JP2008125264A - Control method and controller of brushless dc motor - Google Patents

Control method and controller of brushless dc motor Download PDF

Info

Publication number
JP2008125264A
JP2008125264A JP2006307248A JP2006307248A JP2008125264A JP 2008125264 A JP2008125264 A JP 2008125264A JP 2006307248 A JP2006307248 A JP 2006307248A JP 2006307248 A JP2006307248 A JP 2006307248A JP 2008125264 A JP2008125264 A JP 2008125264A
Authority
JP
Japan
Prior art keywords
load angle
motor
brushless
drive
drive voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006307248A
Other languages
Japanese (ja)
Other versions
JP4796940B2 (en
Inventor
Hisashi Takahashi
久 高橋
Takuro Tanaka
拓郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UINBERU KK
Yoshida Dental Mfg Co Ltd
Original Assignee
UINBERU KK
Yoshida Dental Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UINBERU KK, Yoshida Dental Mfg Co Ltd filed Critical UINBERU KK
Priority to JP2006307248A priority Critical patent/JP4796940B2/en
Publication of JP2008125264A publication Critical patent/JP2008125264A/en
Application granted granted Critical
Publication of JP4796940B2 publication Critical patent/JP4796940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method and a controller that drives a brushless DC motor without a position sensor by sine waves stably and highly efficiently without causing out-of-synchronization (step out) even with load fluctuation. <P>SOLUTION: A current phase difference estimate section 4 estimates a current phase difference ϕ from a winding current of the brushless DC motor 1 detected by a current sensor 2. A load angle estimate section 5 estimates a load angle δ from the current phase difference ϕ, the maximum drive voltage value V<SB>m</SB>, the maximum counter electromotive voltage value E<SB>m</SB>, and a command drive angular frequency ω<SP>*</SP>. A load angle deviation circuit 7 takes deviation between the command load angle δ<SP>*</SP>and an estimated load angle δ<SP>^</SP>(δ with circumflex) and sends it out to a drive voltage control section 6. The drive voltage control section 6 adjusts and controls the drive voltage V<SB>m</SB>so as to eliminate the load angle deviation. A motor drive circuit 3 generates a sine wave voltage by the drive voltage V<SB>m</SB>and the command drive angular frequency ω<SP>*</SP>to drive the brushless DC motor 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、ブラシレスDCモータ(以下BLDCモータと呼ぶ)を位置センサレスで制御する制御方法と制御装置に関する。   The present invention relates to a control method and a control apparatus for controlling a brushless DC motor (hereinafter referred to as a BLDC motor) without a position sensor.

BLDCモータは、永久磁石を有するロータと複数相の巻線からなり、ホール素子やエンコーダ等の位置センサによりロータの位置を検出している(例えば特許文献1,2参照)。
位置センサは、BLDCモータの設置(使用)環境の制約があり、例えば高温の環境では使用できない。またBLDCモータを用いる装置、例えば歯科治療用研削装置のハンドピースの場合、位置センサがハンドピースの小型化の障害になる。
そこで位置センサを用いない、いわゆる位置センサレスで位置情報を推定する方法が提案されている。例えばBLDCモータの巻線に誘起される電圧を利用してロータの位置情報を推定する方法(例えば特許文献3参照)、巻線電流を利用してロータの位置情報を推定する方法(例えば特許文献4参照)等がある。
A BLDC motor includes a rotor having a permanent magnet and a plurality of phases of windings, and detects the position of the rotor by a position sensor such as a Hall element or an encoder (see, for example, Patent Documents 1 and 2).
The position sensor has restrictions on the installation (use) environment of the BLDC motor, and cannot be used in a high temperature environment, for example. In the case of a device using a BLDC motor, for example, a handpiece of a dental treatment grinding device, the position sensor becomes an obstacle to miniaturization of the handpiece.
Therefore, a method for estimating position information without using a position sensor, so-called position sensorless, has been proposed. For example, a method for estimating rotor position information using a voltage induced in a winding of a BLDC motor (see, for example, Patent Document 3), and a method for estimating rotor position information using a winding current (for example, Patent Document). 4)).

図4は、従来の巻線電流を利用してロータの位置情報を推定し、その位置情報に基づいて3相BLDCモータを正弦波駆動する場合の制御装置の例である。
インバータ等からなるモータ駆動回路93は、直流電源94の直流電圧を正弦波電圧に変換して3相のBLDCモータ91に供給する。CPU等からなる制御回路95は、電流センサ92によって検出された巻線電流を用いてBLDCモータ91のロータの位置情報を推定し、その推定した位置情報によりモータ駆動回路93を制御する。モータ駆動回路93は、正弦波電圧を発生してBLDCモータ91を駆動する。
FIG. 4 is an example of a control device in the case where rotor position information is estimated using a conventional winding current and a three-phase BLDC motor is driven in a sine wave based on the position information.
A motor drive circuit 93 composed of an inverter or the like converts the DC voltage of the DC power supply 94 into a sine wave voltage and supplies it to the three-phase BLDC motor 91. A control circuit 95 composed of a CPU or the like estimates the position information of the rotor of the BLDC motor 91 using the winding current detected by the current sensor 92 and controls the motor drive circuit 93 based on the estimated position information. The motor drive circuit 93 generates a sine wave voltage and drives the BLDC motor 91.

特開2000−350485号公報JP 2000-350485 A 特開2003−23791号公報JP 2003-23791 A 特開2003−111482号公報JP 2003-111482 A 特開2000−350487号公報JP 2000-350487 A

従来の巻線電流によりロータの位置情報を推定してBLDCモータを正弦波駆動する場合には、負荷が過度的に変動したとき、BLDCモータが同期はずれ(脱調)を起こして駆動が不安定になるのを防止するために、BLDCモータに過度の安定極限電力を供給しなければならない。そのため、軽負荷のときにBLDCモータの駆動効率が低下する。
本願発明は、BLDCモータを位置センサレスで正弦波駆動する場合の前記問題点を解決し、負荷が変動してもBLDCモータを高効率で安定して駆動できるBLDCモータの制御方法と制御装置を提供することを目的とする。
When the position information of the rotor is estimated by the conventional winding current and the BLDC motor is driven in a sine wave, when the load fluctuates excessively, the BLDC motor is out of synchronization (step-out) and the drive is unstable. In order to prevent this from happening, excessively stable ultimate power must be supplied to the BLDC motor. For this reason, the driving efficiency of the BLDC motor is reduced when the load is light.
The present invention provides a control method and a control apparatus for a BLDC motor that can solve the above-mentioned problems when a BLDC motor is driven by a sine wave without a position sensor and can stably drive the BLDC motor even when the load fluctuates. The purpose is to do.

本願発明は、その目的を達成するため、請求項1に記載のブラシレスDCモータの制御方法は、駆動電圧に基づいて正弦波電圧を発生し、その正弦波電圧によって駆動するブラシレスDCモータの制御方法において、負荷角を推定し、推定した負荷角と指令負荷角の負荷角偏差をとり、負荷角偏差に基づいて負荷角が指令負荷角に等しくなるように駆動電圧を制御することを特徴とする。
請求項2に記載のブラシレスDCモータの制御方法は、モータ駆動回路は駆動電圧と駆動角周波数に基づいて正弦波電圧を発生し、その正弦波電圧により駆動するブラシレスDCモータの制御方法において、巻線電流に基づいて電流位相差(φ)を推定し、電流位相差(φ)、駆動電圧の最大値(Vm)、逆起電圧の最大値(Em)及び駆動角周波数(ω)に基づいて負荷角(δ)を推定し、指令負荷角と推定した負荷角の負荷角偏差をとり、負荷角差に基づいて負荷角が指令負荷角に等しくなるように駆動電圧を制御することを特徴とする。
請求項3に記載のブラシレスDCモータの制御方法は、請求項2に記載のブラシレスDCモータの制御方法において、負荷角(δ)は、
δ=sin-1[{Vmtan2φ±(Em 2(1+tan2φ)−Vm 2tan2φ)1/2}/{Em(1+tan2φ)}]
により推定することを特徴とする。
請求項4に記載のブラシレスDCモータの制御方法は、請求項1、請求項2又は請求項3に記載のブラシレスDCモータの制御方法において、ブラシレスDCモータは、歯科治療用研削装置のハンドピースに用いるブラシレスDCモータであることを特徴とする。
In order to achieve the object of the present invention, the brushless DC motor control method according to claim 1 generates a sine wave voltage based on the drive voltage and controls the brushless DC motor driven by the sine wave voltage. The load angle is estimated, the load angle deviation between the estimated load angle and the command load angle is taken, and the drive voltage is controlled based on the load angle deviation so that the load angle becomes equal to the command load angle. .
The brushless DC motor control method according to claim 2, wherein the motor drive circuit generates a sine wave voltage based on the drive voltage and the drive angular frequency, and the brushless DC motor is driven by the sine wave voltage. The current phase difference (φ) is estimated based on the line current, and the current phase difference (φ), the maximum value of the drive voltage (V m ), the maximum value of the back electromotive voltage (E m ), and the drive angular frequency (ω) The load angle (δ) is estimated based on the load angle deviation between the estimated load angle and the command load angle, and the drive voltage is controlled based on the load angle difference so that the load angle becomes equal to the command load angle. Features.
The brushless DC motor control method according to claim 3 is the brushless DC motor control method according to claim 2, wherein the load angle (δ) is:
δ = sin −1 [{V m tan 2 φ ± (E m 2 (1 + tan 2 φ) −V m 2 tan 2 φ) 1/2 } / {E m (1 + tan 2 φ)}]
It estimates by these.
The brushless DC motor control method according to claim 4 is the brushless DC motor control method according to claim 1, 2 or 3, wherein the brushless DC motor is applied to a handpiece of a dental treatment grinding apparatus. It is a brushless DC motor to be used.

請求項5に記載のブラシレスDCモータの制御装置は、モータ駆動回路は駆動電圧と駆動角周波数に基づいて正弦波電圧を発生し、その正弦波電圧によって駆動するブラシレスDCモータの制御装置において、巻線電流に基づいて電流位相差(φ)を推定する電流位相差推定部、電流位相差(φ)、駆動電圧の最大値(Vm)、逆起電圧の最大値(Em)及び駆動角周波数(ω)に基づいて負荷角(δ)を推定する負荷角推定部、指令負荷角と推定した負荷角の負荷角偏差をとる負荷角偏差回路、負荷角偏差に基づいて負荷角が指令負荷角に等しくなるように駆動電圧を制御する駆動電圧制御部を備えていることを特徴とする。
請求項6に記載のブラシレスDCモータの制御装置は、請求項5に記載のブラシレスDCモータの制御装置において、負荷角(δ)は、
δ=sin-1[{Vmtan2φ±(Em 2(1+tan2φ)−Vm 2tan2φ)1/2}/{Em(1+tan2φ)}]
により推定することを特徴とする。
請求項7に記載のブラシレスDCモータの制御装置は、請求項5又は請求項6に記載のブラシレスDCモータの制御装置において、ブラシレスDCモータは、歯科治療用研削装置のハンドピースに用いるブラシレスDCモータであることを特徴とする。
The brushless DC motor control device according to claim 5, wherein the motor drive circuit generates a sine wave voltage based on the drive voltage and the drive angular frequency and is driven by the sine wave voltage. Current phase difference estimation unit for estimating current phase difference (φ) based on line current, current phase difference (φ), maximum value of drive voltage (V m ), maximum value of back electromotive voltage (E m ), and drive angle Load angle estimator that estimates the load angle (δ) based on the frequency (ω), load angle deviation circuit that takes the load angle deviation of the estimated load angle from the command load angle, and the load angle is based on the load angle deviation A drive voltage control unit that controls the drive voltage so as to be equal to the corner is provided.
The brushless DC motor control device according to claim 6 is the brushless DC motor control device according to claim 5, wherein the load angle (δ) is:
δ = sin −1 [{V m tan 2 φ ± (E m 2 (1 + tan 2 φ) −V m 2 tan 2 φ) 1/2 } / {E m (1 + tan 2 φ)}]
It estimates by these.
The brushless DC motor control apparatus according to claim 7 is the brushless DC motor control apparatus according to claim 5 or 6, wherein the brushless DC motor is a brushless DC motor used for a handpiece of a dental treatment grinding apparatus. It is characterized by being.

本願発明のBLDCモータの制御方法及び制御装置は、BLDCモータの負荷が変動しても駆動電圧を調整・制御して、負荷角を指令負荷角に保持するから、即ち負荷が変動しても負荷角を一定に保持するから、BLDCモータは、負荷が急変しても同期はずれ(脱調)を起こすことなく安定して駆動する。
また本願発明の制御方法及び制御装置を用いると、BLDCモータは、負荷が変動しても負荷角を指令負荷角に保持できるから、負荷角を駆動効率の最も高い90度の近傍に設定することができる。したがってBLDCモータは、負荷が大きいときも小さいときも効率よく安定して駆動する。
また本願発明の制御方法及び制御装置を用いると、BLDCモータは、負荷が急変しても同期はずれ(脱調)を起こすことなく安定して駆動し、広い範囲で回転速度を変えることができるから、歯科治療用研削装置のハンドピースに用いるモータに適している。
The BLDC motor control method and control device of the present invention adjusts and controls the drive voltage even when the load of the BLDC motor fluctuates, and maintains the load angle at the command load angle. Since the angle is kept constant, the BLDC motor is driven stably without causing out-of-synchronization (step-out) even if the load changes suddenly.
In addition, when the control method and the control device of the present invention are used, the BLDC motor can maintain the load angle at the command load angle even if the load fluctuates, so the load angle should be set in the vicinity of 90 degrees with the highest driving efficiency. Can do. Therefore, the BLDC motor is driven efficiently and stably when the load is large and small.
In addition, when the control method and control device of the present invention are used, the BLDC motor can be driven stably without causing out-of-synchronization (step-out) even when the load changes suddenly, and the rotation speed can be changed over a wide range. It is suitable for a motor used for a hand piece of a dental treatment grinding apparatus.

本願発明の実施の形態に係るBLDCモータの制御方法及び制御装置について説明する。
モータ駆動回路は、駆動電圧に基づいて正弦波電圧を発生し、その正弦波電圧によりBLDCモータを駆動する。負荷角推定部は、BLDCモータの負荷角を推定し、負荷角偏差回路は、その推定した負荷角と指令負荷角の偏差(負荷角偏差)をとる。駆動電圧制御部は、負荷角偏差に基づいて、負荷角が指令負荷角になるように、即ち負荷角が指令負荷角と等しくなるように駆動電圧を調整し制御する。このように本実施形態のBLDCモータの制御方法及び制御装置は、負荷が変動しても負荷角が指令負荷角と等しくなるように駆動電圧を制御して、常にBLDCモータの負荷角を指令負荷角に保持する。
次に図1〜図3により本願発明の実施例に係るBLDCモータの制御装置及び制御方法について説明する。
A control method and a control apparatus for a BLDC motor according to an embodiment of the present invention will be described.
The motor drive circuit generates a sine wave voltage based on the drive voltage, and drives the BLDC motor with the sine wave voltage. The load angle estimator estimates the load angle of the BLDC motor, and the load angle deviation circuit takes the deviation (load angle deviation) between the estimated load angle and the command load angle. The drive voltage control unit adjusts and controls the drive voltage based on the load angle deviation so that the load angle becomes the command load angle, that is, the load angle becomes equal to the command load angle. As described above, the BLDC motor control method and control apparatus according to the present embodiment controls the drive voltage so that the load angle becomes equal to the command load angle even when the load fluctuates, so that the load angle of the BLDC motor is always set to the command load. Hold on the corner.
Next, a BLDC motor control apparatus and control method according to an embodiment of the present invention will be described with reference to FIGS.

図1は、本願発明の実施例に係るBLDCモータを正弦波駆動する場合の制御装置の構成を示す。
図において、1は3相のBLDCモータ、2はBLDCモータ1の巻線電流を検出する電流センサ、3はPWM発生器、インバータ等からなるモータ駆動回路、4は電流位相差φ(後述する)を推定する電流位相差推定部、5はBLDCモータ1の同期運転時の負荷角δ(後述する)を推定する負荷角推定部、6はPID(比例積分微分)コントローラ等からなる駆動電圧制御部、7は推定した負荷角δ^(ハット付きδ)と指令負荷角δ*の偏差(負荷角偏差)をとる負荷角偏差回路、ω*は指令駆動角周波数、Vmは駆動電圧、iuはU相の巻線電流、ivはV相の巻線電流である。
FIG. 1 shows a configuration of a control device when a BLDC motor according to an embodiment of the present invention is driven in a sine wave.
In the figure, 1 is a three-phase BLDC motor, 2 is a current sensor for detecting the winding current of the BLDC motor 1, 3 is a motor drive circuit comprising a PWM generator, an inverter, etc., 4 is a current phase difference φ (described later) Current phase difference estimation unit 5 for estimating the load angle δ (described later) during synchronous operation of the BLDC motor 1, and 6 a drive voltage control unit comprising a PID (proportional integral derivative) controller or the like. , 7 is a load angle deviation circuit that takes the deviation (load angle deviation) between the estimated load angle δ ^ (δ with a hat) and the command load angle δ * , ω * is the command drive angular frequency, V m is the drive voltage, i u Is a U-phase winding current, and iv is a V-phase winding current.

BLDCモータ1は、モータ駆動回路3から供給される正弦波電圧によって駆動する。電流センサ2は、2相の巻線電流、例えば巻線電流iu,ivを検出して、電流位相差推定部4へ送出する。電流位相差推定部4は、巻線電流iu,ivにより巻線電流の瞬時値の電流位相差φを計算して推定する。負荷角推定部5は、電流位相差推定部4が推定した電流位相差φ、駆動電圧の最大値Vm、逆起電圧の最大値Em、指令駆動角周波数ω*により負荷角δを推定する。なお負荷角は、説明上BLDCモータ1の負荷角をδで表し、負荷角推定部5で推定した負荷角をδ^(ハット付きδ)で表す。逆起電圧の最大値Emは、Em=KE×ωs(KE:逆起電圧定数、ωs:BLDCモータの回転角速度)により求める(後述する)。 The BLDC motor 1 is driven by a sine wave voltage supplied from the motor drive circuit 3. Current sensor 2, 2-phase winding current, for example, the winding current i u, detects the i v, and sends to the current phase difference estimation unit 4. Current phase difference estimation unit 4, the winding current i u, i v by estimated by calculating the current phase difference φ of instantaneous values of winding current. The load angle estimator 5 estimates the load angle δ from the current phase difference φ estimated by the current phase difference estimator 4, the maximum value V m of the drive voltage, the maximum value E m of the counter electromotive voltage, and the command drive angular frequency ω *. To do. For the sake of explanation, the load angle of the BLDC motor 1 is represented by δ, and the load angle estimated by the load angle estimator 5 is represented by δ ^ (δ with a hat). The maximum value E m of the counter electromotive voltage is obtained by E m = K E × ω s (K E : counter electromotive voltage constant, ω s : rotational angular velocity of BLDC motor) (described later).

負荷角偏差回路7は、推定した負荷角δ^(ハット付きδ)と指令負荷角δ*の負荷角偏差をとり、駆動電圧制御部6へ送出する。駆動電圧制御部6は、推定した負荷角δ^(ハット付きδ)と指令負荷角δ*の負荷角偏差に対応して駆動電圧Vmを調整し、推定した負荷角δ^(ハット付きδ)が指令負荷角δ*になるように駆動電圧Vmを調整し制御する。駆動電圧Vmの調整は、例えばPIDコントローラの電力増幅器によって行なう。モータ駆動回路3は、指令駆動角周波数ω*、駆動電圧Vmに基づいて角周波数ω(指令駆動角周波数ω*に対応する)の正弦波電圧を発生してBLDCモータ1に供給する。
電流位相差推定部4の電流位相差の推定、負荷角推定部5の負荷角の推定、駆動電圧制御部6の駆動電圧の制御等は、CPUによって行なうこともできる。
The load angle deviation circuit 7 takes the load angle deviation between the estimated load angle δ ^ (δ with a hat) and the command load angle δ * and sends it to the drive voltage control unit 6. The drive voltage control unit 6 adjusts the drive voltage V m in accordance with the load angle deviation between the estimated load angle δ ^ (δ with hat) and the command load angle δ * , and estimates the load angle δ ^ (δ with hat). ) is adjusted by controlling the driving voltage V m so as to command load angle [delta] *. The drive voltage V m is adjusted by, for example, a power amplifier of a PID controller. The motor drive circuit 3 generates a sine wave voltage having an angular frequency ω (corresponding to the command drive angular frequency ω * ) based on the command drive angular frequency ω * and the drive voltage V m and supplies the sine wave voltage to the BLDC motor 1.
The estimation of the current phase difference of the current phase difference estimation unit 4, the estimation of the load angle of the load angle estimation unit 5, the control of the drive voltage of the drive voltage control unit 6 and the like can also be performed by the CPU.

本実施例は、推定した負荷角δ^(ハット付きδ)と指令負荷角δ*の偏差(負荷角偏差)がなくなるように、即ち推定した負荷角δ^(ハット付きδ)が指令負荷角δ*と等しくなるように駆動電圧Vmを調整するから、BLDCモータ1の負荷が変動しても負荷角δは一定値に保持される。そして指令負荷角δ*を変えることにより、BLDCモータ1を所望の負荷角δで駆動することができる。
また本実施例は、ホール素子やエンコーダ等の位置センサを用いずに負荷角δを推定できるから、BLDCモータを用いる装置を小型にすることができ、かつ巻線電流を用いて負荷角δを推定するからBLDCモータに負荷が掛かると瞬時に負荷角δを推定できる。
In this embodiment, the deviation (load angle deviation) between the estimated load angle δ ^ (δ with a hat) and the command load angle δ * is eliminated, that is, the estimated load angle δ ^ (δ with a hat) is the command load angle. Since the drive voltage V m is adjusted to be equal to δ * , the load angle δ is held at a constant value even if the load of the BLDC motor 1 fluctuates. The BLDC motor 1 can be driven at a desired load angle δ by changing the command load angle δ * .
Further, in this embodiment, the load angle δ can be estimated without using a position sensor such as a Hall element or an encoder. Therefore, a device using a BLDC motor can be reduced in size, and the load angle δ can be set using a winding current. Since the estimation is performed, the load angle δ can be instantaneously estimated when a load is applied to the BLDC motor.

次に本実施例の負荷角の設定について説明する。
BLDCモータを正弦波駆動する場合、BLDCモータが発生するトルクは、負荷角δが0度から大きくなる程大きくなり、負荷角δが90度のとき最大になる。そして負荷角δが90度を超えるとBLDCモータは停止する。したがって負荷角δは、90度を超えない範囲で90度の近傍に設定すると駆動効率が最も高くなる。
Next, the setting of the load angle of this embodiment will be described.
When the BLDC motor is driven in a sine wave, the torque generated by the BLDC motor increases as the load angle δ increases from 0 degree and becomes maximum when the load angle δ is 90 degrees. When the load angle δ exceeds 90 degrees, the BLDC motor stops. Accordingly, when the load angle δ is set in the vicinity of 90 degrees within a range not exceeding 90 degrees, the driving efficiency becomes the highest.

BLDCモータを用いる装置が、負荷変動の大きい装置の場合、例えば、歯科治療用研削装置のハンドピースの場合、ハンドピースはモータ軸に取り付けた砥石(研削刃)を回転して歯を研削するが、歯を研削していない状態から砥石を歯に接触させて研削する状態に移行すると、BLDCモータの負荷は急変し、大きな負荷トルクが必要になる。その場合、本実施例のBLDCモータは、負荷が急変しても負荷角を指令負荷角に保持できるから、同期はずれ(脱調)を起こすことなく安定して駆動する。即ち本実施例のBLDCモータは、負荷の変動が大きい装置に用いた場合にも、安定して駆動する。また本実施例のBLDCモータは、負荷が変動しても負荷角を指令負荷角に保持できるから、負荷角は、例えば駆動効率の最も高い90度の近傍に設定することもできる。したがって本実施例のBLDCモータは、負荷が大きいときも小さいときも効率よく安定して駆動する。   When the device using the BLDC motor is a device with a large load fluctuation, for example, a hand piece of a dental treatment grinding device, the hand piece rotates a grindstone (grinding blade) attached to the motor shaft to grind teeth. When shifting from a state where the teeth are not ground to a state where the grindstone is brought into contact with the teeth to be ground, the load of the BLDC motor changes suddenly and a large load torque is required. In this case, the BLDC motor according to the present embodiment can maintain the load angle at the command load angle even when the load changes suddenly, and therefore, the BLDC motor can be driven stably without causing out-of-synchronization (step-out). That is, the BLDC motor of this embodiment can be driven stably even when used in an apparatus with a large load fluctuation. In addition, since the BLDC motor of the present embodiment can maintain the load angle at the command load angle even when the load fluctuates, the load angle can also be set, for example, in the vicinity of 90 degrees with the highest driving efficiency. Therefore, the BLDC motor of this embodiment is driven efficiently and stably when the load is large and small.

次に図2により、図1の制御装置について計測した負荷角、駆動電圧、巻線電流について説明する。
図2は、負荷を変化したときの負荷角、駆動電圧、巻線電流の計測値を示す。
図2によると、負荷が変動しても負荷角は、略一定に保持されており、そのときの駆動電圧、巻線電流は、負荷に比例して増加していることが分かる。即ち負荷が大きくなると、駆動電圧、巻線電流も増加するが、負荷角は、略一定に保持されている。したがって図2により、図1の制御装置は、適切に制御を行なっていることが分かる。
Next, the load angle, drive voltage, and winding current measured for the control device of FIG. 1 will be described with reference to FIG.
FIG. 2 shows measured values of load angle, drive voltage, and winding current when the load is changed.
According to FIG. 2, it can be seen that the load angle is kept substantially constant even when the load fluctuates, and the drive voltage and winding current at that time increase in proportion to the load. That is, as the load increases, the drive voltage and winding current also increase, but the load angle is kept substantially constant. Therefore, FIG. 2 shows that the control apparatus of FIG. 1 is appropriately controlling.

次に図3により電流位相差φと負荷角δの求め方(推定の仕方)について説明する。
図3は、BLDCモータの供給電圧、逆起電圧、電流の関係を示す。
BLDCモータを同期運転するとき、BLDCモータに供給される線間電圧Vuv,Vvw,Vwuは等しく、電圧・電流はともに平衡しているものとする。またBLDCモータの各巻線の電気的特性は等しく、各巻線のインダクタンスLu,Lv,Lw、抵抗Ru,Rv,Rwは、次のように表せるものとする。
u=Lv=Lw=L ・・・・(1)
u=Rv=Rw=R ・・・・(2)
Next, how to obtain (estimate) the current phase difference φ and the load angle δ will be described with reference to FIG.
FIG. 3 shows the relationship between the supply voltage, back electromotive voltage, and current of the BLDC motor.
When the BLDC motor is operated synchronously, the line voltages V uv , V vw , V wu supplied to the BLDC motor are equal, and the voltage and current are both balanced. Also, the electrical characteristics of each winding of the BLDC motor are equal, and the inductances L u , L v , L w and resistances R u , R v , R w of each winding can be expressed as follows.
L u = L v = L w = L (1)
R u = R v = R w = R (2)

各相の電流が平衡であるとき、U相の巻線電流をiu、V相の巻線電流をivは、電流の最大値Imを使って次のように表現できる。

Figure 2008125264
ここで、
φ=φ1+φ2
φ1:巻線インダクタンスLと巻線抵抗Rによる電流位相の遅れ
φ2:逆起電圧(逆起電力)の影響による電流位相の遅れ(負荷角δの影響に
よる遅れ)
φ1=tan-1(ωL/R) When each phase current is balanced, the winding current of the U phase i u, the winding current of the V-phase i v, using the maximum value I m of the current can be expressed as follows.
Figure 2008125264
here,
φ = φ 1 + φ 2
φ 1 : Current phase delay due to winding inductance L and winding resistance R
φ 2 : Current phase delay due to back electromotive force (back electromotive force)
Delay)
φ 1 = tan −1 (ωL / R)

式(3),(4)を用いて、電流の最大値Imを求める。

Figure 2008125264
Using equations (3) and (4), the maximum current value Im is obtained.
Figure 2008125264

3相の電流が平衡しているとき、各相の電流の最大値Imは等しいので、式(5),(6)より次式を得る。

Figure 2008125264
When three-phase currents are balanced, because the same maximum value I m of each phase current, equation (5), we obtain the following equation (6).
Figure 2008125264

式(7)より次式を得る。

Figure 2008125264
The following equation is obtained from equation (7).
Figure 2008125264

式(9)よりφを求めると次式になる。

Figure 2008125264
When φ is obtained from equation (9), the following equation is obtained.
Figure 2008125264

U相の端子電圧vu及び逆起電圧euは、それぞれ次式で表される。

Figure 2008125264
ここで、
m:U相の駆動電圧の最大値
m:U相の逆起電圧の最大値
m=KE×ωs
E:逆起電圧定数
ωs:BLDCモータの回転角速度
ωs=ω*/p
ω*:指令駆動角周波数
p:BLDCモータの極対数 The U-phase terminal voltage v u and the counter electromotive voltage eu are expressed by the following equations, respectively.
Figure 2008125264
here,
V m : Maximum value of U-phase drive voltage E m : Maximum value of U-phase back electromotive force E m = K E × ω s
K E : Back electromotive force constant ω s : Rotational angular velocity of BLDC motor ω s = ω * / p
ω * : Command drive angular frequency p: Number of pole pairs of BLDC motor

図3に示すY結線のU相の巻線の推定電流iu^(ハット付きiu)は、巻線インダクタンスLuを無視できるとき、U相の駆動電圧、逆起電圧、巻線抵抗を用いて求めることができる。

Figure 2008125264
The estimated current i u ^ (hat i u ) of the U-phase winding of the Y connection shown in FIG. 3 indicates the U-phase drive voltage, counter electromotive voltage, and winding resistance when the winding inductance L u can be ignored. It can be obtained using.
Figure 2008125264

ここで、

Figure 2008125264
であるので、βを求めると次式になる。
Figure 2008125264
here,
Figure 2008125264
Therefore, when β is obtained, the following equation is obtained.
Figure 2008125264

式(3)で表される(実際にBLDCモータの巻線に流れる)U相の巻線電流iuと計算によって推定した推定巻線電流iu^(ハット付きiu)は、位相が等しいので式(10)と式(14)は等しくなる。

Figure 2008125264
The phase of the U-phase winding current i u (actually flowing through the BLDC motor winding) expressed by the equation (3) and the estimated winding current i u ^ (hatted i u ) estimated by calculation are equal in phase. Therefore, equation (10) and equation (14) are equal.
Figure 2008125264

式(15)を変形して次式を得る。
mtan(φ)=Emtan(φ)sin(δ)+Emcos(δ)・・(16)
ここで、sin2(δ)+cos2(δ)=1の関係式を用いてsin(δ)について解くと次式になる。

Figure 2008125264
Equation (15) is modified to obtain the following equation.
V m tan (φ) = E m tan (φ) sin (δ) + E m cos (δ) (16)
Here, when sin (δ) is solved using a relational expression of sin 2 (δ) + cos 2 (δ) = 1, the following expression is obtained.
Figure 2008125264

式(17)をsin(δ)で解くと次式になる。

Figure 2008125264
Solving equation (17) with sin (δ) gives the following equation.
Figure 2008125264

これより、負荷角δは次式によって求められる。

Figure 2008125264
同様に式(16)をsin2(δ)+cos2(δ)=1の関係式を利用してcon(δ)について解くと次式になる。
Figure 2008125264
From this, the load angle δ is obtained by the following equation.
Figure 2008125264
Similarly, when equation (16) is solved for con (δ) using a relational expression of sin 2 (δ) + cos 2 (δ) = 1, the following equation is obtained.
Figure 2008125264

したがって式(20)を使用してδを求めると次式になる。

Figure 2008125264
一方、式(18)と式(20)を用いてδを求めると次式になる。
Figure 2008125264
Therefore, when δ is obtained using equation (20), the following equation is obtained.
Figure 2008125264
On the other hand, when δ is obtained using equations (18) and (20), the following equation is obtained.
Figure 2008125264

これよりδは、

Figure 2008125264
となる。 From this, δ is
Figure 2008125264
It becomes.

負荷角δは、式(19)、式(21)、式(23)のいずれを用いても求めることができる。計算は、計算量の少ない方式を用いることにより制御周期を速くすることができ、制御性能を高めることができる。式(19)、式(21)、式(23)の内、式(19)は、計算量が一番少ないから計算がし易くなる。また式(23)は、式(19)と式(21)を組み合わせた式であるから、計算精度が式(19)、式(21)よりも低くなる場合がある。
以上のように、電流位相差φと負荷角δは、巻線電流iu,iv、駆動電圧の最大値Vm、逆起電圧の最大値Emに基づいて求めることができる。そして電流位相差φは、前記のように図1の電流位相差推定部4において推定し、負荷角δは、その推定した電流位相差φを用いて負荷角推定部5において推定することができる。
The load angle δ can be obtained using any of the equations (19), (21), and (23). The calculation can speed up the control cycle by using a method with a small calculation amount, and can improve the control performance. Of the formulas (19), (21), and (23), the formula (19) has the smallest amount of calculation, so that the calculation is easy. Moreover, since Formula (23) is a formula combining Formula (19) and Formula (21), the calculation accuracy may be lower than Formula (19) and Formula (21).
As described above, the current phase difference φ and the load angle δ can be obtained based on the winding currents i u and i v , the maximum value V m of the drive voltage, and the maximum value E m of the back electromotive voltage. The current phase difference φ can be estimated by the current phase difference estimation unit 4 in FIG. 1 as described above, and the load angle δ can be estimated by the load angle estimation unit 5 using the estimated current phase difference φ. .

本願発明の実施例に係るBLDCモータを正弦波駆動する場合の制御装置の構成を示す。The structure of the control apparatus in the case of carrying out the sine wave drive of the BLDC motor which concerns on the Example of this invention is shown. 図1の制御装置について計測した負荷角、駆動電圧、巻線電流を示す。The load angle, drive voltage, and winding current which were measured about the control apparatus of FIG. 1 are shown. BLDCモータの供給電圧、逆起電圧、巻線電流等の関係を示す。The relationship between the supply voltage of the BLDC motor, the back electromotive force, the winding current, etc. is shown. 従来のBLDCモータを正弦波駆動する場合の制御装置の構成を示すThe structure of the control apparatus in the case of driving a conventional BLDC motor with a sine wave is shown.

符号の説明Explanation of symbols

1 BLDCモータ
2 電流センサ
3 モータ駆動回路
4 電流位相差推定部
5 負荷角推定部
6 駆動電圧制御部
7 負荷角偏差回路
DESCRIPTION OF SYMBOLS 1 BLDC motor 2 Current sensor 3 Motor drive circuit 4 Current phase difference estimation part 5 Load angle estimation part 6 Drive voltage control part 7 Load angle deviation circuit

Claims (7)

駆動電圧に基づいて正弦波電圧を発生し、その正弦波電圧によって駆動するブラシレスDCモータの制御方法において、負荷角を推定し、推定した負荷角と指令負荷角の負荷角偏差をとり、負荷角偏差に基づいて負荷角が指令負荷角に等しくなるように駆動電圧を制御することを特徴とするブラシレスDCモータの制御方法。   In a control method of a brushless DC motor that generates a sine wave voltage based on a drive voltage and drives with the sine wave voltage, a load angle is estimated, and a load angle deviation between the estimated load angle and a command load angle is obtained. A control method for a brushless DC motor, wherein the drive voltage is controlled based on the deviation so that the load angle becomes equal to the command load angle. モータ駆動回路は駆動電圧と駆動角周波数に基づいて正弦波電圧を発生し、その正弦波電圧により駆動するブラシレスDCモータの制御方法において、巻線電流に基づいて電流位相差(φ)を推定し、電流位相差(φ)、駆動電圧の最大値(Vm)、逆起電圧の最大値(Em)及び駆動角周波数(ω)に基づいて負荷角(δ)を推定し、指令負荷角と推定した負荷角の負荷角偏差をとり、負荷角差に基づいて負荷角が指令負荷角に等しくなるように駆動電圧を制御することを特徴とするブラシレスDCモータの制御方法。 The motor drive circuit generates a sine wave voltage based on the drive voltage and the drive angular frequency, and estimates the current phase difference (φ) based on the winding current in the control method of the brushless DC motor driven by the sine wave voltage. The load angle (δ) is estimated based on the current phase difference (φ), the maximum value of the drive voltage (V m ), the maximum value of the back electromotive force (E m ), and the drive angular frequency (ω), and the command load angle A control method for a brushless DC motor, wherein the drive voltage is controlled so that the load angle becomes equal to the command load angle based on the load angle difference. 請求項2に記載のブラシレスDCモータの制御方法において、負荷角(δ)は、
δ=sin-1[{Vmtan2φ±(Em 2(1+tan2φ)−Vm 2tan2φ)1/2}/{Em(1+tan2φ)}]
により推定することを特徴とするブラシレスDCモータの制御方法。
In the control method of the brushless DC motor according to claim 2, the load angle (δ) is:
δ = sin −1 [{V m tan 2 φ ± (E m 2 (1 + tan 2 φ) −V m 2 tan 2 φ) 1/2 } / {E m (1 + tan 2 φ)}]
A control method for a brushless DC motor, characterized in that
請求項1、請求項2又は請求項3に記載のブラシレスDCモータの制御方法において、ブラシレスDCモータは、歯科治療用研削装置のハンドピースに用いるブラシレスDCモータであることを特徴とするブラシレスDCモータの制御方法。   4. The brushless DC motor according to claim 1, wherein the brushless DC motor is a brushless DC motor used for a handpiece of a dental treatment grinding apparatus. Control method. モータ駆動回路は駆動電圧と駆動角周波数に基づいて正弦波電圧を発生し、その正弦波電圧によって駆動するブラシレスDCモータの制御装置において、巻線電流に基づいて電流位相差(φ)を推定する電流位相差推定部、電流位相差(φ)、駆動電圧の最大値(Vm)、逆起電圧の最大値(Em)及び駆動角周波数(ω)に基づいて負荷角(δ)を推定する負荷角推定部、指令負荷角と推定した負荷角の負荷角偏差をとる負荷角偏差回路、負荷角偏差に基づいて負荷角が指令負荷角に等しくなるように駆動電圧を制御する駆動電圧制御部を備えていることを特徴とするブラシレスDCモータの制御装置。 The motor drive circuit generates a sine wave voltage based on the drive voltage and the drive angular frequency, and estimates the current phase difference (φ) based on the winding current in the control device of the brushless DC motor driven by the sine wave voltage. Estimate load angle (δ) based on current phase difference estimator, current phase difference (φ), maximum drive voltage (V m ), maximum back electromotive force (E m ), and drive angular frequency (ω) Load angle estimator, load angle deviation circuit that takes the load angle deviation of the estimated load angle from the command load angle, drive voltage control that controls the drive voltage so that the load angle becomes equal to the command load angle based on the load angle deviation A controller for a brushless DC motor, characterized by comprising a section. 請求項5に記載のブラシレスDCモータの制御装置において、負荷角(δ)は、
δ=sin-1[{Vmtan2φ±(Em 2(1+tan2φ)−Vm 2tan2φ)1/2}/{Em(1+tan2φ)}]
により推定することを特徴とするブラシレスDCモータの制御装置。
In the control device for a brushless DC motor according to claim 5, the load angle (δ) is:
δ = sin −1 [{V m tan 2 φ ± (E m 2 (1 + tan 2 φ) −V m 2 tan 2 φ) 1/2 } / {E m (1 + tan 2 φ)}]
The control apparatus of a brushless DC motor characterized by estimating by these.
請求項5又は請求項6に記載のブラシレスDCモータの制御装置において、ブラシレスDCモータは、歯科治療用研削装置のハンドピースに用いるブラシレスDCモータであることを特徴とするブラシレスDCモータの制御装置。   7. The brushless DC motor control apparatus according to claim 5, wherein the brushless DC motor is a brushless DC motor used for a hand piece of a dental treatment grinding apparatus.
JP2006307248A 2006-11-13 2006-11-13 Brushless DC motor control method and control apparatus Active JP4796940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307248A JP4796940B2 (en) 2006-11-13 2006-11-13 Brushless DC motor control method and control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307248A JP4796940B2 (en) 2006-11-13 2006-11-13 Brushless DC motor control method and control apparatus

Publications (2)

Publication Number Publication Date
JP2008125264A true JP2008125264A (en) 2008-05-29
JP4796940B2 JP4796940B2 (en) 2011-10-19

Family

ID=39509454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307248A Active JP4796940B2 (en) 2006-11-13 2006-11-13 Brushless DC motor control method and control apparatus

Country Status (1)

Country Link
JP (1) JP4796940B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091215A (en) * 2013-11-07 2015-05-11 ローム株式会社 Motor drive circuit, method of driving the same, and electronic apparatus using the same
JP2015133791A (en) * 2014-01-10 2015-07-23 ダイキン工業株式会社 Step-out detector and motor drive system
WO2018030209A1 (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor control method, motor control system, and electrically-powered steering system
JP2019088148A (en) * 2017-11-08 2019-06-06 株式会社ナカニシ Driver of brushless motor, and brushless motor, and hand piece for medical treatment using brushless motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387196A (en) * 1986-09-29 1988-04-18 Nissan Motor Co Ltd Controller for synchronous motor
JPH11342137A (en) * 1999-05-18 1999-12-14 Osada Res Inst Ltd Micro-engine hand piece
JP2003204694A (en) * 2001-03-02 2003-07-18 Matsushita Electric Ind Co Ltd Motor controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387196A (en) * 1986-09-29 1988-04-18 Nissan Motor Co Ltd Controller for synchronous motor
JPH11342137A (en) * 1999-05-18 1999-12-14 Osada Res Inst Ltd Micro-engine hand piece
JP2003204694A (en) * 2001-03-02 2003-07-18 Matsushita Electric Ind Co Ltd Motor controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015091215A (en) * 2013-11-07 2015-05-11 ローム株式会社 Motor drive circuit, method of driving the same, and electronic apparatus using the same
JP2015133791A (en) * 2014-01-10 2015-07-23 ダイキン工業株式会社 Step-out detector and motor drive system
WO2018030209A1 (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor control method, motor control system, and electrically-powered steering system
JPWO2018030209A1 (en) * 2016-08-09 2019-06-06 日本電産株式会社 Motor control method, motor control system and electric power steering system
US11072245B2 (en) 2016-08-09 2021-07-27 Nidec Corporation Motor control method, motor control system, and electric power steering system
JP2019088148A (en) * 2017-11-08 2019-06-06 株式会社ナカニシ Driver of brushless motor, and brushless motor, and hand piece for medical treatment using brushless motor

Also Published As

Publication number Publication date
JP4796940B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US9998059B2 (en) Motor driving apparatus
JP4067949B2 (en) Motor control device
JP3888082B2 (en) Motor device and control method thereof
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
JP4764124B2 (en) Permanent magnet type synchronous motor control apparatus and method
WO2016035298A1 (en) Motor drive device and brushless motor
CN106537760B (en) Motor control device and method for correcting torque constant in the same
WO2018230140A1 (en) Power tool
JP4796940B2 (en) Brushless DC motor control method and control apparatus
JP7357204B2 (en) Power tools, control methods, programs
JP4367279B2 (en) Control device for synchronous motor
JP2007282367A (en) Motor driving controller
JP2007060783A (en) Motor drive control device
CN105518988A (en) Power conversion device and control method for permanent magnet synchronous motor
JP5422435B2 (en) Brushless motor driving apparatus and driving method
JP2009290962A (en) Controller of permanent magnet type synchronous motor
JP5363129B2 (en) Inverter control device
JP4796944B2 (en) Brushless DC motor control method and control apparatus
JP2008148437A (en) Controller for permanent magnet type synchronous motor
CN112398373B (en) Control method and device of brushless direct current motor and storage medium
JP2010004681A (en) Electric pump device
CN107482965B (en) Control device for synchronous motor
JP2005094925A (en) Control method for brushless dc motor
JP3696786B2 (en) Motor control device
JP2009247134A (en) Device and method for detecting rotor position, and device and method for controlling motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4796940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250