JP2008111684A - Satellite signal tracker and satellite signal receiver with the same - Google Patents

Satellite signal tracker and satellite signal receiver with the same Download PDF

Info

Publication number
JP2008111684A
JP2008111684A JP2006293440A JP2006293440A JP2008111684A JP 2008111684 A JP2008111684 A JP 2008111684A JP 2006293440 A JP2006293440 A JP 2006293440A JP 2006293440 A JP2006293440 A JP 2006293440A JP 2008111684 A JP2008111684 A JP 2008111684A
Authority
JP
Japan
Prior art keywords
frequency
signal
correlation
coherent
satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006293440A
Other languages
Japanese (ja)
Other versions
JP4869022B2 (en
Inventor
Katsuo Yui
勝男 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2006293440A priority Critical patent/JP4869022B2/en
Publication of JP2008111684A publication Critical patent/JP2008111684A/en
Application granted granted Critical
Publication of JP4869022B2 publication Critical patent/JP4869022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a satellite signal tracker having the S/N ratio improved by extending the coherent addition time of the tracking means, continuously monitoring the signal tracking state, enabling retaining of synchronization, and capable of suppressing increase of the circuit size and current consumption. <P>SOLUTION: In the Costas loop, its carrier frequency control signal is corrected by extending the coherent addition time to the period of navigation data from a satellite, converting the I and Q correlation signals into multiple nominated frequencies, performing coherent and non-coherent additions on each of the nominated frequencies, and continuously calculating frequency deviations from a signal power distribution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、携帯電話機や車などの移動体に設置され、GPSなどの航法衛星からの衛星信号が屋内や高架下など非常に弱い環境の場合でも安定した周波数追尾を行い、その結果として安定した測位位置を出力できる衛星信号追尾装置、及びその衛星信号追尾装置を複数チャンネル備えた衛星信号受信機に関する。   The present invention is installed in a mobile body such as a mobile phone or a car, and performs stable frequency tracking even in a very weak environment such as a satellite signal from a navigation satellite such as GPS indoors or under an overhead, resulting in stable The present invention relates to a satellite signal tracking device capable of outputting a positioning position, and a satellite signal receiver including a plurality of channels of the satellite signal tracking device.

地球を周回する航法衛星(人工衛星)までの距離及び当該航法衛星の軌道に関する情報を利用し、地球上の物体(以下「利用者」と呼ぶ)の位置、速度等を求めるシステムである米国のGlobal Positioning System(GPS)等のGlobal Navigation Satellite System(GNSS)の衛星信号受信機において、衛星信号を捕捉する際に、受信する衛星信号が非常に弱い環境であっても衛星信号を順次サーチすることによって、低加速状態であることや数秒以上の観測時間を要する等の制約はあるものの、衛星信号を捕捉し測位位置を求められる捕捉手段が利用できるようになってきている。しかし、衛星信号の追尾中において加速度が高い状態(受信キャリア周波数が変化する状態)でもリアルタイムで測位可能になる簡易構成で高感度な追尾手段の実現が望まれている。   A system for determining the position, velocity, etc. of objects on the earth (hereinafter referred to as “users”) using information on the distance to navigation satellites (artificial satellites) that orbit the earth and the orbits of the navigation satellites. When a satellite signal receiver of a Global Navigation Satellite System (GNSS) such as the Global Positioning System (GPS) captures the satellite signal, the satellite signal is sequentially searched even in an environment where the received satellite signal is very weak. Therefore, although there are restrictions such as a low acceleration state and an observation time of several seconds or more, it is possible to use a capturing means that captures a satellite signal and obtains a positioning position. However, it is desired to realize a high-sensitivity tracking means with a simple configuration that allows positioning in real time even when the acceleration of the satellite signal is high (when the received carrier frequency changes).

まず、衛星信号が非常に弱い環境下でその衛星信号をサーチする場合は、衛星信号を受信した受信信号に対してPNコード相関及びキャリア周波数相関が取られた相関信号を加算する加算時間を長くすることによって、信号対雑音比(S/N比)を改善した加算相関信号を得、その加算相関信号に基づいてキャリア周波数相関に用いる局部発振器(キャリアNCO)の発振周波数信号の周波数(及び位相)を制御することが必要である。そのために、特許文献1にはコヒーレント加算とノンコヒーレント加算の2種類の加算処理を併用することが示されている。   First, when searching for a satellite signal in an environment where the satellite signal is very weak, the addition time for adding the correlation signal obtained from the PN code correlation and the carrier frequency correlation to the received signal that has received the satellite signal is lengthened. Thus, an added correlation signal having an improved signal-to-noise ratio (S / N ratio) is obtained, and the frequency (and phase) of the oscillation frequency signal of the local oscillator (carrier NCO) used for carrier frequency correlation based on the added correlation signal. ) Is necessary to control. For this purpose, Patent Document 1 shows that two types of addition processing, coherent addition and non-coherent addition, are used in combination.

コヒーレント加算は、I(搬送波正位相)相関信号とQ(搬送波90°移相)相関信号を各々そのまま加算する加算方法であり、大きなS/N比の改善が行える方法である。GPSでは20ms毎しかI,Q相関信号の反転は起こらないので、20msまではコヒーレント加算が行える。   Coherent addition is an addition method in which an I (carrier positive phase) correlation signal and a Q (carrier 90 ° phase shift) correlation signal are added as they are, and a method capable of greatly improving the S / N ratio. In GPS, inversion of the I and Q correlation signals occurs only every 20 ms, so that coherent addition can be performed up to 20 ms.

ノンコヒーレント加算は、I,Q相関信号またはこれらをコヒーレント加算した信号の信号パワーP(=I2+Q2、又は、=(I2+Q21/2)を加算していく方法である。この方法のS/N比の改善度はコヒーレント加算に劣るが、I,Q相関信号の反転の影響を受けないため、衛星からの航法メッセージの反転パターンが未知の場合でもS/N比の改善が行える利点がある。 Non-coherent addition is a method of adding the signal power P (= I 2 + Q 2 or = (I 2 + Q 2 ) 1/2 ) of an I, Q correlation signal or a signal obtained by coherent addition of these signals. Although the degree of improvement in the S / N ratio of this method is inferior to coherent addition, it is not affected by the inversion of the I and Q correlation signals, so the S / N ratio is improved even when the inversion pattern of the navigation message from the satellite is unknown There is an advantage that can be done.

また、衛星信号をサーチ(捕捉)する場合、その受信信号に対してPNコードの同期とともにキャリア周波数同期を確保することが必要である。このサーチに要する時間を短くするために、特許文献2(特にその第2図)に示されるように、同一のPNコードに関して、複数の異なる周波数範囲毎に局部発振器(キャリアNCO)を含むキャリア周波数相関手段を設けて、同時に複数の周波数範囲をサーチすることが行われている場合がある。また、特許文献2(特に段落「0007」)には、各々キャリアNCOを含むキャリア周波数相関手段を用いる代わりに、航法データが変化しない区間内で高速フーリエ変換を用いて周波数を求めている場合もある。これらは、いずれも衛星信号のサーチに関するものであり、その構成として、キャリアNCOを含むキャリア周波数相関手段を複数セット必要としたり、或いは高速フーリエ変換を実行するために回路規模が大きく且つ処理負荷が重くなる。なお、この特許文献2(特に段落「0019」)では、追尾する際には、1つのキャリア周波数相関手段(直交周波数変換手段)のみを追尾用に使用し、他のキャリア周波数相関手段(直交周波数変換手段)はサーチ用に使用してサーチ時間短縮に利用している。   When searching for (acquiring) a satellite signal, it is necessary to ensure carrier frequency synchronization as well as PN code synchronization for the received signal. In order to shorten the time required for this search, as shown in Patent Document 2 (particularly FIG. 2), a carrier frequency including a local oscillator (carrier NCO) for each of a plurality of different frequency ranges with respect to the same PN code. In some cases, correlation means is provided to search a plurality of frequency ranges simultaneously. Further, in Patent Document 2 (particularly, paragraph “0007”), instead of using carrier frequency correlating means each including a carrier NCO, a frequency may be obtained by using Fast Fourier Transform within a section where navigation data does not change. is there. These are all related to satellite signal search. As a configuration, a plurality of sets of carrier frequency correlation means including a carrier NCO are required, or a large circuit scale and processing load are required to perform fast Fourier transform. Become heavier. In Patent Document 2 (particularly, paragraph “0019”), when tracking, only one carrier frequency correlation means (orthogonal frequency conversion means) is used for tracking, and other carrier frequency correlation means (orthogonal frequency) Conversion means) is used for searching and is used to shorten the search time.

ベースバンドにおける信号の位相回転を除去するために、信号ベクトルAej(ωNT+φ)に逆転単位ベクトルe-jωNTを乗じることが、特許文献3(特に、図5,図8)に示されている。実際のI及びQ成分(I+jQ)の逆転演算の実行は、乗部(cosωNT−jsinωNT)を実数部と虚数部で表現し、次の式(1)により行われる。
(I+jQ)(cosωNT−jsinωNT)
=IcosωNT+QsinωNT+jQcosωNT−jIsinωNT (1)
この回転角ωNTは数値制御発振器からディジタルワードで与えられ、そのcosωNT,sinωNTの値はPROMのテーブルが利用される。
Patent Document 3 (particularly, FIGS. 5 and 8) shows that the signal vector Ae j ( ω NT + φ ) is multiplied by the reverse unit vector e −j ω NT to remove the phase rotation of the signal in the baseband. Has been. The actual inversion operation of the I and Q components (I + jQ) is performed by expressing the multiplier part (cos ωNT−jsin ωNT) as a real part and an imaginary part and using the following equation (1).
(I + jQ) (cosωNT−jsinωNT)
= Icos ωNT + Qsin ωNT + jQcos ωNT−jIsin ωNT (1)
The rotation angle ωNT is given as a digital word from a numerically controlled oscillator, and the cos ωNT and sin ωNT values are obtained from a PROM table.

また、GPS受信装置においては、PNコード(拡散符号)の同期が保持されている場合に、キャリア周波数の同期が保持されているか否かに拘わらず、キャリア周波数の周波数ずれ量Xと信号パワー(受信レベル)Pの間に、P∝(sinX/X)2の関係が存在している。即ち、受信レベルPは、キャリア周波数が受信信号と完全に一致している場合に最大となり、キャリア周波数から所定の周波数だけずれた周波数で最小となる(特許文献4、特に図10)。 Further, in the GPS receiver, when the synchronization of the PN code (spreading code) is maintained, the frequency deviation amount X of the carrier frequency and the signal power (regardless of whether the synchronization of the carrier frequency is maintained). There is a relationship of P∝ (sinX / X) 2 between the reception levels) P. That is, the reception level P becomes maximum when the carrier frequency completely matches the received signal, and becomes minimum at a frequency shifted by a predetermined frequency from the carrier frequency (Patent Document 4, particularly FIG. 10).

特許文献4では、追尾している衛星からの信号パワーが弱くなった場合に、1つのチャンネル回路によって同期保持を行う通常の追尾動作から、2つのチャンネル回路によって同期保持を行う動作に切り替える。2チャンネル回路による同期保持動作は、当該GPS衛星の同期保持用に2つのチャンネル回路を確保する。本来のキャリア周波数であると予想される予想キャリア周波数よりも所定周波数βだけ高い周波数を一方のチャンネル回路C1に設定し、所定周波数βだけ低い周波数を他方のチャンネル回路C2に設定する。第1,第2のチャンネル回路C1,C2の受信レベルP1,P2を比較し、それらの受信レベルP1,P2が等しくなるように予想キャリア周波数を試行錯誤的に調整する。この受信レベルP1,P2が等しいときの予想キャリア周波数を、正しいキャリア周波数として追尾する。
米国特許第6,724,343号明細書 特許第3,106,829号明細書 特許第2,620,219号明細書 特開2003−255036号公報
In Patent Document 4, when the signal power from the tracking satellite becomes weak, the normal tracking operation in which the synchronization is held by one channel circuit is switched to the operation in which the synchronization is held by two channel circuits. The synchronization holding operation by the two-channel circuit secures two channel circuits for the synchronization holding of the GPS satellite. A frequency higher by a predetermined frequency β than the expected carrier frequency expected to be the original carrier frequency is set in one channel circuit C1, and a frequency lower by the predetermined frequency β is set in the other channel circuit C2. The reception levels P1 and P2 of the first and second channel circuits C1 and C2 are compared, and the expected carrier frequency is adjusted by trial and error so that the reception levels P1 and P2 are equal. The expected carrier frequency when the reception levels P1 and P2 are equal is tracked as a correct carrier frequency.
US Pat. No. 6,724,343 Patent No. 3,106,829 Patent No. 2,620,219 JP 2003-255036 A

GPSなどの衛星信号受信機の追尾手段の高感度化を行う場合において、一般的には衛星からの航法データの反転パターンは未知であるため航法データ周期(例、GPSでは20ms)まではコヒーレント加算を行うことができる。しかし、コヒーレント加算の時間を延ばすことは、急激な周波数変化を検出できなくなり、加速度追従仕様を満足できなくなることから、従来では加速度追従仕様を満たす観点から通常5ms以下のコヒーレント時間が用いられている。したがって、S/N比の改善を十分に図ることができなかった。   When the tracking means of a satellite signal receiver such as GPS is made highly sensitive, generally the inversion pattern of the navigation data from the satellite is unknown, so that the coherent addition is performed up to the navigation data period (eg, 20 ms for GPS). It can be performed. However, extending the coherent addition time makes it impossible to detect an abrupt frequency change and makes it impossible to satisfy the acceleration tracking specification. Conventionally, a coherent time of 5 ms or less is normally used from the viewpoint of satisfying the acceleration tracking specification. . Therefore, the S / N ratio cannot be sufficiently improved.

また、周波数変化に関しては、予想キャリア周波数近傍の複数周波数の信号パワーの比較を行えれば急激な周波数変化にも一応対応することは可能である。しかし、常時、追尾状態を監視するには、通常の追尾動作を行うチャンネル回路とともに、同期保持用に2つのチャンネル回路を追加して追尾中常に、それら全てのチャンネル回路を動作させざるをえない。それらチャンネル回路は、局部発振器等を有するから、回路規模も大きくなり且つ消費電流も過大になってしまう。   As for frequency changes, it is possible to cope with sudden frequency changes as long as signal powers of a plurality of frequencies near the expected carrier frequency can be compared. However, in order to constantly monitor the tracking state, it is necessary to add two channel circuits for maintaining synchronization together with the channel circuit that performs normal tracking operation, and to operate all the channel circuits at all times during tracking. . Since these channel circuits have a local oscillator or the like, the circuit scale becomes large and the current consumption becomes excessive.

本発明は、以上の点に鑑みてなされたものであり、追尾手段のコヒーレント加算時間を長くしてS/N比を向上するとともに、常時追尾状態を監視しつつ同期保持を可能とし、更に同期保持用の追加回路に局部発振器を不要として、回路規模や消費電流の増大を抑制できる衛星信号追尾装置を提供することを目的とする。また、その衛星信号追尾装置を複数備えた衛星信号受信機を提供することを目的とする。   The present invention has been made in view of the above points. The coherent addition time of the tracking means is increased to improve the S / N ratio, and synchronization can be maintained while constantly monitoring the tracking state. It is an object of the present invention to provide a satellite signal tracking device that can suppress an increase in circuit scale and current consumption by eliminating the need for a local oscillator in an additional circuit for holding. Another object of the present invention is to provide a satellite signal receiver including a plurality of the satellite signal tracking devices.

請求項1に記載の衛星信号追尾装置は、周波数制御信号Foutを受けてキャリア周波数信号を発生するキャリア局部発振器(キャリアNCO)2を含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号I0iとQ相関信号Q0iとを同時に1ms毎に出力する1ms相関チャンネル回路1と、
前記I相関信号I0iとQ相関信号Q0iを前記特定衛星信号の航法データの切り替わりタイミングに同期してコヒーレント加算を行い、前記I,Q相関信号I0i,Q0iのIコヒーレント加算値IciとQコヒーレント加算値Qciとを出力するコヒーレント加算器3と、
前記I,Qコヒーレント加算値Ici,Qciに基づいて前記周波数制御信号Foutを決定するコスタスループ演算器4と、
前記I相関信号I0iとQ相関信号Q0iに対して、複数の周波数候補Fc1〜Fckに関してそれぞれ周波数変換された周波数変換I相関信号I0c1〜Iockと周波数変換Q相関信号Q0c1〜Qockを演算し出力する周波数演算器5,6と、
前記周波数変換I相関信号I0c1〜Iockと周波数変換Q相関信号Q0c1〜Qockを受けて、各周波数候補Fc1〜Fck毎に所定期間の信号パワーを累積加算した複数の累積信号パワーP1〜Pkを求めて出力する複数の信号パワー積算器71〜7k、81〜8kと、
前記複数の累積信号パワーP1〜Pkの分布状況に基づいて、前記周波数制御信号Foutにおける現在の追尾周波数と追尾すべき真の追尾周波数との周波数ずれ量を演算し、その周波数ずれ量に応じて前記周波数制御信号Foutを補正する周波数ずれ・追尾周波数演算器9と、を備えることを特徴とする。
The satellite signal tracking device according to claim 1 includes a carrier local oscillator (carrier NCO) 2 that receives a frequency control signal Fout and generates a carrier frequency signal, and converts a satellite signal into a received signal related to a specific satellite signal that is input. A 1 ms correlation channel circuit 1 that outputs the I correlation signal I0i and the Q correlation signal Q0i for 1 ms at the same time every 1 ms.
The I correlation signal I0i and the Q correlation signal Q0i are subjected to coherent addition in synchronization with the navigation data switching timing of the specific satellite signal, and the I coherent addition value Ici and the Q coherent addition value of the I, Q correlation signals I0i, Q0i A coherent adder 3 that outputs Qci;
A Costas loop calculator 4 for determining the frequency control signal Fout based on the I and Q coherent addition values Ici and Qci;
A frequency for calculating and outputting frequency-converted I-correlation signals I0c1-Iock and frequency-converted Q-correlation signals Q0c1-Qock that are frequency-converted with respect to the plurality of frequency candidates Fc1-Fck with respect to the I correlation signal I0i and the Q correlation signal Q0i Computing units 5 and 6;
The frequency conversion I correlation signals I0c1 to Iock and the frequency conversion Q correlation signals Q0c1 to Qock are received, and a plurality of accumulated signal powers P1 to Pk obtained by accumulating signal powers for a predetermined period for each frequency candidate Fc1 to Fck are obtained. A plurality of signal power integrators 71 to 7k and 81 to 8k to be output;
Based on the distribution state of the plurality of accumulated signal powers P1 to Pk, a frequency shift amount between the current tracking frequency and the true tracking frequency to be tracked in the frequency control signal Fout is calculated, and according to the frequency shift amount And a frequency shift / tracking frequency calculator 9 for correcting the frequency control signal Fout.

請求項2に記載の衛星信号追尾装置は、請求項1に記載の衛星信号追尾装置において、前記複数の信号パワー積算器71〜7k、81〜8kは、
前記周波数変換I相関信号I0c1〜Iockと周波数変換Q相関信号Q0c1〜Qockを、前記特定衛星信号の航法データの切り替わりタイミングに同期して各周波数変換I相関信号I0c1〜Iockと周波数変換Q相関信号Q0c1〜Qock毎にそれぞれコヒーレント加算を行い、そのコヒーレント加算した周波数変換Iコヒーレント加算値び周波数変換Qコヒーレント加算値を記憶し出力する複数の周波数候補コヒーレント加算器71〜7kと、
前記周波数変換Iコヒーレント加算値び周波数変換Qコヒーレント加算値から、各周波数候補Fc1〜Fck毎にコヒーレント加算区間内の信号パワーを求め、各周波数候補Fc1〜Fck毎にその信号パワーの所定回数Mの累積加算を行って累積信号パワーP1〜Pkを求めて出力する複数の周波数候補ノンコヒーレント加算器81〜8kと、を含むことを特徴とする。
The satellite signal tracking device according to claim 2 is the satellite signal tracking device according to claim 1, wherein the plurality of signal power integrators 71 to 7k and 81 to 8k are:
The frequency conversion I correlation signals I0c1 to Iock and the frequency conversion Q correlation signals Q0c1 to Qock are synchronized with the navigation data switching timing of the specific satellite signal, and the frequency conversion I correlation signals I0c1 to Iock and the frequency conversion Q correlation signal Q0c1 are synchronized. A plurality of frequency candidate coherent adders 71 to 7k that perform coherent addition for each ~ Qock and store and output the frequency transformed I coherent added value and the frequency transformed Q coherent added value obtained by the coherent addition;
The signal power in the coherent addition interval is obtained for each frequency candidate Fc1 to Fck from the frequency conversion I coherent addition value and the frequency conversion Q coherent addition value, and a predetermined number M of the signal power is obtained for each frequency candidate Fc1 to Fck. It includes a plurality of frequency candidate non-coherent adders 81 to 8k that perform cumulative addition to obtain and output cumulative signal powers P1 to Pk.

請求項3に記載の衛星信号受信機は、請求項1または2に記載の衛星信号追尾装置を追尾すべき衛星に応じて2つ以上備えることを特徴とする。   According to a third aspect of the present invention, there is provided a satellite signal receiver including two or more satellite signal tracking devices according to the first or second aspect according to the satellite to be tracked.

本発明の衛星信号追尾装置、衛星信号受信機によれば、追尾手段のコヒーレント加算時間を長くしてS/N比を向上できるとともに、常時追尾状態を監視しつつ同期保持を可能とする。更に、同期保持用の追加回路に局部発振器を不要として、回路規模や消費電流の増大を抑制できる。   According to the satellite signal tracking device and the satellite signal receiver of the present invention, the coherent addition time of the tracking means can be increased to improve the S / N ratio, and synchronization can be maintained while constantly monitoring the tracking state. Furthermore, a local oscillator is not required for the additional circuit for maintaining synchronization, and an increase in circuit scale and current consumption can be suppressed.

以下、本発明を実施するための実施形態について、GPSを例として説明する。本発明の衛星信号追尾装置は、衛星信号の追尾、特にキャリア周波数追尾に関するものであり、この追尾時のキャリア周波数の周波数チェック範囲と捕捉時(サーチ時)のキャリア周波数の周波数チェック範囲とは、大きく異なっており、その違いをまず説明する。   Hereinafter, an embodiment for carrying out the present invention will be described using GPS as an example. The satellite signal tracking device of the present invention relates to tracking of satellite signals, in particular, carrier frequency tracking. The frequency check range of the carrier frequency at the time of tracking and the frequency check range of the carrier frequency at the time of acquisition (during search) are: The differences are first explained.

サーチ時には、特許文献2にも記載されているように、PNコードの周期が1msであることにより、その周波数対相関出力値の関係からkHz単位(例えば、1kHz刻み)での周波数チェックが行われる。この場合には、特許文献2の図2のように、同一のPNコードに関して1kHz刻みに複数の局部発振器(キャリアNCO)を含むキャリア周波数相関手段を設けて、同時に複数の周波数範囲をサーチする。1kHzの周波数変更に伴い1ms間の加算相関値も大きく変動するため、数10MHz以上のサンプリング周波数(局部発振周波数)で動作する局部発振器が、キャリア周波数相関手段の数だけ必要となる。   At the time of the search, as described in Patent Document 2, since the period of the PN code is 1 ms, a frequency check is performed in kHz units (for example, in 1 kHz increments) from the relationship between the frequency and the correlation output value. . In this case, as shown in FIG. 2 of Patent Document 2, carrier frequency correlation means including a plurality of local oscillators (carriers NCO) is provided in increments of 1 kHz with respect to the same PN code, and a plurality of frequency ranges are searched simultaneously. Since the added correlation value for 1 ms greatly fluctuates with the frequency change of 1 kHz, local oscillators operating at a sampling frequency (local oscillation frequency) of several tens of MHz or more are required as many as the carrier frequency correlation means.

一方、追尾時においては、搭載された車両などの移動により追尾すべき真の周波数が急激に変化したとしても通常数10Hz/sec以内である。したがって、数10Hz以内の範囲で追尾周波数ずれが計測できれば良い。追尾周波数が数10Hz程度以内の周波数ずれであれば、その1ms間の加算相関値への影響は数%以下であり、ほとんど問題ないと言える。   On the other hand, at the time of tracking, even if the true frequency to be tracked changes suddenly due to movement of a mounted vehicle or the like, it is usually within several tens of Hz / sec. Therefore, it is only necessary to measure the tracking frequency deviation within a range of several tens of Hz. If the tracking frequency is a frequency deviation within about several tens of Hz, the influence on the addition correlation value for 1 ms is several% or less, and it can be said that there is almost no problem.

例えば、衛星信号の周波数追尾において、20msコヒーレント加算を行う場合、1ms加算相関値に関して、例えば10Hz分の周波数変換を施して得られた加算相関値を所定時間分コヒーレント加算した加算結果と、局部発振器(キャリアNCO)を利用して周波数を同じく10Hz分ずらした加算相関値を所定時間分コヒーレント加算した加算結果とは、ほぼ同じ結果となる。   For example, when performing 20 ms coherent addition in frequency tracking of a satellite signal, an addition result obtained by coherently adding an addition correlation value obtained by performing frequency conversion for, for example, 10 Hz on a 1 ms addition correlation value, and a local oscillator The addition result obtained by coherently adding the addition correlation values obtained by shifting the frequency by 10 Hz using (carrier NCO) for a predetermined time is almost the same result.

本発明の衛星信号追尾装置は、この知見に基づいて、1ms加算相関値に関して、数Hz〜数10Hz分の周波数変換を施して得られた複数の加算相関値をそれぞれ所定時間分コヒーレント加算した複数の加算結果を利用して、追尾すべき真の周波数と現在の追尾している周波数との周波数ずれ量を求めて、その周波数ずれ量に応じて現在の追尾している周波数を補正する。本発明では、このように、従来の追尾装置で得られる1ms間の加算相関値を単に周波数変換して用いることで、追加の局部発振器(キャリアNCO)等を不要として、回路規模や消費電流の大幅削減を実現している。   Based on this knowledge, the satellite signal tracking device of the present invention provides a plurality of summed correlation values obtained by performing frequency conversion for several Hz to several tens of Hz with respect to a 1 ms added correlation value, respectively, by coherent addition for a predetermined time. Is used to obtain a frequency shift amount between the true frequency to be tracked and the currently tracked frequency, and the current tracked frequency is corrected according to the frequency shift amount. In the present invention, the additive correlation value for 1 ms obtained by the conventional tracking device is simply frequency-converted and used, so that no additional local oscillator (carrier NCO) or the like is required, and the circuit scale and current consumption are reduced. Significant reduction has been achieved.

以下、図1,図2を参照して、本発明の衛星信号追尾装置の実施例について説明する。図1において、衛星からアンテナ101に到来した衛星信号は、ダウンコンバータ102で中間周波数に変換され、A/D変換回路103にてディジタル処理のためにディジタル信号に変換され、受信信号としてキャリアNCO2を含む1ms相関チャンネル回路1に入力される。   Hereinafter, an embodiment of the satellite signal tracking device of the present invention will be described with reference to FIGS. In FIG. 1, a satellite signal arriving at an antenna 101 from a satellite is converted to an intermediate frequency by a down converter 102, converted to a digital signal for digital processing by an A / D conversion circuit 103, and a carrier NCO2 is received as a received signal. The 1 ms correlation channel circuit 1 is input.

1ms相関チャンネル回路1は、周波数制御信号Foutを受けてキャリア周波数信号を発生するキャリア局部発振器2を含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号I0iとQ相関信号Q0iとを同時に1ms毎に出力する。この1ms相関チャンネル回路1は、従来のGPS受信機で使用されているものと同様のものでよい。念のためにその主要構成について例示する。   The 1 ms correlation channel circuit 1 includes a carrier local oscillator 2 that receives a frequency control signal Fout and generates a carrier frequency signal. The 1 ms correlation channel circuit 1 converts a satellite signal and receives a code correlation between a received signal and a PN code related to a specific satellite signal that is input. The carrier correlation with the carrier frequency signal is taken, and the I correlation signal I0i and the Q correlation signal Q0i for 1 ms are simultaneously output every 1 ms. The 1 ms correlation channel circuit 1 may be the same as that used in a conventional GPS receiver. As a precaution, the main configuration is illustrated.

即ち、受信しようとする衛星のPNコードと同一のPNコードをコード発生器で発生し、受信信号と発生したPNコードとをコード相関器で相関を採る。このコード相関器の相関値が最大となるようにコードNCOにてコード発生器のPNコード位相を制御するように遅延ロックループ(DLL)を構成する。このコード相関器の出力は、Iキャリア相関器にてキャリアNCO2で発生したIキャリア周波数信号と、またQキャリア相関器にてキャリアNCO2で発生したQキャリア周波数信号とそれぞれ相関が採られて相関値を出力する。Iキャリア相関器の出力はレジスタなどで構成されるI1ms積分器で積分され、1ms間のI加算相関値I0iとして1ms毎に出力される。同様に、Qキャリア相関器の出力はQ1ms積分器で積分され、1ms間のQ加算相関値Q0iとして1ms毎に出力される。   That is, a PN code identical to the PN code of the satellite to be received is generated by the code generator, and the received signal and the generated PN code are correlated by the code correlator. A delay lock loop (DLL) is configured so that the code NCO controls the PN code phase of the code generator so that the correlation value of the code correlator is maximized. The output of this code correlator is correlated with the I carrier frequency signal generated at the carrier NCO2 by the I carrier correlator and the Q carrier frequency signal generated at the carrier NCO2 by the Q carrier correlator. Is output. The output of the I carrier correlator is integrated by an I1 ms integrator composed of a register or the like, and output as an I addition correlation value I0i for 1 ms every 1 ms. Similarly, the output of the Q carrier correlator is integrated by a Q1 ms integrator and is output every 1 ms as a Q addition correlation value Q0i for 1 ms.

1ms相関チャンネル回路1から出力されるI,Q加算相関値I0i,Q0iは真に追尾されるべき真追尾周波数と、その時点でキャリアNCO2から出力されている現追尾周波数との周波数差、位相差に応じた周波数成分を持つことになる。現追尾周波数が真追尾周波数に等しい場合には、I,Q加算相関値I0i,Q0iの周波数成分は理想的には零になる。   The I and Q addition correlation values I0i and Q0i output from the 1 ms correlation channel circuit 1 are the frequency difference and phase difference between the true tracking frequency to be truly tracked and the current tracking frequency output from the carrier NCO2 at that time. It has a frequency component corresponding to. When the current tracking frequency is equal to the true tracking frequency, the frequency components of the I and Q addition correlation values I0i and Q0i are ideally zero.

Nmsコヒーレント加算器3では、1ms相関チャンネル回路1から1ms間のI,Q加算相関値I0i,Q0iが出力される毎にI加算相関値I0i及びQ加算相関値Q0iのコヒーレント加算を、Nms間だけ行う。具体的には、衛星からの航法データの切替タイミング(エッジ情報)の間だけ、コヒーレント加算を行う。そして、エッジタイミングになった時に、Nms(例えば20ms)毎に、そのコヒーレント加算結果であるI,Qコヒーレント加算値Ici,Qciを出力し、その後の次回コヒーレント区間での積算のために内部加算結果をリセットする。   The Nms coherent adder 3 performs coherent addition of the I addition correlation value I0i and the Q addition correlation value Q0i only for Nms every time the I, Q addition correlation values I0i and Q0i are output from the 1 ms correlation channel circuit 1 for 1 ms. Do. Specifically, coherent addition is performed only during the switching timing (edge information) of the navigation data from the satellite. When the edge timing is reached, the coherent addition results I and Q coherent addition values Ici and Qci are output every Nms (for example, 20 ms), and the internal addition result for subsequent integration in the next coherent interval. To reset.

エッジ情報発生器11からエッジ情報が、供給される。このエッジエッジ情報は、概略のユーザ位置(即ち、衛星信号追尾装置の存在位置)、衛星軌道情報が既知で、1つ以上の衛星信号の強い衛星に追尾している条件下であれば全衛星のエッジ位置は正確に求められる。その求め方は例えば、(1)通常感度の衛星を1衛星以上追尾してGPS時刻を得る、(2)アシスト情報から得られるエフェメリス情報(衛星軌道情報)を用いて、現在時刻におけるGPS衛星位置を求める、(3)概略のユーザ位置を用い、GPS衛星と現在位置間の距離差を求め、それを光速で割ってGPS衛星からの信号が到達するまでの時間を求める、(4)その時間をエッジ間隔で割ったあまりの時間T2を求め、その値を切替タイミングとして記憶する、(5)GPS時刻をエッジ間隔で割った余りが値T2になったときに切り替える、ことにより得られる。   Edge information is supplied from the edge information generator 11. This edge edge information is a general user position (that is, the position where the satellite signal tracking device is present), satellite orbit information is known, and all satellites are tracked under the condition of tracking one or more strong satellite signals. The edge position of is accurately determined. For example, (1) the GPS time is obtained by tracking one or more satellites of normal sensitivity, and (2) the GPS satellite position at the current time using the ephemeris information (satellite orbit information) obtained from the assist information. (3) Using the approximate user position, the distance difference between the GPS satellite and the current position is obtained, and divided by the speed of light to obtain the time until the signal from the GPS satellite arrives. (4) The time Is obtained by determining the time T2 that is excessively divided by the edge interval and storing the value as the switching timing, and (5) switching when the remainder obtained by dividing the GPS time by the edge interval becomes the value T2.

コスタスループ演算器4は、コヒーレント加算時間分S/N比が改善されたI,Qコヒーレント加算値Ici,Qciに基づいて、キャリアNCO2へ与えるキャリア周波数制御信号Foutを決定する。   The Costas loop calculator 4 determines the carrier frequency control signal Fout to be given to the carrier NCO2 based on the I and Q coherent addition values Ici and Qci whose S / N ratio is improved by the coherent addition time.

このコスタスループ演算器4、キャリアNCO2を含む1ms相関チャンネル回路1,Nmsコヒーレント加算器3によってコスタスループが形成される。このコスタスループは、閉ループ制御であり、コヒーレント加算時間はNms(=20ms)であるためにS/N比が改善されるから、衛星信号が弱い場合にも精度良いキャリア周波数制御信号Fout、即ち高精度のキャリア周波数を得ることができるし、また、リアルタイムの周波数追尾が行える。   A Costas loop is formed by the Costas loop calculator 4, the 1 ms correlation channel circuit 1 including the carrier NCO 2, and the Nms coherent adder 3. This Costas loop is a closed loop control, and since the S / N ratio is improved because the coherent addition time is Nms (= 20 ms), the carrier frequency control signal Fout with high accuracy even when the satellite signal is weak, ie, high An accurate carrier frequency can be obtained, and real-time frequency tracking can be performed.

周波数変換装置5と各候補周波数設定装置6により構成される周波数演算器は、I相関信号I0iとQ相関信号Q0iに対して、複数の周波数候補Fc1〜Fckに関してそれぞれ周波数変換された周波数変換I相関信号I0c1〜Iockと周波数変換Q相関信号Q0c1〜Qockを演算し出力する。   The frequency calculator composed of the frequency conversion device 5 and each candidate frequency setting device 6 is a frequency conversion I correlation obtained by performing frequency conversion on each of the plurality of frequency candidates Fc1 to Fck with respect to the I correlation signal I0i and the Q correlation signal Q0i. The signals I0c1 to Iock and the frequency converted Q correlation signals Q0c1 to Qock are calculated and output.

各候補周波数設定装置6は、I,Q相関信号I0i,Q0iが有している相関信号周波数Ftに加算または減算する複数の候補周波数Fc1〜Fckを、周波数変換装置5に指示する。候補周波数Fc1〜Fckとしては、0Hzを中心として数Hz〜数10Hz間隔で正及び負の周波数が用意される。これらの複数の候補周波数Fc1〜Fckは、或る周波数間隔B[Hz]毎に用意されていることがよい。   Each candidate frequency setting device 6 instructs the frequency conversion device 5 on a plurality of candidate frequencies Fc1 to Fck to be added to or subtracted from the correlation signal frequency Ft included in the I and Q correlation signals I0i and Q0i. As candidate frequencies Fc1 to Fck, positive and negative frequencies are prepared at intervals of several Hz to several tens of Hz centering on 0 Hz. The plurality of candidate frequencies Fc1 to Fck are preferably prepared for each frequency interval B [Hz].

周波数変換装置5では、1ms相関チャンネル1からのI,Q相関信号I0i,Q0iを、各各候補周波数設定装置6で設定された候補周波数Fc1〜Fckに基づいて周波数変換を行い、周波数変換されたI,Q相関信号I0c1〜k,Q0c1〜kを周波数毎、例えばF1=Ft−Fc1、F2=Ft−Fc2、F3=Ft+Fc3、F4=Ft+Fc4、F5=Ft+Fc5、に出力する。   The frequency conversion device 5 performs frequency conversion on the I and Q correlation signals I0i and Q0i from the 1 ms correlation channel 1 based on the candidate frequencies Fc1 to Fck set by each candidate frequency setting device 6, and the frequency conversion is performed. The I and Q correlation signals I0c1 to k and Q0c1 to k are output for each frequency, for example, F1 = Ft−Fc1, F2 = Ft−Fc2, F3 = Ft + Fc3, F4 = Ft + Fc4, and F5 = Ft + Fc5.

この周波数変換装置5における周波数変換は、例えば特許文献3の図8に示され、式(1)に示したと同様に、I相関信号I0i及びQ相関信号Q0iに、乗部(cosωNT−jsinωNT)を乗じて、その実数部を周波数変換I相関信号I0c1〜Iockとし、その虚数部を周波数変換Q相関信号Q0c1〜Qockとする。この回転角ωNTは、各候補周波数に合わせてそれぞれ数値制御発振器からディジタルワードで与えられ、そのcosωNT,sinωNTの値はROMのテーブルを利用することができる。   The frequency conversion in this frequency conversion device 5 is shown in FIG. 8 of Patent Document 3, for example, and similarly to the expression (1), the I correlation signal I0i and the Q correlation signal Q0i are multiplied by a multiplier (cosωNT−jsinωNT). The real part is multiplied by frequency conversion I correlation signals I0c1 to Iock, and the imaginary part is frequency conversion Q correlation signals Q0c1 to Qock. The rotation angle ωNT is given by a digital word from a numerically controlled oscillator in accordance with each candidate frequency, and the values of cos ωNT and sin ωNT can use a ROM table.

この周波数変換装置5における周波数変換の処理は、対象とするI,Q相関信号I0i,Q0iが1ms毎と非常に遅い周期で行えば良く、また、各候補周波数について1つの変換回路で順次時分割的に処理すれば良いので、極めて小さい回路で実行できるし、消費電流も極めて少なくできる。このことは、局部発振器(キャリアNCO)を利用して複数の候補周波数に関して周波数変換を行う場合と比較すると、その優位さは明らかである。   The frequency conversion process in the frequency conversion device 5 may be performed with a very slow cycle of the target I and Q correlation signals I0i and Q0i every 1 ms, and each candidate frequency is sequentially time-divided by one conversion circuit. Therefore, it can be executed with an extremely small circuit, and the current consumption can be extremely reduced. This is clearly superior in comparison with the case where frequency conversion is performed for a plurality of candidate frequencies using a local oscillator (carrier NCO).

複数の周波数候補Nmsコヒーレント加算器71〜7kと複数の周波数候補M回ノンコヒーレント加算器81〜8kで構成される複数の信号パワー積算器は、周波数変換I相関信号I0c1〜I0ckと周波数変換Q相関信号Q0c1〜Q0ckを受けて、各周波数候補Fc1〜Fck毎に所定期間の信号パワーを累積加算した累積信号パワーP1〜Pkを求めて出力する。   A plurality of signal power accumulators composed of a plurality of frequency candidate Nms coherent adders 71 to 7k and a plurality of frequency candidate M times non-coherent adders 81 to 8k are frequency converted I correlation signals I0c1 to I0ck and frequency conversion Q correlation. In response to the signals Q0c1 to Q0ck, accumulated signal powers P1 to Pk obtained by accumulating the signal powers of a predetermined period for each frequency candidate Fc1 to Fck are obtained and output.

複数の周波数候補Mmsコヒーレント加算器71〜7kは、Nmsコヒーレント加算器3と同様に、周波数変換I相関信号I0c1〜Iockと周波数変換Q相関信号Q0c1〜Qockを、衛星信号の航法データの切り替わりタイミング(エッジ情報)に同期して各周波数変換I相関信号I0c1〜Iockと周波数変換Q相関信号Q0c1〜Qock毎にそれぞれコヒーレント加算を行い、そのコヒーレント加算した周波数変換Iコヒーレント加算値び周波数変換Qコヒーレント加算値を記憶し出力する。   Similar to the Nms coherent adder 3, the plurality of frequency candidate Mms coherent adders 71 to 7k convert the frequency conversion I correlation signals I0c1 to Iock and the frequency conversion Q correlation signals Q0c1 to Qock into the navigation data switching timing of satellite signals ( The frequency conversion I coherent addition value and the frequency conversion Q coherent addition value obtained by performing coherent addition for each of the frequency conversion I correlation signals I0c1 to Iock and the frequency conversion Q correlation signals Q0c1 to Qock in synchronization with the edge information). Is stored and output.

また、各周波数候補のM回ノンコヒーレント加算器81〜8kでは、周波数変換Iコヒーレント加算値及び周波数変換Qコヒーレント加算値から、各周波数候補Fc1〜Fck毎にコヒーレント加算区間内の信号パワーを「I2+Q2」または「(I2+Q21/2」で求め、各周波数候補Fc1〜Fck毎にその信号パワーの所定回数M(例えば、Mは数10回以上)の累積加算を行って累積信号パワーP1〜Pkを求めて、周波数ずれ&追尾周波数演算器9に出力する。 In addition, the M-time non-coherent adders 81 to 8k for each frequency candidate convert the signal power in the coherent addition interval for each frequency candidate Fc1 to Fck from the frequency conversion I coherent addition value and the frequency conversion Q coherent addition value to “I”. 2 + Q 2 ”or“ (I 2 + Q 2 ) 1/2 ”, and for each frequency candidate Fc1 to Fck, the signal power is accumulated a predetermined number M (for example, M is several tens of times or more). Accumulated signal powers P1 to Pk are obtained and output to the frequency shift & tracking frequency calculator 9.

なお、候補周波数Fc1〜Fckには、候補周波数「0」の場合を含み、周波数候補コヒーレント加算器71〜7kの1つ及び周波数候補のM回ノンコヒーレント加算器81〜8kの1つが候補周波数「0」に対応するものとして説明した。しかし、候補周波数Fc1〜Fckには候補周波数「0」の場合を含まず、周波数候補コヒーレント加算器71〜7kにも候補周波数「0」に対応するものを有しないものとし、その代わりに、Nmsコヒーレント加算器3から出力されるI,Qコヒーレント加算値Ici,Qciを、周波数候補のM回ノンコヒーレント加算器81〜8kの1つに候補周波数「0」に対応するものとして入力することとしても良い。   The candidate frequencies Fc1 to Fck include the case of the candidate frequency “0”, and one of the frequency candidate coherent adders 71 to 7k and one of the M candidate non-coherent adders 81 to 8k of the frequency candidates are the candidate frequency “ It was described as corresponding to “0”. However, the candidate frequencies Fc1 to Fck do not include the case of the candidate frequency “0”, and the frequency candidate coherent adders 71 to 7k do not have one corresponding to the candidate frequency “0”. Instead, Nms The I and Q coherent addition values Ici and Qci output from the coherent adder 3 may be input to one of the M times non-coherent adders 81 to 8k of the frequency candidates as corresponding to the candidate frequency “0”. good.

周波数ずれ・追尾周波数演算器9は、累積信号パワーP1〜Pkの分布状況に基づいて、周波数制御信号Foutにおける追尾すべき真の追尾周波数との周波数ずれ量を演算し、その周波数ずれ量に応じて周波数制御信号Foutを補正する。この周波数制御信号Foutの平均周波数Fmeanを、平均周波数演算器10によって所定の平均化時間、例えば20xM[ms]、に亘って求める。   The frequency shift / tracking frequency calculator 9 calculates a frequency shift amount with the true tracking frequency to be tracked in the frequency control signal Fout based on the distribution state of the accumulated signal powers P1 to Pk, and according to the frequency shift amount. The frequency control signal Fout is corrected. An average frequency Fmean of the frequency control signal Fout is obtained by the average frequency calculator 10 over a predetermined averaging time, for example, 20 × M [ms].

周波数ずれ・追尾周波数演算器9では、まずNxMms毎に各周波数候補に対応する信号パワーP1〜Pkの分布に基づいて、平均周波数Fmeanと追尾すべき真の周波数との周波数ずれ量を求め、その周波数ずれ量に信号パワーの大きさも考慮して新たに追尾するべき補正周波数制御信号Fmodを決定する。この補正周波数制御信号Fmodを、コスタスループ演算器4に与えて、新たな周波数制御信号Foutとして、以後の追尾を継続する。   The frequency shift / tracking frequency calculator 9 first obtains the frequency shift amount between the average frequency Fmean and the true frequency to be tracked based on the distribution of the signal powers P1 to Pk corresponding to each frequency candidate for each NxMms, A corrected frequency control signal Fmod to be newly tracked is determined in consideration of the amount of frequency deviation and the magnitude of signal power. This corrected frequency control signal Fmod is given to the Costas loop computing unit 4, and the subsequent tracking is continued as a new frequency control signal Fout.

ここで、平均周波数Fmeanを用いるのは、測定対象(自動車など)及び衛星の移動に伴うドップラー周波数変化があり、周波数ずれ&追尾周波数演算器9で求められるずれ量は、NxM[ms]間の平均周波数ずれ量であることに対応させるためである。   Here, the average frequency Fmean is used because there is a change in Doppler frequency due to the movement of the object to be measured (automobile or the like) and the satellite, and the deviation amount obtained by the frequency deviation & tracking frequency calculator 9 is between NxM [ms]. This is to cope with the average frequency deviation amount.

また、周波数ずれ量に信号パワーの大きさも考慮するのは、周波数ずれ&追尾周波数演算器9で求められる周波数ずれ量の信頼度が信号パワーに依存するためであり、例えば補正周波数制御信号Fmod=平均周波数Fmean+Kw・周波数ずれ量、のように求められる。即ち、信号パワーが大きい場合には周波数ずれ量の信頼度が高いので重み付け値Kwを大きくし、逆に信号パワーが小さい場合には周波数ずれ量の信頼度が低いので重み付け値Kwを小さくすることがよい。   The reason why the magnitude of the signal power is also considered in the frequency deviation amount is that the reliability of the frequency deviation amount obtained by the frequency deviation & tracking frequency calculator 9 depends on the signal power. For example, the correction frequency control signal Fmod = Average frequency Fmean + Kw · frequency deviation amount. That is, when the signal power is high, the reliability of the frequency deviation amount is high, so the weighting value Kw is increased. Conversely, when the signal power is low, the reliability of the frequency deviation amount is low, so the weighting value Kw is reduced. Is good.

周波数ずれ・追尾周波数演算器9における周波数ずれ量の求め方の1例を、図2の5つの各周波数候補Fc1〜Fc5に対応する周波数F1〜F5の信号パワーP1〜P5の分布に基づいて説明する。   An example of how to determine the amount of frequency deviation in the frequency deviation / tracking frequency calculator 9 will be described based on the distribution of the signal powers P1 to P5 of the frequencies F1 to F5 corresponding to the five frequency candidates Fc1 to Fc5 in FIG. To do.

信号パワーP1〜P5は理想的には、(sinW/W)2の理論式にしたがって図2のように分布する。ここで、Wは、周波数に対応する変数である。 The signal powers P1 to P5 are ideally distributed as shown in FIG. 2 according to the theoretical formula of (sin W / W) 2 . Here, W is a variable corresponding to the frequency.

図2のように、周波数F1〜F5に対する信号パワーP1〜P5が得られたとする。まず、最大となるパワーPmax(ここでは、P3)と、第2番目に大きいパワーとなるP2nd(ここでは、P2)を求める。これらの実際パワー比Er=P2nd/Pmaxが周波数ずれ量に依存する。一方、種々の模擬パワー比Ei(E1,E2,E3,・・・)に対応する周波数ずれ量を、信号パワー分布から予め計算しておく、或いはその近似式を記憶しておく。   As shown in FIG. 2, it is assumed that signal powers P1 to P5 with respect to the frequencies F1 to F5 are obtained. First, the maximum power Pmax (here P3) and the second largest power P2nd (here P2) are obtained. These actual power ratios Er = P2nd / Pmax depend on the frequency deviation amount. On the other hand, frequency deviation amounts corresponding to various simulated power ratios Ei (E1, E2, E3,...) Are calculated in advance from the signal power distribution, or approximate expressions thereof are stored.

そして、実際に得られたパワー比Erに近い模擬パワー比Eiを探して、その模擬パワー比Eiに対応する周波数ずれ量を、求める周波数ずれ量として決定する。   Then, a simulated power ratio Ei close to the actually obtained power ratio Er is searched, and a frequency shift amount corresponding to the simulated power ratio Ei is determined as a required frequency shift amount.

なお、最大パワーPmax(P3)が得られた周波数F3が現在追尾している周波数であるときは、単に実際パワー比Erに近い模擬パワー比Eiに対応する周波数ずれ量を求めればよい。しかし、最大パワーPmax(P3)が得られた周波数F3が現在追尾している周波数より例えば±Bだけ離れた周波数F4やF2である場合には、実際パワー比Erに近い模擬パワー比Eiに対応する周波数ずれ量に離れた周波数±Bを加算または減算して、求める周波数ずれ量を決定する。   When the frequency F3 at which the maximum power Pmax (P3) is obtained is the frequency currently being tracked, the frequency shift amount corresponding to the simulated power ratio Ei close to the actual power ratio Er may be obtained. However, when the frequency F3 at which the maximum power Pmax (P3) is obtained is a frequency F4 or F2 that is, for example, ± B away from the currently tracked frequency, it corresponds to the simulated power ratio Ei that is close to the actual power ratio Er. The frequency deviation amount to be obtained is determined by adding or subtracting the frequency ± B away from the frequency deviation amount to be obtained.

このように、本発明では、複数の周波数の信号パワーの比を用いて直ちに周波数ずれ量を求めるから、特許文献4におけるように予想キャリア周波数を試行錯誤的に調整するものと比べても決定に要する時間が短く、また別チャンネル回路の相関器などは不要である等、本発明の優れていることは明らかである。   As described above, in the present invention, since the frequency deviation amount is immediately obtained using the ratio of the signal powers of a plurality of frequencies, it is determined even when compared with the case where the expected carrier frequency is adjusted by trial and error as in Patent Document 4. It is clear that the present invention is superior in that the time required is short and a correlator of another channel circuit is unnecessary.

本発明の衛星信号追尾装置では、コスタスループにおいて、衛星からの航法データ周期(例、GPSでは20ms)まではコヒーレント加算時間を延ばすことによりS/N比を向上させて、GPSなどの衛星信号受信機の追尾手段の高感度化を行っている。   In the satellite signal tracking device of the present invention, in the Costas loop, the S / N ratio is improved by extending the coherent addition time until the navigation data period from the satellite (for example, 20 ms for GPS), thereby receiving satellite signals such as GPS. We are improving the sensitivity of the machine tracking method.

一方で、コヒーレント加算時間を延ばすことは、従来装置では急激な周波数変化を検出できなくなり、加速度追従仕様を満足できなっていた。本発明ではこの欠点を、周波数演算器(周波数変換装置5,各候補周波数設定装置6)、複数の信号パワー積算器(周波数候補Nmsコヒーレント加算器71〜7k,周波数候補M回ノンコヒーレント加算器81〜8k)、周波数ずれ&追尾周波数演算器9を設けて、衛星信号の強弱に関係なく常時、周波数ずれ量を求めている。   On the other hand, extending the coherent addition time makes it impossible to detect an abrupt frequency change in the conventional apparatus and satisfies the acceleration tracking specification. In the present invention, this disadvantage is solved by a frequency calculator (frequency conversion device 5, each candidate frequency setting device 6), a plurality of signal power integrators (frequency candidate Nms coherent adders 71 to 7k, frequency candidate M times non-coherent adder 81). ˜8k), a frequency deviation & tracking frequency calculator 9 is provided to always obtain the frequency deviation amount regardless of the strength of the satellite signal.

したがって、急激な周波数変化が発生して、例えコスタスループの追尾周波数が真に追尾するべき周波数と異なった周波数に追尾してしまったとしても、直ちに周波数ずれ量が検出されるから、速やかに且つ自動的に真に追尾すべき周波数に追尾する。また、そのための周波数演算器(周波数変換装置5,各候補周波数設定装置6)には、局部発振器を用いる必要がない。   Therefore, even if a sudden frequency change occurs and the tracking frequency of the Costas loop is tracked to a frequency that is different from the frequency to be truly tracked, the amount of frequency deviation is detected immediately, Automatically tracks to the frequency that should be truly tracked. Moreover, it is not necessary to use a local oscillator for the frequency calculator (frequency conversion device 5, each candidate frequency setting device 6) for that purpose.

なお、信号パワーP1〜Pkが低い場合には、周波数ずれ&追尾周波数演算器9で求められた周波数ずれ量の信頼性は低くなるので、前回の周波数ずれ量測定値からの周波数変化量に、信号パワーの大きさに応じて制限を設けても良い。   Note that when the signal powers P1 to Pk are low, the reliability of the frequency shift amount obtained by the frequency shift & tracking frequency calculator 9 is low, so the frequency change amount from the previous frequency shift amount measurement value is A restriction may be provided according to the magnitude of the signal power.

また、周波数ずれ量の加速度変化を考慮して、コスタスループ演算器4に出力する周波数Fmodを決めても良い。   Further, the frequency Fmod output to the Costas loop calculator 4 may be determined in consideration of the acceleration change of the frequency shift amount.

本発明の衛星信号追尾装置をハードウエアで実現する構成に代えて、それらの処理の一部或いは全部をソフトウエア処理で行っても良い。   Instead of the configuration in which the satellite signal tracking device of the present invention is realized by hardware, part or all of the processing may be performed by software processing.

以上の説明は1台の衛星信号追尾装置に関するものであるが、同様の衛星信号追尾装置を更に追加して、それら追加された衛星信号追尾装置にA/D変換器103からの受信信号を供給する。それら複数の衛星信号追尾装置に異なる衛星からの衛星信号を追尾するようにして、複数の衛星信号追尾装置を備えた衛星信号受信機を構成する。   The above description relates to one satellite signal tracking device, but the same satellite signal tracking device is further added, and the received signal from the A / D converter 103 is supplied to the added satellite signal tracking device. To do. A satellite signal receiver having a plurality of satellite signal tracking devices is configured by tracking satellite signals from different satellites in the plurality of satellite signal tracking devices.

本発明の実施例に係る衛星信号追尾装置の全体構成図1 is a diagram showing the overall configuration of a satellite signal tracking device according to an embodiment of the present invention. 周波数ずれ量の求め方の1例を説明するための図The figure for demonstrating an example of how to obtain | require frequency deviation amount

符号の説明Explanation of symbols

101 アンテナ
102 ダウンコンバータ
103 A/D変換器
1 1ms相関チャンネル回路
2 キャリアNCO
3 Nmsコヒーレント加算器
4 コスタスループ演算器
5 周波数変換装置
6 各候補周波数設定装置
71〜7k 周波数候補のNmsコヒーレント加算器
81〜8k 周波数候補のM回ノンコヒーレント加算器
9 周波数ずれ&追尾周波数演算器
10 平均周波数演算器
11 エッジ情報発生器
101 antenna 102 down converter 103 A / D converter 1 1 ms correlation channel circuit 2 carrier NCO
3 Nms coherent adder 4 Costas loop calculator 5 Frequency converter 6 Each candidate frequency setting device 71-7k Nms coherent adder 81-8k of frequency candidate M times non-coherent adder 9 of frequency candidate 9 Frequency shift & tracking frequency calculator 10 Average frequency calculator 11 Edge information generator

Claims (3)

周波数制御信号を受けてキャリア周波数信号を発生するキャリア局部発振器を含み、衛星信号を変換し入力される特定衛星信号に関する受信信号とPNコードとのコード相関及び前記キャリア周波数信号とのキャリア相関が採られ、1ms間のI相関信号とQ相関信号とを同時に1ms毎に出力する1ms相関チャンネル回路と、
前記I相関信号とQ相関信号を前記特定衛星信号の航法データの切り替わりタイミングに同期してコヒーレント加算を行い、前記I,Q相関信号のIコヒーレント加算値とQコヒーレント加算値とを出力するコヒーレント加算器と、
前記I,Qコヒーレント加算値に基づいて前記周波数制御信号を決定するコスタスループ演算器と、
前記I相関信号とQ相関信号に対して、複数の周波数候補に関してそれぞれ周波数変換された周波数変換I相関信号と周波数変換Q相関信号を演算し出力する周波数演算器と、
前記周波数変換I相関信号と周波数変換Q相関信号を受けて、各周波数候補毎に所定期間の信号パワーを累積加算した複数の累積信号パワーを求めて出力する複数の信号パワー積算器と、
前記複数の累積信号パワーの分布状況に基づいて、前記周波数制御信号における現在の追尾周波数と追尾すべき真の追尾周波数との周波数ずれ量を演算し、その周波数ずれ量に応じて前記周波数制御信号を補正する周波数ずれ・追尾周波数演算器と、を備えることを特徴とする、衛星信号追尾装置。
It includes a carrier local oscillator that receives a frequency control signal and generates a carrier frequency signal, and takes the code correlation between the received signal and the PN code related to the input specific satellite signal after converting the satellite signal and the carrier correlation with the carrier frequency signal. A 1 ms correlation channel circuit that simultaneously outputs an I correlation signal and a Q correlation signal for 1 ms every 1 ms;
Coherent addition of the I correlation signal and the Q correlation signal in synchronization with the navigation data switching timing of the specific satellite signal, and outputting the I coherent addition value and the Q coherent addition value of the I and Q correlation signals And
A Costas loop computing unit that determines the frequency control signal based on the I and Q coherent addition values;
A frequency calculator that calculates and outputs a frequency-converted I-correlation signal and a frequency-converted Q-correlation signal that are respectively frequency-converted for a plurality of frequency candidates with respect to the I-correlation signal and the Q-correlation signal;
A plurality of signal power integrators that receive the frequency-transformed I correlation signal and the frequency-transformed Q correlation signal, and obtain and output a plurality of accumulated signal powers obtained by accumulating the signal power of a predetermined period for each frequency candidate;
Based on the distribution status of the plurality of accumulated signal powers, a frequency shift amount between a current tracking frequency and a true tracking frequency to be tracked in the frequency control signal is calculated, and the frequency control signal is calculated according to the frequency shift amount. A satellite signal tracking device, comprising: a frequency shift / tracking frequency calculator for correcting
前記複数の信号パワー積算器は、
前記周波数変換I相関信号と周波数変換Q相関信号を、前記特定衛星信号の航法データの切り替わりタイミングに同期して各周波数変換I相関信号と周波数変換Q相関信号毎にそれぞれコヒーレント加算を行い、そのコヒーレント加算した周波数変換Iコヒーレント加算値び周波数変換Qコヒーレント加算値を記憶し出力する複数の周波数候補コヒーレント加算器と、
前記周波数変換Iコヒーレント加算値び周波数変換Qコヒーレント加算値から、各周波数候補毎にコヒーレント加算区間内の信号パワーを求め、各周波数候補毎にその信号パワーの所定回数の累積加算を行って累積信号パワーを求めて出力する複数の周波数候補ノンコヒーレント加算器と、を含むことを特徴とする、請求項1に記載の衛星信号追尾装置。
The plurality of signal power integrators are:
The frequency conversion I correlation signal and the frequency conversion Q correlation signal are coherently added to each of the frequency conversion I correlation signal and the frequency conversion Q correlation signal in synchronization with the switching timing of the navigation data of the specific satellite signal. A plurality of frequency candidate coherent adders for storing and outputting the added frequency transformed I coherent sum and frequency transformed Q coherent sum;
The signal power in the coherent addition interval is obtained for each frequency candidate from the frequency conversion I coherent addition value and the frequency conversion Q coherent addition value, and the accumulated signal is obtained by performing a predetermined number of additions of the signal power for each frequency candidate. The satellite signal tracking device according to claim 1, further comprising: a plurality of frequency candidate non-coherent adders that obtain and output power.
請求項1または2に記載の衛星信号追尾装置を追尾すべき衛星に応じて2つ以上備えることを特徴とする、衛星信号受信機。 A satellite signal receiver comprising two or more satellite signal tracking devices according to claim 1 or 2 according to the satellite to be tracked.
JP2006293440A 2006-10-30 2006-10-30 Satellite signal tracking device and satellite signal receiver including the same Active JP4869022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006293440A JP4869022B2 (en) 2006-10-30 2006-10-30 Satellite signal tracking device and satellite signal receiver including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006293440A JP4869022B2 (en) 2006-10-30 2006-10-30 Satellite signal tracking device and satellite signal receiver including the same

Publications (2)

Publication Number Publication Date
JP2008111684A true JP2008111684A (en) 2008-05-15
JP4869022B2 JP4869022B2 (en) 2012-02-01

Family

ID=39444275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006293440A Active JP4869022B2 (en) 2006-10-30 2006-10-30 Satellite signal tracking device and satellite signal receiver including the same

Country Status (1)

Country Link
JP (1) JP4869022B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191068A (en) * 2007-02-07 2008-08-21 Japan Radio Co Ltd Noise estimation device for satellite signal, noise-to-signal ratio computation device, and satellite signal receiver
JP2010025853A (en) * 2008-07-23 2010-02-04 Furuno Electric Co Ltd Apparatus for tracking and processing signal for positioning and apparatus for positioning
JP2012093106A (en) * 2010-10-25 2012-05-17 Japan Radio Co Ltd Satellite signal receiver
JP2012173153A (en) * 2011-02-22 2012-09-10 Japan Radio Co Ltd Frequency tracking device
JP2013057592A (en) * 2011-09-08 2013-03-28 Japan Radio Co Ltd Satellite signal receiver
JP2013228345A (en) * 2012-04-27 2013-11-07 Japan Radio Co Ltd Satellite signal receiver
CN104536022A (en) * 2015-01-06 2015-04-22 中国人民解放军国防科学技术大学 Low complexity frequency detector designing method for GNSS weak signal tracking
JP2015083935A (en) * 2013-10-25 2015-04-30 日本無線株式会社 Satellite signal tracking apparatus
RU2567368C1 (en) * 2014-06-10 2015-11-10 Сергей Викторович Соколов Method of determining coordinates of navigation receiver
CN106950579A (en) * 2017-03-28 2017-07-14 武汉大学 The carrier frequency method for fast searching and system of GNSS receiver
CN108345013A (en) * 2018-04-16 2018-07-31 南京天际易达通信技术有限公司 A kind of method and satellite navigation receiver improving satellite navigation signals receiving sensitivity
KR20180090530A (en) * 2017-02-03 2018-08-13 한국항공우주연구원 Weak Signals Processing Technique for Global Navigation Satellite System Receiver

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607088A (en) * 2016-02-17 2016-05-25 湖南北云科技有限公司 Rapid guiding tracking device for satellite navigation multifrequency receiver signals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178372A (en) * 1984-01-19 1985-09-12 ノーザン テレコム リミテッド Digital navstar receiver
JPH07181243A (en) * 1993-12-22 1995-07-21 Matsushita Electric Ind Co Ltd Demodulation circuit of gps receiver
JP2001272453A (en) * 2000-03-28 2001-10-05 Matsushita Electric Works Ltd Demodulating method for gps signal and gps receiving device
JP2003255036A (en) * 2002-02-28 2003-09-10 Sony Corp Receiver
US20030201934A1 (en) * 2002-04-30 2003-10-30 Asher Mark S. Weak signal and anti-jamming Global Positioning System receiver and method using full correlation grid
JP2004012378A (en) * 2002-06-10 2004-01-15 Furuno Electric Co Ltd Frequency estimating apparatus and apparatus for receiving signal for positioning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178372A (en) * 1984-01-19 1985-09-12 ノーザン テレコム リミテッド Digital navstar receiver
JPH07181243A (en) * 1993-12-22 1995-07-21 Matsushita Electric Ind Co Ltd Demodulation circuit of gps receiver
JP2001272453A (en) * 2000-03-28 2001-10-05 Matsushita Electric Works Ltd Demodulating method for gps signal and gps receiving device
JP2003255036A (en) * 2002-02-28 2003-09-10 Sony Corp Receiver
US20030201934A1 (en) * 2002-04-30 2003-10-30 Asher Mark S. Weak signal and anti-jamming Global Positioning System receiver and method using full correlation grid
JP2004012378A (en) * 2002-06-10 2004-01-15 Furuno Electric Co Ltd Frequency estimating apparatus and apparatus for receiving signal for positioning

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191068A (en) * 2007-02-07 2008-08-21 Japan Radio Co Ltd Noise estimation device for satellite signal, noise-to-signal ratio computation device, and satellite signal receiver
JP2010025853A (en) * 2008-07-23 2010-02-04 Furuno Electric Co Ltd Apparatus for tracking and processing signal for positioning and apparatus for positioning
JP2012093106A (en) * 2010-10-25 2012-05-17 Japan Radio Co Ltd Satellite signal receiver
JP2012173153A (en) * 2011-02-22 2012-09-10 Japan Radio Co Ltd Frequency tracking device
JP2013057592A (en) * 2011-09-08 2013-03-28 Japan Radio Co Ltd Satellite signal receiver
JP2013228345A (en) * 2012-04-27 2013-11-07 Japan Radio Co Ltd Satellite signal receiver
JP2015083935A (en) * 2013-10-25 2015-04-30 日本無線株式会社 Satellite signal tracking apparatus
RU2567368C1 (en) * 2014-06-10 2015-11-10 Сергей Викторович Соколов Method of determining coordinates of navigation receiver
CN104536022A (en) * 2015-01-06 2015-04-22 中国人民解放军国防科学技术大学 Low complexity frequency detector designing method for GNSS weak signal tracking
KR20180090530A (en) * 2017-02-03 2018-08-13 한국항공우주연구원 Weak Signals Processing Technique for Global Navigation Satellite System Receiver
KR101915959B1 (en) * 2017-02-03 2019-01-30 한국항공우주연구원 Weak Signals Processing Technique for Global Navigation Satellite System Receiver
CN106950579A (en) * 2017-03-28 2017-07-14 武汉大学 The carrier frequency method for fast searching and system of GNSS receiver
CN106950579B (en) * 2017-03-28 2019-05-24 武汉大学 The carrier frequency method for fast searching and system of GNSS receiver
CN108345013A (en) * 2018-04-16 2018-07-31 南京天际易达通信技术有限公司 A kind of method and satellite navigation receiver improving satellite navigation signals receiving sensitivity
CN108345013B (en) * 2018-04-16 2023-09-01 南京天际易达通信技术有限公司 Method for improving satellite navigation signal receiving sensitivity

Also Published As

Publication number Publication date
JP4869022B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4869022B2 (en) Satellite signal tracking device and satellite signal receiver including the same
CN111065937B (en) Method and system for correcting frequency or phase of local signal generated using local oscillator
CN111164461B (en) System for determining physical metrics such as location
US7982668B2 (en) Method for processing combined navigation signals
CN109313270B (en) Method, apparatus, computer program, chip set or data structure for correlating a digital signal with a correlation code
US10429515B2 (en) Method and apparatus for GNSS signal tracking
US8362953B2 (en) Sequential chip correlation array
JP2007228237A (en) Carrier phase tracker and pseudo noise code signal tracker
CN106291614A (en) For the device of tracking satellite radio navigation signal in multi-path environment
CN104614740A (en) Data pilot frequency integrated tracking method and device for navigation signal
US20150204981A1 (en) Signal processing method for ultra-fast acquisition and tracking of severely attenuated spread spectrum signals with doppler frequency and apparatus thereof
CN101650416B (en) Method and device for receiving GPS and clock correcting method
CN114236577A (en) GNSS signal capturing method based on artificial neural network
CN1982913A (en) Positioning apparatus and control method of positioning apparatus
JP6047944B2 (en) Receiver and correlation integration processing method
JP2011117830A (en) Gnss receiver and positioning method
JP5679170B2 (en) Satellite signal receiver
Jovanovic et al. Two‐step Galileo E1 CBOC tracking algorithm: when reliability and robustness are keys!
CN201429684Y (en) Gps receiving device
US9612338B2 (en) Method to improve satellite signal detection
JP2011058923A (en) Satellite signal receiving apparatus
KR100906755B1 (en) Apparatua for Searching using Twin-Cell in Global Navigation Satellite System and Method therefor
Hu et al. An efficient method for GPS multipath mitigation using the Teager-Kaiser-operator-based MEDLL
US11747487B2 (en) GNSS receiver clock frequency drift detection
JP2009014451A (en) Autonomous high-sensitivity satellite signal receiver

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4869022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3