JP2008144459A - Slab form and method of constructing composite floor slab - Google Patents

Slab form and method of constructing composite floor slab Download PDF

Info

Publication number
JP2008144459A
JP2008144459A JP2006332531A JP2006332531A JP2008144459A JP 2008144459 A JP2008144459 A JP 2008144459A JP 2006332531 A JP2006332531 A JP 2006332531A JP 2006332531 A JP2006332531 A JP 2006332531A JP 2008144459 A JP2008144459 A JP 2008144459A
Authority
JP
Japan
Prior art keywords
slab
floor slab
belt
shaped
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006332531A
Other languages
Japanese (ja)
Inventor
Shinya Yoshimatsu
慎哉 吉松
Osamu Nakamura
修 中村
Masayoshi Sugimoto
昌由 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2006332531A priority Critical patent/JP2008144459A/en
Publication of JP2008144459A publication Critical patent/JP2008144459A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of constructing a composite floor slab by using a slab form which is a permanent form doubling as timbering, excellent in water resistance and corrosion resistance, contributes to labor saving during construction, and achieves elongation of the span of the floor slab without largely increasing the weight of the floor slab. <P>SOLUTION: According to the method of constructing the composite floor slab 120, firstly WT slab forms 10 are integrally molded of high-strength fiber-reinforced mortar, and each have a WT-shaped cross section. A band-shaped bottom board 11 of each slab form has a sufficient reinforcement covering depth, and band-shaped webs 12 arranged in two rows each have a number of through holes 12a formed therein in a direction intersecting the band-shaped web 12. Further, prestress is introduced to the slab form in a direction along the band-shaped webs 12. The WT slab forms 10 thus formed are arranged in parallel with each other in the span with the band-shaped webs 12 facing upward. Then, reinforcements 121 are inserted into the through holes 12a, and reinforcements 122 are also arranged between the band-shaped webs 12, followed by pouring concrete 20 on the WT slab forms 10, to thereby construct the composite floor slab 120 of a pier, which is a unitary body of the WT slab forms 10 and the concrete 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コンクリート橋等のスラブ型枠、およびこのスラブ型枠を用いた合成床版の構築方法に関する。   The present invention relates to a slab formwork such as a concrete bridge and a method for constructing a composite slab using the slab formwork.

従来より、コンクリートを場所打ちしてなるRC構造の場所打ち床版が知られている。この場所打ち床版は、支間に支保工および型枠を組み立て、この型枠内に鉄筋を配置しコンクリートを打設することにより構築される床版である。   Conventionally, a cast-in-place slab of RC structure formed by cast-in concrete is known. The cast-in-place slab is a floor slab constructed by assembling a support and a formwork between the supports, placing reinforcing bars in the formwork, and placing concrete.

ところが、RC構造の場所打ち床版における最大支間長は一般に5m程度〜7m程度であり、更なる長支間化は困難である。また、支保工や型枠の組み立てが必要であるため、施工の省力化を図ることが困難である。さらに、床版構築後に型枠を撤去するとき床板下面での作業も必要となるが、このRC構造の場所打ち床版を桟橋のような港湾構造物に適用した場合、海面と床版との空間が狭く、波がかかることとなるため床板下面での型枠撤去作業が困難である。   However, the maximum span length in the cast-in-place slab of RC structure is generally about 5 m to 7 m, and it is difficult to further increase the span length. Moreover, since it is necessary to assemble a support work and a formwork, it is difficult to save labor of construction. In addition, when the formwork is removed after the floor slab is constructed, it is necessary to work on the bottom surface of the floor plate. However, when this cast-in-place slab of RC structure is applied to a harbor structure such as a pier, Since the space is narrow and waves are applied, it is difficult to remove the formwork on the lower surface of the floor board.

また、従来より、FRP(繊維強化プラスチック)から成る型枠を用いた合成床版も知られている(例えば、非特許文献1参照。)。このFRP型枠合成床版は、コンクリート打設時の床版支間に沿う方向の剛性を確保するための補強リブが20cm〜30cm間隔で形成されたFRP材を支保工兼用の永久型枠として用いた合成床版である。FRP材は耐水性や耐食性に優れているため、FRP型枠合成床版を桟橋のような港湾構造物に適用した場合、塩害に対する耐久性が高い。また、そのFRP材が支保工兼用の永久型枠であるため、床版下面における型枠の組み立てや撤去が不要であり、施工の省力化を図ることができる。   Conventionally, a synthetic floor slab using a mold made of FRP (fiber reinforced plastic) is also known (see, for example, Non-Patent Document 1). This FRP formwork composite floor slab uses FRP material with reinforcing ribs formed at intervals of 20 to 30 cm to ensure rigidity in the direction along the floor slab support during concrete placement as a permanent formwork for both support and support. It was a composite floor slab. Since the FRP material is excellent in water resistance and corrosion resistance, when the FRP formwork composite slab is applied to a port structure such as a pier, the durability against salt damage is high. In addition, since the FRP material is a permanent mold that is also used as a supporter, it is not necessary to assemble or remove the mold on the bottom surface of the floor slab, and labor saving can be achieved.

ところが、このFRP型枠合成床版におけるFRP材は、上述したRC構造の場所打ち床版と同様に、床版の長支間化が困難である。   However, it is difficult for the FRP material in the FRP formwork composite floor slab to have a long span between the floor slabs, similarly to the cast-in-place floor slab having the RC structure described above.

また、従来より、PC(プレストレストコンクリート)版を用いた合成床版も知られている。この合成床版は、支保工や床版下面側の型枠に代えて工場製品のPC版を支間に並べ、このPC版の上部のプレストレス導入直角方向に鉄筋を配置し、コンクリートを打設することにより構築される、PC版と場所打ちコンクリートとが一体化された合成床版である。   Conventionally, a synthetic floor slab using a PC (prestressed concrete) slab is also known. This composite floor slab is replaced with a support or a formwork on the underside of the floor slab, and PC plates of factory products are arranged between the supports. Reinforcing bars are placed in the direction perpendicular to the prestress introduction at the top of the PC slab, and concrete is placed. This is a composite floor slab that is constructed by integrating the PC plate and cast-in-place concrete.

このようなPC版を用いた合成床版は、支保工が不要であり、床版下面における型枠の組み立てや撤去も不要であるため、施工の省力化を図ることができる。   A synthetic floor slab using such a PC slab does not require a support work, and does not require assembly and removal of a formwork on the lower surface of the floor slab, so that labor saving can be achieved.

この合成床版は、プレストレスが導入されているPC版を用いることから、床版の長支間化が可能であるものの、床版支間を長くする場合、PC版の自重や場所打ちするコンクリートの自重や作業荷重を支えるためにPC版の厚さを厚くする必要がある。その結果、合成床版厚も厚くなって全体の重量が大きくなり、耐震設計が困難となるおそれがある。   Although this composite floor slab uses a PC plate with prestressed, it is possible to extend the span of the floor slab. However, when the floor slab span is lengthened, the PC plate's own weight or cast-in concrete In order to support its own weight and work load, it is necessary to increase the thickness of the PC plate. As a result, the thickness of the composite floor slab increases and the overall weight increases, which may make earthquake-resistant design difficult.

また、このPC版を用いた合成床版を、PC版と場所打ち床版とが確実に一体化された構造とするためには、一般に、コンクリートとの付着を高めるための凹凸が表面に形成されたPC版のその表面上にコンクリートを場所打ちすることによって一体化を行うが、例えば床版の四辺が支持された2方向スラブにおいては、2方向ともに確実に一体化することが困難である。   In addition, in order to make the composite floor slab using the PC plate have a structure in which the PC plate and the cast-in-place floor slab are integrated with each other, in general, irregularities are formed on the surface to enhance adhesion to concrete. For example, in a two-way slab in which the four sides of a floor slab are supported, it is difficult to reliably integrate in both directions. .

ここで、このPC版を用いた合成床版の下面に引張応力が生じる上からの荷重に対して、PC版のプレストレス導入方向は、PC部材として耐荷力が大きい。ところが、その荷重に対して、PC版のプレストレス導入直角方向は、PC版の上部に配置された鉄筋が抵抗することとなるため、RC構造としての有効高さが小さくなり、大きな荷重に対して抵抗できない。   Here, the prestress introduction direction of the PC plate has a large load resistance as a PC member with respect to the load from above where tensile stress is generated on the lower surface of the composite floor plate using the PC plate. However, in the direction perpendicular to the prestress introduction of the PC plate against the load, the reinforcing bars arranged on the top of the PC plate resist, so the effective height as the RC structure is reduced and Can't resist.

従って、床版の四辺が支持され各床版支間長が同程度の2方向スラブに、PC版を用いた合成床版を適用することは困難である。
鋼・コンクリート複合構造連合小委員会、「構造工学シリーズ9−A 鋼・コンクリート複合構造の理論と設計(1)基礎編:理論編」、第1版、社団法人土木学会、平成11年4月30日、p141−142
Therefore, it is difficult to apply a composite floor slab using a PC plate to a two-way slab in which the four sides of the floor slab are supported and the length of each floor slab span is the same.
Steel-concrete composite structure subcommittee, "Structural engineering series 9-A Theory and design of steel-concrete composite structure (1) Fundamentals: Theory", 1st edition, Japan Society of Civil Engineers, April 1999 30th, p141-142

本発明は、上記事情に鑑み、耐水性や耐食性に優れ、施工の省力化を図ることができると共に、床版の重量を大きく増加させることなく床版の長支間化が可能なスラブ型枠、およびこのようなスラブ型枠を用いた合成床版の構築方法を提供することを目的とするものである。   In view of the above circumstances, the present invention is excellent in water resistance and corrosion resistance, can save labor for construction, and can form a long slab without greatly increasing the weight of the floor slab, And it aims at providing the construction method of the composite floor slab using such a slab formwork.

上記目的を達成する本発明のスラブ型枠は、高強度繊維補強モルタルで一体成形され、帯状底板とその片面に立設した帯状ウエブとからなる形状を有し、上記帯状底板は鉄筋かぶり厚さを備え、上記帯状ウエブはこの帯状ウエブに交差する方向の多数の貫通孔を備え、その帯状ウエブに沿う方向にプレストレスが導入されていることを特徴とする。   The slab form of the present invention that achieves the above object is formed integrally with a high-strength fiber reinforced mortar, and has a shape composed of a strip-shaped bottom plate and a strip-shaped web erected on one side thereof, and the strip-shaped bottom plate has a reinforcing bar cover thickness. The belt-like web has a plurality of through holes in a direction intersecting with the belt-like web, and prestress is introduced in a direction along the belt-like web.

ここで、本発明の高強度繊維補強モルタルとは、例えば、鋼繊維やPVA(Polyvinyl Alcohol)繊維やPE(Polyethylene)繊維などといった短繊維補強材を、水セメント比が約30%以下のセメントに細骨材と共に混入したセメント系超高強度材料である。この高強度繊維補強モルタルは、圧縮強度が100MPa程度〜180MPa程度、曲げ強度が15MPa程度〜25MPa程度、引張強度が8MPa程度であり、従来の、圧縮強度が40MPa程度〜60MPa程度、曲げ強度が6.5MPa程度、引張強度が3.5MPa程度の普通コンクリートに比して高強度で高じん性な材料である。また、この高強度繊維補強モルタルは、粗骨材を使用しない材料であるため、流動性がよく、施工性に優れている。   Here, the high-strength fiber reinforced mortar of the present invention is, for example, a short fiber reinforcing material such as steel fiber, PVA (Polyvinyl Alcohol) fiber, PE (Polyethylene) fiber, etc., in a cement having a water cement ratio of about 30% or less. Cement-based ultra-high strength material mixed with fine aggregate. This high-strength fiber reinforced mortar has a compressive strength of about 100 MPa to about 180 MPa, a bending strength of about 15 MPa to about 25 MPa, a tensile strength of about 8 MPa, a conventional compressive strength of about 40 MPa to about 60 MPa, and a bending strength of 6 It is a material with high strength and high toughness as compared with ordinary concrete having a tensile strength of about 3.5 MPa. Moreover, since this high-strength fiber reinforced mortar is a material that does not use coarse aggregate, it has good fluidity and excellent workability.

本発明のスラブ型枠は、普通コンクリートに比して水セメント比が低い高強度繊維補強モルタルで一体成形されたものであるため、中性化速度や塩分浸透度が非常に低い。従って、本発明のスラブ型枠を例えば桟橋のような港湾構造物に適用する場合、塩害劣化に対する耐久性が向上する。   Since the slab form of the present invention is integrally molded with a high-strength fiber reinforced mortar having a lower water-cement ratio than ordinary concrete, the neutralization rate and the salt permeability are very low. Therefore, when the slab form of the present invention is applied to a harbor structure such as a pier, durability against salt damage deterioration is improved.

また、本発明のスラブ型枠は、帯状底板と帯状ウエブとから構成されたものであるため可搬性に優れる。また、本発明のスラブ型枠は、支保工兼用の永久型枠として用いることができるため、施工の省力化を図ることができる。   Moreover, since the slab formwork of this invention is comprised from the strip | belt-shaped baseplate and the strip | belt-shaped web, it is excellent in portability. Moreover, since the slab formwork of the present invention can be used as a permanent formwork that also serves as a supporter, it is possible to save labor in construction.

また、本発明のスラブ型枠は、帯状ウエブがこの帯状ウエブに交差する方向の多数の貫通孔を備えたものであるため、その貫通孔に鉄筋を挿通することができる。   Moreover, since the strip | belt-shaped web of this invention is provided with many through-holes of the direction where a strip | belt-shaped web cross | intersects this strip | belt-shaped web, a reinforcing bar can be inserted in the through-hole.

さらに、本発明のスラブ型枠は、高強度で高じん性な材料である高強度繊維補強モルタルで一体成形され、帯状ウエブに沿う方向にプレストレスが導入されているものであるため、床版支間を長くする場合であっても、帯状底板の厚さを厚くすることなく、帯状ウエブの高さを高くすることによって対応可能である。従って、本発明のスラブ型枠を用いることにより、床版の重量を大きく増加させることなく床版の長支間化が可能である。   Furthermore, the slab formwork of the present invention is integrally molded with a high-strength fiber reinforced mortar that is a high-strength and high-toughness material, and prestress is introduced in the direction along the belt-like web. Even when the span is made longer, it is possible to increase the height of the belt-like web without increasing the thickness of the belt-like bottom plate. Therefore, by using the slab form of the present invention, it is possible to increase the span span of the floor slab without greatly increasing the weight of the floor slab.

尚、本発明のスラブ型枠における帯状ウエブは、上記帯状底板の片面に立設した1列以上の連続又は断続したものをいう。   In addition, the strip | belt-shaped web in the slab formwork of this invention says the continuous or intermittent one or more row | line | column standingly arranged on the single side | surface of the said strip | belt-shaped baseplate.

また、上記目的を達成する本発明の合成床版の構築方法は、本発明のスラブ型枠を、上記帯状ウエブを上側にして並設し、上記多数の貫通孔に鉄筋を挿通し、そのスラブ型枠上にコンクリートを打設して一体化床版を形成することを特徴とする。   Further, the method for constructing the composite floor slab of the present invention that achieves the above object comprises arranging the slab form of the present invention side by side with the strip-shaped webs facing upward, inserting reinforcing bars into the numerous through holes, It is characterized by placing concrete on a formwork to form an integrated floor slab.

本発明の合成床版の構築方法は、本発明のスラブ型枠を用いるものであるため、上述した本発明のスラブ型枠の利点と同様に、耐水性や耐食性に優れ、施工の省力化を図ることができると共に、床版の重量を大きく増加させることなく床版の長支間化が可能である。   Since the method for constructing the composite floor slab of the present invention uses the slab formwork of the present invention, it has excellent water resistance and corrosion resistance as well as the above-mentioned advantages of the slab formwork of the present invention, and labor saving of construction. It is possible to increase the span length of the floor slab without greatly increasing the weight of the floor slab.

ここで、上記一体化床版における、スラブ型枠の帯状ウエブと交差する方向は、スラブ型枠上に打設したコンクリートが鉄筋を挿通した貫通孔に充填されることによる、鉄筋とコンクリートのせん断伝達力により、確実に一体化される。また、その一体化床版における、スラブ型枠の帯状ウエブに沿う方向は、スラブ型枠の帯状ウエブにより確実に一体化される。従って、本発明の合成床版の構築方法は、例えば床版の四辺が支持され各床版支間長が同程度の2方向スラブにも適用することができる。   Here, in the above-mentioned integrated floor slab, the direction of crossing with the strip-shaped web of the slab form is that the concrete placed on the slab form is filled into the through-holes through which the rebar is inserted, so that the rebar and concrete shear It is surely integrated by the transmission force. Moreover, the direction along the strip | belt-shaped web of a slab formwork in the integrated floor slab is reliably integrated with the strip | belt-shaped web of a slab formwork. Therefore, the composite floor slab construction method of the present invention can also be applied to, for example, a two-way slab in which the four sides of the floor slab are supported and the length of each floor slab span is the same.

尚、本発明の合成床版の構築方法は、本発明のスラブ型枠を、上記帯状ウエブを上側にして支間に並設した後に、上記多数の貫通孔に鉄筋を挿通してもよく、あるいは、本発明のスラブ型枠を、上記帯状ウエブを上側にして地上で並設し、上記多数の貫通孔に地上で鉄筋を挿通した後に、例えばクレーンを用いて支間に一括設置してもよい。   In the method for constructing the composite floor slab of the present invention, the slab form of the present invention may be arranged side by side with the strip-shaped web on the upper side, and then rebars may be inserted through the numerous through holes. The slab molds of the present invention may be installed together on the ground using, for example, a crane, after the strip-shaped webs are arranged side by side on the ground and the reinforcing bars are inserted through the many through holes on the ground.

本発明のスラブ型枠によれば、耐水性や耐食性に優れ、施工の省力化を図ることができると共に、床版の重量を大きく増加させることなく床版の長支間化が可能である。   According to the slab formwork of the present invention, it is excellent in water resistance and corrosion resistance, can save labor in construction, and can extend the span of the floor slab without greatly increasing the weight of the floor slab.

また、本発明の合成床版の構築方法によれば、耐水性や耐食性に優れ、施工の省力化を図ることができると共に、床版の重量を大きく増加させることなく床版の長支間化が可能である。また、例えば床版の四辺が支持され各床版支間長が同程度の2方向スラブにも適用することができる。   Further, according to the method for constructing a composite slab of the present invention, it is excellent in water resistance and corrosion resistance, can save labor in construction, and can extend the span of the slab without greatly increasing the weight of the slab. Is possible. Further, for example, the present invention can also be applied to a two-way slab in which the four sides of the floor slab are supported and the length of each floor slab span is approximately the same.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態であるWT型スラブ型枠10を示す正面図であり、図2は、図1の線A−Aに沿った横断面図である。   FIG. 1 is a front view showing a WT slab form 10 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG.

図1,図2に示すWT型スラブ型枠10は、高強度繊維補強モルタルで一体成形され、帯状底板11とその片面に立設した2列の帯状ウエブ12とからなる形状を有するものである。   A WT slab form 10 shown in FIGS. 1 and 2 is integrally formed with a high-strength fiber reinforced mortar, and has a shape composed of a belt-like bottom plate 11 and two rows of belt-like webs 12 erected on one side thereof. .

この高強度繊維補強モルタルは、短繊維補強材である鋼繊維を、水セメント比が約20%以下のシリカフュームセメント(登録商標)に、粒径が約5mm以下の細骨材と共に混入したセメント系超高強度材料である。この高強度繊維補強モルタルは、例えば、圧縮強度が150MPa程度、曲げ強度が20MPa程度、引張強度が8MPa程度であり、従来の、圧縮強度が40MPa程度〜60MPa程度、曲げ強度が6.5MPa程度、引張強度が3.5MPa程度の普通コンクリートに比して高強度で高じん性な材料である。また、この高強度繊維補強モルタルは、粗骨材を使用しない材料であるため、流動性がよく、施工性に優れている。尚、ここに示した高強度繊維補強モルタルは、本発明の高強度繊維補強モルタルの一設計例であって、本発明の高強度繊維補強モルタルはこれに限られるものではない。   This high-strength fiber reinforced mortar is a cement system in which steel fibers, which are short fiber reinforcements, are mixed with silica fume cement (registered trademark) having a water cement ratio of about 20% or less together with fine aggregates having a particle size of about 5 mm or less. Ultra high strength material. This high-strength fiber reinforced mortar has, for example, a compressive strength of about 150 MPa, a bending strength of about 20 MPa, a tensile strength of about 8 MPa, a conventional compressive strength of about 40 MPa to about 60 MPa, a bending strength of about 6.5 MPa, Compared to ordinary concrete with a tensile strength of about 3.5 MPa, it is a material with high strength and toughness. Moreover, since this high-strength fiber reinforced mortar is a material that does not use coarse aggregate, it has good fluidity and excellent workability. The high strength fiber reinforced mortar shown here is one design example of the high strength fiber reinforced mortar of the present invention, and the high strength fiber reinforced mortar of the present invention is not limited thereto.

図1,図2に示すWT型スラブ型枠10は、普通コンクリートに比して水セメント比が低い高強度繊維補強モルタルで一体成形された密実なコンクリートであるため、中性化速度や塩分浸透度が非常に低い。従って、このWT型スラブ型枠10を例えば桟橋のような港湾構造物に適用する場合、塩害劣化に対する耐久性が向上する。   The WT slab form 10 shown in FIGS. 1 and 2 is a solid concrete integrally formed with a high-strength fiber reinforced mortar having a water-cement ratio lower than that of ordinary concrete. Very low penetration. Therefore, when this WT slab form 10 is applied to a port structure such as a pier, durability against salt damage deterioration is improved.

図1,図2に示すように、WT型スラブ型枠10は、横断面がWT型形状を有し、帯状底板11は鉄筋かぶり厚さを備え、2列の帯状ウエブ12それぞれがこの帯状ウエブ12に交差する方向の多数の貫通孔12aを備えている。尚、このWT型スラブ型枠10は、後述するように桟橋の構築に用いるものであるため、帯状底板11の厚さは、塩害による劣化等の耐久性を満足するための鉄筋かぶりが確保される厚さとされており、例えば約40mmとする。上述したように、WT型スラブ型枠10は中性化速度や塩分浸透度が非常に低いため、普通コンクリートに比して鉄筋かぶりを小さくすることができる。また、このWT型スラブ型枠10は、例えば、帯状底板11の幅が1000mm、帯状底板11の長さが6400mmとされ、高さ180mm、幅100mmの帯状ウエブ12に長径120mm、短径50mmの貫通孔12aが形成されている。   As shown in FIGS. 1 and 2, the WT slab mold 10 has a WT shape in cross section, and the strip-shaped bottom plate 11 has a reinforcing bar cover thickness, and each of the two strips of strip-shaped webs 12 has this strip-shaped web. A large number of through-holes 12 a in the direction intersecting 12 are provided. Since the WT slab form 10 is used for the construction of a pier as will be described later, the thickness of the strip-shaped bottom plate 11 ensures a rebar cover for satisfying durability such as deterioration due to salt damage. For example, about 40 mm. As described above, the WT slab form 10 has a very low neutralization rate and a low salt permeability, and therefore can reduce the rebar cover compared to ordinary concrete. The WT slab mold 10 has, for example, a belt-like bottom plate 11 having a width of 1000 mm and a belt-like bottom plate 11 having a length of 6400 mm, and a belt-like web 12 having a height of 180 mm and a width of 100 mm having a major axis of 120 mm and a minor axis of 50 mm. A through hole 12a is formed.

このように、本実施形態のWT型スラブ型枠10は、帯状底板11と帯状ウエブ12とから構成された幅が1000mmのものであるため可搬性に優れる。また、このWT型スラブ型枠10は、支保工兼用の永久型枠として用いることができるため、施工の省力化を図ることができる。さらに、このWT型スラブ型枠10は、帯状ウエブ12に多数の貫通孔12aを備えたものであるため、その貫通孔12aに鉄筋を挿通することができる。   As described above, the WT slab form 10 of the present embodiment is excellent in portability because the width formed by the belt-like bottom plate 11 and the belt-like web 12 is 1000 mm. Moreover, since this WT slab formwork 10 can be used as a permanent formwork that also serves as a supporter, it is possible to save labor in construction. Further, since the WT slab mold 10 is provided with a plurality of through holes 12a in the belt-like web 12, rebars can be inserted into the through holes 12a.

また、図2に示すように、WT型スラブ型枠10には、帯状ウエブ12に沿う方向にPC鋼材13が配置されプレストレスが導入されている。   In addition, as shown in FIG. 2, in the WT slab mold 10, a PC steel material 13 is arranged in a direction along the belt-like web 12 and prestress is introduced.

このように、本実施形態のWT型スラブ型枠10は、高強度で高じん性な材料である高強度繊維補強モルタルで一体成形され、帯状ウエブ12に沿う方向にプレストレスが導入されているものであるため、床版支間を長くする場合であっても、帯状底板11の厚さを厚くすることなく、帯状ウエブ12の高さを高くすることによって対応可能である。従って、図1,図2に示すWT型スラブ型枠10を用いることにより、床版の重量を大きく増加させることなく床版の長支間化が可能である。   Thus, the WT slab form 10 of the present embodiment is integrally formed with a high-strength fiber reinforced mortar that is a high-strength and high-toughness material, and prestress is introduced in the direction along the belt-like web 12. Therefore, even when the space between the floor slabs is lengthened, it can be dealt with by increasing the height of the belt-like web 12 without increasing the thickness of the belt-like bottom plate 11. Therefore, by using the WT slab form 10 shown in FIGS. 1 and 2, it is possible to increase the span span of the floor slab without greatly increasing the weight of the floor slab.

次に、本発明の合成床版の構築方法についての一実施形態である、床版の四辺が支持され各床版支間長が同程度の2方向スラブの桟橋の構築方法について説明する。尚、この桟橋の主梁は既に構築されているものとして説明する。   Next, a method for constructing a two-way slab pier which is one embodiment of the method for constructing a composite floor slab of the present invention and which supports the four sides of the slab and has the same span length between the slabs will be described. The description will be made assuming that the main beam of this pier has already been constructed.

図3は、本発明の合成床版の構築方法についての一実施形態である桟橋の構築方法を説明するもので、この桟橋100の正面図である。また、図4は、図3の線B−Bに沿った横断面図であり、図5は、図3に示すC部の拡大図である。また、図6は、桟橋100における合成床版120の斜視図である。   FIG. 3 is a front view of the pier 100 for explaining a pier construction method which is an embodiment of the synthetic floor slab construction method of the present invention. 4 is a cross-sectional view taken along line BB in FIG. 3, and FIG. 5 is an enlarged view of a portion C shown in FIG. FIG. 6 is a perspective view of the composite floor slab 120 in the jetty 100.

まず、図3,図5に示すように、WT型スラブ型枠10を載置すべき主梁110の上面にモルタル111を打設する。モルタル111の養生後、図3,図4に示すように、主梁110間に、図1,図2にも示すWT型スラブ型枠10を、帯状ウエブ12を上側にして並設する。   First, as shown in FIGS. 3 and 5, a mortar 111 is placed on the upper surface of the main beam 110 on which the WT slab form 10 is to be placed. After curing the mortar 111, as shown in FIG. 3 and FIG. 4, the WT slab form 10 shown in FIG. 1 and FIG.

次に、図6に示すように、WT型スラブ型枠10の帯状ウエブ12に備えられたこの帯状ウエブ12に交差する方向の多数の貫通孔12aに鉄筋121を挿通することにより、帯状ウエブ12と交差する方向の鉄筋121を配置する。また、WT型スラブ型枠10の帯状ウエブ12相互間にも鉄筋122を配置することにより、帯状ウエブ12に沿う方向の鉄筋122が配置される。尚、主梁110上部における鉄筋122の連結は、圧接あるいは継手123によって行う。   Next, as shown in FIG. 6, the strip-shaped web 12 is inserted into a large number of through holes 12 a in the direction intersecting with the strip-shaped web 12 provided in the strip-shaped web 12 of the WT slab mold 10. Reinforcing bars 121 are arranged in a direction intersecting with. Further, by arranging the reinforcing bars 122 between the strip-shaped webs 12 of the WT slab mold 10, the reinforcing bars 122 in the direction along the strip-shaped web 12 are arranged. The rebar 122 is connected to the upper part of the main beam 110 by pressure welding or a joint 123.

次に、帯状ウエブ12と交差する方向および帯状ウエブ12に沿う方向の鉄筋121,122が配置されたWT型スラブ型枠10にコンクリート20を打設して、WT型スラブ型枠10と場所打ちコンクリート20とが一体化された、桟橋100の合成床版120を構築する。   Next, the concrete 20 is placed on the WT slab mold 10 in which the reinforcing bars 121 and 122 in the direction intersecting with the strip web 12 and the direction along the strip web 12 are arranged, and the WT slab mold 10 and the cast-in-place 10 are cast in place. The composite floor slab 120 of the jetty 100 in which the concrete 20 is integrated is constructed.

このようにして構築された桟橋100の合成床版120は、図1,図2を参照して説明したWT型スラブ型枠10の利点と同様に、耐水性や耐食性に優れ、施工の省力化を図ることができると共に、床版の重量を大きく増加させることなく床版の長支間化が可能である。   The composite floor slab 120 of the pier 100 constructed in this way is excellent in water resistance and corrosion resistance, and is labor-saving in construction, similarly to the advantages of the WT slab form 10 described with reference to FIGS. In addition, it is possible to extend the length of the floor slab without greatly increasing the weight of the floor slab.

また、この合成床版120における、帯状ウエブ12と交差する方向は、WT型スラブ型枠10上に打設したコンクリート20が鉄筋121を挿通した貫通孔12aに充填されることによる、鉄筋121とコンクリート20のせん断伝達力により、確実に一体化される。また、この合成床版120における、帯状ウエブ12に沿う方向は、WT型スラブ型枠10の帯状ウエブ12により確実に一体化される。   Moreover, the direction which cross | intersects the strip | belt-shaped web 12 in this synthetic | combination floor slab 120 is the reinforcing bar 121 by which the concrete 20 cast on the WT slab form 10 is filled in the through-hole 12a which penetrated the reinforcing bar 121. The concrete 20 is reliably integrated by the shear transmission force of the concrete 20. Further, the direction along the strip web 12 in the composite floor slab 120 is surely integrated by the strip web 12 of the WT slab mold 10.

従って、例えば波による揚圧力などといった、合成床版120の下面に圧縮応力が生じる下からの荷重に対しても、合成構造として抵抗できる。   Therefore, the composite structure can be resisted against a load from the bottom that causes a compressive stress on the lower surface of the composite floor slab 120 such as a lifting pressure by a wave.

尚、上述した実施形態では、本発明のスラブ型枠を桟橋の構築方法に適用した例を挙げて説明したが、本発明のスラブ型枠はこれに限られるものではなく、例えば橋梁の合成床版やタンクの側壁などといった、版を用いたコンクリート構造物にも適用することができる。   In the above-described embodiment, the example in which the slab formwork of the present invention is applied to the pier construction method has been described. However, the slab formwork of the present invention is not limited to this, and for example, a composite floor of a bridge It can also be applied to concrete structures using plates such as plates and tank sidewalls.

また、上述した実施形態では、本発明のスラブ型枠が帯状底板とその片面に立設した2列の帯状ウエブとからなる形状を有するWT型スラブ型枠である例を挙げて説明したが、本発明のスラブ型枠はこれに限られるものではなく、帯状底板とその片面に立設した1列以上の連続又は断続した帯状ウエブとを有するスラブ型枠であればよい。   In the above-described embodiment, the slab form of the present invention has been described with reference to an example in which the slab form is a WT slab form having a shape composed of a strip-shaped bottom plate and two rows of strip-shaped webs erected on one side. The slab formwork of the present invention is not limited to this, and may be any slab formwork having a strip-like bottom plate and one or more rows of continuous or intermittent strip-like webs erected on one side thereof.

また、上述した実施形態では、合成床版が桟橋である例を挙げて説明したが、本発明の合成床版の構築方法は桟橋の構築方法に限られるものではなく、本発明のスラブ型枠を並設して合成床版を構築する方法であれば、いかなる合成床版の構築方法にも適用することができる。   In the above-described embodiment, the example in which the composite floor slab is a pier has been described. However, the synthetic floor slab construction method of the present invention is not limited to the pier construction method, and the slab formwork of the present invention. Any method for constructing a composite floor slab can be applied as long as the composite floor slab is constructed by arranging the two in parallel.

また、上述した実施形態では、本発明のスラブ型枠を、上記帯状ウエブを上側にして支間に並設した後に、上記多数の貫通孔に鉄筋を挿通する例を挙げて説明したが、本発明の合成床版の構築方法はこれに限られるものではなく、本発明のスラブ型枠を、上記帯状ウエブを上側にして地上で並設し、上記多数の貫通孔に地上で鉄筋を挿通した後に、例えばクレーンを用いて支間に一括設置してもよい。   Further, in the above-described embodiment, the slab formwork of the present invention has been described with an example in which reinforcing bars are inserted into the numerous through holes after the strip-shaped web is arranged in parallel with the strip-shaped web on the upper side. The method for constructing the composite floor slab is not limited to this, and after the slab formwork of the present invention is juxtaposed on the ground with the belt-shaped web on the upper side, rebars are inserted through the numerous through holes on the ground. For example, you may install in a lump between branches using a crane.

本発明の一実施形態であるWT型スラブ型枠を示す正面図である。It is a front view which shows the WT slab formwork which is one Embodiment of this invention. 図1の線A−Aに沿った横断面図である。It is a cross-sectional view along line AA in FIG. 本発明の合成床版の構築方法についての一実施形態である桟橋の構築方法を説明するもので、この桟橋の正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the front view of this pier explaining the construction method of the pier which is one Embodiment about the construction method of the composite floor slab of this invention. 図3の線B−Bに沿った横断面図である。FIG. 4 is a cross-sectional view taken along line BB in FIG. 3. 図3に示すC部の拡大図である。It is an enlarged view of the C section shown in FIG. 桟橋における合成床版の斜視図である。It is a perspective view of the composite floor slab in a jetty.

符号の説明Explanation of symbols

10 WT型スラブ型枠
11 帯状底板
12 帯状ウエブ
12a 貫通孔
13 PC鋼材
20 コンクリート
100 桟橋
110 主梁
111 モルタル
120 合成床版
121,122 鉄筋
123 継手
DESCRIPTION OF SYMBOLS 10 WT-type slab form 11 Strip-shaped base plate 12 Strip-shaped web 12a Through-hole 13 PC steel 20 Concrete 100 Pier 110 Main beam 111 Mortar 120 Composite floor slab 121,122 Reinforcement 123 Joint

Claims (2)

高強度繊維補強モルタルで一体成形され、帯状底板とその片面に立設した帯状ウエブとからなる形状を有し、前記帯状底板は鉄筋かぶり厚さを備え、前記帯状ウエブは該帯状ウエブに交差する方向の多数の貫通孔を備え、該帯状ウエブに沿う方向にプレストレスが導入されていることを特徴とするスラブ型枠。   The belt-shaped bottom plate and a belt-like web erected on one side thereof are integrally formed with a high-strength fiber-reinforced mortar. The belt-like bottom plate has a reinforcing bar cover thickness, and the belt-like web intersects the belt-like web. A slab formwork comprising a number of through-holes in a direction and prestress is introduced in a direction along the belt-like web. 請求項1記載のスラブ型枠を、前記帯状ウエブを上側にして並設し、前記多数の貫通孔に鉄筋を挿通し、該スラブ型枠上にコンクリートを打設して一体化床版を形成することを特徴とする合成床版の構築方法。   The slab formwork according to claim 1 is arranged side by side with the belt-shaped web facing upward, reinforcing bars are inserted into the numerous through holes, and concrete is placed on the slab formwork to form an integrated floor slab. A method for constructing a composite floor slab characterized by:
JP2006332531A 2006-12-08 2006-12-08 Slab form and method of constructing composite floor slab Pending JP2008144459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006332531A JP2008144459A (en) 2006-12-08 2006-12-08 Slab form and method of constructing composite floor slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006332531A JP2008144459A (en) 2006-12-08 2006-12-08 Slab form and method of constructing composite floor slab

Publications (1)

Publication Number Publication Date
JP2008144459A true JP2008144459A (en) 2008-06-26

Family

ID=39604921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006332531A Pending JP2008144459A (en) 2006-12-08 2006-12-08 Slab form and method of constructing composite floor slab

Country Status (1)

Country Link
JP (1) JP2008144459A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034280B1 (en) 2010-07-21 2011-05-16 (주)대룡산업 Concrete and steel deck plate
CN102261042A (en) * 2011-06-09 2011-11-30 四川川交路桥有限责任公司 Cantilever diagonal bracing bracket for casting bridge pier cover beam
JP2012149400A (en) * 2011-01-18 2012-08-09 Railway Technical Research Institute Slab reinforcement method using cast-in-place concrete
KR101395114B1 (en) * 2013-11-14 2014-05-27 박영호 Precast panel with corrugated steel web psc girder slab structure
JP2017082403A (en) * 2015-10-23 2017-05-18 西日本高速道路株式会社 Embedded mold

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864213U (en) * 1971-11-22 1973-08-15
JPS5526336A (en) * 1978-08-11 1980-02-25 Mitsui Constr Floor frame which serves also as ceiling finishing member wall of prescribed thickness with
JPS57191007A (en) * 1981-05-21 1982-11-24 Fuji Ps Concrete Pc concrete block with central section projection rib and its manufacture
JPS60181452A (en) * 1984-02-24 1985-09-17 清水建設株式会社 Construction of floor panel
JPH09221706A (en) * 1996-02-16 1997-08-26 Yokogawa Buritsuji:Kk Floor slab for road surface and layout method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864213U (en) * 1971-11-22 1973-08-15
JPS5526336A (en) * 1978-08-11 1980-02-25 Mitsui Constr Floor frame which serves also as ceiling finishing member wall of prescribed thickness with
JPS57191007A (en) * 1981-05-21 1982-11-24 Fuji Ps Concrete Pc concrete block with central section projection rib and its manufacture
JPS60181452A (en) * 1984-02-24 1985-09-17 清水建設株式会社 Construction of floor panel
JPH09221706A (en) * 1996-02-16 1997-08-26 Yokogawa Buritsuji:Kk Floor slab for road surface and layout method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034280B1 (en) 2010-07-21 2011-05-16 (주)대룡산업 Concrete and steel deck plate
JP2012149400A (en) * 2011-01-18 2012-08-09 Railway Technical Research Institute Slab reinforcement method using cast-in-place concrete
CN102261042A (en) * 2011-06-09 2011-11-30 四川川交路桥有限责任公司 Cantilever diagonal bracing bracket for casting bridge pier cover beam
KR101395114B1 (en) * 2013-11-14 2014-05-27 박영호 Precast panel with corrugated steel web psc girder slab structure
JP2017082403A (en) * 2015-10-23 2017-05-18 西日本高速道路株式会社 Embedded mold

Similar Documents

Publication Publication Date Title
US20160362867A1 (en) Modular construction mold apparatus and method for constructing concrete buildings and structures
KR100654075B1 (en) Steel beam with capping shear connector and Composite Beam using the steel beam
KR100483083B1 (en) Composite Deck having Frame and Concrete
KR102000534B1 (en) Construction method using textile reinforcing panel of high durability for combined usage of permanent form
KR200383490Y1 (en) System for constructing composite reinforced concrete girders and beams using FRP
JP2008144459A (en) Slab form and method of constructing composite floor slab
KR101184719B1 (en) Method making rigid block with pile and slab/precast girder and method constructing the rahmen bridge thereof
KR200406615Y1 (en) T shape precast concrete panel
KR101458435B1 (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
JP2003213623A (en) Upper structure of ridge
KR102269141B1 (en) Deck plate wall installation method using underground pavement
JP2016079585A (en) Reinforcement member and reinforcement concrete structure using the reinforcement member
KR101625995B1 (en) Precast deck and slab having the same
KR100938876B1 (en) Stay-in-place precast concrete panel
KR100689090B1 (en) Simple beam bridge using hybrid girder
KR20130090453A (en) Reinforcement member and girder using the same
KR20130090709A (en) Construction method for corrugated steel plate web-psc composite beam
KR100860592B1 (en) Temporary system for vertical structure using precast concreat block
KR20100007721A (en) Reinforcement
JP6817589B1 (en) How to build pile support structure
KR200395572Y1 (en) Precast concrete panel
KR101194866B1 (en) Rahmen bridge construction method using longitudinal and lateral steel member
KR100579586B1 (en) System for constructing composite reinforced concrete girders and beams using frp
JP5781873B2 (en) Bridge girder
CN100422460C (en) Lightweight hollow slab made from concrete reinforced by steel bar cast in-site

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110420

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306