JP2008125281A - Power converter system - Google Patents

Power converter system Download PDF

Info

Publication number
JP2008125281A
JP2008125281A JP2006307943A JP2006307943A JP2008125281A JP 2008125281 A JP2008125281 A JP 2008125281A JP 2006307943 A JP2006307943 A JP 2006307943A JP 2006307943 A JP2006307943 A JP 2006307943A JP 2008125281 A JP2008125281 A JP 2008125281A
Authority
JP
Japan
Prior art keywords
voltage
power
distribution line
phase
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006307943A
Other languages
Japanese (ja)
Other versions
JP4791938B2 (en
Inventor
Shigetoshi Higaki
成敏 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Lifestyle Products and Services Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Fuel Cell Power Systems Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Marketing Corp, Toshiba Fuel Cell Power Systems Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2006307943A priority Critical patent/JP4791938B2/en
Publication of JP2008125281A publication Critical patent/JP2008125281A/en
Application granted granted Critical
Publication of JP4791938B2 publication Critical patent/JP4791938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Protection Of Static Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter system which reduces the number of external wirings when connected to a single-phase three-wire system distribution line. <P>SOLUTION: A housing 28 of the power converter system 41 is grounded, and a negative side terminal of DC power supply 42 and a reference potential 0 V of a signal processed in the converter are connected to the housing 28. Voltage detection circuits 43, 44 detect a voltage between two voltage lines L1, L2 of the single-phase three-wire system distribution line 26 and the reference potential 0 V. A system abnormality supervisory circuit 45 judges whether an abnormality is generated at the distribution line 26 based on detected voltages VL1, VL2, then controls opening/closing of an on-off switch 25, and controls an operation of an inverter circuit 20, according to its judged state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は直流電源より供給される電力を変換して生成した交流電力を、単相3線式配電線路に供給するための電力変換装置に関する。   The present invention relates to a power converter for supplying AC power generated by converting power supplied from a DC power source to a single-phase three-wire distribution line.

図7は、従来の電力変換装置の一構成例を示すものである。直流電源1の両端には、4つのスイッチング素子(例えば、NチャネルパワーMOSFETなど)2〜5をブリッジ接続して構成された単相インバータ回路6が接続されており、単相インバータ回路6の出力端子には、高周波トランス7の一次側巻線7aが接続されている。高周波トランス7の二次側巻線7bには、4つのダイオード8〜11で構成される整流回路12が接続されており、その整流回路12の直流出力端子には、平滑作用をなすリアクトル13及びコンデンサ14の直列回路が接続されている。
以上の構成において、直流電源1を除いたものが絶縁型DC/DC変換器15を構成している。絶縁型DC/DC変換器15は、コンデンサ14の端子電圧である直流出力電圧VDCを図示しない制御回路が検出し、その値が所定の電圧値となるようにインバータ回路6をスイッチング制御するものである。
FIG. 7 shows a configuration example of a conventional power converter. Connected to both ends of the DC power supply 1 is a single-phase inverter circuit 6 configured by bridge-connecting four switching elements (for example, N-channel power MOSFETs) 2 to 5, and outputs from the single-phase inverter circuit 6. The primary winding 7a of the high frequency transformer 7 is connected to the terminal. A rectifier circuit 12 composed of four diodes 8 to 11 is connected to the secondary winding 7b of the high-frequency transformer 7, and a direct current output terminal of the rectifier circuit 12 has a reactor 13 and a smoothing action. A series circuit of a capacitor 14 is connected.
In the above configuration, the DC power source 1 except for the DC power source 1 constitutes the insulated DC / DC converter 15. The insulation type DC / DC converter 15 detects a DC output voltage VDC which is a terminal voltage of the capacitor 14 by a control circuit (not shown), and performs switching control of the inverter circuit 6 so that the value becomes a predetermined voltage value. is there.

コンデンサ14の両端には、インバータ回路6と同様に、4つのスイッチング素子16〜19で構成される単相インバータ回路20が接続されており、インバータ回路20の出力端子には、リアクトル21,22及びコンデンサ23よりなるフィルタ回路24と、開閉スイッチ25とが接続されている。そして、開閉スイッチ25には、単相3線式配電線路26の電圧線L1,L2が接続されている。以上の構成において、絶縁型DC/DC変換器15,単相インバータ回路20,フィルタ回路24及び開閉スイッチ25を備えたものが、電力変換装置27を構成している。
そして、インバータ回路20は、絶縁型DC/DC変換器15より与えられる直流出力電圧VDCに基づいて、配電線路26の200V(L1−L2間)交流電源に、電圧並びに電流位相が一致する正弦波を生成して出力するよう、図示しない制御回路によってスイッチング制御される。
Similar to the inverter circuit 6, a single-phase inverter circuit 20 including four switching elements 16 to 19 is connected to both ends of the capacitor 14. Reactors 21, 22, and reactors are connected to output terminals of the inverter circuit 20. A filter circuit 24 composed of a capacitor 23 and an open / close switch 25 are connected. The open / close switch 25 is connected to the voltage lines L 1 and L 2 of the single-phase three-wire distribution line 26. In the above configuration, the device including the insulation type DC / DC converter 15, the single-phase inverter circuit 20, the filter circuit 24, and the open / close switch 25 constitutes the power conversion device 27.
Then, the inverter circuit 20 is a sine wave whose voltage and current phase match the 200 V (between L1 and L2) AC power supply of the distribution line 26 based on the DC output voltage VDC supplied from the insulation type DC / DC converter 15. Is controlled by a control circuit (not shown) so as to generate and output.

また、配電線路26の中性線Nは、電力変換装置27の筐体28の内部に引き込まれている。そして、配電線路26のL1−N間電圧,L2−N間電圧は、絶縁トランス29,30を介して系統異常監視回路31が監視するようになっている。そして、系統異常監視回路31は、上記の各線間電圧に基づき、配電線路26に電圧や周波数の異常が発生したと判断すると、インバータ回路20に対してゲートブロック信号GBを出力してスイッチング制御を停止させる。また、上記ゲートブロック信号GBは、開閉スイッチ25に対する開指令信号として与えられることで、開閉スイッチ25が開き、電力変換装置27と配電線路26とを切り離すように動作する。   Further, the neutral line N of the distribution line 26 is drawn into the housing 28 of the power conversion device 27. And the system abnormality monitoring circuit 31 monitors the voltage between L1-N of the distribution line 26, and the voltage between L2-N via the insulation transformers 29 and 30. As shown in FIG. When the system abnormality monitoring circuit 31 determines that a voltage or frequency abnormality has occurred in the distribution line 26 based on each of the above line voltages, it outputs a gate block signal GB to the inverter circuit 20 to perform switching control. Stop. Also, the gate block signal GB is given as an open command signal to the open / close switch 25, so that the open / close switch 25 is opened and the power converter 27 and the distribution line 26 are disconnected.

また、特許文献1,2には、上記構成に類似する技術として、太陽電池や燃料電池が生成出力した直流電源をインバータ回路を介して交流電源に変換し、商用電力系統に出力する構成が開示されている。
特許第3180991号公報 特開平9−271141号公報
Patent Documents 1 and 2 disclose, as a technique similar to the above configuration, a configuration in which a DC power generated and output by a solar cell or a fuel cell is converted into an AC power via an inverter circuit and output to a commercial power system. Has been.
Japanese Patent No. 3180991 JP-A-9-271141

従来の電力変換装置27では、系統異常監視回路31が配電線路26のL1−N間電圧,L2−N間電圧(100V)を監視するために、配電線路26の電圧線L1,L2並びに中性線Nを合わせた3本の外部配線を、筐体28の内部に引き込んでいる。また、筐体28は通常接地されるため、その接地配線も加えると外部配線数は4本となる。そして、L1,L2,Nの3線については、内部配線をトランス29,30や系統異常監視回路31が搭載されている回路基板まで引き回し、当該基板上では、それら3線に対応した配線パターンを配置する必要がある。   In the conventional power converter 27, in order for the system abnormality monitoring circuit 31 to monitor the voltage between L1-N and the voltage between L2-N (100V) of the distribution line 26, the voltage lines L1, L2 of the distribution line 26 and the neutrality. Three external wires including the line N are drawn into the housing 28. Further, since the casing 28 is normally grounded, the number of external wirings becomes four when the grounding wiring is added. For the three lines L1, L2, and N, the internal wiring is routed to the circuit board on which the transformers 29 and 30 and the system abnormality monitoring circuit 31 are mounted, and wiring patterns corresponding to these three lines are formed on the board. Need to be placed.

そのため、回路基板が大型化したり、端子台やコネクタピンなどの部品が増加することになり、材料費,製造工数が増大してコストアップを招来している。また、電力変換装置27を設置する際の外線工事についても、配線数が多く材料費や工事費が増加することになる。加えて、配電線路26の3線間電圧については、100Vと200Vとが混在しているため、接続ミスが発生するリスクが潜在している、といった問題がある。
本発明は上記事情に鑑みてなされたものであり、その目的は、単相3線式配電線路と接続する場合の外部配線数を削減できる電力変換装置を提供することにある。
For this reason, the circuit board is increased in size and the number of parts such as terminal blocks and connector pins is increased, resulting in an increase in material costs and manufacturing man-hours, resulting in an increase in cost. In addition, the outside line work for installing the power conversion device 27 also requires a large number of wires and increases material costs and construction costs. In addition, as for the voltage between the three lines of the distribution line 26, there is a problem that there is a risk that a connection error occurs because 100V and 200V are mixed.
This invention is made | formed in view of the said situation, The objective is to provide the power converter device which can reduce the number of external wirings in the case of connecting with a single phase 3 wire type distribution line.

上記目的を達成するため、本発明の電力変換装置は、直流電源より供給される電力を所定電圧の直流電力に変換する絶縁型DC/DC変換器と、この絶縁型DC/DC変換器により変換された直流電力を商用電源周波数の交流電力に変換する単相インバータ回路とを筐体内に備え、前記交流電力を単相3線式配電線路に供給する電力変換装置において、
前記筐体を接地すると共に、前記直流電源の負側端子と、前記装置内で取り扱う信号の基準電位とを前記筐体に接続し、
前記単相インバータ回路の出力端子と、前記単相3線式配電線路の2つの電圧線との間に配置される開閉スイッチと、
前記単相3線式配電線路の2つの電圧線の夫々と、前記基準電位との間の電圧を検出する第1,第2電圧検出回路と、
これらの電圧検出回路の検出結果に基づいて前記配電線路に異常が発生したか否かを判定し、その判定状況に応じて前記開閉スイッチの開閉制御、並びに前記単相インバータ回路の運転制御を行う制御回路とを備えてなることを特徴とする。
In order to achieve the above object, an electric power conversion apparatus according to the present invention includes an isolated DC / DC converter that converts electric power supplied from a DC power source into DC power of a predetermined voltage, and conversion by the isolated DC / DC converter. A single-phase inverter circuit for converting the direct-current power into alternating-current power of commercial power frequency in a housing, and supplying the alternating-current power to a single-phase three-wire distribution line,
Grounding the housing, and connecting the negative terminal of the DC power source and a reference potential of a signal handled in the device to the housing,
An open / close switch disposed between the output terminal of the single-phase inverter circuit and two voltage lines of the single-phase three-wire distribution line;
First and second voltage detection circuits for detecting a voltage between each of the two voltage lines of the single-phase three-wire distribution line and the reference potential;
Based on the detection results of these voltage detection circuits, it is determined whether or not an abnormality has occurred in the distribution line, and the open / close control of the open / close switch and the operation control of the single-phase inverter circuit are performed according to the determination status. And a control circuit.

即ち、一般に、単相3線式配電線路の中性線は接地されているので、電力変換装置の筐体を設置すれば、筐体の電位と中性線電位とは略等しいはずである。そして、電力変換装置の内部で取り扱う信号の基準電位を筐体に接続すれば、その基準電位は中性点電位に略等しくなる。従って、第1,第2電圧検出回路が、単相3線式配電線路の2つの電圧線の夫々と基準電位との間の電圧を検出すれば、夫々の検出電圧は、単相3線式配電線路の中性線を基準とする線間電圧に等しくなる。よって、従来構成とは異なり、電力変換装置の筐体内部に中性線を引き込む必要がなくなる。   That is, in general, the neutral line of the single-phase three-wire distribution line is grounded, and therefore, if the casing of the power converter is installed, the potential of the casing and the neutral line potential should be substantially equal. And if the reference potential of the signal handled inside the power converter is connected to the casing, the reference potential becomes substantially equal to the neutral point potential. Therefore, if the first and second voltage detection circuits detect the voltage between each of the two voltage lines of the single-phase three-wire distribution line and the reference potential, each detection voltage is a single-phase three-wire type. It becomes equal to the line voltage on the basis of the neutral line of the distribution line. Therefore, unlike the conventional configuration, there is no need to draw a neutral wire inside the casing of the power converter.

本発明の電力変換装置によれば、単相3線式配電線路の中性線を接続する必要がないので外部配線が不要となり、材料費や工事費を低減することができる。また、それに伴い装置内部における配線も不要となるので、回路基板が大型化したり、端子台やコネクタピンなどの部品を削減してコストアップを抑制できる。そして、電力変換装置には、単相3線式配電線路の2本の電圧線を接続するだけなので、その線間電圧は200Vのみとなり、接続ミスが発生することもない。   According to the power conversion device of the present invention, since there is no need to connect a neutral wire of a single-phase three-wire distribution line, external wiring becomes unnecessary, and material costs and construction costs can be reduced. In addition, the wiring inside the apparatus is also unnecessary, so that the circuit board can be increased in size, and parts such as terminal blocks and connector pins can be reduced to suppress an increase in cost. And since only two voltage lines of a single-phase three-wire type distribution line are connected to a power converter, the line voltage becomes only 200V and a connection mistake does not occur.

(第1実施例)
以下、本発明の第1実施例について図1乃至図3を参照して説明する。尚、図7と同一部分には同一符号を付して説明を省略し、以下異なる部分についてのみ説明する。本実施例の電力変換装置41では、例えば、燃料電池で構成される直流電源42の負側端子を筐体28(端子E)に接続している。また、トランス29,30は削除されており、それらに替えて、電圧検出回路(第1,第2電圧検出回路)43,44が配置されている。更に、電力変換装置41の内部で取り扱う信号の基準電位0Vも筐体28に接続されており、その基準電位は接地電位に等しくなっている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 7 that are the same as those in FIG. 7 are assigned the same reference numerals, and descriptions thereof are omitted. Only different parts will be described below. In the power conversion device 41 of the present embodiment, for example, the negative terminal of the DC power source 42 constituted by a fuel cell is connected to the casing 28 (terminal E). Further, the transformers 29 and 30 are omitted, and voltage detection circuits (first and second voltage detection circuits) 43 and 44 are arranged instead of them. Further, a reference potential 0V of a signal handled inside the power conversion device 41 is also connected to the housing 28, and the reference potential is equal to the ground potential.

電圧検出回路43,44は、夫々配電線路26の電圧線L1,L2と基準電位0Vとの間の電圧を検出して、系統異常監視回路(制御回路)45に出力するようになっている。そして、従来構成とは異なり、配電線路26の中性線Nは電力変換装置41に対して接続されていない。インバータ制御回路46は、インバータ回路20のスイッチング制御を行うもので、各スイッチング素子16〜19に対してスイッチング制御信号(ゲート信号)を出力するようになっている。そして、系統異常監視回路45は、インバータ制御回路46に対してゲートブロック信号GBを出力すると共に、商用交流電源に同期した正弦波信号を内部で生成して出力する。インバータ制御回路46は、その同期正弦波信号を電流位相基準としてインバータ回路20のスイッチング制御を行うようになっている。   The voltage detection circuits 43 and 44 detect voltages between the voltage lines L1 and L2 of the distribution line 26 and the reference potential 0 V, respectively, and output them to the system abnormality monitoring circuit (control circuit) 45. Unlike the conventional configuration, the neutral line N of the distribution line 26 is not connected to the power converter 41. The inverter control circuit 46 performs switching control of the inverter circuit 20 and outputs a switching control signal (gate signal) to each of the switching elements 16 to 19. The system abnormality monitoring circuit 45 outputs a gate block signal GB to the inverter control circuit 46 and internally generates and outputs a sine wave signal synchronized with the commercial AC power supply. The inverter control circuit 46 performs switching control of the inverter circuit 20 using the synchronous sine wave signal as a current phase reference.

図2は、電圧検出回路43,44の具体構成例を示すものであり、これらは反転増幅回路として構成されている。即ち、オペアンプ47の非反転入力端子は基準電位0Vに接続されており、反転入力端子には抵抗素子48を介して電圧線L1又はL2が接続されている。そして、上記反転入力端子とオペアンプ47の出力端子との間には、抵抗素子49が接続されており、オペアンプ47の出力電圧が、検出電圧VL1又はVL2となる。   FIG. 2 shows a specific configuration example of the voltage detection circuits 43 and 44, which are configured as an inverting amplifier circuit. That is, the non-inverting input terminal of the operational amplifier 47 is connected to the reference potential 0 V, and the voltage line L1 or L2 is connected to the inverting input terminal via the resistance element 48. A resistance element 49 is connected between the inverting input terminal and the output terminal of the operational amplifier 47, and the output voltage of the operational amplifier 47 becomes the detection voltage VL1 or VL2.

図3は、系統異常監視回路45の内部構成を一部のみ示すものである。電圧検出回路43,44より出力される検出電圧VL1,VL2は減算器51に与えられ、差分電圧(VL1−VL2)がゼロクロス検知回路52に出力される。差分電圧(VL1−VL2)は、200V振幅の交流電圧となり、ゼロクロス検知回路52は、その交流電圧のゼロクロスタイミングを検知し、矩形波信号をPLL(Phase Locked Loop)回路53並びに周期検知カウンタ54に出力する。   FIG. 3 shows only a part of the internal configuration of the system abnormality monitoring circuit 45. The detection voltages VL1 and VL2 output from the voltage detection circuits 43 and 44 are given to the subtractor 51, and the differential voltage (VL1-VL2) is output to the zero cross detection circuit 52. The differential voltage (VL1-VL2) becomes an AC voltage with an amplitude of 200 V, and the zero cross detection circuit 52 detects the zero cross timing of the AC voltage, and sends a rectangular wave signal to a PLL (Phase Locked Loop) circuit 53 and a period detection counter 54. Output.

PLL回路53は、その矩形波信号に基づいて商用交流電源の周波数に同期した正弦波信号を生成し、上述のように制御回路46に出力する。また、周期検知カウンタ54は、同じ矩形波信号の例えば立上がりエッジの出力間隔をカウントすることで、商用交流電源の周波数信号を生成し、その周波数信号に基づいて配電線路26の周波数異常を検知するようになっている。即ち、系統異常監視回路45は、検出電圧VL1,VL2が所定の電圧範囲を逸脱した状態が所定時間継続した場合や、上記周波数信号が所定の周波数範囲を逸脱した状態が所定時間継続した場合に系統異常を判定する。   The PLL circuit 53 generates a sine wave signal synchronized with the frequency of the commercial AC power supply based on the rectangular wave signal, and outputs it to the control circuit 46 as described above. The cycle detection counter 54 counts, for example, the output interval of rising edges of the same rectangular wave signal, thereby generating a frequency signal of the commercial AC power supply, and detects a frequency abnormality of the distribution line 26 based on the frequency signal. It is like that. That is, the system abnormality monitoring circuit 45 is used when the detection voltages VL1 and VL2 deviate from the predetermined voltage range for a predetermined time or when the frequency signal deviates from the predetermined frequency range for a predetermined time. Determine the system abnormality.

次に、本実施例の作用について説明する。配電線路26の中性線Nが接地されている状態の電位をGNDとし、電力変換装置41の筐体が接地されている状態の電位をGND1とすると、基本的に接地間電位差は無いと考えられる(GND≒GND1)。従って、電圧検出回路43,44による検出電圧VL1,VL2は、
VL1=L1−0V=L1−GND1≒L1−GND=L1−N …(1)
VL2=L2−0V=L2−GND1≒L2−GND=L2−N …(2)
となり、結果として、配電線路26の中性線Nを基準とする線間電圧に等しくなっている。従って、従来構成とは異なり、電力変換装置41に対し、敢えて中性線Nを接続せずとも、線間電圧L1−N,L2−Nの検出が可能となっている。
Next, the operation of this embodiment will be described. If the potential when the neutral line N of the distribution line 26 is grounded is GND and the potential when the casing of the power converter 41 is grounded is GND1, basically there is no potential difference between grounds. (GND≈GND1). Therefore, the detection voltages VL1 and VL2 detected by the voltage detection circuits 43 and 44 are
VL1 = L1-0V = L1-GND1≈L1-GND = L1-N (1)
VL2 = L2-0V = L2-GND1≈L2-GND = L2-N (2)
As a result, it is equal to the line voltage with reference to the neutral line N of the distribution line 26. Therefore, unlike the conventional configuration, it is possible to detect the line voltages L1-N and L2-N without connecting the neutral line N to the power converter 41.

また、電圧検出回路43,44より与えられる検出電圧VL1,VL2は上記(1),(2)式で表されるが、配電線路26の線間電圧L1−N,L2−Nは、厳密には下式のように表される。
L1−N=(N−GND)+(GND−GND1)+(L1−GND1) …(3)
L2−N=(N−GND)+(GND−GND1)+(L2−GND1) …(4)
そして、N−GND≒0,GND−GND1≒0,であるから、その結果として、上記(1),(2)式が成り立っている。
The detection voltages VL1 and VL2 given from the voltage detection circuits 43 and 44 are expressed by the above equations (1) and (2), but the line voltages L1-N and L2-N of the distribution line 26 are strictly Is expressed as follows:
L1-N = (N-GND) + (GND-GND1) + (L1-GND1) (3)
L2-N = (N-GND) + (GND-GND1) + (L2-GND1) (4)
Since N-GND≈0 and GND-GND1≈0, the above expressions (1) and (2) hold as a result.

ところで、系統電圧保護を行う場合は、一般に、VL1,VL2について1サイクル期間内で複数回サンプリングを行い平均値処理を施すことで、ノイズ等の影響による一過性のN−GND間電圧変動や、GND−GND1間電圧変動の影響を低減することは容易である。
そして、系統異常監視回路45は、上述のように、ゼロクロス検知回路52により電源の位相基準を検出し、周期検知カウンタ54によって出力される電源周波数を検出している。この場合、検出電圧VL1又はVL2を検出対象にすることを想定すると、上記N−GND間電圧やGND−GND1間電圧に一過性変動が生じればその影響をそのまま受けてしまうため、検出精度が低下することが考えられる。
By the way, when system voltage protection is performed, in general, by sampling a plurality of times in one cycle period for VL1 and VL2, and performing an average value process, transient voltage fluctuations between N-GND due to the influence of noise or the like It is easy to reduce the influence of voltage fluctuation between GND and GND1.
As described above, the system abnormality monitoring circuit 45 detects the phase reference of the power supply by the zero cross detection circuit 52 and detects the power supply frequency output by the cycle detection counter 54. In this case, assuming that the detection voltage VL1 or VL2 is a detection target, if a transient change occurs in the voltage between the N-GND and the voltage between the GND and the GND1, the influence is directly affected. Is considered to be reduced.

しかし、本実施例では、L1−L2間の200V電圧を検出対象としている。即ち、
L1−L2=(L1−N)−(L2−N)
= (N−GND)+(GND−GND1)+(L1−GND1)
−{(N−GND)+(GND−GND1)+(L2−GND1)}
=(L1−GND1)−(L2−GND1)
=VL1−VL2 …(5)
である。従って、検出電圧VL1,VL2の差分を対象として電源位相や周波数を検出することで、N−GND間電圧やGND−GND1間電圧の変動の影響が低減されている。
However, in this embodiment, the 200V voltage between L1 and L2 is a detection target. That is,
L1-L2 = (L1-N)-(L2-N)
= (N-GND) + (GND-GND1) + (L1-GND1)
− {(N−GND) + (GND−GND1) + (L2−GND1)}
= (L1-GND1)-(L2-GND1)
= VL1-VL2 (5)
It is. Therefore, the influence of fluctuations in the voltage between N-GND and the voltage between GND-GND1 is reduced by detecting the power supply phase and frequency for the difference between the detection voltages VL1, VL2.

以上のように本実施例によれば、電力変換装置41の筐体28を接地すると共に、直流電源41の負側端子と、装置内で取扱う信号の基準電位0Vも筐体28に接続し、電圧検出回路43,44は、単相3線式配電線路26の2つの電圧線L1,L2と基準電位0Vとの間の電圧を検出する。そして、系統異常監視回路45は、検出電圧VL1,VL2に基づいて配電線路26に異常が発生したか否かを判定し、その判定状況に応じて開閉スイッチ25の開閉制御、並びにインバータ回路20の運転制御を行うようにした。   As described above, according to the present embodiment, the casing 28 of the power converter 41 is grounded, and the negative terminal of the DC power supply 41 and the reference potential 0 V of the signal handled in the apparatus are also connected to the casing 28. The voltage detection circuits 43 and 44 detect a voltage between the two voltage lines L1 and L2 of the single-phase three-wire distribution line 26 and the reference potential 0V. Then, the system abnormality monitoring circuit 45 determines whether an abnormality has occurred in the distribution line 26 based on the detection voltages VL1 and VL2, and controls the opening / closing of the open / close switch 25 and the inverter circuit 20 according to the determination status. Operation control was performed.

従って、電力変換装置41に中性線Nを接続する必要がないので、その分の外部配線が不要となり、材料費や工事費を低減することができる。また、それに伴い装置41の内部における配線も不要となるので、回路基板が大型化したり、端子台やコネクタピンなどの部品を削減してコストアップを抑制できる。そして、電力変換装置41には、配電線路26の2本の電圧線L1,L2を接続するだけなので、その線間電圧は200Vのみとなり、接続ミスが発生することもなくなる。   Therefore, there is no need to connect the neutral wire N to the power converter 41, so that no external wiring is required, and material costs and construction costs can be reduced. In addition, the wiring inside the device 41 is not necessary, so that the circuit board can be increased in size, and parts such as terminal blocks and connector pins can be reduced to suppress an increase in cost. And since only the two voltage lines L1 and L2 of the distribution line 26 are connected to the power converter 41, the voltage between the lines is only 200V, and no connection error occurs.

また、電圧検出回路43,44は、反転増幅回路などにより簡単に構成できるので、従来構成のような絶縁トランス29,30や、高価な絶縁アンプなどを用いる必要がなく、更に低コスト化を図ることができる。
また、(1)配電線路26側の中性線Nの接地状態が異常となった場合や、(2)電力変換装置41側の筐体28の接地が不十分となった場合を想定すると、従来構成では、L1−N間電圧,L2−N間電圧を直接監視しているので、系統異常を検出することはできない。これに対して、本実施例によれば、上記(1),(2)のケースでは、GND=GND1の状態からGND≠GND1の状態に変化するので、その結果、検出電圧VL1若しくはVL2が異常となる。従って、何等追加回路を設けることなく、接地系の異常についても検出することができる。
In addition, since the voltage detection circuits 43 and 44 can be easily configured by an inverting amplifier circuit or the like, it is not necessary to use the isolation transformers 29 and 30 as in the conventional configuration, an expensive isolation amplifier or the like, and further cost reduction is achieved. be able to.
In addition, assuming that (1) the grounding state of the neutral wire N on the distribution line 26 side becomes abnormal or (2) the grounding of the casing 28 on the power converter 41 side is insufficient, In the conventional configuration, since the voltage between L1 and N2 and the voltage between L2 and N are directly monitored, a system abnormality cannot be detected. On the other hand, according to the present embodiment, in the cases (1) and (2), the state changes from GND = GND1 to GND ≠ GND1, and as a result, the detection voltage VL1 or VL2 is abnormal. It becomes. Therefore, it is possible to detect an abnormality in the grounding system without providing any additional circuit.

更に、本実施例によれば、系統異常監視回路45は、電圧検出回路43,44により夫々検出される電圧VL1,VL2の差分電圧波形に基づいて、インバータ回路20を運転制御する電流位相基準を生成すると共に、配電線路26について周波数異常判定を行うので、N−GND間電圧やGND−GND1間電圧の変動の影響を低減し、より高い精度で判定を行うことができる。   Furthermore, according to the present embodiment, the system abnormality monitoring circuit 45 determines the current phase reference for controlling the operation of the inverter circuit 20 based on the differential voltage waveforms of the voltages VL1 and VL2 detected by the voltage detection circuits 43 and 44, respectively. Since the frequency abnormality determination is performed on the distribution line 26, the influence of fluctuations in the N-GND voltage and the GND-GND1 voltage can be reduced, and determination can be performed with higher accuracy.

また、本実施例では、直流電源42を燃料電池とした。一般に、燃料電池の負極側は接地が要求されるので、本発明の電力変換装置41の適用が有効である。また、燃料電池の制御には、流量計や熱電対などの測定器が必要であり、それらが検出する微小なレベルの信号を取り扱うようになっている。そして、制御信号の基準電圧0Vが筐体28の接地電位となっているので、燃料電池内部において取り扱う微弱な信号についても、ノイズ等の影響を軽減することができる。
加えて、燃料電池は今後普及が進むことが想定されており、燃料電池が発電した電力が単相3線式配電線路26側に送出される場合が多くなると考えられる。そして、本発明の電力変換装置41によれば中性線Nの配線接続が不要となるので、燃料電池の普及が進んだ場合でも、銅材等の限りある資源の消費を抑制することが可能となる。
In this embodiment, the DC power source 42 is a fuel cell. In general, since the negative electrode side of the fuel cell is required to be grounded, the application of the power conversion device 41 of the present invention is effective. In addition, a control device such as a flow meter or a thermocouple is required for controlling the fuel cell, and handles minute level signals detected by them. Since the reference voltage 0V of the control signal is the ground potential of the housing 28, the influence of noise or the like can be reduced even for a weak signal handled inside the fuel cell.
In addition, it is assumed that fuel cells will spread in the future, and it is considered that the power generated by the fuel cells is often sent to the single-phase three-wire distribution line 26 side. Further, according to the power conversion device 41 of the present invention, the wiring connection of the neutral wire N is not necessary, so that it is possible to suppress the consumption of limited resources such as copper materials even when the spread of fuel cells is advanced. It becomes.

更にまた、本実施例によれば、電力変換装置41本体の電源をON/OFFするためのブレーカ若しくはパワースイッチに、2極構成のものを使用することができる。そして、EMI(Electro-Magnetic Interference)フィルタが必要である場合でも、同様に2極構成のものを使用できる。更に、サージアブソーバを接続する場合を想定すると、従来の3線+GNDの場合は最大で6素子が必要であるが、電力変換装置41のように2線+GNDの場合は最大3個となるので、1/2に削減することができる。   Furthermore, according to the present embodiment, a breaker or a power switch for turning on / off the power of the main body of the power converter 41 can be a two-pole configuration. Even when an EMI (Electro-Magnetic Interference) filter is required, a two-pole configuration can be used. Furthermore, assuming a case where a surge absorber is connected, a maximum of 6 elements are required in the case of the conventional 3-wire + GND, but a maximum of 3 in the case of 2-wire + GND like the power converter 41. It can be reduced to 1/2.

(第2実施例)
図4は本発明の第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。第2実施例の電力変換装置61は、第1実施例の電力変換装置41に差動増幅回路62を加えて構成されている。その差動増幅回路62の各入力端子はコンデンサ14の両端に接続されており、差動増幅回路62は、コンデンサ14の両端電圧の差分に基づいて直流電圧信号VDCを出力する。その直流電圧信号VDCは、図示しないインバータ回路6のスイッチング制御回路に与えられる。
(Second embodiment)
FIG. 4 shows a second embodiment of the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals and the description thereof is omitted. Hereinafter, different parts will be described. The power conversion device 61 of the second embodiment is configured by adding a differential amplifier circuit 62 to the power conversion device 41 of the first embodiment. Each input terminal of the differential amplifier circuit 62 is connected to both ends of the capacitor 14, and the differential amplifier circuit 62 outputs a DC voltage signal VDC based on the difference between the voltages at both ends of the capacitor 14. The DC voltage signal VDC is supplied to a switching control circuit of the inverter circuit 6 (not shown).

次に、第2実施例の作用について説明する。差動増幅回路62によって出力される直流電圧信号VDCは、コンデンサ14の正側端子電圧,負側端子電圧を夫々DCP,DCNとすると次式によって表される。   Next, the operation of the second embodiment will be described. The DC voltage signal VDC output by the differential amplifier circuit 62 is expressed by the following equations when the positive terminal voltage and the negative terminal voltage of the capacitor 14 are DCP and DCN, respectively.

VDC= DCP−DCN
=(DCP−0V)−(DCN−0V)
=(DCP−GND1)−(DCN−GND1) …(6)
従って、第2実施例によれば、高価な絶縁アンプ等を使用することなく、コンデンサ14の端子電圧に比例した直流電圧信号VDCを得ることができる。
VDC = DCP-DCN
= (DCP-0V)-(DCN-0V)
= (DCP-GND1)-(DCN-GND1) (6)
Therefore, according to the second embodiment, a DC voltage signal VDC proportional to the terminal voltage of the capacitor 14 can be obtained without using an expensive insulation amplifier or the like.

(第3実施例)
図5は、本発明の第3実施例を示すものである。第3実施例では、電力変換装置41Aと配電線路26との接続端子L1,L2間を短絡した場合に、当該端子と接地されている筐体28との間の合成インピーダンスが少なくとも200kΩを超えるように、電圧検出回路43A,44Aの合成入力インピーダンスZAを設定する。
即ち、配電線路26から見て、電圧検出回路43A,44Aの入力インピーダンス(例えば、図2に示す抵抗素子48の抵抗値R1等)は、電力変換装置41Aの筐体28を介してアースに流れる漏洩電流と等価になる。そして、一般に、装置の絶縁抵抗測定においては、0.2MΩを閾値(絶縁抵抗許容値)として絶縁判定を行う場合が多い。
(Third embodiment)
FIG. 5 shows a third embodiment of the present invention. In the third embodiment, when the connection terminals L1 and L2 between the power conversion device 41A and the distribution line 26 are short-circuited, the combined impedance between the terminal and the grounded casing 28 exceeds at least 200 kΩ. The combined input impedance ZA of the voltage detection circuits 43A and 44A is set.
That is, as viewed from the distribution line 26, the input impedances of the voltage detection circuits 43A and 44A (for example, the resistance value R1 of the resistance element 48 shown in FIG. 2) flow to the ground via the casing 28 of the power converter 41A. Equivalent to leakage current. In general, in the insulation resistance measurement of an apparatus, the insulation determination is often performed using 0.2 MΩ as a threshold value (insulation resistance allowable value).

ここで、電力変換装置41A内部の絶縁に起因する地絡インピーダンスをZXとすると、絶縁抵抗測定を行う場合の抵抗値は、インピーダンスZA,ZXの並列抵抗値となる。例えば、地絡インピーダンスZXの絶縁劣化限界値を1MΩとすると、
ZA//ZX>0.2MΩ
を満たせば良い。従って、
ZA>0.25MΩ
となり、上記のケースでは、合成入力インピーダンスZAを250kΩ超に設定すれば良い。よって、上記抵抗値R1を例えば1MΩに設定すれば十分であり、電圧検出回路43A,44Aが2つであることを考慮すれば、500kΩ程度でも良い。
Here, when the ground fault impedance caused by the insulation inside the power conversion device 41A is ZX, the resistance value when the insulation resistance measurement is performed is a parallel resistance value of the impedances ZA and ZX. For example, if the insulation deterioration limit value of the ground fault impedance ZX is 1 MΩ,
ZA // ZX> 0.2MΩ
Should be satisfied. Therefore,
ZA> 0.25MΩ
In the above case, the combined input impedance ZA may be set to more than 250 kΩ. Therefore, it is sufficient to set the resistance value R1 to, for example, 1 MΩ, and may be about 500 kΩ considering that there are two voltage detection circuits 43A and 44A.

以上のように第3実施例によれば、単相3線式配電線路26の2つの電圧線L1,L2に接続される出力端子間を短絡した場合に、前記端子と筐体28間の合成入力インピーダンスが絶縁抵抗許容値である200kΩを超えるように設定するので、一般的に必要とされる絶縁抵抗値を十分に確保することができる。   As described above, according to the third embodiment, when the output terminals connected to the two voltage lines L1 and L2 of the single-phase three-wire distribution line 26 are short-circuited, the synthesis between the terminals and the housing 28 is performed. Since the input impedance is set to exceed the allowable insulation resistance value of 200 kΩ, a generally required insulation resistance value can be sufficiently ensured.

(第4実施例)
図6は、本発明の第4実施例を示すものである。第4実施例では、電力変換装置41Bと配電線路26との接続端子L1,L2の夫々と、接地されている筐体28との間の合成インピーダンスを夫々ZL1,ZL2とすると、両者のインピーダンスが30%以上異なるように不平衡に設定しておく。
例えば、GND若しくはGND1が完全にオープンとなり、その他の漏洩電流が全く無く、各相電圧が定格100Vである状態を想定する。この時、電力変換装置41Bの端子L1,L2間には、100V+100V=200Vの交流が印加されているが、電圧検出回路43B,44B間では、例えば30%相違するインピーダンス値に応じて各相電圧を検出する。従って、例えばVL1=115Vであるとすれば、VL2=85Vとなり、これらの検出電圧の差によってGNDがオープン状態になったことを系統異常として検知することができる。
(Fourth embodiment)
FIG. 6 shows a fourth embodiment of the present invention. In the fourth embodiment, when the combined impedances between the connection terminals L1 and L2 of the power conversion device 41B and the distribution line 26 and the grounded housing 28 are ZL1 and ZL2, respectively, the impedances of the two are as follows. Set unbalanced so that it differs by 30% or more.
For example, it is assumed that GND or GND1 is completely open, there is no other leakage current, and each phase voltage is rated at 100V. At this time, an alternating current of 100V + 100V = 200V is applied between the terminals L1 and L2 of the power conversion device 41B. However, the voltage detection circuits 43B and 44B each phase voltage depending on, for example, 30% different impedance values. Is detected. Therefore, for example, if VL1 = 115V, then VL2 = 85V, and it can be detected as a system abnormality that the GND is open due to the difference between these detection voltages.

以上のように第4実施例によれば、単相3線式配電線路26の2つの電圧線L1,L2に接続される出力端子と筐体28との間の合成インピーダンスが、配電線路26の系統異常を検出可能となるような不平衡状態に設定したので、GNDのオープン状態を簡単に検知することができる。   As described above, according to the fourth embodiment, the combined impedance between the output terminal connected to the two voltage lines L1 and L2 of the single-phase three-wire distribution line 26 and the housing 28 is Since the unbalanced state is set such that the system abnormality can be detected, the open state of the GND can be easily detected.

本発明は上記し且つ図面に記載した実施例にのみ限定されるものではなく、次のような変形または拡張が可能である。
第2実施例の構成に第3実施例を適用する場合、差動増幅回路62の入力インピーダンスも考慮して、合成インピーダンスを決定すれば良い。
第3,第4実施例における具体数値例は、個別の条件に応じて適宜変更すれば良い。
スイッチング素子は、IGBTやパワートランジスタでも良い。
電圧検出回路は、非反転増幅回路として構成しても良い。
直流電源は、燃料電池に限ることはない。
The present invention is not limited to the embodiments described above and illustrated in the drawings, and the following modifications or expansions are possible.
When the third embodiment is applied to the configuration of the second embodiment, the combined impedance may be determined in consideration of the input impedance of the differential amplifier circuit 62.
Specific numerical examples in the third and fourth embodiments may be appropriately changed according to individual conditions.
The switching element may be an IGBT or a power transistor.
The voltage detection circuit may be configured as a non-inverting amplifier circuit.
The DC power source is not limited to the fuel cell.

本発明の第1実施例であり、電力変換装置の構成を示す図The figure which is 1st Example of this invention and shows the structure of a power converter device. 電圧検出回路の具体構成例を示す図The figure which shows the specific structural example of a voltage detection circuit 系統異常監視回路の内部構成を一部のみ示す図Diagram showing only part of the internal configuration of the system fault monitoring circuit 本発明の第2実施例を示す図1相当図FIG. 1 equivalent view showing a second embodiment of the present invention. 本発明の第3実施例を示す図1相当図FIG. 1 equivalent view showing a third embodiment of the present invention. 本発明の第4実施例を示す図1相当図FIG. 1 equivalent view showing a fourth embodiment of the present invention. 従来技術を示す図1相当図1 equivalent diagram showing the prior art

符号の説明Explanation of symbols

図面中、15は絶縁型DC/DC変換器、20は単相インバータ回路、25は開閉スイッチ、26は単相3線式配電線路、28は筐体、41は電力変換装置、42は直流電源(燃料電池)、43,44は電圧検出回路(第1,第2電圧検出回路)、45は系統異常監視回路(制御回路)、61は電力変換装置、62は差動増幅回路を示す。   In the drawing, 15 is an insulated DC / DC converter, 20 is a single-phase inverter circuit, 25 is an open / close switch, 26 is a single-phase three-wire distribution line, 28 is a housing, 41 is a power converter, and 42 is a DC power source. (Fuel cell), 43 and 44 are voltage detection circuits (first and second voltage detection circuits), 45 is a system abnormality monitoring circuit (control circuit), 61 is a power converter, and 62 is a differential amplifier circuit.

Claims (6)

直流電源より供給される電力を所定電圧の直流電力に変換する絶縁型DC/DC変換器と、この絶縁型DC/DC変換器により変換された直流電力を商用電源周波数の交流電力に変換する単相インバータ回路とを筐体内に備え、前記交流電力を単相3線式配電線路に供給する電力変換装置において、
前記筐体を接地すると共に、前記直流電源の負側端子と前記装置内で取り扱う信号の基準電位とを前記筐体に接続し、
前記単相インバータ回路の出力端子と、前記単相3線式配電線路の2つの電圧線との間に配置される開閉スイッチと、
前記単相3線式配電線路の2つの電圧線の夫々と、前記基準電位との間の電圧を検出する第1,第2電圧検出回路と、
これらの電圧検出回路の検出結果に基づいて前記配電線路に異常が発生したか否かを判定し、その判定状況に応じて前記開閉スイッチの開閉制御、並びに前記単相インバータ回路の運転制御を行う制御回路とを備えてなることを特徴とする電力変換装置。
An isolated DC / DC converter that converts power supplied from a DC power source into DC power of a predetermined voltage, and a single unit that converts the DC power converted by the isolated DC / DC converter into AC power at a commercial power frequency. In a power converter provided with a phase inverter circuit in a housing and supplying the AC power to a single-phase three-wire distribution line,
Grounding the casing, and connecting a negative terminal of the DC power source and a reference potential of a signal handled in the apparatus to the casing,
An open / close switch disposed between the output terminal of the single-phase inverter circuit and the two voltage lines of the single-phase three-wire distribution line;
First and second voltage detection circuits for detecting a voltage between each of the two voltage lines of the single-phase three-wire distribution line and the reference potential;
Based on the detection results of these voltage detection circuits, it is determined whether or not an abnormality has occurred in the distribution line, and the open / close control of the open / close switch and the operation control of the single-phase inverter circuit are performed according to the determination status. A power conversion device comprising a control circuit.
前記制御回路は、前記第1,第2電圧検出回路により夫々検出される電圧の差分電圧波形に基づいて、前記単相インバータ回路を運転制御する電流位相基準を生成すると共に、前記配電線路について周波数異常判定を行うことを特徴とする請求項1記載の電力変換装置。   The control circuit generates a current phase reference for controlling the operation of the single-phase inverter circuit based on the differential voltage waveforms of the voltages detected by the first and second voltage detection circuits, and the frequency of the distribution line The power converter according to claim 1, wherein abnormality determination is performed. 2つの入力端子が、前記絶縁型DC/DC変換器の両出力端子に夫々接続される差動増幅回路を備え、この差動増幅回路の出力により、前記絶縁型DC/DC変換器の変換電圧を検出することを特徴とする請求項1又は2記載の電力変換装置。   Two input terminals are provided with differential amplifier circuits respectively connected to both output terminals of the isolated DC / DC converter, and the conversion voltage of the isolated DC / DC converter is determined by the output of the differential amplifier circuit. The power converter according to claim 1, wherein the power converter is detected. 前記単相3線式配電線路の2つの電圧線に接続される出力端子間を短絡した場合に、前記端子,前記筐体間の合成インピーダンスが絶縁抵抗許容値を超えるように設定することを特徴とする請求項1乃至3の何れかに記載の電力変換装置。   When the output terminals connected to the two voltage lines of the single-phase three-wire distribution line are short-circuited, the combined impedance between the terminals and the housing is set so as to exceed an allowable insulation resistance value. The power converter according to any one of claims 1 to 3. 前記単相3線式配電線路の2つの電圧線に接続される出力端子の夫々と、前記筐体との間のインピーダンスが、前記配電線路の系統異常を検出可能となるような不平衡状態に設定することを特徴とする請求項1乃至4の何れかに記載の電力変換装置。   The impedance between each of the output terminals connected to the two voltage lines of the single-phase three-wire distribution line and the housing is in an unbalanced state so that a system abnormality in the distribution line can be detected. The power converter according to claim 1, wherein the power converter is set. 前記直流電源を、燃料電池とすることを特徴とする請求項1乃至5の何れかに記載の電力変換装置。   The power converter according to claim 1, wherein the DC power source is a fuel cell.
JP2006307943A 2006-11-14 2006-11-14 Power converter Active JP4791938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307943A JP4791938B2 (en) 2006-11-14 2006-11-14 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307943A JP4791938B2 (en) 2006-11-14 2006-11-14 Power converter

Publications (2)

Publication Number Publication Date
JP2008125281A true JP2008125281A (en) 2008-05-29
JP4791938B2 JP4791938B2 (en) 2011-10-12

Family

ID=39509465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307943A Active JP4791938B2 (en) 2006-11-14 2006-11-14 Power converter

Country Status (1)

Country Link
JP (1) JP4791938B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273490A (en) * 2009-05-25 2010-12-02 Panasonic Corp Dc power supply
CN102946116A (en) * 2012-10-24 2013-02-27 北京华电天仁电力控制技术有限公司 Energy-storage converter device based on industrial real time Ethernet
JP2015133902A (en) * 2014-01-15 2015-07-23 エルジー エレクトロニクス インコーポレイティド Integrated type inverter and solar cell module including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105559A (en) * 1992-09-18 1994-04-15 Sanyo Electric Co Ltd System interconnection inverter
JPH0823680A (en) * 1994-07-04 1996-01-23 Sharp Corp Inverter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105559A (en) * 1992-09-18 1994-04-15 Sanyo Electric Co Ltd System interconnection inverter
JPH0823680A (en) * 1994-07-04 1996-01-23 Sharp Corp Inverter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273490A (en) * 2009-05-25 2010-12-02 Panasonic Corp Dc power supply
CN102946116A (en) * 2012-10-24 2013-02-27 北京华电天仁电力控制技术有限公司 Energy-storage converter device based on industrial real time Ethernet
JP2015133902A (en) * 2014-01-15 2015-07-23 エルジー エレクトロニクス インコーポレイティド Integrated type inverter and solar cell module including the same
US10742132B2 (en) 2014-01-15 2020-08-11 Lg Electronics Inc. Integral inverter and solar cell module including the same

Also Published As

Publication number Publication date
JP4791938B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US9865411B2 (en) Safety device for a photovoltaic system
JP6268617B2 (en) Cascade type multi-level converter self-test system and self-test method therefor
EP1623495B1 (en) Power supply circuits
US8467160B2 (en) Bipolar DC to AC power converter with DC ground fault interrupt
US9709623B2 (en) Apparatus and method for monitoring a photovoltaic system
US9568532B2 (en) Wind turbine fault detection circuit and method
US8373406B2 (en) Electrical power quality test circuitry and method
WO2017175535A1 (en) Ground fault detection device, method for controlling same, and control program
CN101540249B (en) Creepage breaker
US9692314B2 (en) Detection circuit and three-phase AC-to-AC power converting apparatus incorporating the same
EP3279677B1 (en) Insulation detecting circuit, power converting device and insulation impedance value detecting method
US20130222951A1 (en) Fault protection circuit for photovoltaic power system
CN105914712A (en) Device and method for detecting residual curent
JP4791938B2 (en) Power converter
Shafie et al. Harmonic and neutral to ground voltage reduction using isolation transformer
CN114788152A (en) Current compensation system for solar power generator, quality measuring apparatus, measuring method thereof, and recording medium thereof
CN111907352A (en) Vehicle ground fault detection
CN217385643U (en) Power detection device, socket and power detection system
JP2000023470A (en) Transformerless inverter protection apparatus
JP2011196810A (en) Leak detection system and method for dc circuit
JP2011229270A (en) Power supply unit
JP6534369B2 (en) Ground fault detection device for voltage type inverter
CN112335163A (en) Determination of the capacitor function of a passive filter circuit
DK177665B1 (en) Photovoltaic Power Plant
WO2020044139A1 (en) Converter arrangement and isolation method thereof to protect from harmonic distortions

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350