of the porous plate 3 and is compressed and deformed, and the elastic sealing material 9 protrudes from both sides of the porous plate 3 in the width direction. The portion to be brought into contact with the placement plane 5a. At this time, the elastic sealing material 9 in contact with the mounting plane 5a is also compressed and deformed. In addition, the pressing pressure of the elastic sealing material 9 with respect to the mounting plane 5a is generated by this compression deformation.

このように押付部材7により多孔質板3を押さえつけた状態においては、弾性シール材9の弾性変形によって多孔質板3の上面(外面)3a及び両側面(外面)3c,3dが気密に覆われることになり、多孔質板3の長手方向に面する両端面3e,3fのみが載置台5と押付部材7との隙間S1,S2を介して外方に露出することになる。これにより、多孔質板3の一端面3eから他端面3fに至るまで流体を多孔質板3の内部で多孔質板3の長手方向(面方向)に通過させる流路が形成されることになる。すなわち、押さえつけの状態においては、弾性シール材9が、多孔質板3の内部に通過させる流体の流路を除いて、載置平面5aに当接すると共に多孔質板3の外面3a,3c,3dを気密に覆っている。
以上のことから、この流体透過特性評価装置1において多孔質板3内部に流体を通過させる際には、多孔質板3の一端面3eから流体を流入し、他端面3fから流体を流出すればよい。
In this state where the porous plate 3 is pressed by the pressing member 7, the upper surface (outer surface) 3a and both side surfaces (outer surfaces) 3c, 3d of the porous plate 3 are airtightly covered by the elastic deformation of the elastic sealing material 9. In other words, only both end faces 3e and 3f facing the longitudinal direction of the porous plate 3 are exposed to the outside through the gaps S1 and S2 between the mounting table 5 and the pressing member 7. As a result, a flow path is formed that allows fluid to pass in the longitudinal direction (surface direction) of the porous plate 3 inside the porous plate 3 from the one end surface 3e to the other end surface 3f of the porous plate 3. . That is, in the pressed state, the elastic sealing material 9 abuts on the mounting plane 5a and excludes the outer surfaces 3a, 3c, 3d of the porous plate 3 except for the fluid flow path that passes through the inside of the porous plate 3. It is airtightly covered.
From the above, when the fluid is allowed to pass through the porous plate 3 in the fluid permeation characteristic evaluation apparatus 1, if the fluid flows in from the one end surface 3e of the porous plate 3 and flows out from the other end surface 3f, Good.

〔第2実施形態〕
次に、第2実施形態に係る流体透過特性評価装置について説明する。なお、この実施形態の流体透過特性評価装置は、上述した第1実施形態と主に載置台の構成及び弾性シール材の寸法についてのみ異なっている。ここでは、当該相違点についてのみ説明し、第1実施形態の流体透過特性評価装置1の構成要素と同一の部分については同一符号を付し、その説明を省略する。
[Second Embodiment]
Next, a fluid permeation characteristic evaluation apparatus according to the second embodiment will be described. Note that the fluid permeation characteristic evaluation apparatus of this embodiment differs from the first embodiment described above mainly only in the configuration of the mounting table and the dimensions of the elastic seal material. Here, only the said difference is demonstrated, the same code | symbol is attached | subjected about the part same as the component of the fluid-permeation characteristic evaluation apparatus 1 of 1st Embodiment, and the description is abbreviate | omitted.

図2に示すように、この実施形態に係る流体透過特性評価装置11を構成する載置台13には、その載置平面13aに開口する孔15A,15Bが一対形成されている。ここで、一対の孔15A,15Bは載置台13の長手方向に間隔を介して開口しているが、この間隔は、載置平面13aに載置される多孔質板3によって一対の孔15A,15Bが両方共覆われる程度となっている。なお、本実施形態においては、各孔15A,15Bの開口部分が多孔質板3の長手方向の両端部に位置するように配置設定されている。   As shown in FIG. 2, the mounting table 13 constituting the fluid permeation characteristic evaluation apparatus 11 according to this embodiment is formed with a pair of holes 15A and 15B that open to the mounting plane 13a. Here, the pair of holes 15A and 15B are opened in the longitudinal direction of the mounting table 13 with an interval therebetween, but this interval is determined by the porous plate 3 mounted on the mounting plane 13a. Both 15B are covered. In the present embodiment, the opening portions of the holes 15A and 15B are arranged and set so as to be positioned at both ends in the longitudinal direction of the porous plate 3.

また、流体透過特性評価装置11を構成する弾性シール材17の長さ寸法及び幅寸法は、載置台13及び押付部材7と略同等に設定されており、載置平面13aに配された多孔質板3の周囲から面方向(XY平面方向)に突出するように形成されている。なお、弾性シール材17の厚さ寸法は、第1実施形態と同様に、多孔質板3の厚さ寸法の2倍以上に設定されている。   Further, the length and width of the elastic seal material 17 constituting the fluid permeation characteristic evaluation device 11 are set to be substantially the same as those of the mounting table 13 and the pressing member 7 and are porous on the mounting plane 13a. It is formed so as to protrude in the plane direction (XY plane direction) from the periphery of the plate 3. In addition, the thickness dimension of the elastic sealing material 17 is set to be twice or more the thickness dimension of the porous plate 3 as in the first embodiment.

以上のように構成された流体透過特性評価装置11を用いて、多孔質板3における流体の透過特性を評価する場合には、多孔質板3によって一対の孔15A,15Bの開口が覆われるように多孔質板3を載置台13の載置平面13aの中央部分に配し、押付部材7により多孔質板3を押さえつける。
この押さえつけの際には、第1実施形態と同様に、弾性シール材17の中央部分が多孔質板3の上面3aに当接して圧縮変形される。また、弾性シール材17のうち多孔質板3の周囲から突出する部分が載置平面13aに当接して圧縮変形する。この圧縮変形によって載置平面13aに対する弾性シール材17の押し付け圧力が発生する。
When the fluid permeation characteristics of the porous plate 3 are evaluated using the fluid permeation characteristic evaluation apparatus 11 configured as described above, the openings of the pair of holes 15A and 15B are covered by the porous plate 3. The porous plate 3 is arranged in the central portion of the mounting plane 13 a of the mounting table 13, and the porous plate 3 is pressed by the pressing member 7.
At the time of this pressing, the central portion of the elastic sealing material 17 abuts on the upper surface 3a of the porous plate 3 and is compressed and deformed as in the first embodiment. Further, a portion of the elastic sealing material 17 that protrudes from the periphery of the porous plate 3 abuts on the mounting plane 13a and is compressed and deformed. Due to this compressive deformation, a pressing pressure of the elastic sealing material 17 against the mounting plane 13a is generated.

このように押付部材により多孔質板3を押さえつけた状態においては、弾性シール材17の弾性変形によって多孔質板3の上面(外面)3a、両側面(外面)3c,3d及び両端面(外面)3e,3fが気密に覆われることになり、多孔質板3は、その下面3bの長手方向の両端部に開口する一対の孔15A,15Bを介してのみ外方に連通されることになる。これにより、一方の孔15Aから他方の孔15Bに至るまで流体を多孔質板3の内部で多孔質板3の長手方向(面方向)に通過させる流路が形成されることになる。すなわち、押さえつけの状態においては、第1実施形態の場合と同様に、弾性シール材17が、多孔質板3の内部に通過させる流体の流路を除いて、載置平面13aに当接すると共に多孔質板3の外面3a,3c〜3fを気密に覆っている。
したがって、この流体透過特性評価装置11において多孔質板3内部に流体を通過させる際には、一方の孔15Aを通じて多孔質板3の一端部側の下面3bから流体を流入し、他端部側の下面3bから他方の孔15Bを通じて流体を流出すればよい。
Thus, in a state where the porous plate 3 is pressed by the pressing member, the upper surface (outer surface) 3a, both side surfaces (outer surfaces) 3c and 3d, and both end surfaces (outer surfaces) of the porous plate 3 due to elastic deformation of the elastic seal material 17. 3e and 3f are hermetically covered, and the porous plate 3 is communicated outward only through a pair of holes 15A and 15B opened at both longitudinal ends of the lower surface 3b. As a result, a flow path is formed through which the fluid passes through the porous plate 3 in the longitudinal direction (plane direction) from the one hole 15A to the other hole 15B. That is, in the pressed state, as in the case of the first embodiment, the elastic sealing material 17 is in contact with the mounting plane 13a except for the fluid flow path that passes through the porous plate 3, and is porous. The outer surface 3a, 3c-3f of the material board 3 is covered airtightly.
Therefore, when the fluid is allowed to pass through the porous plate 3 in the fluid permeation characteristic evaluation device 11, the fluid flows in from the lower surface 3b on the one end side of the porous plate 3 through the one hole 15A, and the other end side. What is necessary is just to flow out the fluid through the other hole 15B from the lower surface 3b.

なお、各実施形態の流体透過特性評価装置1,11において透過特性を評価される多孔質板3としては、例えば多孔質ステンレス、発泡ステンレス、多孔質ニッケル等をシート状に形成したものの他に、例えば、ニッケル不織布、カーボン不織布等が挙げられる。   In addition, as the porous plate 3 whose permeation characteristics are evaluated in the fluid permeation characteristic evaluation apparatuses 1 and 11 of each embodiment, for example, in addition to a porous stainless steel, foamed stainless steel, porous nickel or the like formed in a sheet shape, For example, a nickel nonwoven fabric, a carbon nonwoven fabric, etc. are mentioned.

次に、各実施形態の流体透過特性評価装置1,11において、弾性シール材9,17による多孔質板3の密閉性能(以下、シール性能と呼ぶ。)を試験した結果について表1を参照して説明する。
この試験では、図1,2に示すように押付部材7により多孔質板3を押さえつけた状態で、アルゴンガス(流体)を1分間当たり1リットルの流量で多孔質板3の一端面3eや下面3bから多孔質板3内部に流入させ、吸引式リークディテクター(LD229(GLサイエンス社製))を用いて載置平面5a,13aとこれに当接する弾性シール材9,17との間からアルゴンガスが漏れているか否かを確認し、この確認結果を弾性シール材9,17のシール性能の良否として評価した。
Next, referring to Table 1 for the results of testing the sealing performance (hereinafter referred to as sealing performance) of the porous plate 3 by the elastic sealing materials 9 and 17 in the fluid permeation characteristic evaluation apparatuses 1 and 11 of each embodiment. I will explain.
In this test, as shown in FIGS. 1 and 2, one end surface 3 e and the lower surface of the porous plate 3 are flowed with argon gas (fluid) at a flow rate of 1 liter per minute while the porous plate 3 is pressed by the pressing member 7. 3b is allowed to flow into the porous plate 3, and using an aspiration leak detector (LD229 (manufactured by GL Science)), argon gas is introduced between the mounting planes 5a and 13a and the elastic sealing materials 9 and 17 in contact therewith. Was confirmed whether or not the sealing performance of the elastic sealing materials 9 and 17 was good.

なお、この試験においては、多孔質板3の寸法を幅50mm×長さ100mm角とした。さらに、第1実施形態の流体透過特性評価装置1については、弾性シール材9の寸法を幅75mm×長さ98mm角とし、第2実施形態の流体透過特性評価装置11については、弾性シール材17の寸法を幅75mm×長さ125mm角とした。また、第2実施形態の流体透過特性評価装置11については、各孔の開口寸法を幅50mm×長さ1mm角とした。そして、多孔質板3や弾性シール材9,17の材質や厚さ寸法については、表1に示すように、適宜組み合わせたものを複数(実施例1〜10、比較例1〜4)用意した。   In this test, the dimensions of the porous plate 3 were 50 mm wide × 100 mm square. Further, in the fluid permeation characteristic evaluation apparatus 1 of the first embodiment, the size of the elastic seal material 9 is 75 mm wide × 98 mm square, and in the fluid permeation characteristic evaluation apparatus 11 of the second embodiment, the elastic seal material 17 The dimensions were set to 75 mm width × 125 mm square. Moreover, about the fluid permeation characteristic evaluation apparatus 11 of 2nd Embodiment, the opening dimension of each hole was made into width 50mm x length 1mm square. And about the material and thickness dimension of the porous board 3 and the elastic sealing materials 9 and 17, as shown in Table 1, the thing (Examples 1-10, Comparative Examples 1-4) which combined suitably was prepared. .

Figure 2008151648
Figure 2008151648

すなわち、多孔質板3の材質には、シート状に形成した多孔質ステンレス、発泡ステンレス、多孔質ニッケル、ニッケル不織布、カーボン不織布を使用した。
また、弾性シール材9,17の材質には、日東電工社製の薄層クリーンフォームSCF(品番:SCF100、P200UL)、ロジャースイノアック社製のポロン(タイプ:L−24、H−32、H−48、SR−S−24P)、ジェルテック社製のNPゲル、θ−8ゲル(商品名)を使用した。上記材質の弾性シール材9,17の圧縮弾性率は、いずれも多孔質板3の圧縮弾性率よりも低いものである。
そして、弾性シール材9,17の厚さ寸法は、実施例1〜10及び比較例1,3,4において多孔質板3の厚さ寸法の2倍以上となっており、比較例2においてのみ多孔質板3の厚さ寸法の1.5倍となっている。
That is, as the material of the porous plate 3, porous stainless steel, foamed stainless steel, porous nickel, nickel nonwoven fabric, and carbon nonwoven fabric formed in a sheet shape were used.
The elastic sealing materials 9 and 17 are made of Nitto Denko's thin-layer clean foam SCF (product number: SCF100, P200UL), Roger Suinoac's Polon (type: L-24, H-32, H- 48, SR-S-24P), NP gel manufactured by Geltec, and θ-8 gel (trade name) were used. The compression elastic moduli of the elastic sealing materials 9 and 17 made of the above materials are both lower than the compression elastic modulus of the porous plate 3.
And the thickness dimension of the elastic sealing materials 9 and 17 is more than twice the thickness dimension of the porous plate 3 in Examples 1 to 10 and Comparative Examples 1, 3, and 4, and only in Comparative Example 2. It is 1.5 times the thickness dimension of the porous plate 3.

なお、表1中に記載の「25%圧縮応力」は、各実施例及び比較例で使用している各種材質の弾性シール材9,17の厚さを25%圧縮するために要する応力を示している。
また、表1中に記載の「側面」は、第1実施形態の流体透過特性評価装置1において試験したことを示しており、「全周」は、第2実施形態の流体透過特性評価装置11において試験したことを示している。
さらに、表1中に記載の「シール圧」は、載置台5,13の載置平面5a,13aに対する弾性シール材9,17の押し付け圧力を示しており、「ガス圧」は、多孔質板3の内部に流入するアルゴンガスの圧力を示している。そして、このシール圧は、実施例1〜10及び比較例2〜4においていずれもガス圧の2倍以上に設定されており、比較例1においてのみガス圧の2倍未満に設定されている。
The “25% compressive stress” described in Table 1 indicates the stress required to compress the thickness of the elastic sealing materials 9 and 17 of various materials used in each example and comparative example by 25%. ing.
Further, “side surface” described in Table 1 indicates that the test was performed in the fluid permeation characteristic evaluation apparatus 1 of the first embodiment, and “all circumference” represents the fluid permeation characteristic evaluation apparatus 11 of the second embodiment. It has shown that it tested in.
Furthermore, the “seal pressure” described in Table 1 indicates the pressing pressure of the elastic sealing materials 9 and 17 against the mounting planes 5a and 13a of the mounting tables 5 and 13, and the “gas pressure” indicates the porous plate. 3 shows the pressure of argon gas flowing into the interior of 3. And in this Example 1-10 and Comparative Examples 2-4, all of this sealing pressure is set to 2 times or more of gas pressure, and only in Comparative Example 1 is set to less than 2 times of gas pressure.

そして、表1に記載の試験結果によれば、比較例1,2のものではアルゴンガスの漏れが確認され(シール性能「×」)、実施例1〜10及び比較例3,4のものではアルゴンガスの漏れが確認されなかった(シール性能「○」「△」)。
比較例1のものでは、シール圧がガス圧の2倍未満となっていることで、載置平面13aに対する弾性シール材17の押し付け圧力が不足するために、ガス漏れが発生していると考えられる。また、比較例2のものでは、シール圧がガス圧の2倍以上となっているが、弾性シール材17の厚さ寸法が多孔質板3の2倍未満となっていることで、弾性シール材17を十分に載置平面13aに押さえつけることができないために、ガス漏れが発生していると考えられる。このように、ガス漏れが発生している場合には、アルゴンガスの透過特性評価を実施することはできない。
According to the test results shown in Table 1, leakage of argon gas was confirmed in the cases of Comparative Examples 1 and 2 (seal performance “×”), and in Examples 1 to 10 and Comparative Examples 3 and 4, Argon gas leakage was not confirmed (seal performance “◯” “△”).
In the comparative example 1, since the sealing pressure is less than twice the gas pressure, the pressing pressure of the elastic sealing material 17 against the mounting plane 13a is insufficient, and thus gas leakage is considered to occur. It is done. Moreover, in the thing of the comparative example 2, although the sealing pressure is 2 times or more of gas pressure, since the thickness dimension of the elastic sealing material 17 is less than 2 times of the porous board 3, an elastic seal | sticker is obtained. It is considered that gas leakage has occurred because the material 17 cannot be sufficiently pressed against the mounting plane 13a. As described above, when gas leakage occurs, it is not possible to evaluate the permeation characteristics of argon gas.

これに対し、実施例1〜10や比較例3,4のように、シール圧をガス圧の2倍以上とすると共に、弾性シール材9,17の厚さ寸法を多孔質板3の2倍以上としているため、載置平面5a,13aに対する弾性シール材9,17の押し付け圧力を十分に得ることができ、これによって、多孔質板3内部を通過するアルゴンガスが漏れ出すことを防止して、アルゴンガスの透過特性評価を実施することが可能となる。   On the other hand, as in Examples 1 to 10 and Comparative Examples 3 and 4, the sealing pressure is set to be twice or more the gas pressure, and the thickness dimension of the elastic sealing materials 9 and 17 is twice that of the porous plate 3. As described above, it is possible to sufficiently obtain the pressing pressure of the elastic sealing materials 9 and 17 against the mounting planes 5a and 13a, thereby preventing the argon gas passing through the porous plate 3 from leaking out. It becomes possible to perform the permeation characteristic evaluation of argon gas.

ところで、比較例3のものでは、アルゴンガスを多孔質板3の内部に流入させたところ、弾性シール材9の一部と多孔質板3の外面3a,3c,3dとの間に大きな隙間が生じる不具合が確認された。この隙間は、弾性シール材9の25%圧縮応力が8kPaと小さいために、弾性シール材9内部に流入したアルゴンガスの圧力によって弾性シール材9が多孔質板3の外面3a,3c,3dから押し上げられることで発生すると考えられる。
また、比較例4のものでは、押付部材7により多孔質板3を押さえつけた状態において、側面3c,3dと載置平面5aとからなる凹部面と弾性シール材9との間に大きな隙間が生じていることが確認された。この隙間は、弾性シール材9の25%圧縮応力が360kPaと大きく、載置平面5aに載置された多孔質板3の外形形状に対する弾性シール材9の追従性が不足することで発生すると考えられる。
By the way, in the thing of the comparative example 3, when argon gas was made to flow in the inside of the porous board 3, a big clearance gap was formed between some elastic sealing materials 9 and the outer surfaces 3a, 3c, 3d of the porous board 3. FIG. The problem that occurred was confirmed. Since the 25% compressive stress of the elastic sealing material 9 is as small as 8 kPa, the elastic sealing material 9 is separated from the outer surfaces 3a, 3c, 3d of the porous plate 3 by the pressure of the argon gas flowing into the elastic sealing material 9. It is thought to be generated by being pushed up.
Further, in the comparative example 4, in the state where the porous plate 3 is pressed by the pressing member 7, a large gap is generated between the concave surface formed by the side surfaces 3c, 3d and the mounting plane 5a and the elastic sealing material 9. It was confirmed that This gap is considered to be caused by the fact that the elastic sealing material 9 has a large 25% compressive stress of 360 kPa and the followability of the elastic sealing material 9 with respect to the outer shape of the porous plate 3 placed on the placement plane 5a is insufficient. It is done.

このような隙間がある場合には、多孔質板3内部に流入されたアルゴンガスが多孔質板3内部だけではなく上記隙間も通過するため、多孔質板3におけるアルゴンガスの透過特性評価に影響を与える。したがって、多孔質板3におけるアルゴンガスの透過特性を精度良く評価するためには、このような隙間は小さい方が好ましく、具体的には、アルゴンガスが通過する隙間の断面積において、多孔質板3の外面3a,3c,3dから弾性シール材までの隙間高さを50μm以下に抑えることが好ましい。
しかしながら、比較例3,4のものでは、隙間高さが上述した値を超えてしまうため、アルゴンガスの透過特性を精度良く評価することが困難となる(シール性能「△」)。
If there is such a gap, the argon gas that has flowed into the porous plate 3 passes not only inside the porous plate 3 but also through the gap, which affects the evaluation of the permeation characteristics of argon gas in the porous plate 3. give. Therefore, in order to accurately evaluate the permeation characteristics of argon gas in the porous plate 3, it is preferable that such a gap is small. Specifically, in the cross-sectional area of the gap through which the argon gas passes, the porous plate 3 It is preferable to suppress the gap height from the outer surfaces 3a, 3c, 3d of 3 to the elastic seal material to 50 μm or less.
However, in Comparative Examples 3 and 4, since the gap height exceeds the above-described value, it is difficult to accurately evaluate the argon gas transmission characteristics (seal performance “Δ”).

これに対し、実施例1〜10のものでは、弾性シール材9,17の25%圧縮応力が10kPa以上350kPa以下の範囲内に含まれているため、アルゴンガスの圧力による弾性シール材9,17の浮き上がりを抑制すると共に多孔質板3の外形形状に対する弾性シール材9,17の追従性を向上させて、上述した隙間の大きさが小さく抑えられている。すなわち、上述した隙間高さが50μm以下に抑えられている。
したがって、実施例1〜10のものでは、多孔質板3における流体の透過特性を精度良く評価することが可能となる(シール性能「○」)。
On the other hand, in Examples 1 to 10, since the 25% compressive stress of the elastic sealing materials 9 and 17 is included in the range of 10 kPa to 350 kPa, the elastic sealing materials 9 and 17 due to the pressure of the argon gas. And the followability of the elastic sealing materials 9 and 17 with respect to the outer shape of the porous plate 3 are improved, so that the size of the gap is reduced. That is, the gap height described above is suppressed to 50 μm or less.
Therefore, in Examples 1 to 10, it is possible to accurately evaluate the fluid permeation characteristics in the porous plate 3 (seal performance “◯”).

以上説明したように、上記実施形態の流体透過特性評価装置1,11によれば、多孔質板3の厚さ寸法等の大きさに関わらず、押付部材7により載置台5,13に載置された多孔質板3を押さえつけるだけで、多孔質板3の外面3a,3c〜3fを密閉することができるため、多孔質板3における流体の透過特性評価を容易に実施することができる。   As described above, according to the fluid permeation characteristic evaluation apparatuses 1 and 11 of the above-described embodiment, regardless of the thickness and the like of the porous plate 3, the pressing member 7 places it on the mounting tables 5 and 13. Since the outer surfaces 3a, 3c to 3f of the porous plate 3 can be sealed simply by pressing the porous plate 3 formed, the fluid permeation characteristics of the porous plate 3 can be easily evaluated.

また、弾性シール材9,17の圧縮永久歪みを10%以下とすることで、押付部材7による押さえつけを解除した際に、弾性シール材9,17が良好に弾性復帰するため、同一の弾性シール材9,17を用いても、透過特性評価を多数回にわたって繰り返し実施することができると共に、透過特性の評価結果の再現性も良好に保つことができる。
さらに、弾性シール材9,17は、その内部に閉気孔を含んだ多孔質状に形成されているため、これを小さな荷重で多孔質板3に押しつけても容易に弾性変形でき、多孔質板3の外面3a,3c〜3fを確実に気密に覆うことが可能となる。また、弾性シール材9,17は閉気孔を含んで多孔質体をなすように構成されているため、多孔質板3内部を通過する流体が弾性シール材9,17を介して外部に漏れることを防ぐことができる。さらに、この場合には、流体が多孔質板3から弾性シール材9,17内部に侵入・透過することで多孔質板3の外側に流体の流路が形成されることを防止し、この流路形成に基づいて透過特性の評価精度が損なわれてしまうことも回避できる。
In addition, by setting the compression set of the elastic seal materials 9 and 17 to 10% or less, the elastic seal materials 9 and 17 can be elastically restored satisfactorily when the pressing by the pressing member 7 is released. Even when the materials 9 and 17 are used, the transmission characteristic evaluation can be repeatedly performed many times, and the reproducibility of the evaluation result of the transmission characteristic can be kept good.
Furthermore, since the elastic sealing materials 9 and 17 are formed in a porous shape including closed pores therein, they can be easily elastically deformed even if they are pressed against the porous plate 3 with a small load. It is possible to reliably cover the outer surfaces 3a, 3c to 3f of the airtight 3. Further, since the elastic sealing materials 9 and 17 are configured to form a porous body including closed pores, the fluid passing through the porous plate 3 leaks to the outside through the elastic sealing materials 9 and 17. Can be prevented. Further, in this case, the fluid enters and permeates the elastic sealing materials 9 and 17 from the porous plate 3 to prevent a fluid flow path from being formed outside the porous plate 3. It can be avoided that the evaluation accuracy of the transmission characteristics is impaired based on the path formation.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
すなわち、第1実施形態における弾性シール材9の長さ寸法は、例えば多孔質板3の長さ寸法よりも長くしても構わない。この場合には、多孔質板3の長手方向の両端面3e,3fに流体の流路を確保する中空のスペーサ等を別途設け、このスペーサにより弾性シール材9が多孔質板3の両端面3e,3fを密閉することこと防止すればよい。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
That is, the length dimension of the elastic sealing material 9 in the first embodiment may be longer than, for example, the length dimension of the porous plate 3. In this case, a hollow spacer or the like for ensuring a fluid flow path is separately provided on both end faces 3e and 3f in the longitudinal direction of the porous plate 3, and the elastic sealing material 9 is attached to the both end faces 3e of the porous plate 3 by this spacer. , 3f may be prevented from being sealed.

また、上述した全ての実施形態における弾性シール材9,17としては、圧縮永久歪みを10%以下としたものや、多孔質状に形成されたものに限らず、少なくとも圧縮弾性率が多孔質板3よりも低く、かつ、厚さ寸法が多孔質板3の2倍以上となるものを使用すればよい。
さらに、弾性シール材9,17は、上記実施形態のように押付部材7の固定面7aに固定されることが望ましいが、少なくとも載置台5,13の載置平面5a,13aに対向するように押付部材7の下部と多孔質板3との間に静置されていればよい。すなわち、弾性シール材9,17は、例えば押付部材7に固定せずに、押付部材7により多孔質板3を押さえつけた状態において押付部材7と載置台5,13や多孔質板3との間に挟み込まれるように配置してもよい。
In addition, the elastic sealing materials 9 and 17 in all the embodiments described above are not limited to those having a compression set of 10% or less or those formed in a porous shape, and at least a compression elastic modulus is a porous plate. What is lower than 3 and whose thickness is twice or more that of the porous plate 3 may be used.
Further, it is desirable that the elastic sealing materials 9 and 17 are fixed to the fixing surface 7a of the pressing member 7 as in the above embodiment, but at least to face the mounting planes 5a and 13a of the mounting tables 5 and 13. What is necessary is just to stand still between the lower part of the pressing member 7, and the porous board 3. FIG. That is, the elastic sealing materials 9 and 17 are not fixed to the pressing member 7, for example, but are pressed between the pressing member 7 and the mounting tables 5 and 13 or the porous plate 3 in a state where the porous plate 3 is pressed by the pressing member 7. You may arrange | position so that it may be pinched | interposed into.

本発明の第1実施形態に係る流体透過特性評価装置を示しており、(a)は概略平面図、(b)は(a)のA−A矢視断面図、(c)は(a)のB−B矢視断面図である。1 shows a fluid permeation characteristic evaluation apparatus according to a first embodiment of the present invention, in which (a) is a schematic plan view, (b) is a cross-sectional view taken along line AA of (a), and (c) is (a). It is BB arrow sectional drawing of. 本発明の第2実施形態に係る流体透過特性評価装置を示しており、(a)は概略平面図、(b)は(a)のC−C矢視断面図、(c)は(a)のD−D矢視断面図である。The fluid permeation characteristic evaluation apparatus which concerns on 2nd Embodiment of this invention is shown, (a) is a schematic plan view, (b) is CC sectional view taken on the line of (a), (c) is (a). It is DD sectional view taken on the line.

符号の説明Explanation of symbols

1,11 流体透過特性評価装置
3 多孔質板
3a 上面(外面)
3c,3d 側面(外面)
3e,3f 端面(外面)
5,13 載置台
5a,13a 載置平面
7 押付部材
9,17 弾性シール材
1,11 Fluid permeation characteristic evaluation device 3 Porous plate 3a Upper surface (outer surface)
3c, 3d side surface (outer surface)
3e, 3f End face (outer face)
5, 13 mounting table 5a, 13a mounting plane 7 pressing member 9, 17 elastic sealing material

Claims (4)

三次元網目構造を有する多孔質板の内部でその面方向に流体を通過させ、前記多孔質板における前記流体の透過特性を評価する流体透過特性評価装置であって、
前記多孔質板を載置する載置平面を有する載置台と、該載置台の上方から前記多孔質板を押さえつける押付部材と、前記載置台の載置平面に対向するように前記押付部材の下部と前記多孔質板との間に静置された弾性変形可能な弾性シール材とを備え、
前記弾性シール材は、前記押付部材により前記載置平面に載置された前記多孔質板を押さえつけた状態で、前記多孔質板の内部に通過させる前記流体の流路を除いて、前記載置平面に当接すると共に前記多孔質板の外面を気密に覆うように弾性変形するものであり、
前記弾性シール材の圧縮弾性率が前記多孔質板の圧縮弾性率よりも低く、かつ、前記弾性シール材の厚さ寸法が前記多孔質板の厚さ寸法の2倍以上であり、さらに、前記載置平面に対する前記弾性シール材の押し付け圧力が前記多孔質板の内部に流入する前記流体の圧力の2倍以上であることを特徴とする流体透過特性評価装置。
A fluid permeation characteristic evaluation apparatus that allows a fluid to pass in the plane direction inside a porous plate having a three-dimensional network structure and evaluates the permeation characteristic of the fluid in the porous plate,
A mounting table having a mounting plane for mounting the porous plate; a pressing member for pressing the porous plate from above the mounting table; and a lower portion of the pressing member so as to face the mounting plane of the mounting table. And an elastically deformable elastic sealing material placed between the porous plate and the porous plate,
The elastic sealing material is placed in the state described above except for the fluid flow path that passes through the porous plate while the porous plate placed on the placement plane is pressed by the pressing member. It is elastically deformed so as to be in contact with a flat surface and airtightly cover the outer surface of the porous plate,
The elastic modulus of the elastic sealing material is lower than that of the porous plate, and the thickness dimension of the elastic sealing material is at least twice the thickness dimension of the porous plate; The fluid permeation characteristic evaluation apparatus according to claim 1, wherein the pressure of the elastic sealing material against the mounting plane is at least twice the pressure of the fluid flowing into the porous plate.
前記弾性シール材の圧縮永久歪みが10%以下であることを特徴とする請求項1に記載の流体透過特性評価装置。   The fluid permeation characteristic evaluation apparatus according to claim 1, wherein the compression set of the elastic sealing material is 10% or less. 前記弾性シール材が、その内部に閉気孔を含んだ多孔質状に形成されていることを特徴とする請求項1又は請求項2に記載の流体透過特性評価装置。   The fluid permeation characteristic evaluation apparatus according to claim 1, wherein the elastic sealing material is formed in a porous shape including closed pores therein. 前記弾性シール材の厚さを25%圧縮するために要する圧縮応力が、10kPa以上350kPa以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の流体透過特性評価装置。   The fluid permeation characteristic evaluation apparatus according to any one of claims 1 to 3, wherein a compressive stress required to compress the thickness of the elastic sealing material by 25% is 10 kPa or more and 350 kPa or less. .
JP2006339979A 2006-12-18 2006-12-18 Fluid permeability evaluation device Expired - Fee Related JP4725506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339979A JP4725506B2 (en) 2006-12-18 2006-12-18 Fluid permeability evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339979A JP4725506B2 (en) 2006-12-18 2006-12-18 Fluid permeability evaluation device

Publications (2)

Publication Number Publication Date
JP2008151648A true JP2008151648A (en) 2008-07-03
JP4725506B2 JP4725506B2 (en) 2011-07-13

Family

ID=39653961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339979A Expired - Fee Related JP4725506B2 (en) 2006-12-18 2006-12-18 Fluid permeability evaluation device

Country Status (1)

Country Link
JP (1) JP4725506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178504A1 (en) * 2013-04-30 2014-11-06 Korea Gas Corporation Method for determining permeability and flow velocity of porous medium by using equivalent permeability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123333A (en) * 1985-11-22 1987-06-04 Sankyo Dengyo Co Ltd Wet characteristic measuring instrument for particulate
JPS62153732A (en) * 1985-12-27 1987-07-08 ト−マス・アイ・ブラツドシヨ− Membrane inspection device
JP2001183285A (en) * 1999-12-22 2001-07-06 Nikken Kk Permeability test apparatus and permeability test method
JP2003185561A (en) * 2001-10-10 2003-07-03 Borgwarner Inc Transmissometer, porosity meter
JP2004303558A (en) * 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology Fuel cell
JP2005315607A (en) * 2004-04-27 2005-11-10 Hitachi Ltd Underground environment assessment device and method
JP2006216426A (en) * 2005-02-04 2006-08-17 Nippon Soken Inc Fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123333A (en) * 1985-11-22 1987-06-04 Sankyo Dengyo Co Ltd Wet characteristic measuring instrument for particulate
JPS62153732A (en) * 1985-12-27 1987-07-08 ト−マス・アイ・ブラツドシヨ− Membrane inspection device
JP2001183285A (en) * 1999-12-22 2001-07-06 Nikken Kk Permeability test apparatus and permeability test method
JP2003185561A (en) * 2001-10-10 2003-07-03 Borgwarner Inc Transmissometer, porosity meter
JP2004303558A (en) * 2003-03-31 2004-10-28 National Institute Of Advanced Industrial & Technology Fuel cell
JP2005315607A (en) * 2004-04-27 2005-11-10 Hitachi Ltd Underground environment assessment device and method
JP2006216426A (en) * 2005-02-04 2006-08-17 Nippon Soken Inc Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178504A1 (en) * 2013-04-30 2014-11-06 Korea Gas Corporation Method for determining permeability and flow velocity of porous medium by using equivalent permeability
WO2014178505A1 (en) * 2013-04-30 2014-11-06 Korea Gas Corporation Method for determining permeability and flow velocity of porous medium by using dispersion number of pores

Also Published As

Publication number Publication date
JP4725506B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
EP3171683A1 (en) Water-resistant member, and electronic apparatus provided with water-resistant member
JP4809674B2 (en) Air permeability tester
KR20180128483A (en) Pressure equalization structure for non-porous acoustic membranes
CN101230247A (en) Rubber/resin composite seal material
JP2007000777A (en) Porous membrane material and aeration device
JP2008224307A (en) Leakage inspection device
KR20190065459A (en) Waterproofing and sounding members and electronic devices having the same
JP4725506B2 (en) Fluid permeability evaluation device
CN108367504A (en) The manufacturing method of the resin container of ultrasonic welding method and utilization ultrasonic welding method
EP2757291B1 (en) Gasket and sealing structure
KR101525952B1 (en) Device for adhering and pressing semiconductor package
KR101930959B1 (en) Chuck device for adhering workpiece and workpiece bonding machine
JP2013003029A (en) Gas permeating cell, gas permeability measuring device, and gas permeability measuring method
JP6449055B2 (en) Fuel cell seal inspection apparatus and seal inspection method
JP2001349799A (en) Leak detection device
JP2012121021A (en) Flat duct seal
JP2018141712A (en) Device and method for sealing inspection
JP2002143624A (en) Air permeable filter and vessel provided with filter
JP2016042413A (en) Inspection device and inspection method
JP2013088160A (en) Fixing structure for detection chip of flow-through cell
JP2014070950A (en) Method for inspecting leakage of hydraulic-piping connecting part, leakage inspection tool, and leakage inspection device
JP2014226613A (en) Leak inspection method of hollow fiber membrane module
EP2856019B1 (en) Housing having air valve
JP2013040839A (en) Waterproof testing method and waterproof testing apparatus for device
JP4175137B2 (en) Airtight inspection device for cylindrical inspection object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees