JP2008123814A - Lithium secondary battery and its manufacturing method - Google Patents

Lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2008123814A
JP2008123814A JP2006305795A JP2006305795A JP2008123814A JP 2008123814 A JP2008123814 A JP 2008123814A JP 2006305795 A JP2006305795 A JP 2006305795A JP 2006305795 A JP2006305795 A JP 2006305795A JP 2008123814 A JP2008123814 A JP 2008123814A
Authority
JP
Japan
Prior art keywords
active material
lithium secondary
secondary battery
material particles
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006305795A
Other languages
Japanese (ja)
Inventor
Mariko Torimae
真理子 鳥前
Yasuyuki Kusumoto
靖幸 樟本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006305795A priority Critical patent/JP2008123814A/en
Publication of JP2008123814A publication Critical patent/JP2008123814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery, and its manufacturing method, excellent in charge and discharge characteristics using active material particles containing silicon as an anode active material and polyimide resin as a binder. <P>SOLUTION: In the lithium secondary battery A1 provided with an anode 4a with a mixture layer containing an active material particles containing silicon and a binder arranged on the surface of a collector made of conductive metal foils, a cathode 3a, and nonaqueous electrolyte, the active material particle consists of an amorphous matter with a half-value width of 4° or more when it has a peak in X-ray diffraction using CuKα, and the binder contains polyimide resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、充放電特性に優れたリチウム二次電池及びその製造方法に関し、特に負極活物質としてケイ素を含む活物質粒子を用い、バインダーとしてポリイミド樹脂を用いた充放電特性に優れたリチウム二次電池及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a lithium secondary battery excellent in charge / discharge characteristics and a method for producing the same, and in particular, an active material particle containing silicon as a negative electrode active material and a lithium secondary excellent in charge / discharge characteristics using a polyimide resin as a binder. The present invention relates to a battery and a manufacturing method thereof.

近年、携帯電話機、ノート型パーソナルコンピュータ、PDA、携帯型デジタルメディアプレイヤー等の移動・携帯型電子機器が数多く登場しており、その駆動電源としての電池はこれらの機器の高機能化、小型化及び軽量化の要請から更なる高容量化が望まれている。また、これらの電池は、特に経済性の観点から繰り返し何度も使用できる二次電池であることが極めて重要である。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム二次電池が注目され、このリチウム二次電池の占める割合は二次電池市場において大きな伸びを示している。   In recent years, a large number of mobile and portable electronic devices such as mobile phones, notebook personal computers, PDAs, and portable digital media players have appeared, and the battery as a driving power source has been improved in function, size and size of these devices. Due to the demand for weight reduction, further increase in capacity is desired. In addition, it is extremely important that these batteries are secondary batteries that can be used repeatedly many times from the viewpoint of economy. In the field of secondary batteries, lithium secondary batteries having a higher energy density than other batteries have attracted attention, and the proportion of the lithium secondary batteries has greatly increased in the secondary battery market.

このようなリチウム二次電池は一般的には以下のようにして作製されている。すなわち、細長いシート状の銅箔等からなる導電性金属箔からなる集電体の両面に負極活物質を含有する負極合剤を塗布した負極と、細長いシート状のアルミニウム箔等からなる正極集電体の両面に正極活物質を含有する正極合剤を塗布した正極との間に、微多孔性ポリエチレンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状の巻き芯に渦巻状に巻回して、円筒形の巻回電極体を作製する。角形の場合は更にこの円筒形の巻回電極体をプレス機で押し潰して角形の電池外装体に挿入できるような形に成型する。次いで、これらの円筒形の巻回電極体ないし角形の巻回電極体をそれぞれ対応する電池外装体内に収容し、非水電解質を注入してリチウム二次電池としている。   Such a lithium secondary battery is generally manufactured as follows. That is, a negative electrode in which a negative electrode mixture containing a negative electrode active material is applied to both sides of a current collector made of a conductive metal foil made of a long sheet-like copper foil, and a positive current collector made of a long, thin sheet-like aluminum foil A separator made of a microporous polyethylene film or the like is placed between the positive electrode coated with a positive electrode mixture containing a positive electrode active material on both sides of the body, and the cylindrical winding is performed with the negative electrode and the positive electrode insulated from each other by the separator. A cylindrical wound electrode body is produced by spirally winding the core. In the case of a rectangular shape, the cylindrical wound electrode body is further crushed with a press machine so as to be inserted into a rectangular battery outer body. Next, these cylindrical wound electrode bodies or rectangular wound electrode bodies are accommodated in the corresponding battery casings, respectively, and a nonaqueous electrolyte is injected into a lithium secondary battery.

このような非水電解質二次電池における正極活物質としてしては、リチウムイオンを可逆的に吸蔵・放出することが可能な化合物、例えばLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)、LiFePOなどが一種単独もしくは複数種を混合して用いられている。 As a positive electrode active material in such a non-aqueous electrolyte secondary battery, a compound capable of reversibly occluding and releasing lithium ions, for example, Li x MO 2 (where M is Co, Ni, or Mn). A lithium transition metal composite oxide represented by at least one), that is, LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z = 1), LiFePO 4 or the like is used singly or in combination.

また、このリチウム二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料がリチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることから広く用いられている。しかしながら、炭素材料からなる負極活物質を用いた場合には、LiCの組成までしかリチウムを挿入できず、理論容量372mAh/gが限度であるため、電池の高容量化への障害となっている。 In addition, as a negative electrode active material used for this lithium secondary battery, dendrites can grow while carbonaceous materials such as graphite and amorphous carbon have discharge potentials comparable to lithium metals and lithium alloys. Therefore, it is widely used because it has excellent properties such as high safety, excellent initial efficiency, good potential flatness, and high density. However, when a negative electrode active material made of a carbon material is used, lithium can only be inserted up to the composition of LiC 6 and the theoretical capacity is 372 mAh / g, which is an obstacle to increasing the capacity of the battery. Yes.

そこで、質量当たり及び体積当たりのエネルギー密度が高い負極活物質として、リチウムと合金化するアルミニウム、ケイ素、スズ等を用いるリチウム二次電池が開発されている(下記特許文献1〜7参照)。この場合、例えばケイ素及びスズは、それぞれLi4.4Si及びLi4.4Snの組成までLiを挿入できるため、理論容量がそれぞれ4200mAh/g及び993mAh/gとなり、負極活物質として炭素材料を用いた場合よりも遙かに大きな容量を期待し得る。しかしながら、特に負極活物質としてケイ素粒子、ケイ素合金粒子等を用いた場合には、充放電サイクルに伴って負極活物質の膨張収縮が起こるため、負極活物質が微粉化を起こしたり導電性ネットワークから欠け落ちたりする結果、電池のサイクル特性が低下する問題を生じていた。 Accordingly, lithium secondary batteries using aluminum, silicon, tin, or the like alloyed with lithium have been developed as negative electrode active materials having high energy density per mass and volume (see Patent Documents 1 to 7 below). In this case, for example, silicon and tin can insert Li up to compositions of Li 4.4 Si and Li 4.4 Sn, respectively, so that the theoretical capacities are 4200 mAh / g and 993 mAh / g, respectively, and a carbon material is used as the negative electrode active material. A much larger capacity can be expected than when it is used. However, particularly when silicon particles, silicon alloy particles, and the like are used as the negative electrode active material, the negative electrode active material expands and contracts with the charge / discharge cycle. As a result of chipping off, there has been a problem that the cycle characteristics of the battery deteriorate.

このような問題点を解決するために、ケイ素ないしケイ素合金等からなる負極活物質の体積変化時にも維持できる電極構造の構築に着目してサイクル特性の劣化を抑制するために、強度の強いポリイミド樹脂をバインダーとして用いたり(下記特許文献2参照)、表面粗さの大きい集電体を用いたりするもの(下記特許文献3参照)が開発されてきた。   In order to solve such problems, a strong polyimide is used to suppress deterioration of cycle characteristics by focusing on the construction of an electrode structure that can be maintained even when the volume of the negative electrode active material made of silicon or silicon alloy is changed. A resin using a resin as a binder (see Patent Document 2 below) or a current collector having a large surface roughness (see Patent Document 3 below) has been developed.

また、非水電解質を改良することによりケイ素ないしケイ素合金等からなる負極活物質の新生面における反応性を抑制するような提案(下記特許文献4参照)や、結晶子サイズの小さなケイ素ないしケイ素合金等からなる負極活物質を用いることによりサイクル特性を改善する提案(下記特許文献5及び6参照)、更には、非晶質のケイ素薄膜を柱状に集電体上に形成して体積膨張の方向を制御することによりサイクル特性を改善するような手法(下記特許文献7参照)も提案されている。   In addition, a proposal to suppress the reactivity on the new surface of the negative electrode active material made of silicon or silicon alloy by improving the nonaqueous electrolyte (see Patent Document 4 below), silicon or silicon alloy having a small crystallite size, etc. Proposals for improving cycle characteristics by using a negative electrode active material (see Patent Documents 5 and 6 below), and further, an amorphous silicon thin film is formed in a columnar shape on a current collector to change the direction of volume expansion. There has also been proposed a technique (see Patent Document 7 below) for improving the cycle characteristics by controlling.

特開平10−255768号公報Japanese Patent Laid-Open No. 10-255768 特開2002−260637号公報Japanese Patent Laid-Open No. 2002-260637 特開2004−235057号公報JP 2004-235057 A 再公表公報WO2004/109839Republished publication WO2004 / 109839 特開2004−311429号公報JP 2004-311429 A 特開2004−303593号公報JP 2004-303593 A 特開2002−313319号公報JP 2002-313319 A

上述のような従来例のリチウム二次電池では高容量化を達成できるとともに、一応のサイクル特性の改善がなされていることが認められるが、依然としてユーザーの要望に添えるだけの十分なサイクル特性の改善は行い得ていない。   Although it is recognized that the lithium secondary battery of the conventional example as described above can achieve a high capacity and has improved the cycle characteristics, the cycle characteristics are still sufficiently improved to meet the user's request. Can not do.

発明者等は、この負極活物質としてケイ素ないしケイ素合金を使用したリチウム二次電池のサイクル特性をより改善すべく種々実験を重ねた結果、負極活物質としてのケイ素ないしケイ素合金を特定の非晶質状態とした粉末として使用するとともに、バインダーとしてポリイミド樹脂を使用することにより、従来例のものに比して遙かに優れたサイクル特性を有するリチウム二次電池が得られることを見出し、本発明を完成するに至ったのである。   The inventors have conducted various experiments in order to further improve the cycle characteristics of a lithium secondary battery using silicon or a silicon alloy as the negative electrode active material. As a result, the silicon or silicon alloy as the negative electrode active material has a specific amorphous property. It was found that a lithium secondary battery having a cycle characteristic far superior to that of the conventional example can be obtained by using a polyimide resin as a binder while using it as a powder in the quality state. Has been completed.

すなわち、本発明は、負極活物質としてケイ素ないしケイ素合金を使用するとともにバインダーとしてポリイミド樹脂を使用した、高容量で、かつ長期サイクル特性に優れたリチウム二次電池及びその製造方法を提供することを目的とする。   That is, the present invention provides a lithium secondary battery that uses silicon or a silicon alloy as a negative electrode active material and uses a polyimide resin as a binder and has high capacity and excellent long-term cycle characteristics, and a method for manufacturing the same. Objective.

本発明の上記目的は以下の構成により達成し得る。すなわち、本発明のリチウム二次電池は、ケイ素を含む活物質粒子とバインダーとを含む合剤層を導電性金属箔からなる集電体の表面上に配置した負極と、正極と、非水電解質とを備えるリチウム二次電池において、前記活物質粒子はCuKαを用いるX線回折においてピークを有する場合には半値幅が4°以上である非晶質物質からなり、前記バインダーはポリイミド樹脂を含むことを特徴とする。   The above object of the present invention can be achieved by the following configurations. That is, the lithium secondary battery of the present invention includes a negative electrode in which a mixture layer containing active material particles containing silicon and a binder is disposed on the surface of a current collector made of a conductive metal foil, a positive electrode, and a non-aqueous electrolyte. The active material particles are made of an amorphous material having a half width of 4 ° or more when the active material particles have a peak in X-ray diffraction using CuKα, and the binder contains a polyimide resin. It is characterized by.

ここで、「非晶質」とは、一般には結晶質とは異なるものとして、「構成原子や分子が規則正しく配列していない状態」と漠然と定義されている。しかし、多くの場合は構成原子や分子が近接する別の原子や分子から影響を受けるため、何等かの秩序性は有しているということができる。X線回折において、強度の低い非常に幅の広いピークが観察されるのも、非晶質物質の3次元的な配列の仕方に、結晶質とは呼べない程度ではあるが、秩序性があるためである。   Here, “amorphous” is vaguely defined as “a state in which constituent atoms and molecules are not regularly arranged” as being generally different from crystalline. However, in many cases, the constituent atoms and molecules are influenced by other adjacent atoms and molecules, so that it can be said that there is some ordering. In X-ray diffraction, a very wide peak with low intensity is observed, but the three-dimensional arrangement of the amorphous material is orderly, although it cannot be called crystalline. Because.

本発明においては、「非晶質」とは、CuKαを用いるX線回折においてピークを有する場合には半値幅が4°以上の非常にブロードなピークを有する状態と定義する。数個の原子が連なる極めて小さな結晶子をもつ粒子でも、上記条件を満たす場合があるが、このような微結晶が無秩序に配列した粒子は、本発明の範囲内のものである。   In the present invention, “amorphous” is defined as a state having a very broad peak having a half-value width of 4 ° or more when having a peak in X-ray diffraction using CuKα. The above conditions may be satisfied even with particles having very small crystallites in which several atoms are connected, but particles in which such microcrystals are randomly arranged are within the scope of the present invention.

結晶子を持つ活物質粒子は、粒子中に原子の結合状態が異なる粒界部とバルク部とを持っている。これらの粒界部、バルク部及び非晶質部は、同じ元素で構成されていても、原子の結合状態が異なるため、電子電導性やリチウムイオンとの反応性が異なっている。このため、結晶子を持つ活物質粒子の内部では、充放電時に化学反応の進行に局所的なムラができる。例えば、亀裂の生じやすい粒界面で充放電反応が進行しやすい場合には、体積膨張及び収縮による活物質粒子の割れが生じる。また、バルク内の方が充放電反応に有利な場合には、バルク部まで反応が進行している結晶子と、粒界面で反応が止まっている結晶子との間で体積変化に差ができることから、活物質粒子が割れや崩壊を起こしやすくなる。   An active material particle having crystallites has a grain boundary part and a bulk part in which the bonding state of atoms is different. Even if these grain boundary parts, bulk parts, and amorphous parts are composed of the same element, the bonding state of atoms is different, so that the electronic conductivity and reactivity with lithium ions are different. For this reason, inside the active material particles having crystallites, local unevenness is caused in the progress of the chemical reaction during charging and discharging. For example, when the charge / discharge reaction is likely to proceed at the grain interface where cracks are likely to occur, the active material particles crack due to volume expansion and contraction. In addition, when the bulk is more advantageous for charge / discharge reaction, there can be a difference in the volume change between the crystallite that has progressed to the bulk part and the crystallite that has stopped the reaction at the grain interface. Therefore, the active material particles are liable to break or collapse.

また、活物質粒子が単結晶であった場合は、バルク内部が均質となるが、充放電後には結晶内の結合がずれるなどして元の状態を保つことができず、充放電反応に伴って不均質化していく。また、ケイ素の単結晶は(111)面を劈開面として持つため、充放電による活物質の膨張及び収縮時に劈開面に沿って割れてしまう。   In addition, when the active material particles are single crystals, the inside of the bulk becomes homogeneous, but after charging / discharging, the original state cannot be maintained due to, for example, the bonds in the crystal being displaced, and accompanying the charging / discharging reaction. Will become heterogeneous. In addition, since a silicon single crystal has a (111) plane as a cleavage plane, it breaks along the cleavage plane when the active material expands and contracts due to charge and discharge.

活物質粒子が非晶質であると、粒子内が均質となり、充放電に伴う化学反応がムラなく起こり、充放電反応が進行しても不均質化を起こすことがないので、バインダーとして強度の強いポリイミド樹脂を用いたことと相まって、活物質粒子の割れや崩壊を抑制することができ、割れに伴う電解質との反応や、崩壊による合剤層からの欠け落ち防ぐことができるため、サイクル特性の劣化を抑制することができる。   When the active material particles are amorphous, the inside of the particles becomes homogeneous, the chemical reaction associated with charging / discharging occurs uniformly, and even when the charging / discharging reaction proceeds, non-homogenization does not occur. Combined with the use of a strong polyimide resin, it can suppress cracking and collapse of active material particles, and can prevent reaction with the electrolyte accompanying cracking and chipping off from the mixture layer due to collapse. Can be prevented.

また、本発明においては、「ケイ素を含む」とはケイ素及びケイ素合金から選択された少なくとも1種を含むものを意味する。なお、本発明のリチウム二次電池に用いる正極、セパレータ電解質等、負極以外の構成材は、特に制限なく周知のものを適宜選択して使用し得る。   In the present invention, “containing silicon” means containing at least one selected from silicon and silicon alloys. The constituent materials other than the negative electrode, such as the positive electrode and separator electrolyte used in the lithium secondary battery of the present invention, can be appropriately selected and used without particular limitation.

また、本発明のリチウム二次電池においては、前記活物質粒子は、CuKαを用いるX線回折においてピークを有する場合には2θが27°〜30°の範囲内及び50°〜54°の範囲内にピークトップが存在し、半値幅がそれぞれ4°以上であることが好ましい。   In the lithium secondary battery of the present invention, the active material particles have a peak in X-ray diffraction using CuKα, and 2θ is in the range of 27 ° to 30 ° and in the range of 50 ° to 54 °. It is preferable that the peak top exists and the full width at half maximum is 4 ° or more.

本発明における活物質粒子は、結合の秩序性や大きさの異なる原子、分子ユニットが無秩序に配列している粒子であるか、極めて小さな結晶子が無秩序に配列している粒子である。前者の場合には、X線回折において実質的なピークが生じないか、半値幅の非常に広いハローピークが生じる。この場合には、粒界や結晶質であるバルク部分は存在せず、粒子内の電子電導性、リチウムイオンとの反応性が均質になるため、粒子の割れや崩壊を抑制することができ、サイクル特性の劣化を抑制することができる。   The active material particles in the present invention are particles in which atoms and molecular units having different ordering and sizes of bonds are randomly arranged, or particles in which very small crystallites are randomly arranged. In the former case, a substantial peak does not occur in X-ray diffraction, or a halo peak with a very wide half-value width occurs. In this case, there are no bulk boundaries that are grain boundaries or crystalline, and since the electron conductivity in the particles and the reactivity with lithium ions are uniform, the cracking and collapse of the particles can be suppressed, Deterioration of cycle characteristics can be suppressed.

X線回折においてブロードなピークが生じている場合には、後者の可能性がある。この場合には、下記のシェラーの式を適用すると、例えばCuKαを用いるX線回折でピークトップ2θが28°、半値幅が4°のピークを有するとき、結晶子サイズが20.5Åの結晶子を持つ計算となる。
シェラーの式: Dhkl=kλ/βcosθ
(ただし、Dhkl:(hkl)面から見た結晶の大きさ、k:比例定数、λ:X線の波長、β:回折線の半値幅、θ:回折角)
If a broad peak occurs in the X-ray diffraction, the latter is possible. In this case, when the following Scherrer equation is applied, for example, when X-ray diffraction using CuKα has a peak with a peak top 2θ of 28 ° and a half-value width of 4 °, the crystallite size is 20.5 サ イ ズThe calculation with
Scherrer's formula: D hkl = kλ / βcosθ
(Where D hkl : crystal size viewed from (hkl) plane, k: proportional constant, λ: X-ray wavelength, β: half-width of diffraction line, θ: diffraction angle)

ケイ素の場合に限定すると、単結晶ではケイ素間距離が2.34Åであるので、結晶子サイズが20.5Åの結晶子中には8〜9個のケイ素原子が並ぶことになる。この程度の大きさの結晶子では、バルク部においても粒界の影響を強く受けているため、粒界とバルク部の性質の差は小さくなる。また、粒界とバルク部が活物質粒子内に細かく分布するため、活物質粒子の不均質から起こる割れや崩壊に影響しない。このため、前者の場合と同様に、割れに伴う電解質との反応や、崩壊による合剤層からの欠落を防ぐことができ、サイクル特性の劣化を抑制することができる。   In the case of silicon, since the distance between silicon in a single crystal is 2.34 mm, 8 to 9 silicon atoms are arranged in a crystallite having a crystallite size of 20.5 mm. In a crystallite of this size, since the influence of the grain boundary is strongly influenced also in the bulk part, the difference in properties between the grain boundary and the bulk part becomes small. Moreover, since the grain boundary and the bulk part are finely distributed in the active material particles, it does not affect the cracking and collapse caused by the heterogeneity of the active material particles. For this reason, similarly to the former case, it is possible to prevent the reaction with the electrolyte accompanying cracking and the loss from the mixture layer due to the collapse, and the deterioration of the cycle characteristics can be suppressed.

また、本発明のリチウム二次電池においては、前記活物質粒子は平均粒径が5μm以上25μm以下であることが好ましい。   In the lithium secondary battery of the present invention, the active material particles preferably have an average particle size of 5 μm or more and 25 μm or less.

活物質粒子の平均粒径を5μm以上とすることで、元々の活物質の比表面積を低減できる。これにより電解質と活物質新生面の接触面積を低減できるため、サイクル特性の向上効果及び活物質膨化の抑制効果が大きくなる。また、従来の黒鉛等の炭素材料を負極活物質に用いたリチウム二次電池における負極の片面分の活物質層の厚みは60μm〜100μm程度である。従来例と同様の正極を用いた場合、本発明の構成で電池を高容量化するためには片面当たりの活物質層の厚みは40μm以下であることが望ましい。しかし、厚みが40μm以下の活物質層を作製する場合、活物質の粒径が40μm以下でないと活物質層が厚くなってしまう。また、粒径が25μm以上の活物質粒子が多く含まれると活物質合剤を集電体に塗布する際にスジ、かすれなどの不良が発生する。そのため、活物質粒子の平均粒径は25μm以下である方が好ましい。なお、平均粒径は、走査電子顕微鏡による観察から決定しても良いし、粒度分布測定を行って粒径順に質量を積算した際、全粉粒の50%の質量に達する粒径から求めてもよい。   By setting the average particle diameter of the active material particles to 5 μm or more, the specific surface area of the original active material can be reduced. As a result, the contact area between the electrolyte and the new active material surface can be reduced, and the effect of improving the cycle characteristics and the effect of suppressing the expansion of the active material are increased. Moreover, the thickness of the active material layer for one side of the negative electrode in a lithium secondary battery using a conventional carbon material such as graphite as the negative electrode active material is about 60 μm to 100 μm. When the same positive electrode as in the conventional example is used, the thickness of the active material layer per side is desirably 40 μm or less in order to increase the capacity of the battery with the configuration of the present invention. However, when an active material layer having a thickness of 40 μm or less is manufactured, the active material layer becomes thick unless the particle size of the active material is 40 μm or less. Further, when many active material particles having a particle size of 25 μm or more are contained, defects such as streaks and blurring occur when the active material mixture is applied to the current collector. Therefore, the average particle diameter of the active material particles is preferably 25 μm or less. The average particle size may be determined from observation with a scanning electron microscope, or may be determined from the particle size reaching 50% of the total particle size when performing particle size distribution measurement and integrating the mass in order of particle size. Also good.

また、本発明のリチウム二次電池においては、前記活物質粒子は1質量%〜20質量%の酸素を含んでいることが好ましい。   Moreover, in the lithium secondary battery of this invention, it is preferable that the said active material particle contains 1 mass%-20 mass% oxygen.

活物質中に酸素が内包されていると、電解質と活物質との化学反応が抑制されるため、充放電効率が安定し、サイクル特性が向上する。この効果を発揮するためには1質量%以上の酸素が内包されていることが好ましく、5質量%以上であるとより好ましい。また、酸素濃度が高すぎると電池容量の低下に繋がるため、20質量%以下であることが好ましい。この酸素は、活物質粒子の表面だけでなく、活物質粒子内部まで含有させてもよい。   When oxygen is included in the active material, the chemical reaction between the electrolyte and the active material is suppressed, so that the charge / discharge efficiency is stabilized and the cycle characteristics are improved. In order to exhibit this effect, it is preferable that 1 mass% or more of oxygen is included, and 5 mass% or more is more preferable. Moreover, since it will lead to the fall of battery capacity when oxygen concentration is too high, it is preferable that it is 20 mass% or less. This oxygen may be contained not only on the surface of the active material particles but also inside the active material particles.

また、本発明のリチウム二次電池においては、前記活物質粒子の粒度分布は、D10が3μm以上であり、かつ、D90が30μm以下であることが好ましい。   In the lithium secondary battery of the present invention, it is preferable that the particle size distribution of the active material particles is such that D10 is 3 μm or more and D90 is 30 μm or less.

活物質粒子の粒度分布が広いと、粒径の小さい活物質粒子にバインダーが集中し、バインダーの分布にムラができてしまう。また、大きな活物質粒子が混ざっていると、膨張及び収縮時に局部的な応力がかかり、電極変形及び電極厚み増加の原因となってしまい、体積当たりのエネルギー密度が低下してしまう。粒度分布が上記の範囲内であると、バインダーを負極合剤層内に均一に配置することができ、局部的に大きな活物質粒子の膨張及び収縮を抑制することができるので、体積当たりのエネルギー密度低下を抑制することができる。   When the particle size distribution of the active material particles is wide, the binder concentrates on the active material particles having a small particle size, and the distribution of the binder becomes uneven. In addition, when large active material particles are mixed, local stress is applied during expansion and contraction, which causes electrode deformation and electrode thickness increase, resulting in a decrease in energy density per volume. When the particle size distribution is within the above range, the binder can be uniformly disposed in the negative electrode mixture layer, and the expansion and contraction of the large active material particles can be suppressed locally. Density reduction can be suppressed.

また、本発明のリチウム二次電池においては、前記導電性金属箔からなる集電体の表面粗さRaは0.2μm以上1μm以下であることが好ましい。   Moreover, in the lithium secondary battery of this invention, it is preferable that surface roughness Ra of the electrical power collector which consists of said electroconductive metal foil is 0.2 micrometer or more and 1 micrometer or less.

集電体の表面粗さRa(JIS B 0601−1994に基づく)が0.2μm以上であると、合剤層と集電体との密着が強固なものとなり、活物質粒子が体積膨張及び収縮を繰り返しても電極構造の崩壊を抑制することができ、サイクル特性の低下を抑制することができる。また、表面粗さが1μmを超えるとそれに比例して集電体の厚みが厚くなるために好ましくない。   When the surface roughness Ra (based on JIS B 0601-1994) of the current collector is 0.2 μm or more, the adhesion between the mixture layer and the current collector becomes strong, and the active material particles expand and contract. Even if it repeats, collapse of an electrode structure can be suppressed and the fall of cycling characteristics can be suppressed. Further, if the surface roughness exceeds 1 μm, the thickness of the current collector increases in proportion thereto, which is not preferable.

また、本発明のリチウム二次電池においては、前記負極は、合剤層を導電性金属箔からなる集電体上に配置後、非酸化性雰囲気下で熱処理されたものであることが好ましい。   Moreover, in the lithium secondary battery of this invention, it is preferable that the said negative electrode is heat-processed in non-oxidizing atmosphere after arrange | positioning a mixture layer on the electrical power collector which consists of electroconductive metal foil.

熱処理によってバインダーとしてのポリイミド樹脂のイミド化が進行して密に焼結されるとともに、一部が溶融して活物質粒子同士及び活物質粒子と集電体との間の密着性が向上し、充放電に伴う活物質粒子の膨張及び収縮による負極合剤層中の集電構造の破壊が抑制され、電極反応の均一性が向上するとともに、サイクル特性の低下を抑制することができる。   Immobilization of the polyimide resin as a binder proceeds by heat treatment and is sintered densely, and part of the material melts to improve the adhesion between the active material particles and the active material particles and the current collector, Breakage of the current collecting structure in the negative electrode mixture layer due to expansion and contraction of the active material particles due to charge / discharge is suppressed, so that the uniformity of the electrode reaction is improved and the deterioration of the cycle characteristics can be suppressed.

また、本発明のリチウム二次電池においては、前記負極は合剤層の厚みが40μm以下5μm以上であることが好ましい。   In the lithium secondary battery of the present invention, the negative electrode preferably has a mixture layer thickness of 40 μm or less and 5 μm or more.

従来の黒鉛等の炭素材料を負極活物質に用いたリチウム二次電池における負極の片面分の合剤層の厚みは60μm〜100μm程度であるため、これよりも薄い40μm以下とすることにより従来例のものよりも電池容量の高容量化を達成できる。この合剤層の厚みが5μm未満となると、集電体に対する合剤層の量が少なくなるため、却って高容量化を達成できなくなるので好ましくない。   The thickness of the mixture layer for one side of the negative electrode in a lithium secondary battery using a conventional carbon material such as graphite as the negative electrode active material is about 60 μm to 100 μm. The battery capacity can be increased as compared with the battery. If the thickness of the mixture layer is less than 5 μm, the amount of the mixture layer with respect to the current collector is decreased, and on the contrary, it is not possible to achieve a high capacity.

また、本発明のリチウム二次電池の製造方法は、CuKαを用いるX線回折においてピークを有する場合には半値幅が4°以上である非晶質物質からなるケイ素及びケイ素合金の少なくとも一方を含む活物質粒子と、ポリイミド樹脂を含むバインダーと、を有機溶媒中に分散させて合剤スラリー又はペーストを作製し、前記合剤スラリー又はペーストを導電性金属箔からなる集電体の表面上に配置した後、乾燥、圧延して所定の厚さとし、次いで非酸化性雰囲気下で熱処理を施してポリイミド樹脂を焼結することにより負極を製造し、前記負極と正極との間にセパレータを配置して電池外装体内に挿入し、次いで非水電解質を注入した後に電池外装体を密封したことを特徴とする。   In addition, the method for producing a lithium secondary battery of the present invention includes at least one of silicon and a silicon alloy made of an amorphous material having a half width of 4 ° or more when having a peak in X-ray diffraction using CuKα. Active material particles and a binder containing a polyimide resin are dispersed in an organic solvent to produce a mixture slurry or paste, and the mixture slurry or paste is disposed on the surface of a current collector made of a conductive metal foil. After that, dry and roll to a predetermined thickness, then heat-treat in a non-oxidizing atmosphere to sinter the polyimide resin to produce a negative electrode, and a separator is disposed between the negative electrode and the positive electrode The battery outer package is sealed after being inserted into the battery outer package and then injected with a nonaqueous electrolyte.

導電性金属箔からなる集電体の表面上に合剤スラリー又はペーストを配置した後、乾燥して圧延することによって充填密度が高まることに加えて、集電体と活物質粒子及びバインダーとの密着性が向上するため、電極構造を維持しやすくなり、CuKαを用いるX線回折においてピークを有する場合には半値幅が4°以上である非晶質物質からなるケイ素及びケイ素合金の少なくとも一方を含む活物質粒子と、ポリイミド樹脂を含むバインダーを使用したことと相まって、良好なサイクル特性が得られるリチウム二次電池を作製することができる。   In addition to increasing the packing density by placing the mixture slurry or paste on the surface of the current collector made of conductive metal foil and then drying and rolling, the current collector and the active material particles and the binder Since the adhesion is improved, it is easy to maintain the electrode structure, and when it has a peak in X-ray diffraction using CuKα, at least one of silicon and silicon alloy made of an amorphous substance having a half width of 4 ° or more is used. Combined with the use of the active material particles and the binder containing the polyimide resin, a lithium secondary battery capable of obtaining good cycle characteristics can be manufactured.

なお、ポリイミド樹脂の焼結は非酸化性雰囲気、例えば窒素やアルゴン等の不活性ガス雰囲気下、あるいは、水素ガス等の還元性雰囲気下で行うことができる。熱処理前の合剤層中にポリイミド樹脂の前駆体が含まれている場合にはイミド化のために熱処理が必要であり、熱処理前の合剤中に既にポリイミド樹脂が用いられている場合にも、熱処理を行うことによってポリイミド樹脂を焼結することができるので、バインダーと活物質粒子及び集電体との密着性を向上させることができる。   Note that the polyimide resin can be sintered in a non-oxidizing atmosphere, for example, in an inert gas atmosphere such as nitrogen or argon, or in a reducing atmosphere such as hydrogen gas. If the precursor layer of polyimide resin is contained in the mixture layer before heat treatment, heat treatment is necessary for imidization, and even when polyimide resin is already used in the mixture before heat treatment Since the polyimide resin can be sintered by performing heat treatment, the adhesion between the binder, the active material particles, and the current collector can be improved.

また、本発明のリチウム二次電池の製造方法においては、前記活物質粒子を減圧下で気相状態のケイ素及びケイ素合金の少なくとも一方の原料を急冷して固相とすることにより作製したものであることが好ましい。   Further, in the method for producing a lithium secondary battery of the present invention, the active material particles are produced by rapidly cooling at least one raw material of silicon and silicon alloy in a gas phase under reduced pressure to form a solid phase. Preferably there is.

前記活物質粒子を作製する方法として、真空蒸着、スパッタ法、CVD法などが使用できる。減圧下での気相状態のケイ素及びケイ素合金の少なくとも一方の原料を急冷して固相化すると、気相中では原子の配置が無秩序であるから、非常に速く相変化させて固相とし、それを適宜、粉砕、分級することにより非晶質状態の活物質粒子を効率よく得ることができる。   As a method for producing the active material particles, vacuum deposition, sputtering, CVD, or the like can be used. When at least one raw material of silicon and silicon alloy in a gas phase under reduced pressure is rapidly cooled and solidified, since the arrangement of atoms is disordered in the gas phase, the phase is changed very quickly to form a solid phase. The active material particles in an amorphous state can be efficiently obtained by appropriately pulverizing and classifying them.

以下、本願発明を実施するための最良の形態を実施例及び図面に基づいて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するためのリチウム二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。なお、図1(a)は実施例1の電池の製造途中の電極体の構成を示す平面図であり、図1(b)は実施例1の電池の平面図である。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples and drawings. However, the following examples illustrate lithium secondary batteries for embodying the technical idea of the present invention, and are not intended to identify the present invention. The invention can be equally applied to various modifications without departing from the technical idea shown in the claims. 1A is a plan view showing the configuration of the electrode body in the middle of manufacturing the battery of Example 1, and FIG. 1B is a plan view of the battery of Example 1. FIG.

[負極活物質の作製]
まず、気相法により非晶質ケイ素塊を作製した。具体的には、電子ビーム蒸着装置内において真空下で金属ケイ素を溶融して蒸気とし、電子ビーム蒸着装置内の冷却部に堆積させることによりケイ素塊を作製した。次いで、得られたケイ素塊を粉砕することによって実施例1に係る負極活物質粒子a1を作製した。この非晶質ケイ素は、CuKαを用いるX線回折で、2θが27.9°及び51.8°にピークトップを持ち、半値幅はそれぞれ6°及び9°のブロードなピークが現れた。負極活物質a1の平均粒径は12.01μmであり、粒度分布におけるD10は3.91μm、D90は16.27μmであった。また、酸素含有量は14.4質量%であり、この酸素はケイ素塊を作製する際に取り込まれたものと考えられる。この酸素含有量はLECO社製の酸素分析装置RO416DR(商品名)にて測定した。なお、上記平均粒径及び粒度分布の算出方法を以下に示す。なお、下記比較例1〜3においても上記の酸素含有量の測定方法及び平均粒径及び粒度分布の測定方法を同様に採用した。
[Production of negative electrode active material]
First, an amorphous silicon lump was produced by a vapor phase method. Specifically, a silicon lump was produced by melting metal silicon into a vapor in a vacuum in an electron beam vapor deposition apparatus and depositing it on a cooling part in the electron beam vapor deposition apparatus. Subsequently, the negative electrode active material particle a1 which concerns on Example 1 was produced by grind | pulverizing the obtained silicon lump. This amorphous silicon had a peak top at 2θ of 27.9 ° and 51.8 ° by X-ray diffraction using CuKα, and had broad peaks at half-widths of 6 ° and 9 °, respectively. The average particle diameter of the negative electrode active material a1 was 12.01 μm, D10 in the particle size distribution was 3.91 μm, and D90 was 16.27 μm. Moreover, oxygen content is 14.4 mass%, and it is thought that this oxygen was taken in when producing a silicon lump. This oxygen content was measured with an oxygen analyzer RO416DR (trade name) manufactured by LECO. In addition, the calculation method of the said average particle diameter and particle size distribution is shown below. In Comparative Examples 1 to 3 below, the above oxygen content measurement method and the average particle size and particle size distribution measurement method were similarly employed.

[平均粒径及び粒度分布の算出法]
平均粒径はレーザー回折式粒度分布測定装置を用い、平均粒径及び粒度分布(D10、D50、D90)を算出した。なお、粒度分布の具体的な算出方法は、粒径が小さいものから順に粒子の質量を積算していき、前記積算質量が全粒子の質量のX%になったときの粒径を算出することにより求めた。前記Xが10の場合はD10と表記し、Xの値が50のときはD50と表記し、Xの値が90のときはD90と表記している。このうち、D50は平均粒径を表す。なお、平均粒径は電極の断面を走査電子顕微鏡によって観察することにより決定してもよい。
[Calculation method of average particle size and particle size distribution]
The average particle size was calculated by using a laser diffraction particle size distribution measuring device and calculating the average particle size and particle size distribution (D10, D50, D90). In addition, the specific method for calculating the particle size distribution is to integrate the mass of the particles in order from the smallest particle size, and calculate the particle size when the accumulated mass becomes X% of the mass of all particles. Determined by When X is 10, it is expressed as D10, when the value of X is 50, it is expressed as D50, and when the value of X is 90, it is expressed as D90. Among these, D50 represents an average particle diameter. The average particle diameter may be determined by observing the cross section of the electrode with a scanning electron microscope.

[負極の作製]
分散媒としてのN−メチル−2−ピロリドン(NMP)に、上記活物質粒子とポリイミド樹脂濃度20質量%のポリイミドワニスとを、活物質粒子とポリイミド樹脂との質量比が90:10となるように混合し、負極合剤スラリーとした。この負極合剤スラリーを、厚み35μm、表面粗さRa0.27μmの電解銅箔に塗布し、乾燥した後圧延し、得られたものを25mm×35mmの長方形状に切り抜いた後、アルゴン雰囲気下で400℃で10時間熱処理し、ポリイミド樹脂を焼結処理することによって集電体表面に負極合剤層を配置した。集電体上の合剤層量は2.3mg/cmであり、また、合剤層の厚みは19μmであった。
[Production of negative electrode]
N-methyl-2-pyrrolidone (NMP) as a dispersion medium is mixed with the above active material particles and a polyimide varnish having a polyimide resin concentration of 20% by mass so that the mass ratio of the active material particles and the polyimide resin is 90:10. To make a negative electrode mixture slurry. This negative electrode mixture slurry was applied to an electrolytic copper foil having a thickness of 35 μm and a surface roughness Ra of 0.27 μm, dried and then rolled, and the obtained product was cut out into a 25 mm × 35 mm rectangular shape, and then in an argon atmosphere. A negative electrode mixture layer was disposed on the surface of the current collector by heat treatment at 400 ° C. for 10 hours and sintering the polyimide resin. The amount of the mixture layer on the current collector was 2.3 mg / cm 2 , and the thickness of the mixture layer was 19 μm.

[正極の作製]
分散媒としてのNMPに、正極活物質としてのLiCoO粉末と、正極導電剤としての炭素材料粉末と、正極バインダーとしてのポリフッ化ビニリデンとを、活物質と導電剤とバインダーとの質量比が94:3:3となるように加えた後、混練し、正極合剤スラリーとした。この正極合剤スラリーを、厚み15μmのアルミニウム箔上に塗布し、乾燥した後圧延し、得られたものを20mm×20mmの正方形状に切り抜いた。集電体上の合剤層量は28mg/cmであった。
[Production of positive electrode]
NMP as a dispersion medium, LiCoO 2 powder as a positive electrode active material, carbon material powder as a positive electrode conductive agent, and polyvinylidene fluoride as a positive electrode binder, the mass ratio of the active material, the conductive agent, and the binder is 94. : 3: 3 and then kneaded to obtain a positive electrode mixture slurry. This positive electrode mixture slurry was applied onto an aluminum foil having a thickness of 15 μm, dried and rolled, and the obtained product was cut out into a 20 mm × 20 mm square shape. The amount of the mixture layer on the current collector was 28 mg / cm 2 .

[電解液の作製]
エチレンカーボネートとジエチレンカーボネートとを体積比で3:7で混合した溶媒に対し、LiPFを1モル/Lとなるように溶解した後、炭酸ガスを0.4質量%添加し、電解液を作製した。
[Preparation of electrolyte]
LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethylene carbonate were mixed at a volume ratio of 3: 7 so as to be 1 mol / L, and then 0.4 mass% of carbon dioxide gas was added to prepare an electrolytic solution. did.

[電池の作製]
上記正極、負極及び電解液をアルミニウムラミネート内に挿入した実施例1のリチウム二次電池A1を次のようにして作製した。まず、図1(a)に示すように、正極3aのアルミニウム製集電体の活物質層が設けられていない側の端部にアルミニウム製の正極タブ3bを取り付け、また負極4aの銅製負極集電体の活物質層が設けられていない側の端部にニッケル製の負極タブ4bを取り付け、次いで、正極3a及び負極4aの活物質層が設けられている面をポリエチレン多孔質体セパレータ5を介して対向させて電極体6を組立てた。この電極体6を、アルミニウムラミネートの外装体1内に挿入して周囲の1箇所を除いてヒートシールすることにより閉口部2を形成し、外装体1内に所定量の電解液を注入した後に、残りの1箇所をヒートシールすることにより密封し、図1(b)に示すような実施例1のリチウム二次電池A1を作製した。
[Production of battery]
A lithium secondary battery A1 of Example 1 in which the positive electrode, the negative electrode, and the electrolytic solution were inserted into an aluminum laminate was produced as follows. First, as shown in FIG. 1A, an aluminum positive electrode tab 3b is attached to an end of the positive electrode 3a on the side where the active material layer of the aluminum current collector is not provided, and a copper negative electrode collector of the negative electrode 4a is attached. The negative electrode tab 4b made of nickel is attached to the end of the electric conductor where the active material layer is not provided, and then the surface of the positive electrode 3a and the negative electrode 4a on which the active material layer is provided is attached to the polyethylene porous body separator 5. The electrode body 6 was assembled so as to face each other. After this electrode body 6 is inserted into an aluminum laminate exterior body 1 and heat-sealed except for one surrounding area, a closed portion 2 is formed, and a predetermined amount of electrolyte is injected into the exterior body 1 Then, the remaining one place was sealed by heat sealing to produce a lithium secondary battery A1 of Example 1 as shown in FIG.

[比較例1]
負極活物質粒子として、非晶質ケイ素の代わりに結晶質ケイ素b1を用いた他は実施例1と同様にして電池B1を作製した。なお、結晶質ケイ素b1は、純度99%以上であり、CuKαを用いるX線回折で2θが28.4°、47.3°、56.1°、69.2°、76.4°にそれぞれ半値幅が0.22°、0.25°、0.27°、0.32°、0.36°の鋭いピークが現れた。この結晶質ケイ素粒子は、結晶子サイズが38.6nm、平均粒径が12.18μm、粒度分布におけるD10が5.19μm、D90が18.41μmである。なお、上記結晶子サイズはX線回折において最も強度の強かった2θが28.4°に現れたピークを元に、前述のシェラーの式により求めたものである。この計算方法は比較例2においても同様である。
[Comparative Example 1]
A battery B1 was produced in the same manner as in Example 1 except that crystalline silicon b1 was used instead of amorphous silicon as the negative electrode active material particles. The crystalline silicon b1 has a purity of 99% or more, and 2θ is 28.4 °, 47.3 °, 56.1 °, 69.2 °, 76.4 ° by X-ray diffraction using CuKα, respectively. Sharp peaks with half widths of 0.22 °, 0.25 °, 0.27 °, 0.32 °, and 0.36 ° appeared. The crystalline silicon particles have a crystallite size of 38.6 nm, an average particle size of 12.18 μm, a particle size distribution with D10 of 5.19 μm, and D90 of 18.41 μm. The crystallite size was determined by the Scherrer equation described above based on the peak where 2θ, which was the strongest in X-ray diffraction, appeared at 28.4 °. This calculation method is the same in Comparative Example 2.

[比較例2]
負極活物質粒子として、結晶質ケイ素b2を用いた他は実施例1と同様にして電池B2を作製した。なお、この結晶質ケイ素b2は、純度99%以上であり、CuKαを用いるX線回折で2θが28.4°、47.3°、56.1°、69.1°、76.3°にそれぞれ半値幅が0.13°、0.11°、0.12°、0.11°、0.11°の極めて鋭いピークが現れた。この結晶質ケイ素粒子は、結晶子サイズが63.3nm、平均粒径が12.08μm、粒度分布におけるD10が4.70μm、D90が18.68μmである。
[Comparative Example 2]
A battery B2 was produced in the same manner as in Example 1 except that crystalline silicon b2 was used as the negative electrode active material particles. The crystalline silicon b2 has a purity of 99% or more, and 2θ is 28.4 °, 47.3 °, 56.1 °, 69.1 °, 76.3 ° by X-ray diffraction using CuKα. Extremely sharp peaks with half-widths of 0.13 °, 0.11 °, 0.12 °, 0.11 °, and 0.11 ° respectively appeared. The crystalline silicon particles have a crystallite size of 63.3 nm, an average particle size of 12.08 μm, a particle size distribution with D10 of 4.70 μm, and D90 of 18.68 μm.

[比較例3]
負極として、ケイ素からなる活物質粒子とバインダーとを含む合剤層を集電体上に配置する代わりに下記のようにして作製したものを用いた。すなわち、厚み18μm、表面粗さRa0.25μmのC7025銅合金箔に電子ビーム蒸着法により非晶質ケイ素a2を柱状に配置した。酸素含有量は14.4質量%であった。その他は実施例1と同様にして電池C1を作製した。
[Comparative Example 3]
Instead of disposing a mixture layer containing active material particles made of silicon and a binder on the current collector, the negative electrode was prepared as follows. That is, amorphous silicon a2 was arranged in a columnar shape by electron beam evaporation on a C7025 copper alloy foil having a thickness of 18 μm and a surface roughness Ra of 0.25 μm. The oxygen content was 14.4% by mass. Otherwise, the battery C1 was produced in the same manner as in Example 1.

[充放電サイクル特性の評価]
上記の電池A1、B1、B2、C1について、下記に示す充放電試験条件で充放電サイクル特性を評価した。なお充放電は何れも25℃で行った。
(1)1サイクル目の充電条件
0.7mAの定電流で1mAhになるまで定電流充電を行い、その後は14mAの定電流で電池電圧が4.2Vとなるまで充電し、その後4.2Vの定電圧で電流が0.7mAとなるまで充電した。
(2)1サイクル目の放電条件
14mAの定電流で電池電圧が2.75Vとなるまで放電した。
(3)2サイクル目以降の充電条件
14mAの定電流で電池電圧が4.2Vとなるまで充電し、その後4.2Vの定電圧で電流が0.7mAとなるまで充電した。
(4)2サイクル目以降の放電条件
14mAの定電流で電池電圧が2.75Vとなるまで放電した。
[Evaluation of charge / discharge cycle characteristics]
About said battery A1, B1, B2, C1, the charging / discharging cycling characteristics were evaluated on the charging / discharging test conditions shown below. In addition, all charging / discharging was performed at 25 degreeC.
(1) Charging conditions in the first cycle The constant current is charged at a constant current of 0.7 mA until it reaches 1 mAh, and then the battery voltage is charged at a constant current of 14 mA until the battery voltage becomes 4.2 V, and then 4.2 V. The battery was charged at a constant voltage until the current reached 0.7 mA.
(2) First cycle discharge conditions Discharge was performed at a constant current of 14 mA until the battery voltage reached 2.75V.
(3) Charging conditions after the second cycle The battery was charged with a constant current of 14 mA until the battery voltage reached 4.2 V, and then charged with a constant voltage of 4.2 V until the current became 0.7 mA.
(4) Discharge conditions after the second cycle The battery was discharged at a constant current of 14 mA until the battery voltage reached 2.75V.

容量維持率は、15サイクル目の放電容量を100としたときの300サイクル目の放電容量の割合を示す値である。ここで、15サイクル目を基準としたのは、上記の電池A1、B1、B2、C1の全ての電池において、電池内に導電パスが確立し、充放電効率が安定した状態を基準とするためである。結果をまとめて表1に示した。   The capacity retention rate is a value indicating the ratio of the discharge capacity at the 300th cycle when the discharge capacity at the 15th cycle is 100. Here, the 15th cycle is based on the condition that, in all the batteries A1, B1, B2 and C1, the conductive path is established in the battery and the charge / discharge efficiency is stable. It is. The results are summarized in Table 1.

Figure 2008123814
Figure 2008123814

表1に示した結果から、実施例1の電池A1は、比較例2〜3の電池B1、B2及びC1よりもサイクル特性に優れていることが分かる。このように、ケイ素のような体積変化の大きい活物質粒子と、その電極構造維持にポリイミド樹脂をバインダーとして用いる電池において、結晶子を持たない非晶質のケイ素からなる活物質粒子を用いると、充放電サイクルに伴う容量劣化をさらに抑制することが可能となる。   From the results shown in Table 1, it can be seen that the battery A1 of Example 1 is superior in cycle characteristics to the batteries B1, B2, and C1 of Comparative Examples 2-3. In this way, in an active material particle having a large volume change such as silicon and a battery using a polyimide resin as a binder for maintaining its electrode structure, when using active material particles made of amorphous silicon without crystallites, It is possible to further suppress the capacity deterioration accompanying the charge / discharge cycle.

なお、実施例1においては、一組の正極と負極の間にセパレータを配置した電極体を形成するとともに、アルミニウムラミネート外装体内に封入したリチウム二次電池を作製した例を示したが、複数組の電極体を組み合わせてそれぞれの電極体を直列ないし並列に接続したものとしてもよく、また、外装体としては金属製外装缶も使用し得る。更に、正極と負極とをそれぞれセパレータを介して渦巻状に巻回して巻回電極体を形成し、この巻回電極体を円筒状の金属外装缶内に封入して円筒状のリチウム二次電池とすることもでき、更には、円筒状巻回電極体を押し潰すことにより偏平状の巻回電極体とし、この偏平状の巻回電極体を角形の金属外装缶内に封入して角形のリチウム二次電池とすることもできる。   In Example 1, an example in which an electrode body in which a separator is disposed between a pair of positive and negative electrodes is formed and a lithium secondary battery encapsulated in an aluminum laminate outer package is manufactured is shown. These electrode bodies may be combined and connected to each other in series or in parallel, and a metal outer can may be used as the outer body. Furthermore, the positive electrode and the negative electrode are each wound in a spiral shape via a separator to form a wound electrode body, and this wound electrode body is sealed in a cylindrical metal outer can, and a cylindrical lithium secondary battery Furthermore, a flat wound electrode body is formed by crushing a cylindrical wound electrode body, and the flat wound electrode body is enclosed in a square metal outer can. A lithium secondary battery can also be used.

、図1(a)は実施例1の電池の製造途中の電極体の構成を示す平面図であり、図1(b)は実施例1の電池の平面図である。FIG. 1A is a plan view showing a configuration of an electrode body in the middle of manufacture of the battery of Example 1, and FIG. 1B is a plan view of the battery of Example 1. FIG.

符号の説明Explanation of symbols

1 外装体
2 閉口部
3a 正極
3b 正極タブ
4a 負極
4b 負極タブ
5 セパレータ
6 電極体
DESCRIPTION OF SYMBOLS 1 Exterior body 2 Closure part 3a Positive electrode 3b Positive electrode tab 4a Negative electrode 4b Negative electrode tab 5 Separator 6 Electrode body

Claims (10)

ケイ素を含む活物質粒子とバインダーとを含む合剤層を導電性金属箔からなる集電体の表面上に配置した負極と、正極と、非水電解質とを備えるリチウム二次電池において、
前記活物質粒子はCuKαを用いるX線回折においてピークを有する場合には半値幅が4°以上である非晶質物質からなり、
前記バインダーはポリイミド樹脂を含むことを特徴とするリチウム二次電池。
In a lithium secondary battery comprising a negative electrode in which a mixture layer containing active material particles containing silicon and a binder is disposed on the surface of a current collector made of a conductive metal foil, a positive electrode, and a nonaqueous electrolyte,
When the active material particles have a peak in X-ray diffraction using CuKα, the active material particles are made of an amorphous material having a half width of 4 ° or more,
The lithium secondary battery, wherein the binder includes a polyimide resin.
前記活物質粒子は、CuKαを用いるX線回折においてピークを有する場合には2θが27°〜30°の範囲内及び50°〜54°の範囲内にピークトップが存在し、半値幅がそれぞれ4°以上であることを特徴とする請求項1に記載のリチウム二次電池。   When the active material particles have a peak in X-ray diffraction using CuKα, the peak top exists in the range of 2θ within the range of 27 ° to 30 ° and the range of 50 ° to 54 °, and the half width is 4 respectively. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is at least °. 前記活物質粒子は平均粒径が5μm以上25μm以下であることを特徴とする請求項1又は2に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the active material particles have an average particle size of 5 μm or more and 25 μm or less. 前記活物質粒子は1質量%以上20質量%以下の酸素を含んでいることを特徴とする請求項1〜3のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the active material particles contain 1% by mass to 20% by mass of oxygen. 前記活物質粒子の粒度分布は、D10が3μm以上であり、かつ、D90が30μm以下であることを特徴とする請求項1〜4のいずれかに記載のリチウム二次電池。   5. The lithium secondary battery according to claim 1, wherein the particle size distribution of the active material particles is such that D10 is 3 μm or more and D90 is 30 μm or less. 前記導電性金属箔からなる集電体の表面粗さRaは0.2μm以上1μm以下であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the current collector made of the conductive metal foil has a surface roughness Ra of 0.2 μm to 1 μm. 前記負極は、合剤層を導電性金属箔からなる集電体上に配置後、非酸化性雰囲気下で熱処理されたものであることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein the negative electrode is obtained by heat-treating a mixture layer on a current collector made of a conductive metal foil in a non-oxidizing atmosphere. 3. 前記負極は合剤層の厚みが40μm以下5μm以上であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the negative electrode has a mixture layer thickness of 40 μm or less and 5 μm or more. CuKαを用いるX線回折においてピークを有する場合には半値幅が4°以上である非晶質物質からなるケイ素及びケイ素合金の少なくとも一方を含む活物質粒子と、ポリイミド樹脂を含むバインダーと、を有機溶媒中に分散させて合剤スラリー又はペーストを作製し、前記合剤スラリー又はペーストを導電性金属箔からなる集電体の表面上に配置した後、乾燥、圧延して所定の厚さとし、次いで非酸化性雰囲気下で熱処理を施してポリイミド樹脂を焼結することにより負極を製造し、前記負極と正極との間にセパレータを配置して電池外装体内に挿入し、次いで非水電解質を注入した後に電池外装体を密封したことを特徴とするリチウム二次電池の製造方法。   When there is a peak in X-ray diffraction using CuKα, an active material particle containing at least one of silicon and a silicon alloy made of an amorphous material having a half width of 4 ° or more, and a binder containing a polyimide resin are organic A mixture slurry or paste is prepared by dispersing in a solvent, and the mixture slurry or paste is placed on the surface of a current collector made of a conductive metal foil, then dried and rolled to a predetermined thickness, and then A negative electrode is manufactured by applying a heat treatment in a non-oxidizing atmosphere to sinter a polyimide resin, a separator is placed between the negative electrode and the positive electrode, inserted into the battery case, and then a non-aqueous electrolyte is injected. A method for producing a lithium secondary battery, wherein the battery outer package is sealed later. 前記活物質粒子を減圧下で気相状態のケイ素及びケイ素合金の少なくとも一方の原料を急冷して固相とすることにより作製したことを特徴とする請求項9に記載のリチウム二次電池の製造方法。   The lithium secondary battery according to claim 9, wherein the active material particles are produced by rapidly cooling at least one raw material of silicon and silicon alloy in a gas phase state under reduced pressure to form a solid phase. Method.
JP2006305795A 2006-11-10 2006-11-10 Lithium secondary battery and its manufacturing method Pending JP2008123814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006305795A JP2008123814A (en) 2006-11-10 2006-11-10 Lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006305795A JP2008123814A (en) 2006-11-10 2006-11-10 Lithium secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008123814A true JP2008123814A (en) 2008-05-29

Family

ID=39508352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006305795A Pending JP2008123814A (en) 2006-11-10 2006-11-10 Lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008123814A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295400A (en) * 2008-06-04 2009-12-17 Fdk Corp Nonaqueous power storage element
JPWO2010110205A1 (en) * 2009-03-24 2012-09-27 古河電気工業株式会社 Lithium ion secondary battery, battery electrode, electrolytic copper foil for battery electrode
WO2014192225A1 (en) * 2013-05-27 2014-12-04 信越化学工業株式会社 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
WO2014199785A1 (en) * 2013-06-12 2014-12-18 日産自動車株式会社 Negative electrode active material for electric device and electric device using same
JP2015076181A (en) * 2013-10-07 2015-04-20 古河機械金属株式会社 Negative electrode material for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery
JP2015099790A (en) * 2010-04-28 2015-05-28 株式会社半導体エネルギー研究所 Power storage device
JP2015167145A (en) * 2011-11-11 2015-09-24 株式会社豊田自動織機 Negative electrode material for lithium ion secondary batteries, negative electrode, and lithium ion secondary battery
JP2016001613A (en) * 2015-07-30 2016-01-07 小林 光 Negative electrode material of lithium ion battery, lithium ion battery, and method of manufacturing negative electrode or negative electrode material of lithium ion battery
US9478800B2 (en) 2012-05-15 2016-10-25 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
US9876221B2 (en) 2010-05-14 2018-01-23 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JP2018530871A (en) * 2016-08-02 2018-10-18 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Lithium ion battery
WO2019031601A1 (en) 2017-08-10 2019-02-14 三井金属鉱業株式会社 Si-BASED NEGATIVE ELECTRODE ACTIVE MATERIAL
US10505183B2 (en) 2012-04-05 2019-12-10 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
WO2020166655A1 (en) 2019-02-13 2020-08-20 三井金属鉱業株式会社 Active material
CN114665099A (en) * 2020-12-24 2022-06-24 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729602A (en) * 1993-07-13 1995-01-31 Seiko Instr Inc Non-aqueous electrolyte secondary battery and manufacture thereof
JP2004235057A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and the battery
JP2004311429A (en) * 2003-03-26 2004-11-04 Canon Inc Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure
WO2006100403A1 (en) * 2005-03-22 2006-09-28 Commissariat A L'energie Atomique Method for making a photovoltaic cell based on thin-film silicon
JP2006278185A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Lithium secondary battery and its producing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729602A (en) * 1993-07-13 1995-01-31 Seiko Instr Inc Non-aqueous electrolyte secondary battery and manufacture thereof
JP2004235057A (en) * 2003-01-31 2004-08-19 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and the battery
JP2004311429A (en) * 2003-03-26 2004-11-04 Canon Inc Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure
WO2006100403A1 (en) * 2005-03-22 2006-09-28 Commissariat A L'energie Atomique Method for making a photovoltaic cell based on thin-film silicon
JP2008535210A (en) * 2005-03-22 2008-08-28 コミツサリア タ レネルジー アトミーク Method for producing photovoltaic cells based on thin film silicon
JP2006278185A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Lithium secondary battery and its producing method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295400A (en) * 2008-06-04 2009-12-17 Fdk Corp Nonaqueous power storage element
JPWO2010110205A1 (en) * 2009-03-24 2012-09-27 古河電気工業株式会社 Lithium ion secondary battery, battery electrode, electrolytic copper foil for battery electrode
US10224548B2 (en) 2010-04-28 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
US10916774B2 (en) 2010-04-28 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
US9899678B2 (en) 2010-04-28 2018-02-20 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
JP2015099790A (en) * 2010-04-28 2015-05-28 株式会社半導体エネルギー研究所 Power storage device
US9876221B2 (en) 2010-05-14 2018-01-23 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
US9819009B2 (en) 2011-11-11 2017-11-14 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode stuff and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
JP2015167145A (en) * 2011-11-11 2015-09-24 株式会社豊田自動織機 Negative electrode material for lithium ion secondary batteries, negative electrode, and lithium ion secondary battery
US9819007B2 (en) 2011-11-11 2017-11-14 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode material and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
US9819008B2 (en) 2011-11-11 2017-11-14 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode stuff and negative electrode for use in lithium-ion secondary battery as well as lithium-ion secondary battery
US10505183B2 (en) 2012-04-05 2019-12-10 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
US9478800B2 (en) 2012-05-15 2016-10-25 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
JP2014229583A (en) * 2013-05-27 2014-12-08 信越化学工業株式会社 Negative electrode active material, non-aqueous electrolyte secondary battery, and method of manufacturing them
WO2014192225A1 (en) * 2013-05-27 2014-12-04 信越化学工業株式会社 Negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material and method for manufacturing nonaqueous electrolyte secondary battery
CN105308777B (en) * 2013-06-12 2017-08-08 日产自动车株式会社 Negative electrode active material for electrical and use its electrical equipment
JPWO2014199785A1 (en) * 2013-06-12 2017-02-23 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
CN105308777A (en) * 2013-06-12 2016-02-03 日产自动车株式会社 Negative electrode active material for electric device and electric device using same
WO2014199785A1 (en) * 2013-06-12 2014-12-18 日産自動車株式会社 Negative electrode active material for electric device and electric device using same
US10818920B2 (en) 2013-06-12 2020-10-27 Nissan Motor Co., Ltd. Negative electrode active material for electrical device
US10290867B2 (en) 2013-06-12 2019-05-14 Nissan Motor Co., Ltd. Negative electrode active material for electric device and electric device using same
JP2015076181A (en) * 2013-10-07 2015-04-20 古河機械金属株式会社 Negative electrode material for lithium ion batteries, negative electrode for lithium ion batteries, and lithium ion battery
JP2016001613A (en) * 2015-07-30 2016-01-07 小林 光 Negative electrode material of lithium ion battery, lithium ion battery, and method of manufacturing negative electrode or negative electrode material of lithium ion battery
US10727529B2 (en) 2016-08-02 2020-07-28 Wacker Chemie Ag Lithium ion batteries
JP2018530871A (en) * 2016-08-02 2018-10-18 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Lithium ion battery
KR20200019957A (en) 2017-08-10 2020-02-25 미쓰이금속광업주식회사 Si-based negative active material
WO2019031601A1 (en) 2017-08-10 2019-02-14 三井金属鉱業株式会社 Si-BASED NEGATIVE ELECTRODE ACTIVE MATERIAL
US11831007B2 (en) 2017-08-10 2023-11-28 Mitsui Mining & Smelting Co., Ltd. Si-based negative electrode active material
WO2020166655A1 (en) 2019-02-13 2020-08-20 三井金属鉱業株式会社 Active material
KR20210124372A (en) 2019-02-13 2021-10-14 미쓰이금속광업주식회사 active material
CN114665099A (en) * 2020-12-24 2022-06-24 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery
CN114665099B (en) * 2020-12-24 2023-11-10 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2008123814A (en) Lithium secondary battery and its manufacturing method
JP5219339B2 (en) Lithium secondary battery
EP2863455B1 (en) Porous silicon-based negative electrode active material, method for preparing same, and lithium secondary battery comprising same
JP6374049B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5517637B2 (en) Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure
JP4415241B2 (en) Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode
JP4464173B2 (en) Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure
JP5147170B2 (en) Lithium secondary battery
EP3719881A1 (en) Anode active material for nonaqueous electrolyte secondary battery comprising silicon oxide composite and method for producing same
JP4868786B2 (en) Lithium secondary battery
KR101403498B1 (en) Anode active material for secondary battery and secondary battery including the same
JPWO2007114168A1 (en) Lithium secondary battery and manufacturing method thereof
KR101385602B1 (en) Anode active material for secondary battery and method of manufacturing the same
JP2011096637A (en) Secondary battery
JP2007095568A (en) Lithium secondary battery and method of manufacturing same
WO2012029386A1 (en) Secondary battery
JP5920217B2 (en) Secondary battery
JP5867397B2 (en) Secondary battery
JP2007207490A (en) Lithium secondary battery
JP5811093B2 (en) Secondary battery
JP2006252999A (en) Lithium secondary battery
JP5318129B2 (en) Electrode material for nonaqueous electrolyte battery and method for producing the same, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2008235083A (en) Negative electrode for lithium secondary battery, and lithium secondary cell
JP4836439B2 (en) Non-aqueous electrolyte battery electrode material, non-aqueous electrolyte battery electrode, and non-aqueous electrolyte battery
JP2007095570A (en) Lithium secondary battery and negative electrode used in that battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120921