JP2008141830A - Charging control circuit - Google Patents

Charging control circuit Download PDF

Info

Publication number
JP2008141830A
JP2008141830A JP2006324017A JP2006324017A JP2008141830A JP 2008141830 A JP2008141830 A JP 2008141830A JP 2006324017 A JP2006324017 A JP 2006324017A JP 2006324017 A JP2006324017 A JP 2006324017A JP 2008141830 A JP2008141830 A JP 2008141830A
Authority
JP
Japan
Prior art keywords
voltage
electrode
secondary battery
type mosfet
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006324017A
Other languages
Japanese (ja)
Inventor
Juichi Uno
寿一 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006324017A priority Critical patent/JP2008141830A/en
Publication of JP2008141830A publication Critical patent/JP2008141830A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging control circuit that generates a parasitic diode capable of preventing a current from flowing out of a secondary battery to a power source, by connecting to the back gate electrode one electrode, of the input electrode and the output electrode of a MOSFET, different from the other one connected to the back gate electrode when charging. <P>SOLUTION: The charging control circuit 1 has the input electrode to which a voltage of the power source is supplied and the output electrode that outputs a voltage which charges the secondary battery 20. The circuit is provided with a comparison circuit 7 which compares voltages of the input and output electrodes of the MOSFET which is turned on when charging, and a switching circuit 8 which connects one electrode of the input and output electrodes with the back gate electrode of the MOSFET, which generates the parasitic diode capable of preventing a current from flowing out of the secondary battery to the power source based on the comparison result at the time when the voltage of the input electrode is lower and which connects the other electrode different from the one electrode to the back gate electrode based on the comparison result at the time when the voltage of the input electrode is higher. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、充電制御回路に関する。   The present invention relates to a charge control circuit.

現在、リチウムイオン電池等を充電するための充電器が普及している。この充電器は、図4、図5に示すような、二次電池120の充電を制御するための充電制御回路100を備えているものがある。以下、一例として図4を参照しつつ、充電制御回路100について詳述する。   Currently, chargers for charging lithium ion batteries and the like are in widespread use. Some of the chargers include a charge control circuit 100 for controlling the charging of the secondary battery 120 as shown in FIGS. 4 and 5. Hereinafter, the charge control circuit 100 will be described in detail with reference to FIG. 4 as an example.

差動アンプ104は、一方の極性(+)の入力端子に基準電圧Vrefが印加され、他方の極性(−)の入力端子に二次電池120の充電電圧が印加される。差動アンプ104は、二次電池120の充電電圧と基準電圧Vrefとの差を増幅した電圧を出力する。差動アンプ104の出力電圧は、二次電池120の充電電圧と基準電圧Vrefとの差が大きくなるにつれて上昇し、二次電池120の充電電圧と基準電圧Vrefとの差が小さくなるにつれて下降する。npn型トランジスタ105は、差動アンプ104の出力電圧に応じて動作する。例えば、充電電圧が0(V)の二次電池120が、接続端子107、108に接続される場合、当該二次電池120の充電電圧と基準電圧Vrefとの差が最も大きくなり差動アンプ104の出力電圧が上昇する。npn型トランジスタ105は、差動アンプ104の出力電圧に応じて動作し、npn型トランジスタ105の動作に応じてP型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)101が動作する。電源ライン110には、直流電圧(電圧Vcc)が印加される。このため、P型MOSFET101は、ソース電極に電圧Vccが印加され、ドレイン電極から二次電池120を充電するための電圧を出力する。尚、P型MOSFET101のソース電極とバックゲート電極の間には、ソース電極とバックゲート電極とが接続されることにより、アノードがドレイン電極と接続されカソードがバックゲート電極と接続された寄生ダイオード109が生成される。従って、電源ライン110から二次電池120へと流れ出す電流のうち、バックゲート電極からドレイン電極へと流れようとする電流は、寄生ダイオード109で阻止されることとなる。そして、P型MOSFET101と二次電池120との間に順方向に直列接続されるショットキーバリアダイオード102、抵抗103を介して、P型MOSFET101の出力電圧に応じた電圧が二次電池120に印加されることにより、二次電池120が充電されることとなる。   In the differential amplifier 104, the reference voltage Vref is applied to an input terminal having one polarity (+), and the charging voltage of the secondary battery 120 is applied to an input terminal having the other polarity (−). The differential amplifier 104 outputs a voltage obtained by amplifying the difference between the charging voltage of the secondary battery 120 and the reference voltage Vref. The output voltage of the differential amplifier 104 increases as the difference between the charging voltage of the secondary battery 120 and the reference voltage Vref increases, and decreases as the difference between the charging voltage of the secondary battery 120 and the reference voltage Vref decreases. . The npn transistor 105 operates according to the output voltage of the differential amplifier 104. For example, when the secondary battery 120 having a charging voltage of 0 (V) is connected to the connection terminals 107 and 108, the difference between the charging voltage of the secondary battery 120 and the reference voltage Vref becomes the largest, and the differential amplifier 104 Output voltage rises. The npn transistor 105 operates according to the output voltage of the differential amplifier 104, and a P-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 101 operates according to the operation of the npn transistor 105. A DC voltage (voltage Vcc) is applied to the power supply line 110. For this reason, the P-type MOSFET 101 has a voltage Vcc applied to the source electrode and outputs a voltage for charging the secondary battery 120 from the drain electrode. A parasitic diode 109 is connected between the source electrode and the back gate electrode of the P-type MOSFET 101 by connecting the source electrode and the back gate electrode, so that the anode is connected to the drain electrode and the cathode is connected to the back gate electrode. Is generated. Therefore, of the current that flows from the power supply line 110 to the secondary battery 120, the current that tries to flow from the back gate electrode to the drain electrode is blocked by the parasitic diode 109. A voltage corresponding to the output voltage of the P-type MOSFET 101 is applied to the secondary battery 120 via the Schottky barrier diode 102 and the resistor 103 connected in series in the forward direction between the P-type MOSFET 101 and the secondary battery 120. As a result, the secondary battery 120 is charged.

そして、二次電池120が充電されるにつれて、当該二次電池120の充電電圧と基準電圧Vrefとの差が小さくなり、差動アンプ104の出力電圧が下降する。npn型トランジスタ105は、差動アンプ104の出力電圧の下降に伴ってコレクタ電圧が上昇する。P型MOSFET101は、npn型トランジスタ105のコレクタ電圧の上昇に伴って、二次電池120を充電するためのドレイン電極の電圧が下降する。そして、二次電池120の充電電圧が基準電圧Vrefに達したとき、P型MOSFET101のドレイン電極の電圧が最も小さくなり、二次電池120の充電が停止されることとなる。このとき、充電器に対して電源電圧の印加がされなくなった場合、電源ライン110の電圧が二次電池120の充電電圧よりも低い電圧V1(例えば略接地レベル)となる可能性がある。この場合、仮に二次電池120から電源ライン110へと流れ出す電流に対して逆方向の接続となるショットキーバリアダイオード102が備えられていないと、当該電流に対して順方向の接続となる寄生ダイオード109を介して電流が電源ライン110へと流れることとなる。このため、二次電池120の充電電圧は、基準電圧Vrefから下降することとなる。そこで、充電制御回路100においては、図4に示すように、寄生ダイオード109の順方向に対し逆方向の接続となるショットキーバリアダイオード102を、二次電池120と電源ライン110の間に直列接続させ、二次電池120から電源ライン110へと流れ出す電流を阻止している。この結果、二次電池120の充電電圧を下降させることなく、機器(例えば携帯電話)等の負荷に対して二次電池120を用いることが可能となる。尚、図5に示す充電制御回路115は、ショットキーバリアダイオード102に換えてP型MOSFET116を備えたものである。P型MOSFET116は、ゲート電極がP型MOSFET101のゲート電極と接続されることによりP型MOSFET101とともに動作し、ドレイン電極がP型MOSFET101のドレイン電極と接続され、ソース電極が抵抗103と接続され、バックゲート電極がソース電極と接続される。このため、充電制御回路115は、P型MOSFET116のドレイン電極とバックゲート電極との間に寄生ダイオード109の順方向に対し逆方向の接続となる寄生ダイオード117が生成され、npn型トランジスタ105の動作に応じてP型MOSFET101とP型MOSFET116がとともに動作することにより、二次電池120から電源ライン110へと流れ出す電流を阻止している。
特開平6−197468号公報 特開2001−352683号公報 特開2005−80491号公報
As the secondary battery 120 is charged, the difference between the charging voltage of the secondary battery 120 and the reference voltage Vref decreases, and the output voltage of the differential amplifier 104 decreases. The collector voltage of the npn transistor 105 increases as the output voltage of the differential amplifier 104 decreases. In the P-type MOSFET 101, as the collector voltage of the npn-type transistor 105 increases, the voltage of the drain electrode for charging the secondary battery 120 decreases. When the charging voltage of the secondary battery 120 reaches the reference voltage Vref, the voltage of the drain electrode of the P-type MOSFET 101 becomes the smallest and charging of the secondary battery 120 is stopped. At this time, when the power supply voltage is no longer applied to the charger, the voltage of the power supply line 110 may become a voltage V1 (for example, substantially ground level) lower than the charging voltage of the secondary battery 120. In this case, if the Schottky barrier diode 102 that is connected in the reverse direction with respect to the current flowing from the secondary battery 120 to the power supply line 110 is not provided, the parasitic diode that is connected in the forward direction with respect to the current. A current flows to the power supply line 110 via 109. For this reason, the charging voltage of the secondary battery 120 falls from the reference voltage Vref. Therefore, in the charge control circuit 100, as shown in FIG. 4, a Schottky barrier diode 102 that is connected in the reverse direction to the forward direction of the parasitic diode 109 is connected in series between the secondary battery 120 and the power supply line 110. Current flowing out from the secondary battery 120 to the power supply line 110 is blocked. As a result, the secondary battery 120 can be used for a load such as a device (for example, a mobile phone) without lowering the charging voltage of the secondary battery 120. The charge control circuit 115 shown in FIG. 5 includes a P-type MOSFET 116 in place of the Schottky barrier diode 102. The P-type MOSFET 116 operates together with the P-type MOSFET 101 by connecting the gate electrode to the gate electrode of the P-type MOSFET 101, the drain electrode is connected to the drain electrode of the P-type MOSFET 101, the source electrode is connected to the resistor 103, and the back The gate electrode is connected to the source electrode. Therefore, the charge control circuit 115 generates a parasitic diode 117 that is connected in the reverse direction to the forward direction of the parasitic diode 109 between the drain electrode and the back gate electrode of the P-type MOSFET 116, and the operation of the npn-type transistor 105. Accordingly, the P-type MOSFET 101 and the P-type MOSFET 116 operate together to prevent a current flowing from the secondary battery 120 to the power supply line 110.
JP-A-6-197468 JP 2001-352683 A JP 2005-80491 A

しかしながら、従来の充電制御回路100(115)においては、二次電池120から電源ライン110へと流れ出す電流を阻止するために、ショットキーバリアダイオード102やP型MOSFET116を充電制御回路100(115)に備えなければならず、充電制御回路100(115)に係るコストアップや回路面積の拡大等を招く虞があった。   However, in the conventional charge control circuit 100 (115), the Schottky barrier diode 102 and the P-type MOSFET 116 are connected to the charge control circuit 100 (115) in order to prevent a current flowing from the secondary battery 120 to the power supply line 110. There is a risk that the charge control circuit 100 (115) may be increased in cost and circuit area.

そこで、本発明は、前記課題を解決することが可能な充電制御回路を提供することを目的とする。   Accordingly, an object of the present invention is to provide a charge control circuit capable of solving the above-described problems.

前記課題を解決するための発明は、電源の電圧が印加される入力電極及び二次電池を充電するための電圧を出力する出力電極を有し、前記二次電池を充電する際にオンするMOSFETの前記入力電極及び前記出力電極の電圧を比較する比較回路と、前記入力電極の電圧が前記出力電極の電圧よりも低いときの前記比較回路の比較結果に基づいて、前記入力電極と前記出力電極のうち、前記二次電池から前記電源へと流れ出す電流を阻止可能な寄生ダイオードを生成する側の一方の電極と、前記MOSFETのバックゲート電極と、を接続し、前記入力電極の電圧が前記出力電極の電圧よりも高いときの前記比較回路の比較結果に基づいて、前記入力電極と前記出力電極のうち、前記一方の電極とは異なる他方の電極と、前記バックゲート電極と、を接続するスイッチ回路と、を備えた、ことを特徴とする。   The invention for solving the above-mentioned problems has a MOSFET that has an input electrode to which a voltage of a power supply is applied and an output electrode that outputs a voltage for charging the secondary battery, and is turned on when the secondary battery is charged. A comparison circuit for comparing the voltages of the input electrode and the output electrode of the input circuit, and the comparison result of the comparison circuit when the voltage of the input electrode is lower than the voltage of the output electrode. One of the electrodes on the side that generates a parasitic diode capable of preventing a current flowing from the secondary battery to the power source and the back gate electrode of the MOSFET are connected, and the voltage of the input electrode is the output Based on the comparison result of the comparison circuit when the voltage is higher than the voltage of the electrode, the other electrode different from the one electrode among the input electrode and the output electrode, and the back gate electrode When, with a, a switch circuit connecting the, it is characterized.

本発明によれば、入力電極と出力電極のうち、充電する際にバックゲート電極と接続される他方の電極とは異なる一方の電極と、バックゲート電極とを接続させることにより、二次電池から電源へと流れ出す電流を阻止可能な寄生ダイオードを生成することができる。   According to the present invention, by connecting the back gate electrode with one of the input electrode and the output electrode, which is different from the other electrode connected with the back gate electrode when charging, from the secondary battery. A parasitic diode capable of blocking the current flowing out to the power supply can be generated.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of this specification and the accompanying drawings.

===充電制御回路1の全体構成===
以下、図1を参照しつつ、本発明に係る充電制御回路1の全体構成について説明する。図1は、本発明に係る充電制御回路1の全体構成の一例を示す回路図である。
=== Overall Configuration of Charge Control Circuit 1 ===
The overall configuration of the charging control circuit 1 according to the present invention will be described below with reference to FIG. FIG. 1 is a circuit diagram showing an example of the overall configuration of a charge control circuit 1 according to the present invention.

充電制御回路1は、P型MOSFET2(MOSFET)、抵抗3、6、差動アンプ4、npn型トランジスタ5、コンパレータ7(比較回路)、スイッチ回路8、接続端子9、10を有する。また、スイッチ回路8は、スイッチ8A(第2スイッチ回路)、スイッチ8B(第1スイッチ回路)を有する。尚、充電制御回路1は、二次電池20を充電する充電器(不図示)の一部を構成するものとして以下説明する。そして、充電器の電源ライン11(電源)には、二次電池20を充電する場合、直流電圧(電圧Vcc)が印加されるものとして説明する。また、充電器の電源ライン11には、充電器に対して電源電圧の印加がされなくなった場合、二次電池20の充電電圧よりも低い電圧V1(例えば略接地レベル)が印加されるものとして説明する。   The charge control circuit 1 includes a P-type MOSFET 2 (MOSFET), resistors 3 and 6, a differential amplifier 4, an npn-type transistor 5, a comparator 7 (comparison circuit), a switch circuit 8, and connection terminals 9 and 10. The switch circuit 8 includes a switch 8A (second switch circuit) and a switch 8B (first switch circuit). The charge control circuit 1 will be described below as constituting a part of a charger (not shown) that charges the secondary battery 20. The description will be made assuming that a DC voltage (voltage Vcc) is applied to the power supply line 11 (power supply) of the charger when the secondary battery 20 is charged. In addition, when a power supply voltage is no longer applied to the charger, a voltage V1 (for example, a substantially ground level) lower than the charging voltage of the secondary battery 20 is applied to the power supply line 11 of the charger. explain.

接続端子9は、二次電池20の正極と接続され、接続端子10は、二次電池20の負極と接続される。   The connection terminal 9 is connected to the positive electrode of the secondary battery 20, and the connection terminal 10 is connected to the negative electrode of the secondary battery 20.

差動アンプ4は、一方の極性(+)の入力端子に基準電圧Vref(予め定められた電圧)が印加され、他方の極性(−)の入力端子が抵抗3の一端及び接続端子9と接続され、出力端子がnpn型トランジスタ5のベース電極と接続される。尚、基準電圧Vrefは、例えば二次電池20が満充電状態のときの充電電圧よりも所定電圧低い電圧である。差動アンプ4は、二次電池20の充電電圧と基準電圧Vrefとの差を増幅した電圧を出力する。差動アンプ4の出力電圧は、二次電池20の充電電圧と基準電圧Vrefとの差が大きくなるにつれて上昇し、二次電池20の充電電圧と基準電圧Vrefとの差が小さくなるにつれて下降する。   In the differential amplifier 4, a reference voltage Vref (predetermined voltage) is applied to one polarity (+) input terminal, and the other polarity (−) input terminal is connected to one end of the resistor 3 and the connection terminal 9. The output terminal is connected to the base electrode of the npn transistor 5. The reference voltage Vref is, for example, a voltage that is lower by a predetermined voltage than the charging voltage when the secondary battery 20 is fully charged. The differential amplifier 4 outputs a voltage obtained by amplifying the difference between the charging voltage of the secondary battery 20 and the reference voltage Vref. The output voltage of the differential amplifier 4 increases as the difference between the charging voltage of the secondary battery 20 and the reference voltage Vref increases, and decreases as the difference between the charging voltage of the secondary battery 20 and the reference voltage Vref decreases. .

npn型トランジスタ5は、ベース電極が差動アンプ4の出力端子と接続され、コレクタ電極がP型MOSFET2のゲート電極及び抵抗6の一端と接続され、エミッタ電極が接地される。npn型トランジスタ5は、差動アンプ4の出力電圧に応じて動作する。   The npn transistor 5 has a base electrode connected to the output terminal of the differential amplifier 4, a collector electrode connected to the gate electrode of the P-type MOSFET 2 and one end of the resistor 6, and an emitter electrode grounded. The npn transistor 5 operates according to the output voltage of the differential amplifier 4.

抵抗6は、一端がP型MOSFET2のゲート電極及びnpn型トランジスタ5のコレクタ電極と接続され、他端がP型MOSFET2のバックゲート電極及びスイッチ8Aとスイッチ8Bの接続点と接続される。尚、充電制御回路1は、抵抗6を備えずに、P型MOSFET2のゲート及びnpn型トランジスタ5のコレクタ電極と、P型MOSFET2のバックゲート電極及びスイッチ8Aとスイッチ8Bの接続点との間を、短絡させる構成としても良い。   The resistor 6 has one end connected to the gate electrode of the P-type MOSFET 2 and the collector electrode of the npn-type transistor 5, and the other end connected to the back-gate electrode of the P-type MOSFET 2 and the connection point between the switch 8A and the switch 8B. The charge control circuit 1 does not include the resistor 6, and is provided between the gate of the P-type MOSFET 2 and the collector electrode of the npn-type transistor 5, the back gate electrode of the P-type MOSFET 2, and the connection point between the switch 8A and the switch 8B. It is good also as a structure short-circuited.

P型MOSFET2、抵抗3は、電源ライン11と二次電池20との間に直列接続される。P型MOSFET2は、ゲート電極が抵抗6の一端及びnpn型トランジスタ5のコレクタ電極と接続され、ソース電極(他方の電極)が電源ライン11と接続され、ドレイン電極(一方の電極)が抵抗3の他端、コンパレータ7の他方の極性(−)の入力端子及びスイッチ8Bと接続される。また、P型MOSFET2は、バックゲート電極がスイッチ8Aとスイッチ8Bの接続点及び抵抗6の他端と接続される。P型MOSFET2は、npn型トランジスタ5の動作に応じて動作する。そして、P型MOSFET2は、ソース電極に電圧Vccが印加されると、ドレイン電極から二次電池20を充電するための電圧を出力する。尚、本実施形態によれば、充電制御回路1は、P型MOSFET2を構成としているがこれに限るものではなく、N型MOSFET(不図示)を構成として用いても良い。   The P-type MOSFET 2 and the resistor 3 are connected in series between the power supply line 11 and the secondary battery 20. In the P-type MOSFET 2, the gate electrode is connected to one end of the resistor 6 and the collector electrode of the npn-type transistor 5, the source electrode (the other electrode) is connected to the power supply line 11, and the drain electrode (one electrode) is the resistor 3. The other end, the other polarity (−) input terminal of the comparator 7 and the switch 8B are connected. The P-type MOSFET 2 has a back gate electrode connected to the connection point between the switch 8A and the switch 8B and the other end of the resistor 6. The P-type MOSFET 2 operates according to the operation of the npn-type transistor 5. When the voltage Vcc is applied to the source electrode, the P-type MOSFET 2 outputs a voltage for charging the secondary battery 20 from the drain electrode. According to the present embodiment, the charge control circuit 1 is configured as the P-type MOSFET 2, but is not limited thereto, and an N-type MOSFET (not shown) may be used as the configuration.

抵抗3は、一端が差動アンプ4の他方の極性(−)の入力端子及び接続端子9と接続され、他端がP型MOSFET2のドレイン電極、コンパレータ7の他方の極性(−)及びスイッチ8Bと接続される。尚、抵抗3は、二次電池20が充電されているときに、当該抵抗3を流れる電流を不図示の回路で積算するために設けられる。この不図示の回路は、積算した値が所定値に達したときに電源ライン11から二次電池20への充電路を遮断(例えばP型MOSFET2をオフ)するためのものであって、例えば本発明の出願人が既に出願している特開2004−340916号公報に詳細に記載されているため、説明等を省略する。   The resistor 3 has one end connected to the other polarity (−) input terminal and connection terminal 9 of the differential amplifier 4, and the other end connected to the drain electrode of the P-type MOSFET 2, the other polarity (−) of the comparator 7, and the switch 8 </ b> B. Connected. The resistor 3 is provided to integrate the current flowing through the resistor 3 with a circuit (not shown) when the secondary battery 20 is charged. This circuit (not shown) is for cutting off the charging path from the power supply line 11 to the secondary battery 20 (for example, turning off the P-type MOSFET 2) when the integrated value reaches a predetermined value. Since it is described in detail in Japanese Patent Application Laid-Open No. 2004-340916 filed by the applicant of the present invention, description and the like are omitted.

コンパレータ7は、一方の極性(+)の入力端子が電源ライン11と接続され、他方の極性(−)の入力端子がP型MOSFET2のドレイン電極、スイッチ8B及び抵抗3の他端と接続される。コンパレータ7は、一方の電極(+)の入力端子に印加されるP型MOSFET2のソース電極の電圧と等しい電圧(電圧Vcc及び電圧V1)が、他方の電極(−)の入力端子に印加されるP型MOSFET2のドレイン電極の電圧よりも高いときに、ハイレベル(入力電極の電圧が出力電極の電圧よりも高いときの比較結果)を出力する。また、コンパレータ7は、一方の電極(+)の入力端子に印加されるP型MOSFET2のソース電極の電圧と等しい電圧(電圧Vcc及び電圧V1)が、他方の極性(−)の入力端子に印加されるP型MOSFET2のドレイン電極の電圧よりも低いときに、ローレベル(入力電極の電圧が出力電極の電圧よりも低いときの比較結果)を出力する。尚、コンパレータ7の正電源端子に、例えばレギュレータ(不図示)からの電圧(Vreg)が印加され、コンパレータ7の負電源端子に、接地レベルの電圧(Vss)が印加されている場合、ハイレベルとは、スイッチ8Aを閉じ、スイッチ8Bを開かせるのに十分な略Vregであり、ローレベルとは、スイッチ8Aを開き、スイッチ8Bを閉じさせるのに十分な略Vssである。   The comparator 7 has one polarity (+) input terminal connected to the power supply line 11, and the other polarity (−) input terminal connected to the drain electrode of the P-type MOSFET 2, the switch 8 </ b> B, and the other end of the resistor 3. . In the comparator 7, a voltage (voltage Vcc and voltage V1) equal to the voltage of the source electrode of the P-type MOSFET 2 applied to the input terminal of one electrode (+) is applied to the input terminal of the other electrode (−). When the voltage is higher than the voltage of the drain electrode of the P-type MOSFET 2, a high level (comparison result when the voltage of the input electrode is higher than the voltage of the output electrode) is output. The comparator 7 applies a voltage (voltage Vcc and voltage V1) equal to the voltage of the source electrode of the P-type MOSFET 2 applied to the input terminal of one electrode (+) to the input terminal of the other polarity (−). When the voltage is lower than the voltage of the drain electrode of the P-type MOSFET 2, the low level (comparison result when the voltage of the input electrode is lower than the voltage of the output electrode) is output. Note that, for example, when a voltage (Vreg) from a regulator (not shown) is applied to the positive power supply terminal of the comparator 7 and a ground level voltage (Vss) is applied to the negative power supply terminal of the comparator 7, the high level. Is approximately Vreg sufficient to close the switch 8A and open the switch 8B, and low level is approximately Vss sufficient to open the switch 8A and close the switch 8B.

スイッチ回路8は、コンパレータ7からのハイレベル及びローレベルに基づいて相補的にスイッチングするスイッチ8A、8Bから構成される。スイッチ8Aは、ハイレベルに基づいて閉じ、電源ライン11とP型MOSFET2のバックゲート電極及び抵抗6の他端との間を短絡させる。また、スイッチ8Aは、ローレベルに基づいて開き、電源ライン11とP型MOSFET2のバックゲート電極及び抵抗6の他端との間を開放させる。スイッチ8Bは、ハイレベルに基づいて開き、P型MOSFET2のバックゲート電極及び抵抗6の他端とP型MOSFET2のドレイン電極との間を開放させる。また、スイッチ8Bは、ローレベルに基づいて閉じ、P型MOSFET2のバックゲート電極及び抵抗6の他端とP型MOSFET2のドレイン電極との間を短絡させる。   The switch circuit 8 includes switches 8A and 8B that perform complementary switching based on the high level and the low level from the comparator 7. The switch 8A is closed based on the high level, and short-circuits between the power supply line 11 and the back gate electrode of the P-type MOSFET 2 and the other end of the resistor 6. The switch 8A opens based on the low level, and opens between the power supply line 11 and the back gate electrode of the P-type MOSFET 2 and the other end of the resistor 6. The switch 8B opens based on the high level, and opens between the back gate electrode of the P-type MOSFET 2 and the other end of the resistor 6 and the drain electrode of the P-type MOSFET 2. The switch 8B closes based on the low level, and short-circuits the back gate electrode of the P-type MOSFET 2 and the other end of the resistor 6 and the drain electrode of the P-type MOSFET 2.

尚、充電制御回路1は、集積回路(IC(Integrated Circuit))としても良い。また、充電制御回路1は、コンパレータ7、スイッチ回路8のみを構成とした集積回路としても良いし、それ以外の前記構成の一部も備えた集積回路としても良い。   The charge control circuit 1 may be an integrated circuit (IC). Further, the charging control circuit 1 may be an integrated circuit including only the comparator 7 and the switch circuit 8, or may be an integrated circuit including a part of the other configuration.

===充電制御回路1の充電時の動作===
以下、図1を適宜参照しつつ、図2を用いて、本発明に係る充電制御回路1の充電時の動作について説明する。図2は、本発明に係る充電制御回路1の充電時の動作を説明するための回路図である。尚、電源ライン11には、前述したように、二次電池20を充電するための電圧Vccが印加されているものとして説明する。
=== Operation of Charging Control Circuit 1 during Charging ===
Hereinafter, the operation during charging of the charging control circuit 1 according to the present invention will be described with reference to FIG. FIG. 2 is a circuit diagram for explaining the operation during charging of the charging control circuit 1 according to the present invention. In the following description, it is assumed that the voltage Vcc for charging the secondary battery 20 is applied to the power line 11 as described above.

例えば充電電圧が0(V)の二次電池20が接続端子9、10に接続されると、差動アンプ4の他方の極性(−)の入力端子に0(V)が印加される。このため、二次電池20の充電電圧と基準電圧Vrefとの差が最も大きくなり、差動アンプ4の出力電圧が上昇する。npn型トランジスタ5は、差動アンプの出力電圧に応じて動作する。P型MOSFET2は、npn型トランジスタ5の動作に応じて動作する。   For example, when the secondary battery 20 having a charging voltage of 0 (V) is connected to the connection terminals 9 and 10, 0 (V) is applied to the other polarity (−) input terminal of the differential amplifier 4. For this reason, the difference between the charging voltage of the secondary battery 20 and the reference voltage Vref becomes the largest, and the output voltage of the differential amplifier 4 increases. The npn transistor 5 operates according to the output voltage of the differential amplifier. The P-type MOSFET 2 operates according to the operation of the npn-type transistor 5.

一方、コンパレータ7は、一方の極性(+)の入力端子にP型MOSFET2のソース電極の電圧と等しい電圧Vccが印加され、他方の極性(−)の入力端子にP型MOSFET2のドレイン電極の電圧が印加される。ここで、P型MOSFET2のドレイン電極の電圧は、電圧Vccよりも低い、二次電池20の充電電圧(0(V))+抵抗3の両端の電圧である。このため、コンパレータ7は、一方の極性(+)の入力端子の電圧Vccが、他方の極性(−)の入力端子に印加されるP型MOSFET2のドレイン電極の電圧よりも高いために、ハイレベルを出力する。従って、スイッチ8Aが閉じ、電源ライン11とP型MOSFET2のバックゲート電極及び抵抗6の他端との間が短絡される。また、スイッチ8Bが開き、P型MOSFET2のバックゲート電極及び抵抗6の他端とP型MOSFET2のドレイン電極との間が開放される。このスイッチ8Aが閉じることによる短絡は、P型MOSFET2のバックゲート電極とソース電極とが接続されたことと等価である。このため、P型MOSFET2のバックゲート電極とドレイン電極との間には、図2に示すように、アノードがドレイン電極と接続されカソードがバックゲート電極と接続された寄生ダイオード12が生成される。つまり、電源ライン11から二次電池20へと流れ出す電流に対して逆方向に接続される寄生ダイオード12が生成されることとなる。このため、電源ライン11から流れ出す電流は、P型MOSFET2のソース電極からドレイン電極へと流れる。上述の結果、P型MOSFET2のドレイン電極から、二次電池20を充電するための電圧が出力される。そして、P型MOSFET2のドレイン電極の電圧−抵抗3の電圧が、二次電池20に印加され、二次電池20が充電されることとなる。尚、上述の充電制御回路1の動作は、二次電池20の充電電圧が基準電圧Vrefに達するまで保持されることとなる。   On the other hand, in the comparator 7, a voltage Vcc equal to the voltage of the source electrode of the P-type MOSFET 2 is applied to one input terminal of polarity (+), and the voltage of the drain electrode of the P-type MOSFET 2 is applied to the input terminal of the other polarity (−). Is applied. Here, the voltage of the drain electrode of the P-type MOSFET 2 is the charging voltage (0 (V)) of the secondary battery 20 + the voltage across the resistor 3 which is lower than the voltage Vcc. Therefore, the comparator 7 has a high level because the voltage Vcc of the input terminal of one polarity (+) is higher than the voltage of the drain electrode of the P-type MOSFET 2 applied to the input terminal of the other polarity (−). Is output. Accordingly, the switch 8A is closed, and the power supply line 11 and the back gate electrode of the P-type MOSFET 2 and the other end of the resistor 6 are short-circuited. Further, the switch 8B is opened, and the back gate electrode of the P-type MOSFET 2 and the other end of the resistor 6 and the drain electrode of the P-type MOSFET 2 are opened. The short circuit due to the closing of the switch 8A is equivalent to the back gate electrode and the source electrode of the P-type MOSFET 2 being connected. For this reason, as shown in FIG. 2, a parasitic diode 12 having an anode connected to the drain electrode and a cathode connected to the back gate electrode is generated between the back gate electrode and the drain electrode of the P-type MOSFET 2. That is, the parasitic diode 12 connected in the opposite direction to the current flowing out from the power supply line 11 to the secondary battery 20 is generated. For this reason, the current flowing out from the power supply line 11 flows from the source electrode to the drain electrode of the P-type MOSFET 2. As a result, a voltage for charging the secondary battery 20 is output from the drain electrode of the P-type MOSFET 2. Then, the voltage of the drain electrode of the P-type MOSFET 2 -the voltage of the resistor 3 is applied to the secondary battery 20 and the secondary battery 20 is charged. Note that the operation of the above-described charging control circuit 1 is held until the charging voltage of the secondary battery 20 reaches the reference voltage Vref.

===電源ライン11の電圧が電圧V1へ変化したときの充電制御回路1の動作===
以下、図1、図2を適宜参照しつつ、図3を用いて、電源ライン11の電圧が電圧V1へ変化したときの、本発明に係る充電制御回路1の動作について説明する。図3は、電源ライン11の電圧が電圧V1へ変化したときの、本発明に係る充電制御回路1の動作を説明するための回路図である。
=== Operation of the charge control circuit 1 when the voltage of the power supply line 11 is changed to the voltage V1 ===
Hereinafter, the operation of the charging control circuit 1 according to the present invention when the voltage of the power supply line 11 is changed to the voltage V1 will be described with reference to FIGS. FIG. 3 is a circuit diagram for explaining the operation of the charging control circuit 1 according to the present invention when the voltage of the power supply line 11 changes to the voltage V1.

先ず、二次電池20の充電電圧が基準電圧Vrefに達したときの、本発明に係る充電制御回路1の動作について説明する。   First, the operation of the charging control circuit 1 according to the present invention when the charging voltage of the secondary battery 20 reaches the reference voltage Vref will be described.

差動アンプ4の出力電圧は、二次電池20の充電電圧と基準電圧Vrefとの差が小さくなるにつれて下降する。npn型トランジスタ5は、差動アンプ4の出力電圧の降下に伴ってコレクタ電圧が上昇する。P型MOSFET2は、npn型トランジスタ5のコレクタ電圧の上昇に伴ってドレイン電極の電圧が下降する。そして、二次電池20の充電電圧が基準電圧Vrefに達したとき、P型MOSFET2のドレイン電極の電圧が最も小さくなり、この結果、二次電池20の充電が停止されることとなる。   The output voltage of the differential amplifier 4 decreases as the difference between the charging voltage of the secondary battery 20 and the reference voltage Vref decreases. In the npn transistor 5, the collector voltage increases as the output voltage of the differential amplifier 4 decreases. In the P-type MOSFET 2, the drain electrode voltage decreases as the collector voltage of the npn-type transistor 5 increases. When the charging voltage of the secondary battery 20 reaches the reference voltage Vref, the voltage of the drain electrode of the P-type MOSFET 2 becomes the smallest, and as a result, the charging of the secondary battery 20 is stopped.

次に、前述したように充電器に対して電源電圧が印加されなくなり、電源ライン11の電圧が、二次電池20の充電電圧よりも低い電圧V1へ変化したものとする。   Next, as described above, it is assumed that the power supply voltage is no longer applied to the charger, and the voltage of the power supply line 11 is changed to the voltage V1 lower than the charging voltage of the secondary battery 20.

コンパレータ7は、一方の極性(+)の入力端子にP型MOSFET2のソース電極の電圧と等しい電圧V1が印加され、他方の極性(−)の入力端子にP型MOSFET2のドレイン電極の電圧が印加される。ここで、P型MOSFET2のドレイン電極の電圧は、電圧V1よりも高い、二次電池20の充電電圧(略基準電圧Vref)+抵抗3の両端の電圧である。このため、コンパレータ7は、一方の極性(+)の入力端子の電圧V1が、他方の極性(−)の入力端子に印加されるP型MOSFET2のドレイン電極の電圧よりも低いために、ローレベルを出力する。このため、スイッチ8Aが開き、電源ライン11とP型MOSFET2のバックゲート電極及び抵抗6の他端との間が開放される。また、スイッチ8Bが閉じ、P型MOSFET2のバックゲート電極及び抵抗6の他端とP型MOSFET2のドレイン電極との間が短絡される。そして、P型MOSFET2のバックゲート電極とドレイン電極とが接続されることにより、P型MOSFET2のソース電極とバックゲート電極との間には、図3に示すように、アノードがソース電極と接続されカソードがバックゲート電極と接続された寄生ダイオード13が生成される。つまり、二次電池20から電源ライン11へと流れ出す電流に対して逆方向に接続される寄生ダイオード13が生成されることとなる。従って、二次電池20から電源ライン11へと流れ出す電流のうち、バックゲート電極からソース電極へ流れようとする電流は、寄生ダイオード13で阻止されることとなる。更に、npn型トランジスタ5のコレクタ電圧が上昇したときのP型MOSFET2の動作と、抵抗6の他端とP型MOSFET2のバックゲート電極との接続とにより、二次電池20から流れ出す電流は、P型MOSFET2を流れることが出来なくなる。この結果、二次電池20から流れ出す電流は電源ライン11へと流れることが出来なくなり、二次電池20の充電電圧は下降されることなく保持されることとなる。   In the comparator 7, a voltage V1 equal to the voltage of the source electrode of the P-type MOSFET 2 is applied to one input terminal of polarity (+), and the voltage of the drain electrode of the P-type MOSFET 2 is applied to the input terminal of the other polarity (−). Is done. Here, the voltage of the drain electrode of the P-type MOSFET 2 is a charging voltage (substantially reference voltage Vref) of the secondary battery 20 and a voltage across the resistor 3 higher than the voltage V1. For this reason, the comparator 7 has a low level because the voltage V1 of the input terminal of one polarity (+) is lower than the voltage of the drain electrode of the P-type MOSFET 2 applied to the input terminal of the other polarity (−). Is output. For this reason, the switch 8A is opened, and the power line 11 and the back gate electrode of the P-type MOSFET 2 and the other end of the resistor 6 are opened. Further, the switch 8B is closed, and the back gate electrode of the P-type MOSFET 2 and the other end of the resistor 6 and the drain electrode of the P-type MOSFET 2 are short-circuited. Then, by connecting the back gate electrode and the drain electrode of the P-type MOSFET 2, the anode is connected to the source electrode between the source electrode and the back gate electrode of the P-type MOSFET 2 as shown in FIG. A parasitic diode 13 whose cathode is connected to the back gate electrode is generated. That is, the parasitic diode 13 connected in the opposite direction to the current flowing out from the secondary battery 20 to the power supply line 11 is generated. Therefore, of the current that flows from the secondary battery 20 to the power supply line 11, the current that flows from the back gate electrode to the source electrode is blocked by the parasitic diode 13. Furthermore, due to the operation of the P-type MOSFET 2 when the collector voltage of the npn-type transistor 5 rises and the connection between the other end of the resistor 6 and the back gate electrode of the P-type MOSFET 2, the current flowing out of the secondary battery 20 is P It becomes impossible to flow through the type MOSFET 2. As a result, the current flowing out from the secondary battery 20 cannot flow to the power supply line 11, and the charging voltage of the secondary battery 20 is maintained without being lowered.

上述した実施形態によれば、ソース電極の電圧がドレイン電極の電圧よりも低いときに二次電池20から電源ライン11へと流れ出す電流を、P型MOSFET2のソース電極とバックゲート電極の間に逆方向に接続される寄生ダイオード13で阻止することが可能となる。この結果、二次電池20から電源ライン11へと電流が流れ出した場合の二次電池20の充電電圧の下降を防止することが可能となる。また、ショットキーバリアダイオード102(図4)や別途P型MOSFET116(図5)を備えることなく、コンパレータ7とスイッチ回路8を備えることのみで二次電池20から電源ライン11へと流れ出す電流を阻止することが可能となり、従来の充電制御回路100(115)に比べ、コストダウンや回路面積の縮小化等を図ることが可能となる。 According to the embodiment described above, the current that flows from the secondary battery 20 to the power supply line 11 when the voltage of the source electrode is lower than the voltage of the drain electrode is reversed between the source electrode and the back gate electrode of the P-type MOSFET 2. It becomes possible to block by the parasitic diode 13 connected in the direction. As a result, it is possible to prevent a decrease in the charging voltage of the secondary battery 20 when a current flows from the secondary battery 20 to the power supply line 11. Further, the current flowing from the secondary battery 20 to the power supply line 11 is prevented only by providing the comparator 7 and the switch circuit 8 without providing the Schottky barrier diode 102 (FIG. 4) or the separate P-type MOSFET 116 (FIG. 5). Therefore, compared to the conventional charge control circuit 100 (115), it is possible to reduce the cost and the circuit area.

さらに、コンパレータ7からのハイレベル及びローレベルに基づいて相補的にスイッチングするスイッチ8A及びスイッチ8Bでスイッチ回路8を構成することにより、二次電池20から電源ライン11へと流れ出す電流の阻止と二次電池20の充電を、より確実に行うことが可能となる。   Further, the switch circuit 8 is configured by the switch 8A and the switch 8B that complementarily switch based on the high level and the low level from the comparator 7, thereby preventing current flowing from the secondary battery 20 to the power supply line 11 and The secondary battery 20 can be charged more reliably.

また、ソース電極の電圧がドレイン電極の電圧よりも高いとき、二次電池20の充電電圧が基準電圧Vrefに達するまで充電することが可能となる。また、寄生ダイオード13による二次電池20から電源ライン11に流れ出す電流の阻止に加えて、npn型トランジスタ5のコレクタ電圧が上昇したときのP型MOSFET2の動作により、二次電池20の充電電圧が下降されることを確実に防止することが可能となる。   Further, when the voltage of the source electrode is higher than the voltage of the drain electrode, the secondary battery 20 can be charged until the charging voltage of the secondary battery 20 reaches the reference voltage Vref. In addition to blocking the current flowing from the secondary battery 20 to the power supply line 11 by the parasitic diode 13, the charging voltage of the secondary battery 20 is increased by the operation of the P-type MOSFET 2 when the collector voltage of the npn transistor 5 rises. It is possible to reliably prevent the lowering.

また、P型MOSFET2を用いた場合、抵抗6の他端とバックゲート電極とを接続させることにより、ソース電極の電圧がドレイン電極の電圧よりも低いとき、npn型トランジスタ5のコレクタ電圧が上昇したときのP型MOSFET2の動作状態を確実に保持させることが可能となる。詳述すると、図4、図5に示す抵抗106のように、抵抗6の他端を電源ライン11と接続させた場合、電源ライン11の電圧が電圧V1となるとき、ソース電極に電圧V1が印加され、ゲート電極に抵抗6の電圧分下降した電圧が印加されることとなる。そして、このときのP型MOSFET2のゲート電極・ソース電極間の電圧がP型MOSFET2を動作させるのに十分な電圧となる場合、二次電池20から電源ライン11へと流れ出す電流を阻止する寄生ダイオード13を生成しているにも関わらず、動作状態のP型MOSFET2のドレイン電極からソース電極へと電流が流れる可能性がある。そこで、抵抗6の他端をバックゲート電極に接続させることにより、npn型トランジスタ5のコレクタ電圧が上昇したときのP型MOSFET2の動作を確実に保持させる。この結果、二次電池20から電源ライン11へと流れ出す電流が、P型MOSFET2を介して流れることを確実に防止することが可能となる。   Further, when the P-type MOSFET 2 is used, the collector voltage of the npn-type transistor 5 is increased by connecting the other end of the resistor 6 and the back gate electrode when the voltage of the source electrode is lower than the voltage of the drain electrode. It is possible to reliably hold the operating state of the P-type MOSFET 2 at that time. More specifically, when the other end of the resistor 6 is connected to the power supply line 11 like the resistor 106 shown in FIGS. 4 and 5, when the voltage of the power supply line 11 becomes the voltage V1, the voltage V1 is applied to the source electrode. As a result, a voltage that is lowered by the voltage of the resistor 6 is applied to the gate electrode. When the voltage between the gate electrode and the source electrode of the P-type MOSFET 2 at this time is a voltage sufficient to operate the P-type MOSFET 2, a parasitic diode that blocks current flowing from the secondary battery 20 to the power supply line 11 13 may be generated, but current may flow from the drain electrode to the source electrode of the operating P-type MOSFET 2. Therefore, by connecting the other end of the resistor 6 to the back gate electrode, the operation of the P-type MOSFET 2 when the collector voltage of the npn-type transistor 5 rises is reliably maintained. As a result, it is possible to reliably prevent the current flowing out from the secondary battery 20 to the power supply line 11 from flowing through the P-type MOSFET 2.

以上、本発明に係る充電制御回路について説明したが、上記の説明は、本発明の理解を容易とするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得る。   The charge control circuit according to the present invention has been described above. However, the above description is intended to facilitate understanding of the present invention and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof.

本発明に係る充電制御回路の全体構成を示す回路図である。It is a circuit diagram which shows the whole structure of the charge control circuit which concerns on this invention. 本発明に係る充電制御回路の充電時の動作を示す回路図である。It is a circuit diagram which shows the operation | movement at the time of charge of the charge control circuit which concerns on this invention. 本発明に係る充電制御回路の、電源ラインの電圧が電圧V1へ変化したときの動作を示す回路図である。It is a circuit diagram which shows operation | movement when the voltage of a power supply line changes to the voltage V1 of the charge control circuit which concerns on this invention. 従来の充電制御回路の全体構成を示す回路図である。It is a circuit diagram which shows the whole structure of the conventional charge control circuit. 従来の充電制御回路の全体構成を示す回路図である。It is a circuit diagram which shows the whole structure of the conventional charge control circuit.

符号の説明Explanation of symbols

1 充電制御回路 2 P型MOSFET
3 抵抗 4 差動アンプ
5 npn型トランジスタ 6 抵抗
7 コンパレータ 8 スイッチ回路
9 接続端子 10 接続端子
11 電源ライン 12 寄生ダイオード
13 寄生ダイオード 20 二次電池
100 充電制御回路 101 P型MOSFET
102 ショットキーバリアダイオード 103 抵抗
104 差動アンプ 105 npn型トランジスタ
106 抵抗 107 接続端子
108 接続端子 109 寄生ダイオード
110 電源ライン 115 充電制御回路
116 P型MOSFET 117 寄生ダイオード
120 二次電池
1 Charging control circuit 2 P-type MOSFET
Reference Signs List 3 resistor 4 differential amplifier 5 npn transistor 6 resistor 7 comparator 8 switch circuit 9 connection terminal 10 connection terminal 11 power supply line 12 parasitic diode 13 parasitic diode 20 secondary battery 100 charge control circuit 101 P-type MOSFET
DESCRIPTION OF SYMBOLS 102 Schottky barrier diode 103 Resistance 104 Differential amplifier 105 Npn-type transistor 106 Resistance 107 Connection terminal 108 Connection terminal 109 Parasitic diode 110 Power supply line 115 Charge control circuit 116 P-type MOSFET 117 Parasitic diode 120 Secondary battery

Claims (4)

電源の電圧が印加される入力電極及び二次電池を充電するための電圧を出力する出力電極を有し、前記二次電池を充電する際にオンするMOSFETの前記入力電極及び前記出力電極の電圧を比較する比較回路と、
前記入力電極の電圧が前記出力電極の電圧よりも低いときの前記比較回路の比較結果に基づいて、前記入力電極と前記出力電極のうち、前記二次電池から前記電源へと流れ出す電流を阻止可能な寄生ダイオードを生成する側の一方の電極と、前記MOSFETのバックゲート電極と、を接続し、
前記入力電極の電圧が前記出力電極の電圧よりも高いときの前記比較回路の比較結果に基づいて、前記入力電極と前記出力電極のうち、前記一方の電極とは異なる他方の電極と、前記バックゲート電極と、を接続するスイッチ回路と、を備えた、
ことを特徴とする充電制御回路。
A voltage of the input electrode and the output electrode of the MOSFET that has an input electrode to which a voltage of a power supply is applied and an output electrode that outputs a voltage for charging the secondary battery, and is turned on when the secondary battery is charged A comparison circuit for comparing
Based on the comparison result of the comparison circuit when the voltage of the input electrode is lower than the voltage of the output electrode, the current flowing from the secondary battery to the power source can be blocked from the input electrode and the output electrode. Connecting one electrode on the side that generates a parasitic diode and the back gate electrode of the MOSFET,
Based on the comparison result of the comparison circuit when the voltage of the input electrode is higher than the voltage of the output electrode, the other electrode different from the one electrode among the input electrode and the output electrode, and the back A switch circuit for connecting the gate electrode,
A charge control circuit.
前記スイッチ回路は、
前記一方の電極と前記バックゲート電極とを接続する第1スイッチ回路と、
前記他方の電極と前記バックゲート電極とを接続する第2スイッチ回路と、からなり、
前記第1スイッチ回路及び前記第2スイッチ回路は、
前記比較回路の比較結果に基づいて相補的にスイッチングする、
ことを特徴とする請求項1に記載の充電制御回路。
The switch circuit is
A first switch circuit connecting the one electrode and the back gate electrode;
A second switch circuit connecting the other electrode and the back gate electrode,
The first switch circuit and the second switch circuit are:
Complementary switching based on the comparison result of the comparison circuit,
The charge control circuit according to claim 1.
前記MOSFETは、
前記二次電池の充電電圧が予め定められた電圧よりも低いときにオンし、
前記二次電池の充電電圧が前記予め定められた電圧より高いときにオフする、
ことを特徴とする請求項1又は請求項2に記載の充電制御回路。
The MOSFET is
Turns on when the charging voltage of the secondary battery is lower than a predetermined voltage,
When the charging voltage of the secondary battery is higher than the predetermined voltage,
The charge control circuit according to claim 1 or 2, characterized by the above.
前記MOSFETは、P型MOSFETであって、
前記P型MOSFETの制御電極は、前記バックゲート電極と接続される、
ことを特徴とする請求項1乃至請求項3の何れかに記載の充電制御回路。
The MOSFET is a P-type MOSFET,
The control electrode of the P-type MOSFET is connected to the back gate electrode.
The charge control circuit according to any one of claims 1 to 3, wherein
JP2006324017A 2006-11-30 2006-11-30 Charging control circuit Ceased JP2008141830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006324017A JP2008141830A (en) 2006-11-30 2006-11-30 Charging control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324017A JP2008141830A (en) 2006-11-30 2006-11-30 Charging control circuit

Publications (1)

Publication Number Publication Date
JP2008141830A true JP2008141830A (en) 2008-06-19

Family

ID=39602735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324017A Ceased JP2008141830A (en) 2006-11-30 2006-11-30 Charging control circuit

Country Status (1)

Country Link
JP (1) JP2008141830A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169463A (en) * 1999-12-03 2001-06-22 Fujitsu Ltd Charging/discharging control circuit for secondary battery
JP2003347913A (en) * 2002-05-27 2003-12-05 Rohm Co Ltd Power supply circuit and mobile electronic apparatus having the same
JP2006034033A (en) * 2004-07-20 2006-02-02 Ricoh Co Ltd Switching regulator, power circuit utilizing the switching regulator, and secondary battery charging circuit utilizing the switching regulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169463A (en) * 1999-12-03 2001-06-22 Fujitsu Ltd Charging/discharging control circuit for secondary battery
JP2003347913A (en) * 2002-05-27 2003-12-05 Rohm Co Ltd Power supply circuit and mobile electronic apparatus having the same
JP2006034033A (en) * 2004-07-20 2006-02-02 Ricoh Co Ltd Switching regulator, power circuit utilizing the switching regulator, and secondary battery charging circuit utilizing the switching regulator

Similar Documents

Publication Publication Date Title
JP5706649B2 (en) Charge / discharge control circuit and battery device
JP4777920B2 (en) Charge / discharge control circuit and rechargeable power supply device
JP3816935B2 (en) Battery disconnect switch and battery disconnect switch system
US8675326B2 (en) Bidirectional switch and charge/discharge protection device using same
JP6614388B1 (en) Secondary battery protection circuit, secondary battery protection device, battery pack, and control method of secondary battery protection circuit
JP4522384B2 (en) Battery pack with protection circuit
US7030591B2 (en) Integrated circuit implementing protection switch for battery charging and discharging with enhanced reverse voltage protection
US20120056593A1 (en) Charge/discharge control circuit and battery device
CN111934402B (en) Battery protection system and battery system
JP4689643B2 (en) Overdischarge prevention device and power storage device
US9401615B2 (en) Charging and discharging control circuit and battery device
JP5588370B2 (en) Output circuit, temperature switch IC, and battery pack
KR101632447B1 (en) Battery state monitoring circuit and battery device
TW201244322A (en) Charge-discharge control circuit and battery device
JP2008141830A (en) Charging control circuit
JP2021158752A (en) Charge and discharge control device and battery device
US20040066173A1 (en) Solarswitch
KR20050057693A (en) Charge-discharge protect circuit
JP3886501B2 (en) Battery overcurrent protection circuit
KR102064480B1 (en) Reverse voltage protecting circuit for power conversion device and the reverse voltage protecting method using the same
JP4461067B2 (en) Battery protection circuit
JP2012023919A (en) Battery pack having protection circuit
TW202135418A (en) Charge/discharge control circuit and battery device
CN111434001A (en) Capacitor balancing driver circuit for dual input charger
KR20150111432A (en) A diode equivalent circuit and the apparatus for connecting batteries in parallel by adopting the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130226