JP2008124381A - Solar battery - Google Patents

Solar battery Download PDF

Info

Publication number
JP2008124381A
JP2008124381A JP2006309174A JP2006309174A JP2008124381A JP 2008124381 A JP2008124381 A JP 2008124381A JP 2006309174 A JP2006309174 A JP 2006309174A JP 2006309174 A JP2006309174 A JP 2006309174A JP 2008124381 A JP2008124381 A JP 2008124381A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
solar cell
light receiving
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006309174A
Other languages
Japanese (ja)
Inventor
Koji Tomita
孝司 富田
Tsuguyuki Kamiyama
嗣之 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006309174A priority Critical patent/JP2008124381A/en
Publication of JP2008124381A publication Critical patent/JP2008124381A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery capable of obtaining sufficiently high conversion efficiency by light condensing. <P>SOLUTION: The solar battery comprises: a solar battery cell 11 provided with a plurality of photoelectric conversion layers 13 formed in a plane direction on a semiconductor substrate 12 and provided with a light receiving surface side electrode 18 and a back surface electrode 19 formed on the light receiving surface side and back surface side of the photoelectric conversion layers 13; and a lens group L formed at a position corresponding to the plurality of photoelectric conversion layers 13 on the light receiving surface side of the solar battery cell 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は太陽電池に関し、詳しくはレンズ群を有する集光型太陽電池に関する。   The present invention relates to a solar cell, and more particularly to a concentrating solar cell having a lens group.

従来より太陽電池の高効率化のためにさまざまな形態の太陽電池が考案されている。
その中で、一般に太陽電池セルは集光することにより変換効率が向上することが知られており、これを利用して集光型の太陽電池システムが考案されている(非特許文献1参照)。
集光型太陽電池として、レンズシートの裏面に小面積の光電変換層を多数配置した太陽電池が知られている(特許文献1参照)。
また、太陽電池アレイに利用可能な集光用のマイクロレンズアレイが提案されている(特許文献2参照)。
また、レンズ群によって集光した光を利用する薄膜太陽電池モジュールが提案されている(特許文献3参照)。
シャープ技報 第93号 2005年12月 USP4638110 USP6804062 特開2003−46103号公報
Conventionally, various types of solar cells have been devised for improving the efficiency of solar cells.
Among them, it is generally known that conversion efficiency is improved by concentrating solar cells, and a concentrating solar cell system has been devised using this (see Non-Patent Document 1). .
As a concentrating solar cell, a solar cell in which a large number of small-area photoelectric conversion layers are arranged on the back surface of a lens sheet is known (see Patent Document 1).
A condensing microlens array that can be used in a solar cell array has been proposed (see Patent Document 2).
In addition, a thin film solar cell module using light condensed by a lens group has been proposed (see Patent Document 3).
Sharp Technical Report No.93 December 2005 USP 4638110 USP6804062 JP 2003-46103 A

しかしながら、このような従来の集光型太陽電池では、集光しても期待する程の高い変換効率は得られなかった。
その原因としては、特許文献1の太陽電池では、絶縁物中に光電変換層が埋め込まれた構造であるため、表面再結合防止効果(パッシベーション効果)が得られず、さらに受光面電極が光電変換層の外周面に狭い接触面積で接触する構造であるため、接触抵抗により直列抵抗が大きく抵抗による効率の低下が考えられる。また、特許文献3では、入射光の利用効率を高めて変換効率を上げているが、数十倍以上に集光して得られるような大幅に向上した変換効率は得られない。
However, in such a conventional concentrating solar cell, conversion efficiency as high as expected could not be obtained even when condensing.
The reason is that the solar cell of Patent Document 1 has a structure in which a photoelectric conversion layer is embedded in an insulator, so that a surface recombination preventing effect (passivation effect) cannot be obtained, and the light receiving surface electrode is photoelectrically converted. Since the structure is in contact with the outer peripheral surface of the layer with a narrow contact area, the series resistance is large due to the contact resistance, and the efficiency can be reduced due to the resistance. Further, in Patent Document 3, the conversion efficiency is increased by increasing the utilization efficiency of incident light. However, the conversion efficiency that can be obtained by condensing the light more than several tens of times cannot be obtained.

本発明は、上記課題に鑑みなされたものであり、集光により高い変換効率が得られる太陽電池を提供するものである。   This invention is made | formed in view of the said subject, and provides the solar cell from which high conversion efficiency is acquired by condensing.

本発明によれば、半導体基板上に平面方向に複数形成された光電変換層を有すると共に、前記光電変換層の受光面側および裏面側に形成された受光面電極および裏面電極を有する太陽電池セルと、前記太陽電池セルの受光面側にかつ前記複数の光電変換層に対応する位置に形成されたレンズ群とを備えた太陽電池(Aタイプ)が提供される。
また、本発明の別の観点によれば、基板上に平面方向に複数形成された光電変換層を有すると共に、前記光電変換層の受光面側および裏面側に形成された受光面電極および裏面電極を有する太陽電池セルと、前記太陽電池セルの受光面側にかつ前記複数の光電変換層に対応する位置に形成されたレンズ群とを備え、前記受光面電極が、各光電変換層の受光面の周囲部に接触しかつ受光面の中央部を開口するように形成された太陽電池(Bタイプ)が提供される。
According to the present invention, a solar battery cell having a plurality of photoelectric conversion layers formed in a planar direction on a semiconductor substrate and having a light receiving surface electrode and a back electrode formed on the light receiving surface side and the back surface side of the photoelectric conversion layer. And a lens group formed on the light-receiving surface side of the solar battery cell and at a position corresponding to the plurality of photoelectric conversion layers.
Moreover, according to another viewpoint of this invention, it has the photoelectric converting layer formed in multiple numbers by the plane direction on the board | substrate, and the light-receiving surface electrode and back surface electrode which were formed in the light-receiving surface side and back surface side of the said photoelectric converting layer And a lens group formed at a position corresponding to the plurality of photoelectric conversion layers on the light receiving surface side of the solar cells, and the light receiving surface electrode is a light receiving surface of each photoelectric conversion layer There is provided a solar cell (B type) formed so as to be in contact with the peripheral portion of the light receiving portion and to open the central portion of the light receiving surface.

本発明の前記Aタイプの太陽電池は、レンズ群にて集光される受光部としての各光電変換層を半導体基板上に直接形成した構造とすることが可能である。つまり、半導体基板または光電変換層の材料(元素半導体、化合物半導体等)、状態(単結晶、多結晶、微結晶、アモルファス等)などに応じて各種構造(例えばpn接合構造、pin接合構造、ヘテロ接合構造、多重接合構造等)の光電変換層を、特殊な方法を用いずに太陽電池製造の通常の技術範囲で再現性よく形成することができ、変換効率に有利な光電変換層を自由に採用することができる。この結果、光電変換層自体による良好かつ安定した光電変換特性と、集光による変換効率の向上との相乗効果によって、優れた変換効率を得ることができる。   The A-type solar cell of the present invention can have a structure in which each photoelectric conversion layer as a light receiving portion condensed by a lens group is directly formed on a semiconductor substrate. That is, various structures (for example, a pn junction structure, a pin junction structure, a heterostructure, etc.) depending on the material (element semiconductor, compound semiconductor, etc.) and state (single crystal, polycrystal, microcrystal, amorphous, etc.) of the semiconductor substrate or photoelectric conversion layer. Can be formed with good reproducibility within the normal technical scope of solar cell production without using a special method, and the photoelectric conversion layer advantageous in conversion efficiency can be freely formed. Can be adopted. As a result, excellent conversion efficiency can be obtained by a synergistic effect of good and stable photoelectric conversion characteristics by the photoelectric conversion layer itself and improvement of conversion efficiency by light collection.

また、本発明の前記Bタイプの太陽電池は、半導体基板に限らず、セラミック基板、ガラス基板、樹脂フィルム基板等上に各種構造の光電変換層を形成することができ、特に薄膜の光電変換層に好適である。この太陽電池Bにおいても、光電変換を特殊な方法を用いずに太陽電池製造の通常の技術範囲で再現性よく形成することができ、変換効率に有利な光電変換層を自由に採用することができる。この結果、光電変換層自体による良好かつ安定した光電変換特性と、集光による変換効率の向上との相乗効果によって、優れた変換効率を得ることができる。さらに、受光面電極が、各光電変換層の受光面の周囲部に接触しかつ受光面の中央部を開口するように形成されているため、受光面電極の直列抵抗を小さくすることができ、集光により大電流が生じても、抵抗による効率の低下を最小限に抑えることができ、変換効率の向上に有利である。   Further, the B type solar cell of the present invention is not limited to a semiconductor substrate, and can form photoelectric conversion layers having various structures on a ceramic substrate, a glass substrate, a resin film substrate, and the like, and in particular, a thin film photoelectric conversion layer. It is suitable for. Also in this solar cell B, photoelectric conversion can be formed with good reproducibility within the normal technical range of solar cell production without using a special method, and a photoelectric conversion layer advantageous in conversion efficiency can be freely adopted. it can. As a result, excellent conversion efficiency can be obtained by a synergistic effect of good and stable photoelectric conversion characteristics by the photoelectric conversion layer itself and improvement of conversion efficiency by light collection. Furthermore, since the light receiving surface electrode is formed so as to be in contact with the periphery of the light receiving surface of each photoelectric conversion layer and to open the central portion of the light receiving surface, the series resistance of the light receiving surface electrode can be reduced, Even if a large current is generated by condensing, a decrease in efficiency due to resistance can be minimized, which is advantageous in improving conversion efficiency.

本発明の太陽電池Aおよび太陽電池Bは、半導体基板上に平面方向に複数形成された光電変換層を有すると共に、前記光電変換層の受光面側および裏面側に形成された受光面電極および裏面電極を有する太陽電池セルと、前記太陽電池セルの受光面側にかつ前記複数の光電変換層に対応する位置に形成されたレンズ群とを備えたことを特徴とする。   The solar cell A and solar cell B of the present invention have a plurality of photoelectric conversion layers formed in a planar direction on a semiconductor substrate, and light receiving surface electrodes and back surfaces formed on the light receiving surface side and the back surface side of the photoelectric conversion layer. A solar battery cell having an electrode and a lens group formed on a light receiving surface side of the solar battery cell and at a position corresponding to the plurality of photoelectric conversion layers are provided.

太陽電池Aにおいて、半導体基板としては特に限定されるものではなく、元素半導体基板と化合物半導体基板のいずれも使用可能であり、また単結晶、多結晶のいずれでもよい。この場合、半導体基板の受光面とは反対側の裏面に裏面電極を形成することができる。
太陽電池Bにおいて、基板としては特に限定されず、例えば上記半導体基板、セラミック基板、ガラス基板、樹脂フィルム基板等を使用することができる。半導体基板以外を使用する場合は、基板上に絶縁膜および裏面電極を形成し、裏面電極上に光電変換層を形成した構成が製造の容易性の観点から好ましい。
In the solar cell A, the semiconductor substrate is not particularly limited, and either an elemental semiconductor substrate or a compound semiconductor substrate can be used, and either a single crystal or a polycrystal may be used. In this case, a back electrode can be formed on the back surface opposite to the light receiving surface of the semiconductor substrate.
In the solar cell B, the substrate is not particularly limited, and for example, the semiconductor substrate, the ceramic substrate, the glass substrate, the resin film substrate, or the like can be used. When using a substrate other than a semiconductor substrate, a configuration in which an insulating film and a back electrode are formed on the substrate and a photoelectric conversion layer is formed on the back electrode is preferable from the viewpoint of ease of manufacture.

以下、太陽電池AおよびBに共通の事項を説明する。
光電変換層としては、特に限定されるものではなく、例えばpn接合構造、pin接合構造、ヘテロ接合構造、多重接合構造等の各種構造を採用することができる。なお、太陽電池Aの場合、製造容易性および変換効率向上の観点から、半導体基板の種類に適した構造に光電変換層を形成することが好ましい。
Hereinafter, matters common to the solar cells A and B will be described.
The photoelectric conversion layer is not particularly limited, and various structures such as a pn junction structure, a pin junction structure, a heterojunction structure, and a multiple junction structure can be employed. In the case of the solar cell A, it is preferable to form the photoelectric conversion layer in a structure suitable for the type of the semiconductor substrate from the viewpoint of ease of manufacture and improvement of conversion efficiency.

太陽電池AおよびBは、各光電変換層の間に分離溝が形成されたものとすることにより、簡便に複数の光電変換層を基板上に配置することができる。つまり、光電変換層の形成に際しては、従来公知の成膜技術にて基板上に面状の光電変換層を形成し、レンズ群による複数の集束光受光領域を除く領域に分離溝を形成することにより、一括して複数の受光部である光電変換層を形成することができる。これにより、複数の光電変換層は微小突起状(微小な円柱形または角柱形)に分散して形成され、各光電変換層の間に分離溝が形成される。
この場合、光電変換層の平面方向の幅としては100〜2000μm程度、隣接する2つの光電変換層の間における分離溝の平面方向の幅としては10〜50mm程度が好ましく、隣接する光電変換層同士のピッチ(受光部中心間距離)としては10〜50mmが好ましい。なお、上記範囲よりも小さい場合、レンズ群の各レンズが微小化するため、レンズ群の作製および太陽電池セルとの位置合わせ精度をさらに上げる必要があり、上記範囲よりも大きいとレンズが大型化しコンパクトな形状にならない。
In the solar cells A and B, a plurality of photoelectric conversion layers can be easily arranged on a substrate by providing a separation groove between the photoelectric conversion layers. In other words, when forming the photoelectric conversion layer, a planar photoelectric conversion layer is formed on the substrate by a conventionally known film formation technique, and separation grooves are formed in a region excluding a plurality of focused light receiving regions by the lens group. Thus, a photoelectric conversion layer that is a plurality of light receiving portions can be formed collectively. As a result, the plurality of photoelectric conversion layers are formed so as to be dispersed in the form of minute protrusions (a minute columnar shape or a prismatic shape), and separation grooves are formed between the photoelectric conversion layers.
In this case, the width in the planar direction of the photoelectric conversion layer is preferably about 100 to 2000 μm, and the width in the planar direction of the separation groove between two adjacent photoelectric conversion layers is preferably about 10 to 50 mm. Is preferably 10 to 50 mm. In addition, since each lens of a lens group will be micronized when it is smaller than the said range, it is necessary to raise the preparation accuracy of a lens group and a photovoltaic cell further, and when larger than the said range, a lens will enlarge. Does not become compact.

また、分離溝の内面に再結合防止層が形成されていることが、光電変換層内で入射光により生成されたキャリアを効率よく光電変換に利用することができる上で好ましい。
光電変換層がIII−V族化合物半導体層であり、再結合防止層が光電変換層よりバンド
ギャップの広いIII−V族化合物半導体層である場合、比較的高い変換効率の太陽電池が
得られる。
また、光電変換層が結晶シリコン層であり、再結合防止層が絶縁物層である場合、低コストの太陽電池が得られる。
また、光電変換層が非晶質シリコンゲルマニウム層を含み、再結合防止層が絶縁物層である場合、長波長光の利用効率が高くなり、電流値の高い太陽電池が得られる。
また、光電変換層が非晶質シリコン層または微結晶シリコン層であり、再結合防止層が絶縁物層である場合、薄膜シリコン太陽電池を作製することができるので、さらに低コストの太陽電池が得られる。
前記絶縁物層が酸化シリコンまたは窒化シリコンである場合、シリコンにたいしてパッシベーション効果が大きいので、入射光により生成されたキャリアを効率よく光電変換に利用することができる。
In addition, it is preferable that a recombination prevention layer is formed on the inner surface of the separation groove in order to efficiently use carriers generated by incident light in the photoelectric conversion layer for photoelectric conversion.
When the photoelectric conversion layer is a III-V group compound semiconductor layer and the recombination prevention layer is a III-V group compound semiconductor layer having a wider band gap than the photoelectric conversion layer, a solar cell having a relatively high conversion efficiency can be obtained.
Further, when the photoelectric conversion layer is a crystalline silicon layer and the recombination prevention layer is an insulator layer, a low-cost solar cell can be obtained.
In addition, when the photoelectric conversion layer includes an amorphous silicon germanium layer and the recombination prevention layer is an insulator layer, the use efficiency of long wavelength light is increased, and a solar cell with a high current value is obtained.
In addition, when the photoelectric conversion layer is an amorphous silicon layer or a microcrystalline silicon layer and the recombination prevention layer is an insulator layer, a thin-film silicon solar cell can be manufactured. can get.
In the case where the insulator layer is silicon oxide or silicon nitride, since the passivation effect is large for silicon, carriers generated by incident light can be efficiently used for photoelectric conversion.

受光面電極は、各光電変換層の受光面側を並列接続するものである。この場合、光電変換層による受光を妨げないよう、集束光が十分に通過できる大きさの開口を受光面電極に形成し、受光面電極が各光電変換層の受光面の周囲部に接触しかつ受光面の中央部を開口するように形成することができる。このように、受光面電極が光電変換層の受光面の周囲部に十分な面積で接触することにより、接触抵抗が小さく、また、電極自身の抵抗も小さくなることから、直列抵抗が小さくなり、集光により大電流が生じても、抵抗による効率の低下を最小限にすることができる。   The light receiving surface electrode connects the light receiving surface side of each photoelectric conversion layer in parallel. In this case, in order not to prevent light reception by the photoelectric conversion layer, an opening having a size capable of sufficiently passing the focused light is formed in the light receiving surface electrode, the light receiving surface electrode is in contact with the peripheral portion of the light receiving surface of each photoelectric conversion layer, and It can be formed so as to open the center of the light receiving surface. In this way, the light-receiving surface electrode is in contact with the peripheral portion of the light-receiving surface of the photoelectric conversion layer with a sufficient area, so that the contact resistance is small, and the resistance of the electrode itself is also small, so the series resistance is small, Even if a large current is generated due to the light collection, a decrease in efficiency due to the resistance can be minimized.

レンズ群は、基板上の複数の光電変換層に入射する光を集光するものであれば特に限定されないが、透光性のよい材料からなるものが好ましい。特に、太陽電池セルと容易に一体化できる上で、レンズ群は紫外線硬化樹脂からなるものが好ましい。紫外線硬化樹脂によれば、転写マスクを利用して2P法(Photo Polymarization法)を用いることができるので、太陽電池セルと転写マスクの位置合わせを精度よく行なうことができ、複数のレンズの中心を複数の光電変換層の受光面中心に容易かつ高精度に配置することができる。また、レンズ群は複数のレンズを並べたものであってもよいし、複数の凸状レンズ部を備えたレンズシートであってもよい。   Although it will not specifically limit if a lens group condenses the light which injects into the several photoelectric converting layer on a board | substrate, What consists of a material with good translucency is preferable. In particular, the lens group is preferably made of an ultraviolet curable resin, since it can be easily integrated with the solar battery cell. According to the ultraviolet curable resin, since the 2P method (Photo Polymerization method) can be used using a transfer mask, the alignment of the solar battery cell and the transfer mask can be performed accurately, and the center of the plurality of lenses can be obtained. It can be easily and accurately arranged at the center of the light receiving surface of the plurality of photoelectric conversion layers. In addition, the lens group may be one in which a plurality of lenses are arranged, or may be a lens sheet having a plurality of convex lens portions.

以下、図面を参照しながら本発明の実施形態を説明する。
(実施形態1)
図1は本発明の実施形態1の太陽電池を示す概略断面図である。この太陽電池は、四角形板状の太陽電池セル11と、太陽電池セル11の受光面に一体状に取り付けられたレンズ群Lとを備える。図2(a)は実施形態1の太陽電池の受光面を示す平面図、図2(b)は正面図、図2(c)は側面図であり、図3はレンズ群を省略した実施形態1の太陽電池セルの受光面を示す平面図であり、図4は実施形態1の太陽電池の裏面を示す底面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a solar cell according to Embodiment 1 of the present invention. This solar battery includes a rectangular plate-shaped solar battery cell 11 and a lens group L attached integrally to the light receiving surface of the solar battery cell 11. 2A is a plan view showing the light receiving surface of the solar cell of Embodiment 1, FIG. 2B is a front view, FIG. 2C is a side view, and FIG. 3 is an embodiment in which the lens group is omitted. 4 is a plan view showing a light receiving surface of one solar battery cell, and FIG. 4 is a bottom view showing a back surface of the solar battery of Embodiment 1. FIG.

太陽電池セル11は、化合物半導体基板であるp型GaAs基板12上に複数の光電変換層13がマトリックス状に分散して形成された化合物半導体太陽電池セルである。
光電変換層13は、p型GaAs基板12上にp型GaAsバッファ層13a、p型InGaP−BSF層13b、p型GaAsベース層13c、n型GaAsエミッタ層13d、n型InGaP窓層13eとがこの順に円柱状に積層されてなる。
各層の厚みとしては、p型GaAs基板12は100〜500μm、p型GaAsバッファ層13aは2〜3μm、p型InGaP−BSF層13bは0.05〜0.1μm、p型GaAsベース層13cは2.5〜3.5μm、n型GaAsエミッタ層13dは0.05〜0.2μmが適当である。また、n型InGaP窓層13eは、膜厚が薄ければ薄いほど直接遷移型の材料になり、光吸収量が小さくなる。よって、n型InGaP窓層13eの膜厚は0.01〜0.05μmが好ましく、0.01〜0.03μmがさらに好ましい。光電変換層13の直径は100〜2000μm程度であり、隣接する光電変換層13とのピッチは10〜50mm程度である。
さらに、各光電変換層13の受光面の周囲部、すなわちn型InGaP窓層13eの表面の周囲部にはn型GaAsコンタクト層14(膜厚0.2〜0.5μm程度)が形成されると共に、コンタクト層14が形成されていない各光電変換層13の受光面の中央部には反射防止膜15が形成されている。
The solar cell 11 is a compound semiconductor solar cell in which a plurality of photoelectric conversion layers 13 are dispersed in a matrix on a p-type GaAs substrate 12 that is a compound semiconductor substrate.
The photoelectric conversion layer 13 includes a p-type GaAs buffer layer 13a, a p-type InGaP-BSF layer 13b, a p-type GaAs base layer 13c, an n-type GaAs emitter layer 13d, and an n-type InGaP window layer 13e on a p-type GaAs substrate 12. The layers are stacked in this order.
Regarding the thickness of each layer, the p-type GaAs substrate 12 is 100 to 500 μm, the p-type GaAs buffer layer 13 a is 2 to 3 μm, the p-type InGaP-BSF layer 13 b is 0.05 to 0.1 μm, and the p-type GaAs base layer 13 c is The appropriate thickness is 2.5 to 3.5 μm and the n-type GaAs emitter layer 13d is 0.05 to 0.2 μm. The n-type InGaP window layer 13e becomes a direct transition material as the film thickness decreases, and the amount of light absorption decreases. Therefore, the film thickness of the n-type InGaP window layer 13e is preferably 0.01 to 0.05 μm, and more preferably 0.01 to 0.03 μm. The diameter of the photoelectric conversion layer 13 is about 100 to 2000 μm, and the pitch with the adjacent photoelectric conversion layer 13 is about 10 to 50 mm.
Further, an n-type GaAs contact layer 14 (with a film thickness of about 0.2 to 0.5 μm) is formed around the light receiving surface of each photoelectric conversion layer 13, that is, around the surface of the n-type InGaP window layer 13 e. In addition, an antireflection film 15 is formed at the center of the light receiving surface of each photoelectric conversion layer 13 where the contact layer 14 is not formed.

また、この太陽電池セル11は、各光電変換層13の間に分離溝16が形成されており、この分離溝16によって1枚の基板12上に複数の光電変換層13が相互に分離して配置されている。そして、分離溝16の内面、すなわち基板12の底面、各光電変換層13およびコンタクト層14の外周面に、i型InGaP再結合防止層17(膜厚0.03〜0.1μm程度)が形成されると共に、再結合防止層17およびコンタクト層14の上に受光面電極18(膜厚2〜10μm程度)が形成されている。このとき、受光面電極18の開口の直径は100〜2000μm程度である。また、基板12の裏面には裏面電極19が形成されている。   Further, in this solar cell 11, separation grooves 16 are formed between the photoelectric conversion layers 13, and the plurality of photoelectric conversion layers 13 are separated from each other on one substrate 12 by the separation grooves 16. Has been placed. An i-type InGaP recombination prevention layer 17 (having a thickness of about 0.03 to 0.1 μm) is formed on the inner surface of the separation groove 16, that is, on the bottom surface of the substrate 12, the outer peripheral surfaces of the photoelectric conversion layers 13 and the contact layers 14. In addition, a light receiving surface electrode 18 (film thickness of about 2 to 10 μm) is formed on the recombination preventing layer 17 and the contact layer 14. At this time, the diameter of the opening of the light receiving surface electrode 18 is about 100 to 2000 μm. A back electrode 19 is formed on the back surface of the substrate 12.

このように構成された太陽電池セル11において、各光電変換層13の受光面側は受光面電極18によって互いに接続され、各光電変換層13の裏面側はp型GaAs基板12を介して裏面電極19によって互いに接続され、複数の光電変換層13は互いに電気的に並列に接続されている。   In the solar cell 11 configured as described above, the light receiving surface side of each photoelectric conversion layer 13 is connected to each other by the light receiving surface electrode 18, and the back surface side of each photoelectric conversion layer 13 is connected to the back electrode via the p-type GaAs substrate 12. The plurality of photoelectric conversion layers 13 are electrically connected in parallel to each other.

レンズ群Lは、太陽電池セル11の複数の光電変換層13に対応する位置に配置するよう複数のレンズL1が一体的に集合したものであり、全体として太陽電池セル11と概ね同じ形状およびサイズである。レンズL1は、受光面電極18の開口部を通して光電変換層13に入射光が集束するよう、厚みや屈折率等が設定されている。実施形態1に場合、レンズLの直径は10〜50mm程度である。なお、図1において、点線は集束光の範囲を表している。
このレンズ群Lは、図2に示すように平面視円形のレンズL1が複数並べられたものの他に、図5に示すように平面視正方形のレンズL2が複数並べられたものであってもよい。なお、図5のレンズ群を備えた太陽電池の正面図および側面図は図2(b)と図2(c)と同様であるため省略する。
The lens group L is a group in which a plurality of lenses L1 are integrally assembled so as to be arranged at positions corresponding to the plurality of photoelectric conversion layers 13 of the solar battery cell 11, and as a whole, have substantially the same shape and size as the solar battery cell 11. It is. The lens L1 has a thickness, a refractive index, and the like so that incident light is focused on the photoelectric conversion layer 13 through the opening of the light receiving surface electrode 18. In the case of Embodiment 1, the diameter of the lens L is about 10 to 50 mm. In FIG. 1, the dotted line represents the range of the focused light.
The lens group L may include a plurality of lenses L2 having a square shape in plan view as shown in FIG. 5 in addition to a plurality of lenses L1 having a circular shape in plan view as shown in FIG. . Note that a front view and a side view of a solar cell provided with the lens group in FIG. 5 are the same as those in FIGS. 2B and 2C, and are omitted.

この太陽電池は、レンズ群L側から光が照射されると、入射光は各レンズL1により集光されて各光電変換層13に入射し、光強度が高められた集束光を光電変換する。複数の光電変換層13は並列接続されているので、受光面電極18および裏面電極19より電流が取り出される。
この際、光電変換層13は受光面にn型InGaP窓層13eを有しているため、生成された少数キャリアの拡散および表面再結合による消滅を抑制することができ、効果的に光電変換が行なわれる。また、光電変換層13の外周面がi型InGaP再結合防止層17にて覆われているため、生成されたキャリアを効率よく光電変換に利用することができる。さらに、受光面電極18がn型GaAsコンタクト層14を介して光電変換層13の受光面の周囲部と接触しているため、直列抵抗が小さくなり、直列抵抗による効率の低下が抑えられ、太陽電池の変換効率がさらに高められる。
なお、図1および後述の図7と図8では、説明を容易とするために、太陽電池セル11の光電変換層13が突出しているように描いているが、実際の突出寸法は数ミクロンであり、太陽電池全体から見るとほぼ平坦である。
In this solar cell, when light is irradiated from the lens group L side, the incident light is collected by each lens L1 and incident on each photoelectric conversion layer 13, and photoelectrically converts the focused light whose light intensity is increased. Since the plurality of photoelectric conversion layers 13 are connected in parallel, current is taken out from the light receiving surface electrode 18 and the back surface electrode 19.
At this time, since the photoelectric conversion layer 13 has the n-type InGaP window layer 13e on the light receiving surface, diffusion of generated minority carriers and extinction due to surface recombination can be suppressed, and photoelectric conversion can be effectively performed. Done. Moreover, since the outer peripheral surface of the photoelectric conversion layer 13 is covered with the i-type InGaP recombination prevention layer 17, the generated carriers can be efficiently used for photoelectric conversion. Furthermore, since the light-receiving surface electrode 18 is in contact with the peripheral portion of the light-receiving surface of the photoelectric conversion layer 13 via the n-type GaAs contact layer 14, the series resistance is reduced, and a decrease in efficiency due to the series resistance is suppressed. The conversion efficiency of the battery is further increased.
In FIG. 1 and FIGS. 7 and 8 to be described later, for ease of explanation, the photoelectric conversion layer 13 of the solar battery cell 11 is depicted as projecting, but the actual projecting dimension is several microns. It is almost flat when viewed from the whole solar cell.

(実施形態2)
図6は本発明の実施形態2の太陽電池を示す概略断面図である。実施形態2の太陽電池は、太陽電池セル21と、太陽電池セル21の受光面側に配置されたレンズ群Lとを備え、太陽電池セル21の構成が実施形態1とは異なり、レンズ群Lの構成は同じである。以下、実施形態2の実施形態1とは異なる構成を主に説明する。
(Embodiment 2)
FIG. 6 is a schematic cross-sectional view showing a solar cell according to Embodiment 2 of the present invention. The solar battery of the second embodiment includes a solar battery cell 21 and a lens group L arranged on the light receiving surface side of the solar battery cell 21, and the configuration of the solar battery cell 21 is different from that of the first embodiment. The configuration of is the same. Hereinafter, the configuration of the second embodiment different from that of the first embodiment will be mainly described.

この太陽電池セル21は、半導体基板である単結晶または多結晶のp型Si基板22上に複数の円柱形光電変換層23がマトリックス状に分散して形成された結晶系シリコン太陽電池セルである。
光電変換層23は、p型Si基板22の受光面側に円柱状に形成されたp層23aと、p層23aの受光面に形成されたn+層23bとからなる。BSF層23cからpn接合までの厚みは200〜500μm程度、n+層の厚みは0.1〜0.3μm程度である。光電変換層23の直径および隣接する光電変換層23とのピッチは実施形態1と同程度である。この場合も、p型Si基板22は光電変換層23の一部を構成している。
This solar battery cell 21 is a crystalline silicon solar battery cell in which a plurality of cylindrical photoelectric conversion layers 23 are formed in a matrix form on a single crystal or polycrystalline p-type Si substrate 22 that is a semiconductor substrate. .
The photoelectric conversion layer 23 includes a p layer 23a formed in a cylindrical shape on the light receiving surface side of the p-type Si substrate 22, and an n + layer 23b formed on the light receiving surface of the p layer 23a. The thickness from the BSF layer 23c to the pn junction is about 200 to 500 μm, and the thickness of the n + layer is about 0.1 to 0.3 μm. The diameter of the photoelectric conversion layer 23 and the pitch with the adjacent photoelectric conversion layer 23 are the same as those in the first embodiment. Also in this case, the p-type Si substrate 22 constitutes a part of the photoelectric conversion layer 23.

各光電変換層23はp型Si基板22の光電変換層形成領域以外の領域に分離溝(深さ150〜450μm程度)を形成することによって円筒状に形成されており、この分離溝の底面および側面に相当する基板22の表面および光電変換層23の外周面に膜厚0.05〜0.3μm程度のSiO2再結合防止層(パシベーション膜)27が形成されている。なお、この再結合防止層27は光電変換層23の受光面(n+層23b)の周囲部も被覆している。
各光電変換層23の周囲を再結合防止層27にて覆った凹所には、樹脂(例えばシリコーン樹脂)などの充填剤が埋め込まれた充填層26が形成されており、太陽電池セル21の表面が平坦化されている。
Each photoelectric conversion layer 23 is formed into a cylindrical shape by forming a separation groove (depth of about 150 to 450 μm) in a region other than the photoelectric conversion layer formation region of the p-type Si substrate 22. A SiO 2 recombination preventing layer (passivation film) 27 having a thickness of about 0.05 to 0.3 μm is formed on the surface of the substrate 22 corresponding to the side surface and the outer peripheral surface of the photoelectric conversion layer 23. The recombination preventing layer 27 also covers the periphery of the light receiving surface (n + layer 23b) of the photoelectric conversion layer 23.
In a recess where the periphery of each photoelectric conversion layer 23 is covered with a recombination prevention layer 27, a filling layer 26 in which a filler such as a resin (for example, silicone resin) is embedded is formed. The surface is flattened.

また、充填層26および再結合防止層27の表面を覆うと共に、光電変換層23の受光面の周囲部と接触しかつ中央部を開口するように、受光面電極28が形成されている。なお、受光面電極28の膜厚および開口の直径は、実施形態1と同程度である。
また、受光面電極28の開口部から露出する光電変換層23の受光面(n+層23b)の上には、反射防止膜が形成されている。
また、基板22の裏面にはBSF層23cが形成されると共に、BSF層23c上には裏面電極29が形成されている。
In addition, the light receiving surface electrode 28 is formed so as to cover the surfaces of the filling layer 26 and the recombination preventing layer 27 and to be in contact with the peripheral portion of the light receiving surface of the photoelectric conversion layer 23 and to open the central portion. The film thickness of the light receiving surface electrode 28 and the diameter of the opening are approximately the same as those in the first embodiment.
An antireflection film is formed on the light receiving surface (n + layer 23 b) of the photoelectric conversion layer 23 exposed from the opening of the light receiving surface electrode 28.
A BSF layer 23c is formed on the back surface of the substrate 22, and a back electrode 29 is formed on the BSF layer 23c.

このように構成された実施形態2の太陽電池において、各光電変換層23の受光面側は受光面電極28にて互いに接続されると共に、各光電変換層23の裏面側は裏面電極29にて互いに接続され、複数の光電変換層23は電気的に並列に接続されている。   In the solar cell of Embodiment 2 configured as described above, the light receiving surface side of each photoelectric conversion layer 23 is connected to each other by a light receiving surface electrode 28, and the back surface side of each photoelectric conversion layer 23 is a back electrode 29. Connected to each other, the plurality of photoelectric conversion layers 23 are electrically connected in parallel.

この太陽電池の発電の仕組みは、実施形態1と同様である。
発電の際、光電変換層23の外周面がSiO2再結合防止層27にて覆われているため、生成されたキャリアを効率よく光電変換に利用することができる。さらに、受光面電極28が光電変換層23の受光面の周囲部と直接接触しているため、直列抵抗が小さくなり、直列抵抗による効率の低下が抑えられ、太陽電池の変換効率がさらに高められる。
The power generation mechanism of this solar cell is the same as that of the first embodiment.
During power generation, the outer peripheral surface of the photoelectric conversion layer 23 is covered with the SiO 2 recombination prevention layer 27, so that the generated carriers can be efficiently used for photoelectric conversion. Furthermore, since the light-receiving surface electrode 28 is in direct contact with the periphery of the light-receiving surface of the photoelectric conversion layer 23, the series resistance is reduced, the reduction in efficiency due to the series resistance is suppressed, and the conversion efficiency of the solar cell is further increased. .

(実施形態3)
図7は本発明の実施形態3の太陽電池を示す概略断面図である。実施形態3の太陽電池は、太陽電池セル31と、太陽電池セル31の受光面側に配置されたレンズ群Lとを備え、太陽電池セル31の構成が実施形態1および2とは異なり、レンズ群Lの構成は同じである。以下、実施形態3の実施形態1および2とは異なる構成を主に説明する。
(Embodiment 3)
FIG. 7 is a schematic cross-sectional view showing a solar cell according to Embodiment 3 of the present invention. The solar battery of the third embodiment includes a solar battery cell 31 and a lens group L arranged on the light receiving surface side of the solar battery cell 31, and the configuration of the solar battery cell 31 is different from those of the first and second embodiments. The configuration of the group L is the same. Hereinafter, the configuration of the third embodiment different from the first and second embodiments will be mainly described.

この太陽電池セル31は、半導体基板であるSi基板32上に複数の円柱形光電変換層33がマトリックス状に分散して形成された非晶質SiGe層含有太陽電池セルである。
光電変換層33は、Si基板32上にn型SiC層33a、非晶質i型SiGe層33bおよびp型SiC層33cがこの順に形成されてなる。
各層の厚みは、Si基板32は100〜500μm程度、n型SiC層33aは0.02〜0.1μm程度、非晶質i型SiGe層33bは0.2〜1μm程度、p型SiC層33cは0.05〜0.1μm程度である。光電変換層33の直径および隣接する光電変換層33とのピッチは実施形態1と同程度である。
光電変換層33の受光面であるp型SiC層33cの表面には、例えばITO(膜厚0.05〜0.1μm程度)からなる透明導電膜34が形成されている。
This solar battery cell 31 is an amorphous SiGe layer-containing solar battery cell in which a plurality of cylindrical photoelectric conversion layers 33 are formed in a matrix on a Si substrate 32 that is a semiconductor substrate.
The photoelectric conversion layer 33 is formed by forming an n-type SiC layer 33a, an amorphous i-type SiGe layer 33b, and a p-type SiC layer 33c in this order on a Si substrate 32.
The thickness of each layer is about 100 to 500 μm for the Si substrate 32, about 0.02 to 0.1 μm for the n-type SiC layer 33a, about 0.2 to 1 μm for the amorphous i-type SiGe layer 33b, and about the p-type SiC layer 33c. Is about 0.05 to 0.1 μm. The diameter of the photoelectric conversion layer 33 and the pitch with the adjacent photoelectric conversion layer 33 are the same as those in the first embodiment.
A transparent conductive film 34 made of, for example, ITO (film thickness of about 0.05 to 0.1 μm) is formed on the surface of the p-type SiC layer 33 c that is the light receiving surface of the photoelectric conversion layer 33.

また、この太陽電池セル31は、各光電変換層33の間に分離溝36が形成されており、この分離溝36によって1枚の基板32上に複数の光電変換層33が相互に分離して配置されている。そして、分離溝36の内面、すなわち基板32の表面および各光電変換層33の外周面に、膜厚0.05〜0.3μm程度のSiO2再結合防止層37が形成されている。なお、SiO2再結合防止層37は各透明導電膜34の周囲部を僅かに覆っている。
また、再結合防止層37の表面は受光面電極38にて覆われており、この受光面電極38は透明導電膜34の周囲部と接触しかつ中央部を開口している。受光面電極38の膜厚および開口の直径は、実施形態1と同程度である。
Further, in the solar battery cell 31, separation grooves 36 are formed between the photoelectric conversion layers 33, and the plurality of photoelectric conversion layers 33 are separated from each other on one substrate 32 by the separation grooves 36. Has been placed. An SiO 2 recombination prevention layer 37 having a thickness of about 0.05 to 0.3 μm is formed on the inner surface of the separation groove 36, that is, on the surface of the substrate 32 and the outer peripheral surface of each photoelectric conversion layer 33. The SiO 2 recombination preventing layer 37 slightly covers the periphery of each transparent conductive film 34.
Further, the surface of the recombination preventing layer 37 is covered with a light receiving surface electrode 38, and the light receiving surface electrode 38 is in contact with the peripheral portion of the transparent conductive film 34 and opens at the center. The film thickness of the light-receiving surface electrode 38 and the diameter of the opening are approximately the same as those in the first embodiment.

このように構成された太陽電池セル31において、各光電変換層33の受光面側は受光面電極38によって互いに接続され、各光電変換層33の裏面側はSi基板32を介して裏面電極39によって互いに接続され、複数の光電変換層33は互いに電気的に並列に接続されている。
この太陽電池の発電の仕組みは、実施形態1と同様である。
発電の際、光電変換層33の外周面がSiO2再結合防止層37にて覆われているため、生成されたキャリアを効率よく光電変換に利用することができる。さらに、受光面電極38が光電変換層33の受光面の周囲部と透明導電膜34を介して接触しているため、直列抵抗が小さくなり、直列抵抗による効率の低下が抑えられ、太陽電池の変換効率がさらに高められる。
In the solar cell 31 configured as described above, the light receiving surface side of each photoelectric conversion layer 33 is connected to each other by the light receiving surface electrode 38, and the back surface side of each photoelectric conversion layer 33 is connected to the back surface electrode 39 through the Si substrate 32. The plurality of photoelectric conversion layers 33 are connected to each other and are electrically connected to each other in parallel.
The power generation mechanism of this solar cell is the same as that of the first embodiment.
During power generation, the outer peripheral surface of the photoelectric conversion layer 33 is covered with the SiO 2 recombination prevention layer 37, so that the generated carriers can be efficiently used for photoelectric conversion. Furthermore, since the light-receiving surface electrode 38 is in contact with the periphery of the light-receiving surface of the photoelectric conversion layer 33 via the transparent conductive film 34, the series resistance is reduced, and a decrease in efficiency due to the series resistance is suppressed. Conversion efficiency is further increased.

(実施形態4)
図8は本発明の実施形態4の太陽電池を示す概略断面図である。実施形態4の太陽電池は、太陽電池セル41と、太陽電池セル41の受光面側に配置されたレンズ群Lとを備え、太陽電池セル41の構成が実施形態1〜3とは異なり、レンズ群Lの構成は同じである。以下、実施形態4の実施形態1〜3とは異なる構成を主に説明する。
(Embodiment 4)
FIG. 8 is a schematic cross-sectional view showing a solar cell according to Embodiment 4 of the present invention. The solar battery of the fourth embodiment includes a solar battery cell 41 and a lens group L arranged on the light receiving surface side of the solar battery cell 41, and the configuration of the solar battery cell 41 is different from those of the first to third embodiments. The configuration of the group L is the same. Hereinafter, a configuration different from Embodiments 1 to 3 of Embodiment 4 will be mainly described.

この太陽電池セル41は、セラミック基板42上にSiO2絶縁層45および裏面電極49を介して複数の円柱形光電変換層43がマトリックス状に分散して形成された太陽電池セルである。
光電変換層43は、裏面電極49上にn型a−Si層43a、i型a−Si層43bおよびp型a−Si:C層43cがこの順に形成された非晶質シリコン層または微結晶シリコン層である。各層の厚みは、n型a−Si層43aは0.02〜0.05μm程度、i型a−Si層43bは0.2〜1μm程度、p型a−Si:C層43cは0.05〜0.1μm程度である。光電変換層43の直径および隣接する光電変換層43とのピッチは実施形態1と同程度である。
光電変換層43の受光面であるp型a−Si:C層43cの表面には、例えばITO(膜厚0.05〜0.1μm程度)からなる透明導電膜44が形成されている。
This solar battery cell 41 is a solar battery cell in which a plurality of cylindrical photoelectric conversion layers 43 are formed in a matrix form on a ceramic substrate 42 via a SiO 2 insulating layer 45 and a back electrode 49.
The photoelectric conversion layer 43 is an amorphous silicon layer or microcrystal in which an n-type a-Si layer 43a, an i-type a-Si layer 43b, and a p-type a-Si: C layer 43c are formed in this order on the back electrode 49. It is a silicon layer. The thickness of each layer is about 0.02 to 0.05 μm for the n-type a-Si layer 43a, about 0.2 to 1 μm for the i-type a-Si layer 43b, and 0.05 for the p-type a-Si: C layer 43c. About 0.1 μm. The diameter of the photoelectric conversion layer 43 and the pitch with the adjacent photoelectric conversion layer 43 are approximately the same as those in the first embodiment.
On the surface of the p-type a-Si: C layer 43c that is the light receiving surface of the photoelectric conversion layer 43, a transparent conductive film 44 made of, for example, ITO (film thickness of about 0.05 to 0.1 μm) is formed.

また、この太陽電池セル41は、各光電変換層43の間に分離溝46が形成されており、この分離溝46によって1枚の基板42上に複数の光電変換層43が相互に分離して配置されている。そして、分離溝46の内面、すなわち裏面電極49の表面および各光電変換層43の外周面に、膜厚0.05〜0.3μm程度のSiO2再結合防止層47が形成されている。なお、SiO2再結合防止層47は各透明導電膜44の周囲部を僅かに覆っている。
また、再結合防止層47の表面は受光面電極48にて覆われており、この受光面電極48は透明導電膜44の周囲部と接触しかつ中央部を開口している。受光面電極38の膜厚および開口の直径は、実施形態1と同程度である。
Further, in the solar battery cell 41, separation grooves 46 are formed between the photoelectric conversion layers 43, and the plurality of photoelectric conversion layers 43 are separated from each other on one substrate 42 by the separation grooves 46. Has been placed. A SiO 2 recombination prevention layer 47 having a thickness of about 0.05 to 0.3 μm is formed on the inner surface of the separation groove 46, that is, on the surface of the back electrode 49 and the outer peripheral surface of each photoelectric conversion layer 43. The SiO 2 recombination prevention layer 47 slightly covers the periphery of each transparent conductive film 44.
The surface of the recombination preventing layer 47 is covered with a light receiving surface electrode 48, which is in contact with the peripheral portion of the transparent conductive film 44 and has an opening at the center. The film thickness of the light-receiving surface electrode 38 and the diameter of the opening are approximately the same as those in the first embodiment.

このように構成された太陽電池セル41において、各光電変換層43の受光面側は受光面電極48によって互いに接続され、各光電変換層43の裏面側は裏面電極49によって互いに接続され、複数の光電変換層43は互いに電気的に並列に接続されている。
この太陽電池の発電の仕組みは、実施形態1と同様である。
発電の際、光電変換層43の外周面がSiO2再結合防止層47にて覆われているため、生成されたキャリアを効率よく光電変換に利用することができる。さらに、受光面電極48が光電変換層43の受光面の周囲部と透明導電膜44を介して接触しているため、直列抵抗が小さくなり、直列抵抗による効率の低下が抑えられ、太陽電池の変換効率がさらに高められる。
In the solar cell 41 configured in this way, the light receiving surface side of each photoelectric conversion layer 43 is connected to each other by the light receiving surface electrode 48, and the back surface side of each photoelectric conversion layer 43 is connected to each other by the back surface electrode 49, The photoelectric conversion layers 43 are electrically connected to each other in parallel.
The power generation mechanism of this solar cell is the same as that of the first embodiment.
During power generation, the outer peripheral surface of the photoelectric conversion layer 43 is covered with the SiO 2 recombination prevention layer 47, so that the generated carriers can be efficiently used for photoelectric conversion. Furthermore, since the light-receiving surface electrode 48 is in contact with the peripheral portion of the light-receiving surface of the photoelectric conversion layer 43 via the transparent conductive film 44, the series resistance is reduced, and a decrease in efficiency due to the series resistance is suppressed. Conversion efficiency is further increased.

(他の実施形態)
1.実施形態1(図1)、実施形態3(図7)および実施形態4(図8)において、受光面電極上の各光電変換層の周囲の凹所に、実施形態2のような充填層を形成して表面を平坦化してもよい。
2.本発明の太陽電池は、光電変換層の構造が実施形態1〜4のものには限定されず、光電変換機能を有する各種構造に適用することができ、例えばタンデム構造とすることもできる。
(Other embodiments)
1. In Embodiment 1 (FIG. 1), Embodiment 3 (FIG. 7), and Embodiment 4 (FIG. 8), the filling layer as in Embodiment 2 is provided in the recess around each photoelectric conversion layer on the light-receiving surface electrode. It may be formed to flatten the surface.
2. The solar cell of the present invention is not limited to the structure of the photoelectric conversion layer of Embodiments 1 to 4, and can be applied to various structures having a photoelectric conversion function, and may be a tandem structure, for example.

(実施例1)
図1に示す実施例1の太陽電池を以下のようにして作製した。
<GaAs太陽電池セルの作製>
(1)まず、1×1019atoms/cm3の濃度でZnがドーピングされた10cm角、厚み 0.2mmのp型GaAs基板を準備した。
(2)前記p型GaAs基板の表面上に、p型GaAsバッファ層、p型InGaP−BSF層、p型GaAsベース層、n型GaAsエミッタ層、n型InGaP窓層の各層を順次積層した。これらの各層は有機金属気相成長(MOCVD)法により約700℃の成長温度で連続的に成膜され、各層の格子定数はp型GaAs基板の格子定数に対してほぼ等しくなるように形成された。また、p型GaAsバッファ層は膜厚0.5μm、p型InGaP−BSF層は膜厚0.1μm、p型GaAsベース層は膜厚は3μm、n型GaAsエミッタ層は膜厚0.1μm、n型InGaP窓層は膜厚0.02μmでそれぞれ形成された。
(Example 1)
The solar cell of Example 1 shown in FIG. 1 was produced as follows.
<Production of GaAs solar cells>
(1) First, a 10 cm square p-type GaAs substrate having a thickness of 0.2 mm and doped with Zn at a concentration of 1 × 10 19 atoms / cm 3 was prepared.
(2) A p-type GaAs buffer layer, a p-type InGaP-BSF layer, a p-type GaAs base layer, an n-type GaAs emitter layer, and an n-type InGaP window layer were sequentially laminated on the surface of the p-type GaAs substrate. Each of these layers is continuously formed by a metal organic chemical vapor deposition (MOCVD) method at a growth temperature of about 700 ° C., and the lattice constant of each layer is formed to be substantially equal to the lattice constant of the p-type GaAs substrate. It was. The p-type GaAs buffer layer has a thickness of 0.5 μm, the p-type InGaP-BSF layer has a thickness of 0.1 μm, the p-type GaAs base layer has a thickness of 3 μm, the n-type GaAs emitter layer has a thickness of 0.1 μm, Each of the n-type InGaP window layers was formed with a film thickness of 0.02 μm.

(3)前記n型InGaP窓層の表面上にn型GaAsコンタクト層をMOCVD法により膜厚0.3μmで成膜した。
(4)フォトリソ技術に従い、まず前記n型GaAsコンタクト層の表面上における複数の光電変換層形成領域に半径0.5mmの円形フォトレジストをピッチ20mmで形成した。そして、複数のフォトレジストをマスクとして露出したn型GaAsコンタクト層をウエットエッチングにより除去した。エッチングにはNH4OH:H2O:H22溶液を使用した。
その後、フォトレジスト剥離液によりフォトレジストを除去した。
(3) An n-type GaAs contact layer was formed on the surface of the n-type InGaP window layer to a thickness of 0.3 μm by MOCVD.
(4) According to the photolithography technique, first, circular photoresist having a radius of 0.5 mm was formed at a pitch of 20 mm in a plurality of photoelectric conversion layer forming regions on the surface of the n-type GaAs contact layer. Then, the exposed n-type GaAs contact layer was removed by wet etching using a plurality of photoresists as a mask. An NH 4 OH: H 2 O: H 2 O 2 solution was used for etching.
Thereafter, the photoresist was removed with a photoresist stripping solution.

(5)次に、フォトリソ技術に従い、光電変換層形成領域の残存したn型GaAsコンタクト層上にフォトレジストを形成し、これをマスクとして露出するn型InGaP窓層、n型GaAsエミッタ層、p型GaAsベース層、p型InGaP−BSF層およびp型GaAsバッファ層をエッチングにより除去した。GaAs層のエッチングにはNH4OH:H2O:H22溶液、InGaP層のエッチングにはHCl:H22:H2O溶液を使用した。
その後、フォトレジスト剥離液によりフォトレジストを除去した。
(6)ここまでで形成された積層体の表面全面に、有機金属気相成長法により約700℃の成長温度でi型InGaP層を0.1μmの膜厚で形成した。
(5) Next, in accordance with the photolithography technique, a photoresist is formed on the remaining n-type GaAs contact layer in the photoelectric conversion layer formation region, and the n-type InGaP window layer, n-type GaAs emitter layer, p exposed through the photoresist as a mask. The p-type GaAs base layer, p-type InGaP-BSF layer and p-type GaAs buffer layer were removed by etching. NH 4 OH: H 2 O: H 2 O 2 solution was used for etching the GaAs layer, and HCl: H 2 O 2 : H 2 O solution was used for etching the InGaP layer.
Thereafter, the photoresist was removed with a photoresist stripping solution.
(6) An i-type InGaP layer having a thickness of 0.1 μm was formed on the entire surface of the laminate formed so far at a growth temperature of about 700 ° C. by metal organic vapor phase epitaxy.

(7)フォトリソ技術に従い、まず前記i型InGaP窓層の表面上における光電変換層形成領域に開口するフォトレジスト膜を形成し、これをマスクとして露出するi型InGaP層を、HCl:H22:H2O溶液を用いてエッチングにより除去した。
その後、フォトレジスト剥離液によりフォトレジストを除去した。
(8)次に、フォトリソ技術に従い、光電変換層形成領域のn型GaAsコンタクト層上における中央部に開口したフォトレジスト膜を形成し、これをマスクとして露出するn型GaAsコンタクト層をエッチングにより除去した。エッチングにはNH4OH:H2O:H22溶液を使用した。
その後、フォトレジスト剥離液によりフォトレジストを除去した。
(7) According to the photolithographic technique, first, a photoresist film having an opening in the photoelectric conversion layer formation region on the surface of the i-type InGaP window layer is formed, and the i-type InGaP layer exposed by using this is formed as an HCl: H 2 O layer. 2 : Removed by etching using H 2 O solution.
Thereafter, the photoresist was removed with a photoresist stripping solution.
(8) Next, according to the photolithography technique, a photoresist film having an opening at the center of the photoelectric conversion layer forming region on the n-type GaAs contact layer is formed, and the n-type GaAs contact layer exposed by using this is removed by etching. did. An NH 4 OH: H 2 O: H 2 O 2 solution was used for etching.
Thereafter, the photoresist was removed with a photoresist stripping solution.

(9)p型GaAs基板の裏面以外をレジスト膜で覆い、p型GaAs基板の裏面にAuメッキにより膜厚5μmで裏面電極を形成した。
その後、フォトレジスト剥離液によりレジスト膜を除去した。
(10)リフトオフ技術に従い、まずn型InGaP窓層の表面にフォトレジスト膜を形成し、これをマスクとしてAu−Ge/Ni/Au層を膜厚0.1/0.02/0.07μmで蒸着し、フォトレジスト剥離液によりフォトレジストを除去した後、約350℃で数秒間の熱処理を行った。
引き続き、Au−Ge/Ni/Au層の表面上の受光面電極を形成しない領域をレジスト膜で覆い、Au−Ge/Ni/Au層の表面上に膜厚5μmでAuメッキを施し、n型の受光面電極を形成した。その後、フォトレジスト剥離液によりレジスト膜を除去した。
(11)その後、露出しているn型InGaP窓層の表面上に反射防止層を形成した。反射防止層は、窓層に開口するマスクを通して、ZnS/MgF2を膜厚0.055/0.09μmで蒸着して形成した。
これら一連の工程を施すことにより、GaAs太陽電池セルを完成させた。
(9) The back surface of the p-type GaAs substrate was covered with a resist film, and a back electrode was formed on the back surface of the p-type GaAs substrate with a thickness of 5 μm by Au plating.
Thereafter, the resist film was removed with a photoresist stripping solution.
(10) According to the lift-off technique, a photoresist film is first formed on the surface of the n-type InGaP window layer, and this is used as a mask to form an Au—Ge / Ni / Au layer with a film thickness of 0.1 / 0.02 / 0.07 μm. After vapor deposition and removal of the photoresist with a photoresist stripper, heat treatment was performed at about 350 ° C. for several seconds.
Subsequently, a region where the light receiving surface electrode is not formed on the surface of the Au—Ge / Ni / Au layer is covered with a resist film, and Au plating is performed on the surface of the Au—Ge / Ni / Au layer with a film thickness of 5 μm. The light receiving surface electrode was formed. Thereafter, the resist film was removed with a photoresist stripping solution.
(11) Thereafter, an antireflection layer was formed on the exposed surface of the n-type InGaP window layer. The antireflection layer was formed by depositing ZnS / MgF 2 with a film thickness of 0.055 / 0.09 μm through a mask opened in the window layer.
A GaAs solar cell was completed by performing a series of these steps.

<レンズ群の作製>
(12)レンズ群に対応した窪みを有する透明ガラススタンパに未硬化状態の紫外線硬化樹脂を満たし、それぞれのレンズに対応した窪みの開口の中心位置と、GaAs太陽電池セルの光電変換層(受光部)の中心位置が一致するように位置合わせした。このとき、透明ガラススタンパ(転写マスク)と太陽電池セルのそれぞれに予め位置あわせマークが設けられているので、高精度な位置合わせができた。そして、透明ガラススタンパ内の未硬化樹脂にGaAs太陽電池セルを密着させ、透明ガラススタンパ越しに紫外線光を照射し、紫外線硬化樹脂を硬化した後、透明ガラススタンパを剥離した。
これにより、本実施例1の太陽電池が完成した。
<Production of lens group>
(12) A transparent glass stamper having a depression corresponding to the lens group is filled with an uncured ultraviolet curable resin, the center position of the opening of the depression corresponding to each lens, and the photoelectric conversion layer (light receiving portion of the GaAs solar cell) ) Were aligned so that the center positions coincided. At this time, since the alignment mark was previously provided in each of the transparent glass stamper (transfer mask) and the solar battery cell, highly accurate alignment was achieved. Then, the GaAs solar cell was brought into close contact with the uncured resin in the transparent glass stamper, irradiated with ultraviolet light through the transparent glass stamper to cure the ultraviolet curable resin, and then the transparent glass stamper was peeled off.
Thereby, the solar cell of Example 1 was completed.

ここで作製した実施例1の太陽電池のレンズ群は、レンズが縦横に20mmピッチで規則正しく配列したものである(図2参照)。また、レンズの直径は20mmであり、そのレンズ表面は、受光部の中心位置を中心とした球面状である。
この太陽電池によれば、直径20mmの太陽光が、受光面電極の開口と同じ直径1mmの受光部に集光されるので、集光倍率は400倍となる。
The lens group of the solar cell of Example 1 produced here is one in which the lenses are regularly arranged at a pitch of 20 mm vertically and horizontally (see FIG. 2). The diameter of the lens is 20 mm, and the lens surface has a spherical shape with the center position of the light receiving portion as the center.
According to this solar cell, sunlight having a diameter of 20 mm is condensed on the light receiving portion having a diameter of 1 mm which is the same as the opening of the light receiving surface electrode, so that the light collecting magnification is 400 times.

実施例1では、集光倍率を400倍に設定したが、1000倍以上の高集光倍率も可能である。集光倍率が高いほど太陽電池の変換効率が高くなる。また、レンズを4角形状に構成した場合、集光倍率は500倍程度となる(図5参照)。また、フレネルレンズとすることも可能である。
同様の工程でInGaP/InGaAs/Geセルについて同様の太陽電池を作製することができ、シャープ技法(非特許文献1)のデータによると、本構造では電極が受光部の周りにあり抵抗ロスを考慮する必要がないため、1000倍集光で効率40%強、10000倍集光で効率45%が可能となる。
In the first embodiment, the condensing magnification is set to 400 times, but a high condensing magnification of 1000 times or more is also possible. The higher the concentration factor, the higher the conversion efficiency of the solar cell. Further, when the lens is configured in a quadrangular shape, the light collection magnification is about 500 times (see FIG. 5). It is also possible to use a Fresnel lens.
Similar solar cells can be fabricated for InGaP / InGaAs / Ge cells in the same process, and according to the data of Sharp technique (Non-Patent Document 1), the electrode is around the light-receiving part in this structure, and resistance loss is taken into account. Therefore, it is possible to achieve an efficiency of slightly over 40% at 1000 times condensing and 45% efficiency at 10,000 times condensing.

(実施例2)
図6に示す実施例2の太陽電池を以下のようにして作製した。
<Si太陽電池セルの作製>
(1)まず、厚さ0.6mm、10cm角、2Ω・cmの単結晶p型Si基板を準備した。
(2)Si基板の受光面となる一方の面に拡散防止のためのSiO2膜を常圧CVD法により0.3μmの厚さで形成した。その後、裏面となる他方の面に、BBr3ガス雰囲気で、1000℃、60分のボロン拡散を行って、厚さ1μmのBSF層を形成した。
その後、フッ酸によりSiO2膜を除去した。
次に、裏面側に同様にSiO2膜を形成した後、受光面側にPOCl3ガス雰囲気で、800℃、20分のリン拡散を行って、厚さ0.2μmのn+層を形成し、それによってp−n接合を形成した。
(Example 2)
A solar cell of Example 2 shown in FIG. 6 was produced as follows.
<Production of Si solar cells>
(1) First, a single crystal p-type Si substrate having a thickness of 0.6 mm, a 10 cm square, and 2 Ω · cm was prepared.
(2) A SiO 2 film for preventing diffusion was formed with a thickness of 0.3 μm on one surface serving as the light receiving surface of the Si substrate by atmospheric pressure CVD. Thereafter, boron diffusion was performed at 1000 ° C. for 60 minutes in a BBr 3 gas atmosphere on the other surface serving as the back surface to form a BSF layer having a thickness of 1 μm.
Thereafter, the SiO 2 film was removed with hydrofluoric acid.
Next, after similarly forming a SiO 2 film on the back side, phosphorus diffusion is performed at 800 ° C. for 20 minutes in a POCl 3 gas atmosphere on the light receiving side to form an n + layer having a thickness of 0.2 μm. Thereby forming a pn junction.

(3)受光面に酸化膜を形成し、次いで、フォトリソグラフィ及びエッチング工程により、複数の光電変換層形成領域および基板周辺部以外の酸化膜を選択的に除去して、光電変換層形成領域に半径0.5mmの円形マスクをピッチ20mmで形成した。円は0.5mmφで、20mmピッチで形成した。その後、この酸化膜をマスクとして、RIE法により深さ300μmでエッチングすることにより、マスク部分に光電変換層を形成した。
(4)800℃、10分間の熱酸化を行い、続いて、光電変換層の受光面および側面にSiO2膜を常圧CVD法により膜厚0.1μmで形成した。次に、フォトリソグラフィ及びエッチング工程により、光電変換層の頂上部の酸化膜を選択的に除去した。
(3) An oxide film is formed on the light-receiving surface, and then the oxide films other than the plurality of photoelectric conversion layer formation regions and the substrate peripheral portion are selectively removed by photolithography and etching processes to form the photoelectric conversion layer formation region. A circular mask having a radius of 0.5 mm was formed at a pitch of 20 mm. The circle was 0.5 mmφ and formed at a pitch of 20 mm. Thereafter, using this oxide film as a mask, etching was performed at a depth of 300 μm by RIE, thereby forming a photoelectric conversion layer in the mask portion.
(4) Thermal oxidation was performed at 800 ° C. for 10 minutes, and subsequently, a SiO 2 film was formed to a thickness of 0.1 μm on the light receiving surface and side surfaces of the photoelectric conversion layer by an atmospheric pressure CVD method. Next, the oxide film on the top of the photoelectric conversion layer was selectively removed by photolithography and etching processes.

(5)光電変換層周辺の凹部に、シリコーン樹脂を充填し全体を平坦化した。
(6)リフトオフ技術に従い、まず光電変換層の受光面中央部にフォトレジスト膜を形成し、これをマスクとしてTi/Pd/Ag層を0.05/0.02/5μm蒸着し、フォトレジスト剥離液によりフォトレジストとそれに付着した電極層を除去して、膜厚約5 μmの受光面電極を形成した。その後、裏面にAl/Ti/Pd/Ag層を0.15/0.05/0.02/5μm蒸着して膜厚約5μmの裏面電極を形成した。
(7)そして、光電変換層の露出している受光面に開口するマスクを通して、該受光面上に反射防止膜としてTiO2を膜厚0.05μmで蒸着した。
これら一連の工程を施すことにより、Si太陽電池セルを完成させた。
次に、実施例1と同様にSi太陽電池セルの表面にレンズ群を形成し、実施例2の太陽電池が完成した。
(5) Silicone resin was filled in the recesses around the photoelectric conversion layer to flatten the whole.
(6) According to the lift-off technique, first, a photoresist film is formed at the center of the light receiving surface of the photoelectric conversion layer, and using this as a mask, a Ti / Pd / Ag layer is deposited by 0.05 / 0.02 / 5 μm to remove the photoresist. The photoresist and the electrode layer adhering thereto were removed with a liquid to form a light-receiving surface electrode having a thickness of about 5 μm. Thereafter, an Al / Ti / Pd / Ag layer was deposited on the back surface by 0.15 / 0.05 / 0.02 / 5 μm to form a back electrode having a thickness of about 5 μm.
(7) Then, TiO 2 was deposited as an antireflection film to a thickness of 0.05 μm on the light receiving surface through a mask opened on the light receiving surface where the photoelectric conversion layer was exposed.
By performing these series of steps, a Si solar battery cell was completed.
Next, a lens group was formed on the surface of the Si solar battery cell in the same manner as in Example 1 to complete the solar battery of Example 2.

ここで作製した実施例2の太陽電池のレンズ群は、実施例1と同様に、レンズが縦横に20mmピッチで規則正しく配列したものである(図2参照)。また、レンズの直径は20mmであり、そのレンズ表面は、受光部の中心位置を中心とした球面状である。
この太陽電池によれば、直径20mmの太陽光が、受光面電極の開口と同じ直径1mmの受光部に集光されるので、集光倍率は400倍となる。
The lens group of the solar cell of Example 2 produced here is the one in which the lenses are regularly arranged at a pitch of 20 mm vertically and horizontally as in Example 1 (see FIG. 2). The diameter of the lens is 20 mm, and the lens surface has a spherical shape with the center position of the light receiving portion as the center.
According to this solar cell, sunlight having a diameter of 20 mm is condensed on the light receiving portion having a diameter of 1 mm which is the same as the opening of the light receiving surface electrode, so that the light collecting magnification is 400 times.

(実施例3)
図7に示す実施例3の太陽電池を以下のようにして作製した。
<SiGe薄膜太陽電池セルの作製>
(1)まず、厚さ0.6mm、10cm角、2Ω・cmの単結晶n型Si基板を準備した。
(2)実施例3と同様のマスクを用いた方法により、グロー放電プラズマ反応室で、SiH4 ガス、H2ガス、CH4ガスおよびPH3 ガスを導入して非晶質シリコンカーバイトn層を400Å堆積した。ガス供給を停止した後、反応室を真空排気し、SiH4 ガス、H2 ガスおよびGeH4ガスを導入して非晶質シリコンゲルマニウムi層を4000Å堆積した。ガス供給を停止した後、反応室を真空に排気し、SiH4 ガス、B26ガスおよびCH4ガスを導入して非晶質シリコンカーボンp層を0.07μm堆積した。
その後、基板をグロー放電プラズマ反応室から取り出し、スパッタ法により透明導電膜としてITOを0.08μm堆積し、その後、ステンレスマスクを取り除いた。
(Example 3)
A solar cell of Example 3 shown in FIG. 7 was produced as follows.
<Preparation of SiGe thin film solar cell>
(1) First, a single crystal n-type Si substrate having a thickness of 0.6 mm, 10 cm square, and 2 Ω · cm was prepared.
(2) An amorphous silicon carbide n-layer formed by introducing SiH 4 gas, H 2 gas, CH 4 gas and PH 3 gas in a glow discharge plasma reaction chamber by a method using a mask similar to that in Example 3. 400 liters of was deposited. After the gas supply was stopped, the reaction chamber was evacuated and SiH 4 gas, H 2 gas and GeH 4 gas were introduced to deposit 4000 nm of amorphous silicon germanium i layer. After the gas supply was stopped, the reaction chamber was evacuated and SiH 4 gas, B 2 H 6 gas and CH 4 gas were introduced to deposit 0.07 μm of amorphous silicon carbon p layer.
Thereafter, the substrate was taken out of the glow discharge plasma reaction chamber, ITO was deposited as a transparent conductive film by sputtering to 0.08 μm, and then the stainless steel mask was removed.

(3)次いで、フォトリソグラフィ工程により、透明導電膜上の中央部および周囲部の一部にフォトレジスト膜を形成し、裏面電極上、光電変換層の側面および最外周部にSiO2膜を常圧CVD法により0.1μm形成した。その後、レジスト剥離液を用いて、フォトレジスト膜をその上部のSiO2膜と共に除去した。
(4)次いで、フォトリソグラフィ工程により、透明導電膜上の受光部である中央部に(SiO2膜との間に隙間をもって)フォトレジスト膜を形成し、Al膜をスパッタ法により1μm堆積することにより受光面電極を形成した。その後、レジスト剥離液により、フォトレジストをその上部のAl膜と共に除去し、受光部を露出させた。
これら一連の工程を施すことにより、実施例3のSiGe薄膜太陽電池セルを完成させた。
次に、実施例1と同様にSiGe薄膜太陽電池セルの表面にレンズ群を形成し、本実施例3の太陽電池が完成した。
(3) Next, by a photolithography process, a photoresist film is formed on the central portion and a part of the peripheral portion on the transparent conductive film, and an SiO 2 film is usually formed on the back electrode, on the side surface and the outermost peripheral portion of the photoelectric conversion layer. A thickness of 0.1 μm was formed by pressure CVD. Thereafter, the photoresist film was removed together with the SiO 2 film thereon using a resist stripping solution.
(4) Next, a photolithography process is performed to form a photoresist film (with a gap between the SiO 2 film) in the central portion which is a light receiving portion on the transparent conductive film, and an Al film is deposited by sputtering to a thickness of 1 μm. The light receiving surface electrode was formed by the above. Thereafter, the photoresist was removed together with the Al film on the upper portion thereof with a resist stripping solution to expose the light receiving portion.
By performing these series of steps, the SiGe thin film solar cell of Example 3 was completed.
Next, as in Example 1, a lens group was formed on the surface of the SiGe thin film solar cell, and the solar cell of Example 3 was completed.

ここで作製した実施例3の太陽電池のレンズ群は、実施例1と同様に、レンズが縦横に20mmピッチで規則正しく配列したものである(図2参照)。また、レンズの直径は20mmであり、そのレンズ表面は、受光部の中心位置を中心とした球面状である。
この太陽電池によれば、直径20mmの太陽光が、受光面電極の開口と同じ直径1mmの受光部に集光されるので、集光倍率は400倍となる。
The lens group of the solar cell of Example 3 produced here is one in which lenses are regularly arranged at a pitch of 20 mm vertically and horizontally as in Example 1 (see FIG. 2). The diameter of the lens is 20 mm, and the lens surface has a spherical shape with the center position of the light receiving portion as the center.
According to this solar cell, sunlight having a diameter of 20 mm is condensed on the light receiving portion having a diameter of 1 mm which is the same as the opening of the light receiving surface electrode, so that the light collecting magnification is 400 times.

(実施例4)
図8に示す実施例4の太陽電池を以下のようにして作製した。
<Si薄膜太陽電池セルの作製>
(1)表面を研磨した厚さ1mm、15cm角のセラミック基板に、常圧CVD法により、SiO2膜を0.3μm堆積し、表面を平坦化した。その後、SiO2膜上にスパッタ法により銀を1μm堆積して裏面電極を形成した。
(2)光電変換層形成領域に円形に開口するステンレスマスクを用いて裏面電極上を覆った。このマスクは、開口の半径が0.5mmであり、開口が20mmピッチで複数形成されている。次に、マスクをセットした基板をグロー放電プラズマ反応室に入れ、SiH4 ガス、H2ガスおよびPH3 ガスを導入して非晶質シリコンn層を400Å堆積した。ガス供給を停止した後、反応室を真空排気し、SiH4 ガスとH2 ガスを導入して非晶質シリコンi層を0.4μm堆積した。ガス供給を停止した後、反応室を真空に排気し、SiH4 ガス、B26ガスおよびCH4ガスを導入して非晶質シリコンカーボンp層を0.07μm堆積した。その後、基板をグロー放電プラズマ反応室から取り出し、スパッタ法によりITOを0.08μm堆積して透明導電膜を形成し、ステンレスマスクを取り除いた。
Example 4
A solar cell of Example 4 shown in FIG. 8 was produced as follows.
<Preparation of Si thin film solar cell>
(1) An SiO 2 film of 0.3 μm was deposited on a 1 mm thick, 15 cm square ceramic substrate having a polished surface by an atmospheric pressure CVD method to flatten the surface. Thereafter, 1 μm of silver was deposited on the SiO 2 film by sputtering to form a back electrode.
(2) The back electrode was covered with a stainless steel mask opening in a circular shape in the photoelectric conversion layer formation region. This mask has an opening radius of 0.5 mm and a plurality of openings formed at a pitch of 20 mm. Next, the substrate on which the mask was set was placed in a glow discharge plasma reaction chamber, and SiH 4 gas, H 2 gas and PH 3 gas were introduced to deposit 400 nm of amorphous silicon n layer. After the gas supply was stopped, the reaction chamber was evacuated, SiH 4 gas and H 2 gas were introduced, and an amorphous silicon i layer was deposited by 0.4 μm. After the gas supply was stopped, the reaction chamber was evacuated and SiH 4 gas, B 2 H 6 gas and CH 4 gas were introduced to deposit 0.07 μm of amorphous silicon carbon p layer. Thereafter, the substrate was taken out from the glow discharge plasma reaction chamber, ITO was deposited by sputtering to 0.08 μm to form a transparent conductive film, and the stainless steel mask was removed.

(3)次いで、フォトリソグラフィ工程により、透明導電膜上の中央部および周囲部の一部にフォトレジスト膜を形成し、裏面電極上、光電変換層の側面および最外周部にSiO2膜を常圧CVD法により0.1μm形成した。その後、レジスト剥離液を用いて、フォトレジスト膜をその上部のSiO2膜と共に除去した。
(4)次いで、フォトリソグラフィ工程により、透明導電膜上の受光部である中央部に(SiO2膜との間に隙間をもって)フォトレジスト膜を形成し、Al膜をスパッタ法により1μm堆積することにより受光面電極を形成した。その後、レジスト剥離液により、フォトレジストをその上部のAl膜と共に除去し、受光部を露出させた。
これら一連の工程を施すことにより、実施例4のSi薄膜太陽電池セルを完成させた。
次に、実施例1と同様にSi薄膜太陽電池セルの表面にレンズ群を形成し、本実施例4の太陽電池が完成した。
(3) Next, by a photolithography process, a photoresist film is formed on the central portion and a part of the peripheral portion on the transparent conductive film, and an SiO 2 film is usually formed on the back electrode, on the side surface and the outermost peripheral portion of the photoelectric conversion layer. A thickness of 0.1 μm was formed by pressure CVD. Thereafter, the photoresist film was removed together with the SiO 2 film thereon using a resist stripping solution.
(4) Next, a photolithography process is performed to form a photoresist film (with a gap between the SiO 2 film) in the central portion which is a light receiving portion on the transparent conductive film, and an Al film is deposited by sputtering to a thickness of 1 μm. The light receiving surface electrode was formed by the above. Thereafter, the photoresist was removed together with the Al film on the upper portion thereof with a resist stripping solution to expose the light receiving portion.
By performing these series of steps, the Si thin-film solar battery of Example 4 was completed.
Next, as in Example 1, a lens group was formed on the surface of the Si thin-film solar cell, and the solar cell of Example 4 was completed.

ここで作製した実施例4の太陽電池のレンズ群は、実施例1と同様に、レンズが縦横に20mmピッチで規則正しく配列したものである(図2参照)。また、レンズの直径は20mmであり、そのレンズ表面は、受光部の中心位置を中心とした球面状である。
この太陽電池によれば、直径20mmの太陽光が、受光面電極の開口と同じ直径1mmの受光部に集光されるので、集光倍率は400倍となる。
The lens group of the solar cell of Example 4 produced here is the one in which the lenses are regularly arranged at a pitch of 20 mm vertically and horizontally as in Example 1 (see FIG. 2). The diameter of the lens is 20 mm, and the lens surface has a spherical shape with the center position of the light receiving portion as the center.
According to this solar cell, sunlight having a diameter of 20 mm is condensed on the light receiving portion having a diameter of 1 mm which is the same as the opening of the light receiving surface electrode, so that the light collecting magnification is 400 times.

本発明の実施形態1の太陽電池を示す概略断面図である。It is a schematic sectional drawing which shows the solar cell of Embodiment 1 of this invention. (a)は実施形態1の太陽電池の受光面を示す平面図、(b)は正面図、(c)は側面図である。(A) is a top view which shows the light-receiving surface of the solar cell of Embodiment 1, (b) is a front view, (c) is a side view. レンズ群を省略した実施形態1の太陽電池セルの受光面を示す平面図である。It is a top view which shows the light-receiving surface of the photovoltaic cell of Embodiment 1 which abbreviate | omitted the lens group. 実施形態1の太陽電池の裏面を示す底面図である。4 is a bottom view showing the back surface of the solar cell of Embodiment 1. FIG. 本発明における別のレンズ群を示す平面図である。It is a top view which shows another lens group in this invention. 本発明の実施形態2の太陽電池を示す概略断面図である。It is a schematic sectional drawing which shows the solar cell of Embodiment 2 of this invention. 本発明の実施形態3の太陽電池を示す概略断面図である。It is a schematic sectional drawing which shows the solar cell of Embodiment 3 of this invention. 本発明の実施形態4の太陽電池を示す概略断面図である。It is a schematic sectional drawing which shows the solar cell of Embodiment 4 of this invention.

符号の説明Explanation of symbols

11 太陽電池セル(化合物半導体太陽電池セル)
12 半導体基板(p型GaAs基板)
13、23、33、43 光電変換層
13a p型GaAsバッファ層
13b p型InGaP−BSF層
13c p型GaAsベース層
13d n型GaAsエミッタ層
13e n型InGaP窓層
14 n型GaAsコンタクト層
15、25 反射防止膜
16 分離溝
17 再結合防止層(i型InGaP層)
18、28、38、48 受光面電極
19、29、39、49 裏面電極
21 太陽電池セル(結晶系シリコン太陽電池セル)
22 半導体基板(p型Si基板)
23a p層
23b n+層
23c BSF層
26 充填層(シリコーン樹脂)
27、37、47 再結合防止層(SiO2層)
31 太陽電池セル(非晶質SiGe層含有太陽電池セル)
32 半導体基板(Si基板)
33a n型SiC層
33b i型SiGe層
33c p型SiC層
34、44 透明導電膜(ITO膜)
41 太陽電池セル
42 基板(セラミック基板)
43a n型a−Si層
43b i型a−Si層
43c p型a−Si:C層
45 SiO2
11 Solar cell (compound semiconductor solar cell)
12 Semiconductor substrate (p-type GaAs substrate)
13, 23, 33, 43 Photoelectric conversion layer 13a p-type GaAs buffer layer 13b p-type InGaP-BSF layer 13c p-type GaAs base layer 13d n-type GaAs emitter layer 13e n-type InGaP window layer 14 n-type GaAs contact layer 15, 25 Antireflection film 16 Separation groove 17 Recombination prevention layer (i-type InGaP layer)
18, 28, 38, 48 Light-receiving surface electrode 19, 29, 39, 49 Back electrode 21 Solar cell (crystalline silicon solar cell)
22 Semiconductor substrate (p-type Si substrate)
23a p layer 23b n + layer 23c BSF layer 26 Filling layer (silicone resin)
27, 37, 47 Recombination prevention layer (SiO 2 layer)
31 Solar cell (Amorphous SiGe layer-containing solar cell)
32 Semiconductor substrate (Si substrate)
33a n-type SiC layer 33b i-type SiGe layer 33c p-type SiC layer 34, 44 Transparent conductive film (ITO film)
41 Solar cell 42 Substrate (ceramic substrate)
43a n-type a-Si layer 43b i-type a-Si layer 43c p-type a-Si: C layer 45 SiO 2 layer

Claims (11)

半導体基板上に平面方向に複数形成された光電変換層を有すると共に、前記光電変換層の受光面側および裏面側に形成された受光面電極および裏面電極を有する太陽電池セルと、前記太陽電池セルの受光面側にかつ前記複数の光電変換層に対応する位置に形成されたレンズ群とを備えたことを特徴とする太陽電池。   A solar cell having a plurality of photoelectric conversion layers formed in a planar direction on a semiconductor substrate and having a light receiving surface electrode and a back electrode formed on a light receiving surface side and a back surface side of the photoelectric conversion layer, and the solar cell And a lens group formed at a position corresponding to the plurality of photoelectric conversion layers. 基板上に平面方向に複数形成された光電変換層を有すると共に、前記光電変換層の受光面側および裏面側に形成された受光面電極および裏面電極を有する太陽電池セルと、前記太陽電池セルの受光面側にかつ前記複数の光電変換層に対応する位置に形成されたレンズ群とを備え、
前記受光面電極が、各光電変換層の受光面の周囲部に接触しかつ受光面の中央部を開口するように形成されたことを特徴とする太陽電池。
A photovoltaic cell having a plurality of photoelectric conversion layers formed in a planar direction on a substrate, and having a light receiving surface electrode and a back electrode formed on a light receiving surface side and a back surface side of the photoelectric conversion layer; and A lens group formed on a light receiving surface side and at a position corresponding to the plurality of photoelectric conversion layers,
The solar cell, wherein the light receiving surface electrode is formed so as to contact a peripheral portion of the light receiving surface of each photoelectric conversion layer and to open a central portion of the light receiving surface.
前記複数の光電変換層は微小突起状に分散して形成され、各光電変換層の間に分離溝が形成されている請求項1または2に記載の太陽電池。   The solar cell according to claim 1 or 2, wherein the plurality of photoelectric conversion layers are formed to be dispersed in the form of minute protrusions, and separation grooves are formed between the photoelectric conversion layers. 前記光電変換層の平面方向の幅が100〜2000μmであり、隣接する2つの光電変換層の間における前記分離溝の平面方向の幅が10〜50mmである請求項3に記載の太陽電池。   4. The solar cell according to claim 3, wherein a width of the photoelectric conversion layer in a planar direction is 100 to 2000 μm, and a width of the separation groove in a planar direction between two adjacent photoelectric conversion layers is 10 to 50 mm. 前記分離溝の内面に再結合防止層が形成された請求項3または4に記載の太陽電池。   The solar cell according to claim 3 or 4, wherein a recombination prevention layer is formed on an inner surface of the separation groove. 前記複数の光電変換層は微小突起状に分散して形成され、各光電変換層の間に分離溝が形成され、前記分離溝の内面に再結合防止層が形成され、光電変換層はIII−V族化合物半導体層であり、前記再結合防止層は前記半導体層よりバンドギャップの広いIII−V族化合物半導体層である請求項1に記載の太陽電池。   The plurality of photoelectric conversion layers are formed to be dispersed in the form of minute protrusions, separation grooves are formed between the photoelectric conversion layers, a recombination prevention layer is formed on the inner surface of the separation grooves, and the photoelectric conversion layer is III- 2. The solar cell according to claim 1, wherein the solar cell is a group V compound semiconductor layer, and the recombination preventing layer is a group III-V compound semiconductor layer having a wider band gap than the semiconductor layer. 前記複数の光電変換層は微小突起状に分散して形成され、各光電変換層の間に分離溝が形成され、前記分離溝の内面に再結合防止層が形成され、光電変換層は結晶シリコン層であり、前記再結合防止層は絶縁物層である請求項1に記載の太陽電池。   The plurality of photoelectric conversion layers are formed by being dispersed in the form of minute protrusions, separation grooves are formed between the photoelectric conversion layers, a recombination prevention layer is formed on the inner surface of the separation grooves, and the photoelectric conversion layer is made of crystalline silicon. The solar cell according to claim 1, wherein the recombination preventing layer is an insulating layer. 前記複数の光電変換層は微小突起状に分散して形成され、各光電変換層の間に分離溝が形成され、前記分離溝の内面に再結合防止層が形成され、光電変換層は非晶質シリコンゲルマン層を含み、前記再結合防止層は絶縁物層である請求項1に記載の太陽電池。   The plurality of photoelectric conversion layers are formed to be dispersed in the form of minute protrusions, separation grooves are formed between the photoelectric conversion layers, a recombination prevention layer is formed on the inner surface of the separation grooves, and the photoelectric conversion layers are amorphous. The solar cell according to claim 1, further comprising a porous silicon germane layer, wherein the recombination prevention layer is an insulator layer. 前記複数の光電変換層は微小突起状に分散して形成され、各光電変換層の間に分離溝が形成され、前記分離溝の内面に再結合防止層が形成され、前記光電変換層は非晶質シリコン層または微結晶シリコン層であり、前記再結合防止層は絶縁物層である請求項1に記載の太陽電池。   The plurality of photoelectric conversion layers are formed to be dispersed in the form of minute protrusions, separation grooves are formed between the photoelectric conversion layers, a recombination prevention layer is formed on the inner surface of the separation grooves, and the photoelectric conversion layer is non-coated. The solar cell according to claim 1, wherein the solar cell is a crystalline silicon layer or a microcrystalline silicon layer, and the recombination prevention layer is an insulator layer. 前記絶縁物層は、酸化シリコンまたは窒化シリコンである請求項7〜9のいずれか1つに記載の太陽電池。   The solar cell according to claim 7, wherein the insulator layer is silicon oxide or silicon nitride. 前記レンズ群が紫外線硬化樹脂からなる請求項1〜10のいずれか1つに記載の太陽電池。   The solar cell according to claim 1, wherein the lens group is made of an ultraviolet curable resin.
JP2006309174A 2006-11-15 2006-11-15 Solar battery Pending JP2008124381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006309174A JP2008124381A (en) 2006-11-15 2006-11-15 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006309174A JP2008124381A (en) 2006-11-15 2006-11-15 Solar battery

Publications (1)

Publication Number Publication Date
JP2008124381A true JP2008124381A (en) 2008-05-29

Family

ID=39508788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006309174A Pending JP2008124381A (en) 2006-11-15 2006-11-15 Solar battery

Country Status (1)

Country Link
JP (1) JP2008124381A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140371A1 (en) * 2009-06-05 2010-12-09 住友化学株式会社 Semiconductor substrate, photoelectric conversion device, method for manufacturing semiconductor substrate, and method for manufacturing photoelectric conversion device
JP2010278148A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Photovoltaic apparatus and method of manufacturing the same
JP2011029464A (en) * 2009-07-27 2011-02-10 Kobe Univ Quantum dot solar cell
FR2961022A1 (en) * 2010-06-02 2011-12-09 Centre Nat Rech Scient PHOTOVOLTAIC CELL FOR APPLICATION UNDER CONCENTRATED SOLAR FLUX
KR101130418B1 (en) 2010-11-12 2012-03-27 한국광기술원 Solar cell module having lens and method for fabricating the same
WO2012147141A1 (en) * 2011-04-27 2012-11-01 パナソニック株式会社 Method for generating power using solar battery
US8404964B2 (en) 2009-02-04 2013-03-26 Empire Technology Development Llc Variable light condensing lens apparatus and solar cell apparatus
JP2013517626A (en) * 2010-01-13 2013-05-16 インターナショナル・ビジネス・マシーンズ・コーポレーション Multi-point cooling system for solar concentrator
JP2013526049A (en) * 2010-04-26 2013-06-20 イーデーエフ・イーエヌアール・ピーダブリュティー Method for producing n + pp + type or p + nn + type structure on silicon wafer
WO2013105488A1 (en) * 2012-01-11 2013-07-18 パナソニック株式会社 Solar cell element
JP2013173565A (en) * 2012-01-24 2013-09-05 Kyoritsu Elex Co Ltd Package, package assembly, and packaging method
JP2013207079A (en) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd Concentrating solar power generation panel and concentrating solar power generation apparatus
WO2013153775A1 (en) * 2012-04-12 2013-10-17 パナソニック株式会社 Solar cell and method for generating power using solar cell
US8604338B2 (en) 2011-03-24 2013-12-10 Panasonic Corporation Solar cell
WO2014024554A1 (en) * 2012-08-09 2014-02-13 ソニー株式会社 Light receiving/emitting element, solar cell, optical sensor, light emitting diode and surface emitting laser element
KR101386058B1 (en) 2010-07-15 2014-04-17 한국전자통신연구원 Photovoltaic device
US8993871B2 (en) 2011-07-15 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Condensing lens array, and solar cell provided with same
US9057539B2 (en) 2009-11-20 2015-06-16 International Business Machines Corporation Method of tracking and collecting solar energy
AU2015230723B2 (en) * 2010-06-02 2017-08-24 Centre National De La Recherche Scientifique - Cnrs Photovoltaic component for use under concentrated solar flux
US9865786B2 (en) 2012-06-22 2018-01-09 Soitec Method of manufacturing structures of LEDs or solar cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638110A (en) * 1985-06-13 1987-01-20 Illuminated Data, Inc. Methods and apparatus relating to photovoltaic semiconductor devices
JPH0194677A (en) * 1987-10-06 1989-04-13 Daido Steel Co Ltd Semiconductor device
US4834805A (en) * 1987-09-24 1989-05-30 Wattsun, Inc. Photovoltaic power modules and methods for making same
US5098482A (en) * 1990-11-07 1992-03-24 Solarex Corporation Vertical junction solar cell
JP2003529938A (en) * 2000-03-30 2003-10-07 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing a solar module having integrated thin-film solar cells connected in series and a solar module produced by the method, in particular using a concentrator module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638110A (en) * 1985-06-13 1987-01-20 Illuminated Data, Inc. Methods and apparatus relating to photovoltaic semiconductor devices
US4834805A (en) * 1987-09-24 1989-05-30 Wattsun, Inc. Photovoltaic power modules and methods for making same
JPH0194677A (en) * 1987-10-06 1989-04-13 Daido Steel Co Ltd Semiconductor device
US5098482A (en) * 1990-11-07 1992-03-24 Solarex Corporation Vertical junction solar cell
JP2003529938A (en) * 2000-03-30 2003-10-07 ハーン−マイトネル−インスチツート ベルリン ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing a solar module having integrated thin-film solar cells connected in series and a solar module produced by the method, in particular using a concentrator module

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404964B2 (en) 2009-02-04 2013-03-26 Empire Technology Development Llc Variable light condensing lens apparatus and solar cell apparatus
JP2010278148A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Photovoltaic apparatus and method of manufacturing the same
JP2011014897A (en) * 2009-06-05 2011-01-20 Sumitomo Chemical Co Ltd Semiconductor substrate, photoelectric conversion device, method of manufacturing the semiconductor substrate, and method of manufacturing the photoelectric conversion device
KR101643021B1 (en) * 2009-06-05 2016-07-26 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Semiconductor substrate, photoelectric conversion device, method for manufacturing semiconductor substrate, and method for manufacturing photoelectric conversion device
US8835980B2 (en) 2009-06-05 2014-09-16 National Institute Of Advanced Industrial Science And Technology Semiconductor wafer, photoelectric conversion device, method of producing semiconductor wafer, and method of producing photoelectric conversion device
KR20120018143A (en) * 2009-06-05 2012-02-29 스미또모 가가꾸 가부시키가이샤 Semiconductor substrate, photoelectric conversion device, method for manufacturing semiconductor substrate, and method for manufacturing photoelectric conversion device
WO2010140371A1 (en) * 2009-06-05 2010-12-09 住友化学株式会社 Semiconductor substrate, photoelectric conversion device, method for manufacturing semiconductor substrate, and method for manufacturing photoelectric conversion device
JP2011029464A (en) * 2009-07-27 2011-02-10 Kobe Univ Quantum dot solar cell
US9057539B2 (en) 2009-11-20 2015-06-16 International Business Machines Corporation Method of tracking and collecting solar energy
US9127859B2 (en) 2010-01-13 2015-09-08 International Business Machines Corporation Multi-point cooling system for a solar concentrator
US9157657B2 (en) 2010-01-13 2015-10-13 International Business Machines Corporation Method of cooling a solar concentrator
JP2013517626A (en) * 2010-01-13 2013-05-16 インターナショナル・ビジネス・マシーンズ・コーポレーション Multi-point cooling system for solar concentrator
JP2013526049A (en) * 2010-04-26 2013-06-20 イーデーエフ・イーエヌアール・ピーダブリュティー Method for producing n + pp + type or p + nn + type structure on silicon wafer
CN103038885A (en) * 2010-06-02 2013-04-10 国立科学研究中心 Photovoltaic component for use under concentrated solar flux
JP2013527623A (en) * 2010-06-02 2013-06-27 セントレ ナショナル デ ラ ルシェルシェ サイエンティフィック−シーエヌアールエス Photovoltaic components used under a concentrated solar bundle
AU2015230723B2 (en) * 2010-06-02 2017-08-24 Centre National De La Recherche Scientifique - Cnrs Photovoltaic component for use under concentrated solar flux
WO2011151338A3 (en) * 2010-06-02 2012-09-13 Centre National De La Recherche Scientifique - Cnrs Photovoltaic component for use under concentrated solar flux
FR2961022A1 (en) * 2010-06-02 2011-12-09 Centre Nat Rech Scient PHOTOVOLTAIC CELL FOR APPLICATION UNDER CONCENTRATED SOLAR FLUX
KR101386058B1 (en) 2010-07-15 2014-04-17 한국전자통신연구원 Photovoltaic device
KR101130418B1 (en) 2010-11-12 2012-03-27 한국광기술원 Solar cell module having lens and method for fabricating the same
US8604338B2 (en) 2011-03-24 2013-12-10 Panasonic Corporation Solar cell
US8404513B2 (en) 2011-04-27 2013-03-26 Panasonic Corporation Solar cell
JP5136730B2 (en) * 2011-04-27 2013-02-06 パナソニック株式会社 Method for generating power using solar cells
WO2012147141A1 (en) * 2011-04-27 2012-11-01 パナソニック株式会社 Method for generating power using solar battery
US8993871B2 (en) 2011-07-15 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Condensing lens array, and solar cell provided with same
US8941004B2 (en) 2012-01-11 2015-01-27 Panasonic Intellectual Property Management Co., Ltd. Solar cell element
JP5333703B1 (en) * 2012-01-11 2013-11-06 パナソニック株式会社 Solar cell element
WO2013105488A1 (en) * 2012-01-11 2013-07-18 パナソニック株式会社 Solar cell element
JP2013173565A (en) * 2012-01-24 2013-09-05 Kyoritsu Elex Co Ltd Package, package assembly, and packaging method
JP2013207079A (en) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd Concentrating solar power generation panel and concentrating solar power generation apparatus
JP5404979B1 (en) * 2012-04-12 2014-02-05 パナソニック株式会社 Solar cell and method of generating electric power using solar cell
WO2013153775A1 (en) * 2012-04-12 2013-10-17 パナソニック株式会社 Solar cell and method for generating power using solar cell
US9941437B2 (en) 2012-04-12 2018-04-10 Panasonic Intellectual Property Management Co., Ltd. Solar cell
US9865786B2 (en) 2012-06-22 2018-01-09 Soitec Method of manufacturing structures of LEDs or solar cells
WO2014024554A1 (en) * 2012-08-09 2014-02-13 ソニー株式会社 Light receiving/emitting element, solar cell, optical sensor, light emitting diode and surface emitting laser element
JPWO2014024554A1 (en) * 2012-08-09 2016-07-25 ソニー株式会社 Light receiving or light emitting element, solar cell, light sensor, light emitting diode, and surface emitting laser element
US10903376B2 (en) 2012-08-09 2021-01-26 Sony Corporation Light receiving/emitting element, solar cell, optical sensor, light emitting diode, and surface emitting laser element

Similar Documents

Publication Publication Date Title
JP2008124381A (en) Solar battery
US7737357B2 (en) Solar cell having doped semiconductor heterojunction contacts
US7847180B2 (en) Nanostructure and photovoltaic cell implementing same
US20070169808A1 (en) Solar cell
US8163589B2 (en) Active layer for solar cell and the manufacturing method making the same
US20100229928A1 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
JP2010537423A (en) Heterogeneous junction silicon solar cell and manufacturing method thereof
US20120042946A1 (en) Solar cell equipped with electrode having mesh structure, and process for manufacturing same
JP2014075526A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
JP7126444B2 (en) Photovoltaic device and manufacturing method thereof
TWI424582B (en) Method of fabricating solar cell
KR100908711B1 (en) Thin Film Silicon Solar Cells
KR102547804B1 (en) Bifacial silicon solar cell and method for manufacturing the same
KR101179365B1 (en) Front and Back contact electric field solar cell and method thereof
KR100741306B1 (en) High efficiency solar cells and manufacturing method the same
US8921686B2 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
EP2717327A2 (en) Solar cell and method for manufacturing same
KR20150090607A (en) Solar cell and manufacturing method thereof
KR101484620B1 (en) Silicon solar cell
JP2014072209A (en) Photoelectric conversion element and photoelectric conversion element manufacturing method
JP2003046103A (en) Thin film solar battery and method for installing the same
WO2017067413A1 (en) Solar cell, manufacturing method therefor and solar cell array assembled thereof
JP2018531522A6 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL PACK COMPRISING THE SAME
US20120167975A1 (en) Solar Cell And Method For Manufacturing The Same
KR101734567B1 (en) Solar Cell and Method of Fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308