JP2008139138A - Electrochemical noise measuring method - Google Patents

Electrochemical noise measuring method Download PDF

Info

Publication number
JP2008139138A
JP2008139138A JP2006325250A JP2006325250A JP2008139138A JP 2008139138 A JP2008139138 A JP 2008139138A JP 2006325250 A JP2006325250 A JP 2006325250A JP 2006325250 A JP2006325250 A JP 2006325250A JP 2008139138 A JP2008139138 A JP 2008139138A
Authority
JP
Japan
Prior art keywords
noise
electrochemical
resistance
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006325250A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
博之 井上
Masazumi Miyazawa
正純 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Osaka University NUC
Osaka Prefecture University
Original Assignee
Mitsubishi Chemical Corp
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Osaka University NUC, Osaka Prefecture University filed Critical Mitsubishi Chemical Corp
Priority to JP2006325250A priority Critical patent/JP2008139138A/en
Publication of JP2008139138A publication Critical patent/JP2008139138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To more accurately measure the polarization resistance R<SB>p</SB>related to electrode reaction in an electrochemical noise measuring method for measuring electrochemical potential noise ΔE and electrochemical current noise ΔI in a three-electrode system, wherein three electrodes arranged in parallel to each other are brought into contact with or immersed in a solution, to calculate noise resistance Rn. <P>SOLUTION: In the electrochemical noise measuring method for measuring electrochemical potential noise ΔE and electrochemical current noise ΔI in a three-electrode system, wherein three electrodes arranged in parallel to each other are brought into contact with or immersed in a solution 11, to calculate noise resistance Rn, the distances D from one center electrode 23 to two electrodes 21 and 22 of both ends adjacent to the electrode 23 are changed while made equal to measure the electrochemical potential noise ΔE and electrochemical current noise ΔI between the electrodes 21 and 22 at the respective distances D and the noise resistance Rn in the center line distance L between two electrodes 21 and 22 of both ends is calculated. The center line distance L and the noise resistance Rn are made approximate to calculate a formula (1) and the center line distance L is extrapolated in L=0 to calculate the polarization resistance R<SB>p</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電気化学ノイズ測定方法に関し、特に、電極の分極抵抗と電極間の溶液抵抗の測定方法に関する。   The present invention relates to a method for measuring electrochemical noise, and more particularly to a method for measuring the polarization resistance of an electrode and the solution resistance between the electrodes.

近年、腐食の発生や腐食の進行を検出し解析する方法として、電気化学ノイズ測定方法が用いられている。これは、同じ材質である2つの電極を同一の水、溶液又はその他の環境に曝した際に発生する微弱な電位差と電流とを測定することで、電極近傍の物性を調べるものである。具体的な測定方法としては、例えば、特許文献1に記載のように、3つの電極を用い、そのうちの1つの電極と、あとの2つの電極との間でそれぞれ電位差と電流を測定して腐食反応の分極抵抗を測定する方法が挙げられる。   In recent years, an electrochemical noise measurement method has been used as a method for detecting and analyzing the occurrence of corrosion and the progress of corrosion. In this method, physical properties in the vicinity of an electrode are examined by measuring a weak potential difference and current generated when two electrodes made of the same material are exposed to the same water, solution, or other environment. As a specific measurement method, for example, as described in Patent Document 1, three electrodes are used, and a potential difference and a current are measured between one electrode and the other two electrodes, respectively, to corrode. A method for measuring the polarization resistance of the reaction is mentioned.

特開2001−208713号公報JP 2001-208713 A

しかしながら、3電極系電気化学ノイズ測定法でノイズ抵抗として測定される系全体の抵抗は、例えば図9のように、電極1の酸化還元反応の分極抵抗3と電気二重層キャパシタ4とによる抵抗だけではなく、電極同士の間の溶液5の溶液抵抗6も含んでしまっているため、溶液抵抗6が大きいと分極抵抗3が検出しにくくなり、電極表面の反応を正確に捉えるには不十分であった。系に外部電流を流すことなくノイズ測定法で溶液抵抗6のみを直接に測定することもできないため、測定される系全体の抵抗から溶液抵抗6の分を除算して分極抵抗3を算出することも難しかった。   However, the resistance of the entire system measured as noise resistance by the three-electrode electrochemical noise measurement method is only the resistance due to the polarization resistance 3 of the oxidation-reduction reaction of the electrode 1 and the electric double layer capacitor 4 as shown in FIG. However, since the solution resistance 6 of the solution 5 between the electrodes is also included, if the solution resistance 6 is large, it becomes difficult to detect the polarization resistance 3, which is insufficient to accurately capture the reaction on the electrode surface. there were. Since it is impossible to directly measure only the solution resistance 6 by a noise measurement method without applying an external current to the system, the polarization resistance 3 is calculated by dividing the solution resistance 6 by the measured resistance of the entire system. It was also difficult.

そこでこの発明は、平行に並べた3本の電極を溶液に接触又は浸漬させた3電極系で、電気化学的電位ノイズΔE及び電気化学的電流ノイズΔIを測定してノイズ抵抗Rnを求める電気化学ノイズ測定法において、電極反応にかかる分極抵抗Rをより正確に測定することを目的とする。 Therefore, the present invention is an electrochemical method in which a noise resistance Rn is obtained by measuring electrochemical potential noise ΔE and electrochemical current noise ΔI in a three-electrode system in which three electrodes arranged in parallel are contacted or immersed in a solution. in noise measurement method aims to measure the polarization resistance R p in accordance with the electrode reaction more accurately.

この発明は、平行に並べた3本の電極を溶液に接触又は浸漬させた3電極系で、電気化学的電位ノイズΔE及び電気化学的電流ノイズΔIを測定してノイズ抵抗Rnを求める電気化学ノイズ測定法において、
中央の1本の電極からそれに隣り合う両端の2本の電極までの距離Dを等しくしつつ変化させて、
一方の端にある電極と前記中央の1本の電極との間の電気化学的電位ノイズΔEと、前記両端の2本の電極間の電気化学的電流ノイズΔIとを測定して、それぞれの距離Dに対応する前記両端の2本の中心線間距離Lにおけるノイズ抵抗Rnを求め、
上記距離Lと上記ノイズ抵抗Rnとの関係を、溶液抵抗S(L)によりモデル化した式(1)又は(1’)を求め、前記中心線間距離LをL=0に外挿した値である分極抵抗Rを求める、電気化学ノイズ測定方法により、上記の課題を解決したのである。
The present invention is an electrochemical noise which obtains a noise resistance Rn by measuring electrochemical potential noise ΔE and electrochemical current noise ΔI in a three-electrode system in which three electrodes arranged in parallel are contacted or immersed in a solution. In the measurement method,
The distance D from the center one electrode to the two electrodes at both ends adjacent to it is changed while being equalized,
The electrochemical potential noise ΔE between the electrode at one end and the one electrode at the center and the electrochemical current noise ΔI between the two electrodes at both ends are measured, and the respective distances are measured. A noise resistance Rn at a distance L between the two center lines at both ends corresponding to D is determined;
A value obtained by obtaining an equation (1) or (1 ′) in which the relationship between the distance L and the noise resistance Rn is modeled by a solution resistance S (L), and extrapolating the centerline distance L to L = 0. Request polarization resistance R p is, by electrochemical noise measurement method, it was to solve the above problems.

Rn=S(L)+R …………(1)
(1/Rn)=S(L)+(1/R) …………(1’)
Rn = S (L) + R p (1)
(1 / Rn) = S (L) + (1 / R p ) (1 ′)

この発明によると、水や溶液等に曝されている電極の分極抵抗を求めることができ、この分極抵抗から、金属電極表面の状態を知るための情報を得ることができる。また、合わせて電気化学系の溶液抵抗を求めることができる。   According to the present invention, the polarization resistance of an electrode exposed to water or a solution can be obtained, and information for knowing the state of the surface of the metal electrode can be obtained from this polarization resistance. In addition, the solution resistance of the electrochemical system can be obtained.

以下、この発明について詳細に説明する。
この発明は、平行に並べた3本の電極を溶液に接触又は浸漬させた3電極系で、電気化学的電位ノイズΔE及び電気化学的電流ノイズΔIを測定してノイズ抵抗Rnを求める電気化学ノイズ測定法において、分極抵抗Rを求める電気化学ノイズ測定方法である。
Hereinafter, the present invention will be described in detail.
The present invention is an electrochemical noise which obtains a noise resistance Rn by measuring electrochemical potential noise ΔE and electrochemical current noise ΔI in a three-electrode system in which three electrodes arranged in parallel are contacted or immersed in a solution. in the measurement method, an electrochemical noise measurement method for determining the polarization resistance R p.

まず、測定を行う電極系について説明する。上記の3本の電極21〜23は、上記溶液11中における分極抵抗を測定する対象となる同一の金属材料からなるものであり、少なくとも溶液に接触している部分の面積及び形状が同一であることが必要であり、各々の電極の状態を等しくするため、図1(a)及び図1(b)のように、電極の大きさ及び形状が同一であると好ましい。この電極同士の間に発生する電気化学的電流ノイズΔIと電気化学的電位ノイズΔEとを測定する。なお、図1(b)は図1(a)の電極を下から見た図である。   First, an electrode system for performing measurement will be described. Said three electrodes 21-23 consist of the same metal material used as the object which measures the polarization resistance in the said solution 11, and the area and shape of the part which is contacting at least solution are the same. In order to equalize the state of each electrode, it is preferable that the size and shape of the electrodes are the same as shown in FIGS. 1 (a) and 1 (b). Electrochemical current noise ΔI and electrochemical potential noise ΔE generated between the electrodes are measured. FIG. 1B is a view of the electrode of FIG. 1A viewed from below.

上記の電気化学的電流ノイズΔI及び電気化学的電位ノイズΔEの具体的な測定方法としては、この3本の電極のうち、両端の2本の電極21及び22間の電気化学的電流ノイズΔIを測定する電流測定手段24を設け、一方の端にある電極22と中央の1本の電極23との間の電気化学的電位ノイズΔEを測定する電圧測定手段25を設け、図1(a)のような配線構成にしてこれらの測定手段により測定する方法が挙げられる。   As a specific method for measuring the electrochemical current noise ΔI and the electrochemical potential noise ΔE, the electrochemical current noise ΔI between the two electrodes 21 and 22 at both ends of the three electrodes is determined. A current measuring means 24 for measuring is provided, and a voltage measuring means 25 for measuring the electrochemical potential noise ΔE between the electrode 22 at one end and the central electrode 23 is provided, and as shown in FIG. There is a method of measuring with these measuring means in such a wiring configuration.

ここで用いる電流測定手段24としては、例えば、抵抗値及びインピーダンスがゼロに近い電流計である無抵抗電流計が挙げられ、電圧測定手段25としては、例えば、抵抗値及び入力インピーダンスが非常に大きい電圧計が挙げられる。また、これらの測定手段は、微弱な変化である電気化学的ノイズを測定するため、高感度であると好ましい。さらに、電気化学的ノイズ以外の周波数の低い変化をカットするためのバンドパスフィルターを設けておくとより好ましい。   As the current measuring means 24 used here, for example, a resistance resistance ammeter which is an ammeter whose resistance value and impedance are close to zero can be cited. As the voltage measuring means 25, for example, a resistance value and an input impedance are very large. A voltmeter is mentioned. In addition, these measuring means preferably measure high sensitivity because they measure electrochemical noise, which is a weak change. Furthermore, it is more preferable to provide a band pass filter for cutting low frequency changes other than electrochemical noise.

これらの測定手段により、電位及び電流の変化を、連続的に記録する。この電位及び電流の変化を解析し、0.01〜10Hz程度の周波数に相当する変化を抽出し、特に好ましくは1Hz前後の周波数に相当する変化をそれぞれ電気化学的電位ノイズΔE及び電気化学的電流ノイズΔIとして求める。これらの値から、下記式(2)により、ノイズ抵抗Rnを算出する。このノイズ抵抗Rnは、系の電極面近傍における分極抵抗Rと、拡散層である溶液部分の溶液抵抗S(L)とを合わせた腐食抵抗である。 With these measuring means, changes in potential and current are continuously recorded. This change in potential and current is analyzed, and a change corresponding to a frequency of about 0.01 to 10 Hz is extracted. Particularly preferably, a change corresponding to a frequency around 1 Hz is set to electrochemical potential noise ΔE and electrochemical current, respectively. Obtained as noise ΔI. From these values, the noise resistance Rn is calculated by the following equation (2). The noise resistance Rn has a polarization resistance R p of the electrode surface vicinity of the system, a solution resistance S (L) and the combined corrosion resistance of the solution portion is diffused layer.

Rn=ΔE/ΔI …………(2)   Rn = ΔE / ΔI (2)

上記のようなノイズ抵抗Rnの測定を、図1に記載の、上記中央の1本の電極からそれに隣り合う両端の2本の電極までの距離Dを等しくしつつ、この両端の電極の中心線同士の距離である中心線間距離Lを複数回変えて行う。この中心線間距離Lとノイズ抵抗Rnとの複数の対について、下記式(1)の近似を行って分極抵抗Rを求める。なお、この分極抵抗Rは、電極2つ分の分極抵抗の和であり、S(L)は中心線間距離Lの関数である溶液抵抗であり、一般的な第一種電極系においてはLの二次関数である下記式(3)に近似することができる。 In the measurement of the noise resistance Rn as described above, the center lines of the electrodes at both ends are made equal to the distance D from the one electrode at the center shown in FIG. The distance L between the center lines, which is the distance between them, is changed a plurality of times. A plurality of pairs of the center line distance L and the noise resistance Rn, determine the polarization resistance R p by performing an approximation of the following equation (1). This polarization resistance R p is the sum of the polarization resistances of two electrodes, S (L) is a solution resistance that is a function of the distance L between the center lines, and in a general first type electrode system, The following equation (3), which is a quadratic function of L, can be approximated.

Rn=S(L)+R …………(1)
Rn=a×L+R …………(3)
Rn = S (L) + R p (1)
Rn = a × L 2 + R p (3)

ここで、近似を行う方法としては、例えば、中心線間距離Lとノイズ抵抗Rnとについて複数回測定して、複数対の測定データセットを得て、これを式(3)に代入した式を複数用意し、aを仮定してRpをそれぞれ計算し、Rpのばらつきが最小値になるまで計算する方法などが挙げられる。具体的な求め方の例としては、まず、n組の中心線間距離Lとノイズ抵抗Rnの対(L,Rn)について、式(3)に代入してn個の下記式群(4)を得る。 Here, as an approximation method, for example, a plurality of pairs of measurement data sets are obtained by measuring a plurality of centerline distances L and noise resistances Rn, and this is substituted into equation (3). There is a method of preparing a plurality, calculating Rp assuming a, and calculating until the variation in Rp reaches a minimum value. As a specific example of how to obtain, first, n pairs of centerline distance L and noise resistance Rn pair (L i , Rn i ) are substituted into equation (3), and n groups of the following equations ( 4) is obtained.

[数1]
Rn=a×L +R
Rn=a×L +R
・ …………(4)

Rn=a×L +R
[Equation 1]
Rn 1 = a × L 1 2 + R p
Rn 2 = a × L 2 2 + R p
・ ………… (4)

Rn n = a × L n 2 + R p

このそれぞれの式で求められるRをRpnとし、下記式(5)によりRn’を求める。 The R p obtained in this respective equations and R pn, determine the Rn 'by the following equation (5).

(Rp1+Rp2+・・・・+Rpn)/n=Rn’ …………(5) (R p1 + R p2 +... + R pn ) / n = Rn ′ (5)

このRn’を、上記式群(4)のいずれかに代入して定数aを求め、求めた値をaの仮定値とする。これを繰り返し、a及びRを求めることができる。 By substituting this Rn ′ into any of the above formula group (4), a constant a is obtained, and the obtained value is set as an assumed value of a. By repeating this, a and R p can be obtained.

また別の近似式として、下記式(1’)の近似式に基づいてRn及びRのそれぞれの逆数について、Lの一次関数である下記式(3’)で近似することも出来る。 As another approximate expression, 'for each of the reciprocal of Rn and R p on the basis of the approximate expression of the following formula is a linear function of L (3 formula (1)') in can also be approximated.

(1/Rn)=S(L)+(1/R) …………(1’)
(1/Rn)=a×L+(1/R) …………(3’)
(1 / Rn) = S (L) + (1 / R p ) (1 ′)
(1 / Rn) = a × L + (1 / R p ) (3 ′)

[数2]
(1/Rn)=a×L+(1/R
(1/Rn)=a×L+(1/R
・ …………(4’)

(1/Rn)=a×L+(1/R
[Equation 2]
(1 / Rn 1 ) = a × L 1 + (1 / R p )
(1 / Rn 2 ) = a × L 2 + (1 / R p )
・ ………… (4 ')

(1 / Rn n ) = a × L n + (1 / R p )

この場合も同様に、それぞれの式で求められるRをRpnとし、上記式(5)によりRn’を求め、式群(4’)のいずれかに代入して定数aを求めることができる。 In this case as well, R p obtained in each equation is set to R pn , Rn ′ is obtained by the above equation (5), and is substituted into any of the equation group (4 ′) to obtain the constant a. .

ここで分極抵抗Rとは、腐食抵抗のうち、中心線間距離Lに無関係な抵抗成分であるので、電極系のうちの電極表面近傍における電極反応等に由来する抵抗成分である。 Here, the polarization resistance R p is a resistance component that is irrelevant to the distance L between the center lines in the corrosion resistance, and is therefore a resistance component derived from an electrode reaction or the like in the vicinity of the electrode surface in the electrode system.

この発明にかかる方法を行う装置の例を図2に示す。解析すべき電極反応を起こしうる、又は溶液抵抗を調べる対象である溶液11に、同一材質で、出来る限り同一の大きさ及び形状である平板状の電極21〜23を、電極21と電極23、及び電極22と電極23とのそれぞれの電極の間の距離Dを等しくして、それぞれが平行となるように浸漬させる。また、電極21〜23の位置は、それぞれの電極の間の距離Dがお互いに等しいままで変化させることができる。   An example of an apparatus for performing the method according to the present invention is shown in FIG. Plate electrodes 21 to 23 having the same material and the same size and shape as much as possible to the solution 11 that can cause an electrode reaction to be analyzed or to investigate the solution resistance, are the electrodes 21 and 23, Further, the distances D between the electrodes 22 and 23 are made equal to each other, and the electrodes are immersed so that they are parallel to each other. Further, the positions of the electrodes 21 to 23 can be changed while the distance D between the respective electrodes remains equal to each other.

電極21と電極22とは、抵抗値及びインピーダンスがゼロに近い電流測定手段24である無抵抗電流計で繋いで、この間に生じた電気化学的電流aを測定する。電極21と電極23とは、各々の電極間で反応が進行しすぎないようにして電気化学的電位差bを測定するため、抵抗値及び入力インピーダンスが非常に大きい電圧測定手段25である電圧計で繋いで、この電極間の電気化学的電位差bを測定する。ただし、上記の無抵抗電流計と電圧計とは、電気化学的ノイズを測定するため、高感度であるのが好ましい。   The electrode 21 and the electrode 22 are connected by a non-resistance ammeter which is a current measuring means 24 having a resistance value and an impedance close to zero, and the electrochemical current a generated during this period is measured. The electrode 21 and the electrode 23 are voltmeters which are voltage measuring means 25 having a very large resistance value and input impedance in order to measure the electrochemical potential difference b so that the reaction does not proceed excessively between the electrodes. In connection, the electrochemical potential difference b between the electrodes is measured. However, it is preferable that the non-resistance ammeter and the voltmeter have high sensitivity in order to measure electrochemical noise.

上記の電気化学的電流a及び電気化学的電位差bは、電気化学的ノイズだけではなく、各電極表面の腐食の進行程度に応じたカップリング電流Imeanや、反応以外による変動も含んでいる。そのため、電気化学的ノイズを取り出すために抽出を行う必要がある。抽出する方法としては、例えば、図2に示すように、データをコンピュータ40へ送る前に解析手段であるバンドパスフィルター26、27を通して、予め電気化学的電流ノイズΔI及び電気化学的電位ノイズΔEを抽出しておく方法がある。バンドパスフィルター26,27を使用する場合、これらのバンドパスフィルターにより、その低周波数領域、特に1Hz以下の周波数領域、好ましくは0.01〜1Hz程度の周波数領域における変動を抽出すると、上記の電気化学的電流aから電気化学的電流ノイズΔIを得ることが出来、上記の電気化学的電位差bから電気化学的電位ノイズΔEを得ることが出来る。また、上記のバンドパスフィルターを通さなければ、上記の電気化学的電流aからカップリング電流Imeanを得ることができ、上記の電気化学的電位差bから電位差Vmeanを得ることができる。さらに、これらは、コンピュータ40で認識できるデータとするために、コンバータ30により変換しておくことが望ましい。 The electrochemical current a and the electrochemical potential difference b include not only electrochemical noise but also a coupling current I mean corresponding to the progress of corrosion on each electrode surface and fluctuations due to other than reactions. Therefore, it is necessary to perform extraction in order to extract electrochemical noise. As an extracting method, for example, as shown in FIG. 2, before sending data to the computer 40, the electrochemical current noise ΔI and the electrochemical potential noise ΔE are passed through band-pass filters 26 and 27 as analysis means in advance. There is a way to extract. When the bandpass filters 26 and 27 are used, by extracting fluctuations in the low frequency region, particularly in the frequency region of 1 Hz or less, preferably in the frequency region of about 0.01 to 1 Hz, by using these bandpass filters, The electrochemical current noise ΔI can be obtained from the chemical current a, and the electrochemical potential noise ΔE can be obtained from the electrochemical potential difference b. If the band-pass filter is not passed, the coupling current I mean can be obtained from the electrochemical current a, and the potential difference V mean can be obtained from the electrochemical potential difference b. Further, it is desirable that these are converted by the converter 30 so as to be data that can be recognized by the computer 40.

図3は、電圧及び電流の測定データ信号をコンピュータ40に入力するまでの処理回路をアナログ回路によって構成したときの一例である。この場合、先ず、電流データ、即ち、上記第1の電極21と第2の電極22間の電気化学的電流aは、同図(a)にみられるように、電流測定手段24によって測定され、バンドパスフィルター26によって1Hz程度以下の周波数成分を抽出され、次に、信号の2乗平均を求めるRMS回路→求めた信号を直流に変換するDC回路→直流に変換された信号を対数に変換するLOG回路からなるコンバータ(以下、「対数コンバータ」という。)31によって対数変換され、さらに、アナログ/デジタルコンバータ(以下、「A/Dコンバータ」という。)33によってデジタル変換された後、上記コンピュータ40に電気化学的電流ノイズΔIとして入力される。一方、電気化学的電流aのデータを、バンドパスフィルター26を通さずに対数コンバータ31とA/Dコンバータ33とに通して、コンピュータ40にカップリング電流Imeanとして入力することもできる。 FIG. 3 shows an example when the processing circuit until the voltage and current measurement data signals are input to the computer 40 is constituted by an analog circuit. In this case, first, the current data, that is, the electrochemical current a between the first electrode 21 and the second electrode 22 is measured by the current measuring means 24 as shown in FIG. The frequency component of about 1 Hz or less is extracted by the band pass filter 26, and then the RMS circuit for obtaining the mean square of the signal → the DC circuit for converting the obtained signal into direct current → the signal converted into direct current is converted into a logarithm. The computer 40 is converted logarithmically by a converter (hereinafter referred to as “logarithmic converter”) 31 composed of a LOG circuit, and further digitally converted by an analog / digital converter (hereinafter referred to as “A / D converter”) 33. Is input as electrochemical current noise ΔI. On the other hand, the data of the electrochemical current a can be passed through the logarithmic converter 31 and the A / D converter 33 without passing through the bandpass filter 26 and input to the computer 40 as the coupling current Imean .

次に、電圧データ、すなわち、上記第1の電極21と第3の電極23間の電気化学的電位差bは、同図(b)に見られるように、まず、電圧測定手段25によって測定される。この信号から、バンドパスフィルター27によって0.01Hz以上、1Hz程度以下の周波数成分を抽出された上で、上記の電流データと同様に対数コンバータ32によって対数変換され、さらに、A/Dコンバータ34によってデジタル変換された後、上記コンピュータ40に電気化学的電位ノイズΔEとして入力される。一方、電気化学的電位差bのデータを、バンドパスフィルター27を通さずに対数コンバータ32とA/Dコンバータ34とに通して、コンピュータ40に電位差Vmeanとして入力することも出来る。 Next, the voltage data, that is, the electrochemical potential difference b between the first electrode 21 and the third electrode 23 is first measured by the voltage measuring means 25 as shown in FIG. . From this signal, a frequency component of 0.01 Hz or more and about 1 Hz or less is extracted by the band pass filter 27, and then logarithmically converted by the logarithmic converter 32 in the same manner as the current data, After digital conversion, it is input to the computer 40 as electrochemical potential noise ΔE. On the other hand, the data of the electrochemical potential difference b can be passed through the logarithmic converter 32 and the A / D converter 34 without passing through the band pass filter 27 and input to the computer 40 as the potential difference V mean .

一方、図4(a)、(b)は、上記図3(a)、(b)のアナログ回路構成に対応してデータ処理回路をデジタル回路で構成したときの一例で、図中、同一符号は、同一又は相当部分を示しており、上記デジタル回路構成によっても同様な作用が得られる。なお、図2に記載のコンバータ30内は、図3に記載のアナログ回路を用いた場合を示したものであり、図4に記載のデジタル回路を用いた場合では、対数コンバータ31と32が省略されることになる。   On the other hand, FIGS. 4A and 4B are examples when the data processing circuit is configured by a digital circuit corresponding to the analog circuit configuration of FIGS. 3A and 3B. Are the same or corresponding parts, and the same operation can be obtained by the above digital circuit configuration. 2 shows the case where the analog circuit shown in FIG. 3 is used. In the case where the digital circuit shown in FIG. 4 is used, the logarithmic converters 31 and 32 are omitted. Will be.

なお、電気化学的電流ノイズΔIのデータを求める際には、上記のように解析手段としてバンドパスフィルターを用いる方法のほかに、上記カップリング電流Imeanのデータを、直接コンピュータ40を解析手段として演算処理し、その標準偏差を求めることによっても得ることができる。また同様に、電気化学的電位ノイズΔEのデータを求める際には、電極21、23間の電位差Vmeanのデータを直接コンピュータ40で演算処理し、その標準偏差を求めることによっても得ることができる。電気化学的電流a及び電気化学的電位差bと、これらから解析される電気化学的電流ノイズΔI及び電気化学的電位ノイズΔEとは、図5のような関係にある。 When obtaining the data of the electrochemical current noise ΔI, in addition to the method of using the bandpass filter as the analysis means as described above, the data of the coupling current I mean is directly used as the analysis means. It can also be obtained by calculating and obtaining the standard deviation. Similarly, when obtaining the data of the electrochemical potential noise ΔE, the data of the potential difference V mean between the electrodes 21 and 23 can be directly calculated by the computer 40 and the standard deviation thereof can be obtained. . The electrochemical current a and the electrochemical potential difference b and the electrochemical current noise ΔI and the electrochemical potential noise ΔE analyzed therefrom are in a relationship as shown in FIG.

また、上記電気化学センサを構成するコンピュータ40に入力された電気化学的電流ノイズΔIと電気化学的電位ノイズΔEとのデータ、又は、上記カップリング電流Imeanと電位差Vmeanとのデータは、時系列順に記録手段50に記録される。この記録手段50は、これらのデータを保存するための保存性媒体だけではなく、計算手段60でデータを扱うための一時的な記録手段である半導体メモリー等も含む。 Also, the data of the electrochemical current noise ΔI and the electrochemical potential noise ΔE input to the computer 40 constituting the electrochemical sensor, or the data of the coupling current I mean and the potential difference V mean are Recorded in the recording means 50 in the order of series. The recording means 50 includes not only a storable medium for storing these data, but also a semiconductor memory or the like that is a temporary recording means for handling the data by the calculation means 60.

上記記録手段50に記録された各々のデータは、計算手段60で解析される。上記のバンドパスフィルター26、27を用いなかった場合、カップリング電流Imean及び電位差Vmeanを計算手段60により解析して、電気化学的電流ノイズΔI及び電気化学的電位ノイズΔEを算出してもよい。計算手段60において算出した場合も、あらかじめバンドパスフィルター26及び27を用いて抽出した場合のどちらも、この計算手段60で、電気化学的電流ノイズΔI及び電気化学的電位ノイズΔEの、それぞれの微小変化ΔI及びΔEから、オームの法則による上記式(2)に従って算出する算出工程により、ノイズ抵抗Rnを求める。なお、この計算の際には、時系列を合わせておくことが必要である。この算出されたノイズ抵抗Rnは、記録手段50に時系列順に記録する。 Each data recorded in the recording means 50 is analyzed by the calculation means 60. When the bandpass filters 26 and 27 are not used, the coupling current I mean and the potential difference V mean are analyzed by the calculation means 60 to calculate the electrochemical current noise ΔI and the electrochemical potential noise ΔE. Good. Both when calculated by the calculation means 60 and when extracted beforehand using the bandpass filters 26 and 27, the calculation means 60 allows each of the electrochemical current noise ΔI and the electrochemical potential noise ΔE to be small. From the changes ΔI and ΔE, the noise resistance Rn is obtained by a calculation step of calculating according to the above equation (2) according to Ohm's law. In this calculation, it is necessary to match the time series. The calculated noise resistance Rn is recorded in the recording unit 50 in time series.

このように算出されたノイズ抵抗Rnは、時間軸に対して平均化することで、測定を行った中心線間距離Lの値に対応したノイズ抵抗Rnの値を得ることができる。このようにして得られた中心線間距離Lとノイズ抵抗Rnとのデータ対を、中心線間距離Lを変えて複数対求める。なお、中心線間距離Lは、入力手段100から人の手で記録手段50に入力する方法の他、設定された中心線間距離Lを自動的に検知するセンサを設けて自動入力させる方法でもよい。また、ノイズ抵抗Rnの算出が終わったら、自動的に電極を動かして中心線間距離Lを変えて次の測定を行うようにすると、この発明にかかる測定方法が簡便に行える。   The noise resistance Rn calculated in this way is averaged with respect to the time axis, whereby the value of the noise resistance Rn corresponding to the value of the distance L between the center lines that has been measured can be obtained. A plurality of data pairs of the distance L between the center lines and the noise resistance Rn obtained in this way are obtained by changing the distance L between the center lines. The center line distance L can be automatically input by providing a sensor for automatically detecting the set center line distance L in addition to the method of inputting the distance L between the center lines from the input means 100 to the recording means 50 by hand. Good. Further, when the calculation of the noise resistance Rn is finished, the measurement method according to the present invention can be performed simply by automatically moving the electrode and changing the distance L between the center lines to perform the next measurement.

また、このように中心線間距離Lを変えて測定を行う代わりに、図6のように予め5個以上の電極を溶液中に浸漬させておき、これらのうち、測定を行う電極を変更することで、中心線間距離Lが異なる条件(図中L1,L2,L3。いずれも中心の電極とそれから等距離にある電極とを使用する。)での測定を行うようにすると、予め定めておいた中心線間距離Lでの測定を速やかに切り替えて行うことができ、より効率よく測定を行える。   Further, instead of performing the measurement by changing the distance L between the center lines in this way, five or more electrodes are immersed in the solution in advance as shown in FIG. 6, and among these, the electrode to be measured is changed. Thus, when the measurement is performed under the condition that the distance L between the center lines is different (L1, L2, and L3 in the figure, each of which uses the center electrode and the electrode that is equidistant from the center electrode), it is predetermined. The measurement at the center line distance L can be performed by quickly switching, and the measurement can be performed more efficiently.

複数対の中心線間距離L及びノイズ抵抗Rnが測定されて記録手段50に記録されたら、入力手段100からの測定者の指示により、又は自動的に、上記式(3)により式(1)の近似を行い、ノイズ抵抗Rnの上記中心線間距離LをL=0に外挿した値である分極抵抗Rを算出する。この値は、拡散層である溶液部分の溶液を除いた、1電極が有する電極表面近傍の反応等に由来する分極抵抗の倍に相当する。 When a plurality of pairs of centerline distances L and noise resistances Rn are measured and recorded in the recording means 50, the expression (1) is obtained from the above expression (3) or automatically according to the instruction of the measurer from the input means 100. performs approximation, the center line distance L between the noise resistance Rn is calculated the polarization resistance R p is extrapolated value to L = 0. This value corresponds to double the polarization resistance derived from the reaction in the vicinity of the electrode surface of one electrode, excluding the solution in the solution portion that is the diffusion layer.

これらの算出した値を、出力手段90に送り、CRTや液晶等であるディスプレイ91の画面上やプリンタ92のプリントアウトに出力表示する。また、ノイズ抵抗Rn、電気化学的電流ノイズΔI、電気化学的電位ノイズΔE、カップリング電流Imean、電位差Vmeanなどの測定データを出力させて、より詳細な解析に用いてもよい。 These calculated values are sent to the output means 90, and output and displayed on the screen of the display 91 such as a CRT or liquid crystal or on the printout of the printer 92. Further, measurement data such as noise resistance Rn, electrochemical current noise ΔI, electrochemical potential noise ΔE, coupling current I mean , potential difference V mean may be output and used for more detailed analysis.

以下、実施例を用いてこの発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[二次関数近似]
(実施例1)
幅Wが2.0mm、高さHが30.0mm、厚さTが2mmであるSPCC(JIS G 3141に従う。)製の電極21〜23の、溶液11(エタノール(和光純薬工業(株)製:特級試薬):98.38wt%、蒸留水:1.61wt%、HCl(和光純薬工業(株)製:1級試薬):0.0064wt%)中における分極抵抗Rを、図1に記載の装置を用いて測定した。なお、それぞれの電極の端子部は絶縁体で絶縁して溶液とは接しないようにしている。また、電流測定手段24及び電圧測定手段25としてはソーラトロン社製:1280Bを用いた。
[Secondary function approximation]
(Example 1)
Solution 11 (ethanol (Wako Pure Chemical Industries, Ltd.) of electrodes 21 to 23 made of SPCC (according to JIS G 3141) having a width W of 2.0 mm, a height H of 30.0 mm, and a thickness T of 2 mm Ltd. special grade reagent): 98.38Wt%, distilled water: 1.61wt%, HCl (manufactured by Wako Pure Chemical Industries, Ltd.: first grade reagent): the polarization resistance R p in 0.0064Wt%) in FIG. 1 It measured using the apparatus as described in 1 above. In addition, the terminal part of each electrode is insulated with an insulator so as not to come into contact with the solution. As the current measuring unit 24 and the voltage measuring unit 25, 1280B manufactured by Solartron Co. was used.

両端の電極21及び22の間の中心線間距離Lを、5mm、6mm、10mm、14mmと変化させて各々60分間に亘って電気化学的電位ノイズΔE及び電気化学的電流ノイズΔIを測定して平均化して、得られたΔE及びΔIの平均値から算出したノイズ抵抗Rnの値を表1に示し、図7のグラフにプロットした。このプロットを上記式(3)で表現されるLの二次関数と判断する。これらを上記式(4)のように代入して上記式(5)を得て、Rnの上記中心線間距離LをL=0に外挿した値として近似したところ、分極抵抗Rが1162Ω・cmと算出された。 The center line distance L between the electrodes 21 and 22 at both ends was changed to 5 mm, 6 mm, 10 mm, and 14 mm, and the electrochemical potential noise ΔE and the electrochemical current noise ΔI were measured for 60 minutes each. The values of the noise resistance Rn calculated from the average values of ΔE and ΔI obtained by averaging are shown in Table 1, and plotted in the graph of FIG. This plot is determined as a quadratic function of L expressed by the above equation (3). By substituting these into the above equation (4) to obtain the above equation (5) and approximating the Rn centerline distance L extrapolated to L = 0, the polarization resistance R p is 1162Ω. Calculated as cm 2

Figure 2008139138
Figure 2008139138

なお、本来、分極抵抗R及びノイズ抵抗Rnの単位は「Ω」であるが、見かけ上「Ω・m」とする。電極の腐食反応の速度は単位面積あたりのアノード電流値に比例することから測定される電流値は測定不可能な面積上の電流であるために単位が「A/m」となり、それから算出されるRn(=ΔE/ΔI)を見かけ上「Ωm」として扱う。ただし、この単位では値が小さくなるため、表記上「Ωm」を10000倍した値となる「Ω・cm」で表す。以下、同様である。 Originally, the unit of the polarization resistance R p and the noise resistance Rn is “Ω”, but apparently “Ω · m 2 ”. Since the rate of the corrosion reaction of the electrode is proportional to the anode current value per unit area, the measured current value is a current on an unmeasurable area, so the unit is “A / m 2 ” and is calculated from it. Rn (= ΔE / ΔI) is apparently treated as “Ωm 2 ”. However, since the value is small in this unit, it is represented by “Ω · cm 2 ” which is a value obtained by multiplying “Ωm 2 ” by 10,000. The same applies hereinafter.

(実施例2)
実施例1の溶液の替わりに、エタノール:98.38wt%、蒸留水1.61wt%、HCl:0.013wt%である溶液を用いて、分極抵抗Rを同様に測定した。同様に上記式(4)で表現されるLの二次関数と判断して最小二乗法により近似したところ、分極抵抗Rが958Ω・cmと算出された。
(Example 2)
Instead of the solution of Example 1, ethanol: 98.38wt%, distilled water 1.61wt%, HCl: a 0.013% solution was used to similarly measured polarization resistance R p. Similarly, when it was judged as a quadratic function of L expressed by the above formula (4) and approximated by the least square method, the polarization resistance R p was calculated to be 958 Ω · cm 2 .

(実施例3)
実施例1の溶液の替わりに、エタノール:98.33wt%、蒸留水1.61wt%、HCl:0.064wt%である溶液を用いて、分極抵抗Rを同様に測定した。同様に上記式(4)で表現されるLの二次関数と判断して最小二乗法により近似したところ、分極抵抗Rが634Ω・cmと算出された。
(Example 3)
Instead of the solution of Example 1, ethanol: 98.33wt%, distilled water 1.61wt%, HCl: a 0.064Wt% solution was used to similarly measured polarization resistance R p. Similarly, when it was judged as a quadratic function of L expressed by the above equation (4) and approximated by the least square method, the polarization resistance R p was calculated to be 634 Ω · cm 2 .

(実施例4)
実施例1の溶液の替わりに、エタノール:98.26wt%、蒸留水1.61wt%、HCl:0.13wt%である溶液を用いて、分極抵抗Rを同様に測定した。同様に上記式(4)で表現されるLの二次関数と判断して最小二乗法により近似したところ、分極抵抗Rが459Ω・cmと算出された。
Example 4
Instead of the solution of Example 1, ethanol: 98.26wt%, distilled water 1.61wt%, HCl: a 0.13 wt% solution was used to similarly measured polarization resistance R p. Similarly, when it was judged as a quadratic function of L expressed by the above formula (4) and approximated by the least square method, the polarization resistance R p was calculated to be 459 Ω · cm 2 .

[逆数関数近似]
(実施例5)
実施例1で得られた、中心線間距離LごとのRnの値について、逆数(1/Rn)を計算した。この値を表2に示す。横軸に中心線間距離L、縦軸に(1/Rn)をとった図8のグラフにプロットした。このプロットを、(1/Rn)が式(3’)で表現されるLの一次関数と判断して、最小二乗法により近似し、L=0に外挿した切片の逆数として分極抵抗Rが1567Ω・cmと算出された。
[Reciprocal function approximation]
(Example 5)
The reciprocal number (1 / Rn) was calculated for the value of Rn for each centerline distance L obtained in Example 1. This value is shown in Table 2. The graph was plotted in the graph of FIG. 8 with the distance L between centerlines on the horizontal axis and (1 / Rn) on the vertical axis. This plot is determined by assuming that (1 / Rn) is a linear function of L expressed by the equation (3 ′), approximated by the least square method, and polarization resistance R p as the reciprocal of the intercept extrapolated to L = 0. Was calculated to be 1567 Ω · cm 2 .

Figure 2008139138
Figure 2008139138

(実施例6)
実施例2で得られた、中心線間距離LごとのRnの値について、実施例5と同様に逆数(1/Rn)を算出し、表2に示す値を図8のグラフにプロットした。同様に、上記式(3’)で表現されるLの一次関数と判断して最小二乗法により近似したところ、分極抵抗Rが906Ω・cmと算出された。
(Example 6)
For the value of Rn for each centerline distance L obtained in Example 2, the reciprocal (1 / Rn) was calculated in the same manner as in Example 5, and the values shown in Table 2 were plotted in the graph of FIG. Similarly, was approximated by the least square method to determine a linear function of L represented by formula (3 '), the polarization resistance R p is calculated as 906Ω · cm 2.

(実施例7)
実施例3で得られた、中心線間距離LごとのRnの値について、実施例5と同様に逆数(1/Rn)を算出し、表2に示す値を図8のグラフにプロットした。同様に、上記式(3’)で表現されるLの一次関数と判断して最小二乗法により近似したところ、分極抵抗Rが555Ω・cmと算出された。
(Example 7)
For the value of Rn for each centerline distance L obtained in Example 3, the reciprocal (1 / Rn) was calculated in the same manner as in Example 5, and the values shown in Table 2 were plotted in the graph of FIG. Similarly, when it was judged as a linear function of L expressed by the above formula (3 ′) and approximated by the least square method, the polarization resistance R p was calculated to be 555 Ω · cm 2 .

(実施例8)
実施例4で得られた、中心線間距離LごとのRnの値について、実施例5と同様に逆数(1/Rn)を算出し、表2に示す値を図8のグラフにプロットした。同様に、上記式(3’)で表現されるLの一次関数と判断して最小二乗法により近似したところ、分極抵抗Rが427Ω・cmと算出された。
(Example 8)
For the value of Rn for each centerline distance L obtained in Example 4, the reciprocal (1 / Rn) was calculated in the same manner as in Example 5, and the values shown in Table 2 were plotted in the graph of FIG. Similarly, when it was determined to be a linear function of L expressed by the above equation (3 ′) and approximated by the least square method, the polarization resistance R p was calculated to be 427 Ω · cm 2 .

この発明にかかる測定方法を行う電極の配置概念図Schematic diagram of electrode arrangement for performing measurement method according to this invention この発明にかかる測定方法を行う電気化学測定装置の構造例を示すブロック図The block diagram which shows the structural example of the electrochemical measuring apparatus which performs the measuring method concerning this invention 図1の電気化学測定装置の回路をアナログ回路で構成したときの例を示すブロック図The block diagram which shows an example when the circuit of the electrochemical measuring device of FIG. 1 is comprised with an analog circuit. 図1の電気化学測定装置の回路をデジタル回路で構成したときの例を示すブロック図The block diagram which shows an example when the circuit of the electrochemical measuring apparatus of FIG. 1 is comprised with a digital circuit. 電気化学的電流ノイズと電気化学的電位ノイズの概念図Conceptual diagram of electrochemical current noise and electrochemical potential noise 5個以上の電極による中心線間距離Lを変えた測定の概念図Conceptual diagram of measurement by changing the distance L between the center lines with five or more electrodes 実施例におけるノイズ抵抗と電極間距離の二次関数相関関係を示すグラフThe graph which shows the quadratic function correlation of the noise resistance and the distance between electrodes in an Example 実施例におけるノイズ抵抗と電極間距離の逆関数相関関係を示すグラフThe graph which shows the inverse function correlation of the noise resistance and the distance between electrodes in an Example 2電極系における溶液抵抗と分極抵抗及び電気二重層キャパシタの概念図Conceptual diagram of solution resistance, polarization resistance, and electric double layer capacitor in a two-electrode system

符号の説明Explanation of symbols

1 電極
2 電気二重層
3 分極抵抗
4 電気二重層キャパシタ
5 溶液
6 溶液抵抗
11 溶液
21 第1の電極
22 第2の電極
23 第3の電極
24 電流測定手段(無抵抗電流計)
25 電圧測定手段(電圧計)
26、27 バンドパスフィルター
30 コンバータ
31、32 対数コンバータ
33、34 A/Dコンバータ
40 コンピュータ
50 記録手段
60 計算手段
90 出力手段
91 ディスプレイ
92 プリンタ
100 入力手段
DESCRIPTION OF SYMBOLS 1 Electrode 2 Electric double layer 3 Polarization resistance 4 Electric double layer capacitor 5 Solution 6 Solution resistance 11 Solution 21 1st electrode 22 2nd electrode 23 3rd electrode 24 Current measuring means (non-resistance ammeter)
25 Voltage measuring means (voltmeter)
26, 27 Band pass filter 30 Converter 31, 32 Logarithmic converter 33, 34 A / D converter 40 Computer 50 Recording means 60 Calculation means 90 Output means 91 Display 92 Printer 100 Input means

Claims (3)

平行に並べた3本の電極を溶液に接触又は浸漬させた3電極系で、電気化学的電位ノイズΔE及び電気化学的電流ノイズΔIを測定してノイズ抵抗Rnを求める電気化学ノイズ測定法において、
中央の1本の電極からそれに隣り合う両端の2本の電極までの距離Dを等しくしつつ変化させて、
一方の端にある電極と前記中央の1本の電極との間の電気化学的電位ノイズΔEと、前記両端の2本の電極間の電気化学的電流ノイズΔIとを測定して、それぞれの距離Dに対応する前記両端の2本の電極の中心線間距離Lにおけるノイズ抵抗Rnを求め、
上記距離Lと上記ノイズ抵抗Rnとの関係を、溶液抵抗S(L)によりモデル化した式(1)又は(1’)を求め、前記中心線間距離LをL=0に外挿した値である分極抵抗Rを求める、電気化学ノイズ測定方法。
Rn=S(L)+R ……(1)
(1/Rn)=S(L)+(1/R) ……(1’)
In an electrochemical noise measurement method for determining noise resistance Rn by measuring electrochemical potential noise ΔE and electrochemical current noise ΔI in a three-electrode system in which three electrodes arranged in parallel are contacted or immersed in a solution,
The distance D from the center one electrode to the two electrodes at both ends adjacent to it is changed while being equalized,
The electrochemical potential noise ΔE between the electrode at one end and the one electrode at the center and the electrochemical current noise ΔI between the two electrodes at both ends are measured, and the respective distances are measured. A noise resistance Rn at a distance L between center lines of the two electrodes at both ends corresponding to D is obtained,
A value obtained by obtaining an equation (1) or (1 ′) in which the relationship between the distance L and the noise resistance Rn is modeled by a solution resistance S (L), and extrapolating the centerline distance L to L = 0. An electrochemical noise measurement method for obtaining a polarization resistance R p which is
Rn = S (L) + R p (1)
(1 / Rn) = S (L) + (1 / R p ) (1 ′)
上記分極抵抗Rと上記ノイズ抵抗Rnとから、又は上記式(1)の定数から、その上記ノイズ抵抗Rnを測定した際の距離Lにおける溶液抵抗S(L)を求める、請求項1に記載の電気化学ノイズ測定方法。 From the above polarization resistance R p and the noise resistance Rn, or from the constant of the above formula (1), obtaining the solution resistance S (L) at the distance L when measuring the above noise resistance Rn, according to claim 1 Electrochemical noise measurement method. 上記の中央の1本の電極と、それに隣り合う両端の2本の電極のうちの一本との間に、電気化学的電位ノイズΔEを測定する電圧測定手段を設け、
上記両端の2本の電極の間に、電気化学的電流ノイズΔIを測定する電流測定手段を設けて、
上記電流測定手段及び上記電圧測定手段により測定された上記電気化学的電位ノイズΔE及び上記電気化学的電流ノイズΔIから、式(2)により上記ノイズ抵抗Rnを算出する算出工程を有する、請求項1又は2に記載の電気化学ノイズ測定方法。
Rn=ΔE/ΔI …………(2)
A voltage measuring means for measuring the electrochemical potential noise ΔE is provided between the one electrode at the center and one of the two electrodes at both ends adjacent to the center electrode,
A current measuring means for measuring electrochemical current noise ΔI is provided between the two electrodes at both ends,
The calculation step of calculating the noise resistance Rn from the electrochemical potential noise ΔE and the electrochemical current noise ΔI measured by the current measuring unit and the voltage measuring unit according to the formula (2). Or the electrochemical noise measuring method of 2.
Rn = ΔE / ΔI (2)
JP2006325250A 2006-12-01 2006-12-01 Electrochemical noise measuring method Pending JP2008139138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325250A JP2008139138A (en) 2006-12-01 2006-12-01 Electrochemical noise measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325250A JP2008139138A (en) 2006-12-01 2006-12-01 Electrochemical noise measuring method

Publications (1)

Publication Number Publication Date
JP2008139138A true JP2008139138A (en) 2008-06-19

Family

ID=39600769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325250A Pending JP2008139138A (en) 2006-12-01 2006-12-01 Electrochemical noise measuring method

Country Status (1)

Country Link
JP (1) JP2008139138A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203083A (en) * 2010-03-25 2011-10-13 Kobe Steel Ltd Method for estimating corrosion rate of metal material
CN103364639A (en) * 2013-06-25 2013-10-23 西安热工研究院有限公司 Measurement method for solution resistance in dynamic pure water system metal corrosion electrochemical measurement
CN104034967A (en) * 2014-06-05 2014-09-10 浙江工业大学 Method for rapidly and accurately detecting internal resistance of secondary battery
CN107991227A (en) * 2018-01-08 2018-05-04 东北大学 A kind of embedded type sensor device suitable for the detection of corrosion-inhibiting coating electrochemistry noise

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203083A (en) * 2010-03-25 2011-10-13 Kobe Steel Ltd Method for estimating corrosion rate of metal material
CN103364639A (en) * 2013-06-25 2013-10-23 西安热工研究院有限公司 Measurement method for solution resistance in dynamic pure water system metal corrosion electrochemical measurement
CN104034967A (en) * 2014-06-05 2014-09-10 浙江工业大学 Method for rapidly and accurately detecting internal resistance of secondary battery
CN107991227A (en) * 2018-01-08 2018-05-04 东北大学 A kind of embedded type sensor device suitable for the detection of corrosion-inhibiting coating electrochemistry noise
CN107991227B (en) * 2018-01-08 2023-11-03 东北大学 Implanted sensor device suitable for electrochemical noise detection of anti-corrosion coating

Similar Documents

Publication Publication Date Title
US9194900B2 (en) Electrode evaluation apparatus and electrode evaluation method
US8036841B2 (en) Measuring method and apparatus for potentiometric measuring probes
RU2682324C2 (en) Haemolysis detection method and system
JP4904489B2 (en) Damage detection apparatus and damage detection method
US20120221269A1 (en) Method and system for determining dc bus leakage
RU2009112406A (en) NON-DESTRUCTIVE SYSTEMS, DEVICES AND METHODS FOR ASSESSING DEVICES FOR IONTOPHORETIC DELIVERY OF MEDICINES
JPH0529263B2 (en)
JP2012518797A (en) Method for characterizing electrical systems by impedance spectroscopy
CN101896809A (en) Method and apparatus for electrochemical corrosion monitoring
JP2008139138A (en) Electrochemical noise measuring method
US11680925B2 (en) Systems and methods for electrochemical hematocrit determination by alternate current impedance phase angle determinations
CN113970516A (en) Metal material corrosion monitoring system and method
CN105319248A (en) Electro-chemical nondestructive detection device and method for detecting metal surface defects
Malkow et al. EU harmonised test procedure: electrochemical impedance spectroscopy for water electrolysis cells
CN204514850U (en) A kind of galvanochemistry the cannot-harm-detection device detecting cracks of metal surface
Su et al. A theoretical study on resistance of electrolytic solution: Measurement of electrolytic conductivity
Slepski et al. On-line measurement of cell impedance during charging and discharging process
KR101386344B1 (en) The real-time monitoring device of fourier transform electrochemical impedance and method.
US9488611B2 (en) Low-conductivity contacting-type conductivity measurement
CN105891289B (en) A kind of electrochemical method measuring Oxidation of Fat and Oils induction time
JP5559638B2 (en) Degradation judgment method for power cables
CN107576697B (en) sensor sensitivity coefficient acquisition method and terminal equipment
JP2010008146A (en) Internal impedance measuring device
CN114664392A (en) Electrochemical parameter prediction method, device, electronic equipment and readable storage medium
JPH1019826A (en) Apparatus for measuring corrosion of metallic material