JP2008109762A - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JP2008109762A
JP2008109762A JP2006289138A JP2006289138A JP2008109762A JP 2008109762 A JP2008109762 A JP 2008109762A JP 2006289138 A JP2006289138 A JP 2006289138A JP 2006289138 A JP2006289138 A JP 2006289138A JP 2008109762 A JP2008109762 A JP 2008109762A
Authority
JP
Japan
Prior art keywords
primary coil
current
coil
voltage
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006289138A
Other languages
Japanese (ja)
Inventor
Yuji Nakamura
祐史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Imaging Corp
Original Assignee
Olympus Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Imaging Corp filed Critical Olympus Imaging Corp
Priority to JP2006289138A priority Critical patent/JP2008109762A/en
Publication of JP2008109762A publication Critical patent/JP2008109762A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission device which can perform efficient energy power feeding, and is simple in constitution, in the power transmission device which feeds power to an electronic apparatus in a non-contact manner. <P>SOLUTION: A charging device 1 which is a power transmission device comprises: a primary coil 5 which can be magnetically coupled to a secondary coil 7 arranged at a camera 6; an AC-DC conversion circuit which feeds a current to the primary coil 5; a voltage detection part which detects an induction voltage at the primary coil side which is generated corresponding to a dummy current when the prescribed dummy current is fed to the secondary coil 7 by the magnetic coupling of the primary coil 5 and the secondary coil 7; an induction voltage setting part which controls the AC-DC conversion circuit by increasing a current when the induction voltage is lower than a coupled induction voltage which is generated when the coils are most efficiently and magnetically coupled to each other so as to reach the coupled induction voltage; and a position determination part which determines a positional relationship of the coils on the basis of a current value flowing through the primary coil 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子機器へ無接点方式で電力を供給する電力伝送装置に関する。   The present invention relates to a power transmission device that supplies electric power to an electronic device in a contactless manner.

電子機器へ無接点方式で電力を供給する電力伝送装置として、特許文献1に開示されたものは、一次側装置に複数の磁路を形成するコイル群を有する分離トランス(エネルギや情報の伝達を行なう)を配し、各コイルに時間や位相の異なるパルス電流や交流電流を流すことによって電磁結合面上に回転磁界や帯状の移動磁界などを発生させる。これにより一次側装置と二次側装置との電磁結合可能領域を相対的に拡大させ、二次側に電力、または、情報を伝送することができる。
特開2004−229406号公報
As a power transmission device that supplies power to an electronic device in a non-contact manner, a device disclosed in Patent Document 1 is a separation transformer having a coil group that forms a plurality of magnetic paths in a primary device (transmitting energy and information). And a rotating magnetic field, a belt-like moving magnetic field, and the like are generated on the electromagnetic coupling surface by passing pulse currents and alternating currents having different times and phases through the coils. Thereby, the electromagnetic coupling possible area | region of a primary side apparatus and a secondary side apparatus can be expanded relatively, and electric power or information can be transmitted to a secondary side.
JP 2004-229406 A

特許文献1による電力伝送装置は、一次側装置と二次側装置との電磁結合可能領域を相対的に拡大させることができるので、一次側装置のコイルと二次側装置のコイルとに位置が近くなりエネルギーの給電という点で多少効率が上がると思われる。しかしながら、一次側装置のコイルと二次側装置のコイルとが常に一対一で対応する位置関係になる確率はかなり小さく、常に最も効率的なエネルギー給電が行われるとは限らない。また、複数の磁路を形成するコイル群を有する分離トランスを構成しなければならないために、構成が複雑になっている。   Since the electric power transmission device according to Patent Document 1 can relatively expand the electromagnetic coupling possible region between the primary device and the secondary device, the position of the coil of the primary device and the coil of the secondary device are The efficiency is expected to increase somewhat in terms of energy supply. However, the probability that the coil of the primary device and the coil of the secondary device always have a one-to-one corresponding positional relationship is quite small, and the most efficient energy supply is not always performed. In addition, since a separation transformer having a coil group that forms a plurality of magnetic paths must be formed, the configuration is complicated.

本発明は、上述の問題を解決するためになされたものであり、電子機器へ無接点方式で電力を供給する電力伝送装置において、一次側装置と二次側装置との位置関係が効率よくエネルギー給電が行うことができる位置関係にあるか否かを簡単な構成で判定できる電力伝送装置を提供することを目的とする。   The present invention has been made to solve the above-described problem, and in a power transmission device that supplies power to an electronic device in a contactless manner, the positional relationship between the primary device and the secondary device is energy efficient. It is an object of the present invention to provide a power transmission device that can determine with a simple configuration whether or not there is a positional relationship where power can be supplied.

本発明の請求項1記載の電力伝送装置は、電子機器へ無接点方式で電力を供給する電力伝送装置において、上記電子機器に設けられた二次コイルと磁気的に結合する一次コイルと、上記一次コイルに電流を供給する供給手段と、上記一次コイルと上記二次コイルとが磁気的に結合することにより、当該二次コイルに所定のダミー電流が供給された際に、当該ダミー電流に対応して発生する一次コイル側の誘電電圧を検出する電圧検出手段と、上記発生した誘電電圧が上記一次コイルと上記二次コイルとが最も効率的に磁気的に結合した際に発生する結合誘電電圧よりも小さい場合に、上記一次コイルの電圧が当該結合誘電電圧となるように上記供給手段を制御して上記一次コイルに流れる電流を増加させる電流制御手段と、一次コイルに供給される電流値を検出する電流検出手段と、上記検出された上記一次コイルを流れる電流値に基づいて、上記一次コイルと上記二次コイルとの位置関係を判定する判定手段とを具備する。   The power transmission device according to claim 1 of the present invention is a power transmission device that supplies power to an electronic device in a contactless manner, and a primary coil that is magnetically coupled to a secondary coil provided in the electronic device, and Supply means for supplying a current to the primary coil, and the primary coil and the secondary coil are magnetically coupled to each other when a predetermined dummy current is supplied to the secondary coil. Voltage detecting means for detecting the dielectric voltage on the primary coil side generated and the coupled dielectric voltage generated when the generated dielectric voltage is most effectively magnetically coupled between the primary coil and the secondary coil. Current control means for controlling the supply means so as to increase the current flowing in the primary coil so that the voltage of the primary coil becomes the coupling dielectric voltage, and supply to the primary coil. A current detecting means for detecting a current value, based on the current value flowing in the detected said primary coil comprises a determination means for determining the positional relationship between the primary coil and the secondary coil.

本発明の請求項2記載の電力伝送装置は、請求項1記載の電力伝送装置において、さらに、上記一次コイルを移動させる移動手段と、上記判定手段によって上記一次コイルと上記二次コイルとの位置関係が最も充電に適している位置ではないと判定された際に、上記移動手段を制御して上記一次コイルを任意の方向へ移動させる移動制御手段とを具備し、上記移動制御手段は、上記一次コイルを流れる電流値が最も小さくなるように上記移動手段によって上記一次コイルを任意の方向へ移動させる。   The power transmission device according to claim 2 of the present invention is the power transmission device according to claim 1, further comprising a moving means for moving the primary coil, and a position of the primary coil and the secondary coil by the determination means. Movement control means for controlling the moving means to move the primary coil in an arbitrary direction when it is determined that the relationship is not the most suitable position for charging. The moving means moves the primary coil in an arbitrary direction so that the current value flowing through the primary coil is minimized.

本発明の請求項3記載の電力伝送装置は、請求項2記載の電力伝送装置において、上記移動制御手段は、各移動位置において上記電流検出手段で検出された一次コイルの電流値を比較することによって、当該一次コイルの移動方向を決定する移動方向決定手段を含む。   The power transmission device according to claim 3 of the present invention is the power transmission device according to claim 2, wherein the movement control means compares the current value of the primary coil detected by the current detection means at each movement position. The moving direction determining means for determining the moving direction of the primary coil is included.

本発明の請求項4記載の電力伝送装置は、請求項1乃至3記載の電力伝送装置において、上記電流制御手段は、上記一次コイルと上記二次コイルとの位置関係が最も充電に適している位置にあると判定された場合に上記供給手段から上記一次コイルに供給される電流量を本充電用の電流量に切換える。   The power transmission device according to claim 4 of the present invention is the power transmission device according to any one of claims 1 to 3, wherein the current control means is most suitable for charging because of the positional relationship between the primary coil and the secondary coil. When it is determined to be in the position, the amount of current supplied from the supply means to the primary coil is switched to the amount of current for main charging.

本発明によれば、電子機器へ無接点方式で電力を供給する電力伝送装置において、電力を供給する電力伝送装置の一次コイルが電力を供給される二次コイルに対して最も効率よく給電できる位置にあるか否かを確実に判定することができる。   According to the present invention, in a power transmission device that supplies power to an electronic device in a contactless manner, the primary coil of the power transmission device that supplies power can supply power most efficiently to the secondary coil that is supplied with power. It is possible to determine with certainty whether or not there is.

以下、図を用いて本発明の実施形態について説明する。
図1は、本発明の一実施形態の電力伝送装置である充電装置の外観を示す斜視図である。図2は、上記充電装置に内蔵されるXY駆動機構部の斜視図である。図3は、上記充電装置に内蔵される電気回路部と電磁結合されるカメラの充電回路部との主要電気回路図である。図4は、上記充電装置に組み込まれる一次コイルの平面図である。図5は、図4のA−A断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing an appearance of a charging device that is a power transmission device according to an embodiment of the present invention. FIG. 2 is a perspective view of an XY drive mechanism unit built in the charging apparatus. FIG. 3 is a main electric circuit diagram of the electric circuit unit built in the charging apparatus and the charging circuit unit of the camera electromagnetically coupled. FIG. 4 is a plan view of a primary coil incorporated in the charging device. 5 is a cross-sectional view taken along the line AA in FIG.

本実施形態の充電装置1は、例えば、電子機器であるカメラ6の電源用電池の充電(電力供給)を無接点方式により行う充電装置であり、図1に示すように載置台3を備えた装置本体部2を有しており、載置台3上の任意位置に置かれたカメラ6の充電を装置本体部2側の移動可能な一次コイル5とカメラ側の二次コイル7との電磁結合による電力伝送によって行うことができる。   The charging device 1 of the present embodiment is a charging device that performs charging (power supply) of a power source battery of a camera 6 that is an electronic device, for example, by a contactless method, and includes a mounting table 3 as shown in FIG. Electromagnetic coupling between a primary coil 5 movable on the apparatus main body 2 side and a secondary coil 7 on the camera side for charging the camera 6 placed at an arbitrary position on the mounting table 3. Can be performed by power transmission.

装置本体部2は、載置台3の下部に配される移動手段であるXY駆動機構部10と、電気回路部(基板)24とを内蔵している。なお、X,Y軸は、載置台3の平面に沿った直交座標軸である。   The apparatus main body 2 incorporates an XY drive mechanism 10 which is a moving means arranged at the lower part of the mounting table 3 and an electric circuit part (substrate) 24. The X and Y axes are orthogonal coordinate axes along the plane of the mounting table 3.

XY駆動機構部10は、図2に示すように機構台11と、機構台11に軸支されるX軸方向に沿った送りねじ軸12およびガイド軸13と、送りねじ軸12およびガイド軸13に支持されるX軸駆動台15と、X軸駆動台15に軸支されるY軸方向に沿った送りねじ軸16およびガイド軸17と、送りねじ軸16およびガイド軸17に支持されるY軸駆動台18と、Y軸駆動台18の上面に保持される一次コイル5と、機構台11の送りねじ軸12の軸端部周辺、または、X軸駆動台15のガイド軸周辺にそれぞれ配されるフォトリフレクタからなるX軸原点検出用Xセンサ(以下、Xセンサ)20、および、Y軸原点検出用Yセンサ(以下、Yセンサ)22と、所定の移動位置(原点位置)でX軸駆動台15上のXセンサ20に対向する位置、または、Y軸駆動台18上のYセンサ22に対向する位置にそれぞれ配されるセンサ反射板21および23と、機構台11、または、X軸駆動台15に取り付けられ、送りねじ軸12、または、16をそれぞれ回転駆動するステッピングモータからなるXモータ14およびYモータ19とを有している。電気回路部(基板)24は、機構台11の下面部上に配されている。   As shown in FIG. 2, the XY drive mechanism unit 10 includes a mechanism base 11, a feed screw shaft 12 and a guide shaft 13 that are axially supported by the mechanism base 11, and a feed screw shaft 12 and a guide shaft 13. An X-axis drive base 15 supported by the X-axis drive base 15, a feed screw shaft 16 and a guide shaft 17 that are supported by the X-axis drive base 15 along the Y-axis direction, and a Y that is supported by the feed screw shaft 16 and the guide shaft 17 The shaft drive base 18, the primary coil 5 held on the upper surface of the Y-axis drive base 18, and the periphery of the shaft end of the feed screw shaft 12 of the mechanism base 11 or the guide shaft of the X-axis drive base 15 are arranged. X-axis origin detection X sensor (hereinafter referred to as X sensor) 20 and a Y-axis origin detection Y sensor (hereinafter referred to as Y sensor) 22 composed of a photoreflector and an X axis at a predetermined movement position (origin position) Position facing the X sensor 20 on the drive base 15 Or the sensor reflectors 21 and 23 arranged at positions facing the Y sensor 22 on the Y-axis drive base 18, and the mechanism base 11 or the X-axis drive base 15, respectively, and the feed screw shaft 12, Alternatively, it has an X motor 14 and a Y motor 19 which are stepping motors that respectively rotate and drive 16. The electric circuit portion (substrate) 24 is disposed on the lower surface portion of the mechanism base 11.

Xモータ14が回転駆動されるとX軸駆動台15は、X軸方向に移動する。また、Yモータ19が回転駆動されるとX軸駆動台15に支持されているY軸駆動台18は、Y軸方向に移動する。従って、一次コイル5が上面に固着されているY軸駆動台18は、Xモータ14、および/または、Yモータ19により載置台3のXY平面に沿って駆動可能である。   When the X motor 14 is driven to rotate, the X axis drive base 15 moves in the X axis direction. When the Y motor 19 is driven to rotate, the Y-axis drive base 18 supported by the X-axis drive base 15 moves in the Y-axis direction. Therefore, the Y-axis drive base 18 to which the primary coil 5 is fixed on the upper surface can be driven along the XY plane of the mounting table 3 by the X motor 14 and / or the Y motor 19.

電気回路部24には、図3に示すようにAC−DC変換回路部30と、該変換回路部30の出力を受け、一次コイル電流を供給する供給手段であるDC−AC変換回路部32と、一次コイル5の端子電圧(誘電電圧)を検出するための電圧検出手段である電圧検出部39と、AC−DC変換回路部30の出力電流(一次コイル電流)を検出するための電流検出手段である電流検出部31と、充電装置の制御を行う制御部33と、X,Yモータ14,19およびX,Yセンサ20,22を含む駆動部40と、通信用コイル41からの出力を取り込み、メモリ部43に出力する通信部42と、カメラから出力される画像情報、カメラ情報、電圧制御情報および充電関連情報を取り込み、または、記憶しているメモリ部43とが実装されている。   As shown in FIG. 3, the electric circuit unit 24 includes an AC-DC conversion circuit unit 30, and a DC-AC conversion circuit unit 32 that is a supply unit that receives the output of the conversion circuit unit 30 and supplies a primary coil current. The voltage detection unit 39 which is a voltage detection unit for detecting the terminal voltage (dielectric voltage) of the primary coil 5 and the current detection unit for detecting the output current (primary coil current) of the AC-DC conversion circuit unit 30 The current detection unit 31, the control unit 33 that controls the charging device, the drive unit 40 including the X and Y motors 14 and 19 and the X and Y sensors 20 and 22, and the output from the communication coil 41 are captured. A communication unit 42 that outputs to the memory unit 43 and a memory unit 43 that captures or stores image information, camera information, voltage control information, and charging-related information output from the camera are mounted.

制御部33は、一次コイルの端子電圧が所定の誘導電圧となるように一次コイルの電流を制御する電流制御手段を含む誘電電圧設定部34と、移動制御手段である移動制御部35と、駆動部40を制御する駆動制御部36とを有している。   The control unit 33 includes a dielectric voltage setting unit 34 including a current control unit that controls the current of the primary coil so that the terminal voltage of the primary coil becomes a predetermined induction voltage, a movement control unit 35 that is a movement control unit, and a drive And a drive control unit 36 that controls the unit 40.

移動制御部35は、電流検出部31による電流値に基づいて一次コイル5と二次コイル7の相対位置関係を判定する位置判定部37と、電流検出部31によって検出された電流値を比較することにより一次コイル5の移動方向を決定する移動方向決定部38とを有しており、一次コイル位置検索処理時に一次コイル5を電流が最も小さくなるような方向にXY駆動機構部10を介して移動制御する。詳細は後述するが、この移動制御は一次コイルと二次コイルとが近ければ、一次コイルが所定の誘導電圧となるように電流を流してもその値は小さく、遠ければ、一次コイルに多くの電流を流さなければ誘導電圧とならないという原理を利用するものである。   The movement control unit 35 compares the current value detected by the current detection unit 31 with the position determination unit 37 that determines the relative positional relationship between the primary coil 5 and the secondary coil 7 based on the current value of the current detection unit 31. And a moving direction determining unit 38 for determining the moving direction of the primary coil 5 through the XY drive mechanism unit 10 in such a direction that the current is minimized in the primary coil position search process. Move control. As will be described in detail later, if the primary coil and the secondary coil are close to each other, this movement control is small even if a current is applied so that the primary coil has a predetermined induction voltage. It uses the principle that an induced voltage is not generated unless a current is passed.

一次コイル5は、図1に示すXY平面に直交する軸まわりに巻回されて形成されるコイルであり、その下面部に電磁波反射板5aが配されている(図4,5)。この一次コイル5に隣接し、同一表面上に通信用コイル41が配されている(図4)。この通信コイル41は、カメラ側から送られてくるカメラ情報や充電情報を取り込むための通信用コイルである。   The primary coil 5 is a coil formed by being wound around an axis orthogonal to the XY plane shown in FIG. 1, and an electromagnetic wave reflection plate 5a is disposed on the lower surface thereof (FIGS. 4 and 5). A communication coil 41 is disposed adjacent to the primary coil 5 and on the same surface (FIG. 4). The communication coil 41 is a communication coil for capturing camera information and charging information sent from the camera side.

カメラ6には図3に示すように二次コイル7とこの二次コイル7が接続されるAC−DC変換回路部51と、AD−DC変換回路部51のDC出力が接続される充電回路部52と、充電回路部52,切り換えスイッチ55および通信部57を制御する制御部53と、リチウムイオン電池からなるカメラ電源用電池54と、DC−DC変換部からなるカメラ電源回路部56と、切り換えスイッチ55を介してカメラ側画像情報、カメラ情報や充電情報を通信用コイル58に出力するための通信部57とを有している。なお、充電回路部52では、常に一定状態で電池54を充電するように設定されている。   As shown in FIG. 3, the camera 6 has a secondary coil 7, an AC-DC conversion circuit unit 51 to which the secondary coil 7 is connected, and a charging circuit unit to which the DC output of the AD-DC conversion circuit unit 51 is connected. 52, a control unit 53 for controlling the charging circuit unit 52, the changeover switch 55 and the communication unit 57, a camera power supply battery 54 formed of a lithium ion battery, and a camera power supply circuit unit 56 formed of a DC-DC converter. A communication unit 57 for outputting camera-side image information, camera information, and charging information to the communication coil 58 via the switch 55 is provided. Note that the charging circuit unit 52 is set to always charge the battery 54 in a constant state.

カメラ6の底面部には二次コイル7が配されている。この二次コイル7は、カメラ6の載置台3上に載置した状態で一次コイル5と対称形状を有しており、XY平面に直交する軸まわりに巻回され、一次コイル5と同一巻き数を有している。さらに、コイル裏面部には電磁波反射板が取り付けられている。また、二次コイルに隣接してカメラ側通信用コイル58が配されている。   A secondary coil 7 is disposed on the bottom surface of the camera 6. The secondary coil 7 has a symmetrical shape with the primary coil 5 in a state of being mounted on the mounting table 3 of the camera 6, is wound around an axis orthogonal to the XY plane, and is wound in the same manner as the primary coil 5. Have a number. Furthermore, an electromagnetic wave reflection plate is attached to the back surface of the coil. A camera-side communication coil 58 is disposed adjacent to the secondary coil.

なお、二次コイル7は、必ずしも一次コイル5と同一巻き数でなくてもよい。すなわち、二次コイル7の巻き数を一次コイル5の巻き数の倍程度まで増やし、充電効率を増やすようにしてもよい。また、一次コイル5と二次コイル7とには、互いが最適電磁結合状態にあるとき、通信用コイル41と58とは、通信可能な対向位置にある。   The secondary coil 7 does not necessarily have the same number of turns as the primary coil 5. That is, the charging efficiency may be increased by increasing the number of turns of the secondary coil 7 to about twice the number of turns of the primary coil 5. In addition, when the primary coil 5 and the secondary coil 7 are in the optimum electromagnetic coupling state, the communication coils 41 and 58 are in opposing positions where communication is possible.

上述した構成を有する充電装置1によるカメラ6の電源用電池54への充電処理動作について、図6〜12を用いて説明する。   The charging processing operation to the power supply battery 54 of the camera 6 by the charging device 1 having the above-described configuration will be described with reference to FIGS.

図6は、上記カメラ側電源用電池への充電時の充電電圧と充電電流の変化を示す図である。図7は、一次コイル位置のダミー電流が殆ど流れない予備検索動作時からダミー電流が流れる最適位置検索動作時を経て充電動作開始時までの一次コイル電流変化と二次コイル電流変化の例を示す図である。図8は、カメラ側二次コイルと一次コイルとが所定離間距離範囲内にあるとき、二次コイルに所定のダミー電流を流している状態で二次コイルと一次コイルとの離間位置に対する一次コイルに流れる電流の変化を示す図である。   FIG. 6 is a diagram showing changes in charging voltage and charging current when charging the camera-side power source battery. FIG. 7 shows an example of primary coil current change and secondary coil current change from the preliminary search operation in which the dummy current at the primary coil position hardly flows through the optimum position search operation in which the dummy current flows to the start of the charging operation. FIG. FIG. 8 shows the primary coil relative to the separation position between the secondary coil and the primary coil in a state where a predetermined dummy current is passed through the secondary coil when the camera-side secondary coil and the primary coil are within the predetermined separation distance range. It is a figure which shows the change of the electric current which flows into.

図9は、予備検索動作時における計測タイミングパルスに対する一次コイル電流の変化を示す図である。図10は、最適位置検索動作時における二次コイルとの一次コイルの離間距離に対する一次コイル電流の変化を示す図である。図11は、予備検索動作の後、最適位置検索動作を行うときの一次コイルのX,Y軸移動量の変化および一次コイルの電流の変化の例を示す図である。図12は、本充電装置による「充電処理」のメインルーチンのフローチャートである。   FIG. 9 is a diagram illustrating changes in the primary coil current with respect to the measurement timing pulse during the preliminary search operation. FIG. 10 is a diagram illustrating changes in the primary coil current with respect to the distance between the primary coil and the primary coil during the optimum position search operation. FIG. 11 is a diagram illustrating an example of changes in the X and Y axis movement amounts of the primary coil and changes in the primary coil current when the optimum position search operation is performed after the preliminary search operation. FIG. 12 is a flowchart of a main routine of “charging process” by the charging apparatus.

本充電装置1によりカメラ6の電池54に充電を行う場合、まず、カメラ6を二次コイル7側を下面側にした状態で載置台3の任意の位置に置き、電源スイッチ4をオンとする。   When the battery 54 of the camera 6 is charged by the charging device 1, first, the camera 6 is placed at an arbitrary position on the mounting table 3 with the secondary coil 7 side on the lower surface side, and the power switch 4 is turned on. .

電気回路部24の制御部33および駆動部40の制御のもとでXY駆動機構部10を駆動制御して一次コイル5の移動が開始され、図12の充電処理のメインルーチンにおける予備検索処理(ステップS1)が実行される。   Under the control of the control unit 33 and the drive unit 40 of the electric circuit unit 24, the XY drive mechanism unit 10 is drive-controlled to start the movement of the primary coil 5, and the preliminary search process in the main routine of the charging process in FIG. Step S1) is executed.

上記予備検索処理においては、XY駆動機構部10により一次コイル5を予め規定されている検索軌跡を移動させて所定の移動点(図17に示す一次コイル5の位置を点P0 から点P1 〜点P24等)を通過させる。一次コイル5の通過時に一次コイル5の電流値の変化を検出することによって、一次コイル5の電磁結合範囲内位置(後述する最適位置を含むより近い領域内の位置、例えば、図17の点P20)を検出し、予備検索の終了時に一次コイル5は上記電磁結合範囲内位置まで駆動される。   In the preliminary search process, the XY drive mechanism unit 10 moves the primary coil 5 along a predetermined search trajectory to change the position of the primary coil 5 shown in FIG. 17 from the point P0 to the points P1 to P1. P24 etc.). By detecting a change in the current value of the primary coil 5 when it passes through the primary coil 5, a position within the electromagnetic coupling range of the primary coil 5 (a position within a closer region including an optimum position described later, for example, a point P20 in FIG. 17). ) And the primary coil 5 is driven to the position within the electromagnetic coupling range at the end of the preliminary search.

上記最適位置とは、一次コイル5がカメラ側二次コイル7の直下位置、言い換えれば、最も効率のよい電力伝送が実行できる最適電磁結合位置、例えば、図18の点Ph である。   The optimum position is a position where the primary coil 5 is directly below the camera-side secondary coil 7, in other words, an optimum electromagnetic coupling position at which the most efficient power transmission can be performed, for example, the point Ph in FIG.

続いて、最適位置検索処理(ステップS2)が実行される。この処理では一次コイル5の電流値の変化によって充電装置側一次コイル5をカメラ側二次コイル7の直下の最適電磁結合位置(最適位置、例えば、図18の点Ph )を検出し、当該位置に移動させ、双方のコイルを最適な電磁結合状態とする。その最適な電磁結合状態で一次コイル5側から電力を二次コイル7側に伝送し、電池54の効率のよい充電が行われる(ステップS3)。   Subsequently, the optimum position search process (step S2) is executed. In this process, the charging device side primary coil 5 detects the optimum electromagnetic coupling position (optimum position, for example, the point Ph in FIG. 18) immediately below the camera side secondary coil 7 based on the change in the current value of the primary coil 5, and the position To move both coils to the optimum electromagnetic coupling state. In the optimal electromagnetic coupling state, electric power is transmitted from the primary coil 5 side to the secondary coil 7 side, and the battery 54 is efficiently charged (step S3).

なお、上記予備検索処理および最適位置検索処理時、カメラ6側においては二次コイル7が一次コイル5と電磁結合状態にあるとき、二次コイル7には、予めカメラ側で設定された所定のダミー電流I2d(図7,8)が流れるように制御部53により制御される。   In the preliminary search process and the optimum position search process, when the secondary coil 7 is in an electromagnetically coupled state with the primary coil 5 on the camera 6 side, the secondary coil 7 has a predetermined preset value set on the camera side. The controller 53 controls the dummy current I2d (FIGS. 7 and 8) to flow.

また、上記予備検索処理および最適位置検索処理中、一次コイル5には所定の電圧V1が印加される。この所定の電圧V1は、二次コイル7に上記所定のダミー電流I2dを与えるための電圧であって、詳しくは、一次コイル5が最適電磁結合位置にあって、二次コイル7に所定ダミー電流I2dが流れているときの結合誘導電圧に等しい電圧とする。この電圧V1により一次コイル電流I1 が流される。   Further, during the preliminary search process and the optimum position search process, a predetermined voltage V1 is applied to the primary coil 5. The predetermined voltage V1 is a voltage for applying the predetermined dummy current I2d to the secondary coil 7. More specifically, the primary coil 5 is in the optimum electromagnetic coupling position, and the predetermined dummy current is applied to the secondary coil 7. The voltage is equal to the coupling induction voltage when I2d is flowing. The primary coil current I1 is caused to flow by this voltage V1.

図8に示すように一次コイル5が二次コイル7に対して上記電磁結合範囲内にあるとき、二次コイル7のダミー電流I2dを一定とし、上記一次コイル電圧V1による一次コイル5の電流I1は、一次コイル5と二次コイル7との離間距離Dによるコイル間の相互インダクタンスの変化に伴って変化する。すなわち、電磁結合状態にあって、離間距離Dが大きいと電流I1 は大きく、離間距離Dが小さくなると減少する。そして、一次コイル5が二次コイル7の位置に合致した上記最適電磁結合位置に到達すると電流I1 は、最小値の電流I1dとなる。最適位置検索処理ではこの一次コイル5の電流I1を検出して最適電磁結合位置を検索する。   As shown in FIG. 8, when the primary coil 5 is within the electromagnetic coupling range with respect to the secondary coil 7, the dummy current I2d of the secondary coil 7 is kept constant, and the current I1 of the primary coil 5 due to the primary coil voltage V1. Changes as the mutual inductance changes between the coils due to the distance D between the primary coil 5 and the secondary coil 7. That is, in the electromagnetic coupling state, the current I1 is large when the separation distance D is large, and decreases when the separation distance D is small. When the primary coil 5 reaches the optimum electromagnetic coupling position that matches the position of the secondary coil 7, the current I1 becomes the minimum current I1d. In the optimum position retrieval process, the current I1 of the primary coil 5 is detected to retrieve the optimum electromagnetic coupling position.

なお、上記最適位置検索処理においては、上述したように二次コイル7のダミー電流I2dとしてカメラ6側にて一定値に設定されている。これは一次コイル5が二次コイル7に接近して一次コイル電流が減少すると、二次コイルのダミー電流が増加して二次コイル電圧も増加してしまう。二次コイル7の電流や電圧が変化すると一次コイル5の正確な電流や電圧が測定できない。そこで、本実施形態では、充電回路部52で抵抗を制御し、二次コイル7のダミー電流およびその電圧を一定に保ち、この状態で二次コイル7の電流に対する一次コイル5の電流を検出できるようにしている。すなわち、その際に検出される一次コイル電流値の最小値がカメラ6側の二次コイル7との充電装置1の一次コイル5とが最も効率よく充電される状態での値として検出されることになる。   In the optimum position searching process, as described above, the dummy current I2d of the secondary coil 7 is set to a constant value on the camera 6 side. This is because when the primary coil 5 approaches the secondary coil 7 and the primary coil current decreases, the dummy current of the secondary coil increases and the secondary coil voltage also increases. If the current and voltage of the secondary coil 7 change, the accurate current and voltage of the primary coil 5 cannot be measured. Therefore, in this embodiment, the resistance is controlled by the charging circuit unit 52, the dummy current of the secondary coil 7 and its voltage are kept constant, and the current of the primary coil 5 relative to the current of the secondary coil 7 can be detected in this state. I am doing so. That is, the minimum value of the primary coil current value detected at that time is detected as a value in a state where the primary coil 5 of the charging device 1 with the secondary coil 7 on the camera 6 side is most efficiently charged. become.

図9は、予備検索処理時において一次コイル5が、例えば、図17の点P20に到達したとき、制御部から出力される計測タイミングパルスに基づき、印加される一次コイル5の電圧V1によって一次コイル電流I1 が流れる状態を示している。この計測タイミングt20は、図7のタイミングt20に対応し、このときの一次コイル電流I1 は、電流検出部31により検出される。   FIG. 9 shows that when the primary coil 5 reaches the point P20 in FIG. 17, for example, based on the measurement timing pulse output from the control unit, the primary coil 5 is applied with the voltage V1 of the primary coil 5 during the preliminary search process. It shows a state in which current I1 flows. This measurement timing t20 corresponds to the timing t20 of FIG. 7, and the primary coil current I1 at this time is detected by the current detection unit 31.

ここで、図7を用いて上記充電処理における予備検索処理、最適位置検索処理、さらに、その後の充電処理の実行過程での一次コイル電流I1 と二次コイル電流I2 の変化例を説明する。   Here, an example of changes in the primary coil current I1 and the secondary coil current I2 in the execution process of the preliminary search process, the optimum position search process in the charging process, and the subsequent charging process will be described with reference to FIG.

上記予備検索処理時、一次コイル5と二次コイル7とが遠く離れており、時間t0 では一次コイル5には殆ど電流は流れない。また、時間t1 でも一次コイル5に電流I1d0を流したとして二次コイル7の電流I2d0は、所定のダミー電流I2dより少ない値である。その後の予備検索処理中の時間t1 〜t2 で一次コイル5の上述した電磁結合範囲内の位置(例えば、上記点P20)を通過する。該電磁結合範囲内の位置に達したことは、二次コイル7には所定のダミー電流I2dが流れ、その電流に対応する一次コイル5の比較的に大きな電流I1d1により検出される。この一次コイル5の電流I1d1は、後述するように一次コイル5が相対的に二次コイル7に対して最適位置(最適電磁結合位置、例えば、点Ph )にあるときに二次コイル7に所定のダミー電流I2dが流れるときの一次コイル5の電流I1dより大きい値である。なお、上記予備検索処理の終了時である時間t2 には、一次コイル5は、上述した最適電磁結合位置から離れた電磁結合範囲内の位置(例えば、上記点P20)に移動させる。一次コイル5に上記電流I1d1が流れる状態にある。   During the preliminary search process, the primary coil 5 and the secondary coil 7 are far away, and almost no current flows through the primary coil 5 at time t0. Further, the current I2d0 of the secondary coil 7 is smaller than the predetermined dummy current I2d, assuming that the current I1d0 flows through the primary coil 5 even at time t1. Thereafter, the primary coil 5 passes through the position within the above-described electromagnetic coupling range (for example, the point P20) during time t1 to t2 during the preliminary search process. Reaching the position within the electromagnetic coupling range is detected by a relatively large current I1d1 of the primary coil 5 corresponding to the predetermined dummy current I2d flowing through the secondary coil 7. As will be described later, the current I1d1 of the primary coil 5 is predetermined in the secondary coil 7 when the primary coil 5 is in an optimum position relative to the secondary coil 7 (optimum electromagnetic coupling position, for example, point Ph). This value is larger than the current I1d of the primary coil 5 when the dummy current I2d flows. At time t2, which is the end of the preliminary search process, the primary coil 5 is moved to a position within the electromagnetic coupling range (for example, the point P20) far from the optimum electromagnetic coupling position described above. The current I1d1 flows through the primary coil 5.

その後、最適位置検索処理(ステップS2)が実行される。この処理状態の初期には一次コイル5は、上記電磁結合範囲内の位置(例えば、上記点P20)にあり、一次コイル5を微小駆動させながら、一次コイル電流I1 が最も少ない電流値I1dになる最適電磁結合位置を検索する。すなわち、二次コイル7にダミー電流I2dが流れる状態のもとで電圧検出部39で検出される一次コイル電圧がV1以下である場合には、一次コイル電流I1 を増やして一次コイル電圧V1に保ちつつ、一次コイル電流I1 がより少なくなる方向に一次コイル5を駆動制御する。   Thereafter, the optimum position search process (step S2) is executed. In the initial stage of this processing state, the primary coil 5 is at a position within the electromagnetic coupling range (for example, the point P20), and the primary coil current I1 becomes the smallest current value I1d while the primary coil 5 is finely driven. Search for the optimal electromagnetic coupling position. That is, when the primary coil voltage detected by the voltage detector 39 under the state where the dummy current I2d flows through the secondary coil 7 is V1 or less, the primary coil current I1 is increased and kept at the primary coil voltage V1. On the other hand, the primary coil 5 is driven and controlled in a direction in which the primary coil current I1 becomes smaller.

上記駆動制御により図7に示すように一次コイル電流I1は、段階的に減少し、一次コイル5が二次コイル7により接近する充電効率のよい最適電磁結合位置に向けて移動する。時間t4 にて一次コイル電流I1が最小のI1dであることが検出されると、一次コイル5が上記最適電磁結合位置に到達した判断し、最適位置検索処理を終了する。   As shown in FIG. 7, the primary coil current I <b> 1 decreases stepwise as a result of the drive control, and the primary coil 5 moves toward the optimal electromagnetic coupling position with good charging efficiency at which the secondary coil 7 approaches. When it is detected at time t4 that the primary coil current I1 is the minimum I1d, it is determined that the primary coil 5 has reached the optimum electromagnetic coupling position, and the optimum position search process is terminated.

上記最適位置検索処理の終了後、制御部33により一次コイル5に電圧V1chを印加して、一次コイル5に電流I1dより多い電流I1chを流すように制御し、二次コイル7側に充電電流I2chを流し、充電動作が開始される。該充電動作時の充電電圧V2chと充電電流I2chの変化は、図6に示される。すなわち、充電電圧V2chは、充電開始とともに線形的に増加し、時間t10経過した後、フル充電電圧(4.2V)となり、その後は一定値を示す。一方、充電電流I2chは、予め定められた一定値で充電開始され、時間t10経過して上記フル充電状態になった後は、漸次的に0に近い状態となる。   After completion of the optimum position search process, the control unit 33 applies the voltage V1ch to the primary coil 5, controls the primary coil 5 to pass a current I1ch greater than the current I1d, and charges the secondary coil 7 to the charging current I2ch. The charging operation is started. Changes in the charging voltage V2ch and the charging current I2ch during the charging operation are shown in FIG. That is, the charging voltage V2ch increases linearly with the start of charging, reaches a full charging voltage (4.2 V) after a lapse of time t10, and thereafter shows a constant value. On the other hand, the charging current I2ch starts to be charged at a predetermined constant value, and gradually becomes close to 0 after the time t10 has passed and the full charging state is reached.

図10は、上記最適位置検索処理時、図7の経過時間t3 〜t4 にて一次コイル5が移動点PaからPhまで移動して一次コイル離間距離Dが減少する連れて一次コイル電流I1 が減少していく過程を示している。なお、移動点PaからPhは、図18に示される一次コイル移動点を示しており、移動点Paは、最適位置検索処理開始時における一次コイル位置であり、移動点Phは、最適位置検索処理の終了時における一次コイル最適電磁結合位置を示している。   FIG. 10 shows that the primary coil current I1 decreases as the primary coil separation distance D decreases as the primary coil 5 moves from the movement point Pa to Ph during the elapsed time t3 to t4 in FIG. It shows the process of doing. Note that the movement points Pa to Ph indicate the primary coil movement points shown in FIG. 18, the movement point Pa is the primary coil position at the start of the optimum position search process, and the movement point Ph is the optimum position search process. The primary coil optimal electromagnetic coupling position at the time of completion | finish of is shown.

図10に示すように一次コイル電流I1 は、移動点Pa〜Phまでの各点に対応する一次コイル電流Ia〜Ihは、それぞれ減少していき、一次コイル最適電磁結合位置である移動点Phにて最小値を示す。その最小の一次コイル電流Ihを検出することによって一次コイル最適電磁結合位置到達が認識される。   As shown in FIG. 10, the primary coil current I1 is decreased as the primary coil currents Ia to Ih corresponding to the respective points from the movement points Pa to Ph are respectively reduced to the movement point Ph which is the primary coil optimum electromagnetic coupling position. Indicates the minimum value. By detecting the minimum primary coil current Ih, the arrival of the optimum electromagnetic coupling position of the primary coil is recognized.

図11は、上記最適位置検索処理時、図7の経過時間t3 〜t4 にて一次コイル5が移動点PaからPhまで移動するときの一次コイル電流の変化の状態およびXY駆動機構10による一次コイルのX軸及びY軸移動量の変化を示している。図11に示すように上記最適位置検索処理動作によれば、一旦、一次コイル電流が少なくなる移動点Phに到達後、確認のためにその周辺を検索し、上記移動点Phが一次コイル電流の最小値である電流I1dが得られる一次コイル最適電磁結合位置であると確定し、該移動点Phに戻る。   FIG. 11 shows the state of change in the primary coil current when the primary coil 5 moves from the movement point Pa to Ph during the elapsed time t3 to t4 in FIG. The change of the X-axis and Y-axis movement amount is shown. As shown in FIG. 11, according to the optimum position search processing operation, after reaching the moving point Ph where the primary coil current decreases, the surroundings are searched for confirmation, and the moving point Ph The primary coil optimum electromagnetic coupling position where the current I1d which is the minimum value is obtained is determined, and the process returns to the movement point Ph.

なお、上述した一次コイル5の印加電圧V1は、上記予備検索処理、最適位置検索処理中に一次コイル端子電圧として電圧検出部39で検出される。制御部33は、誘導電圧設定部34で電圧V1 が所定の誘導電圧となるように一次コイル電流I1 を制御する。また、この誘導電圧設定部34により一次コイル端子電圧は、上述した予備検索処理時、最適位置検索処理時に一次コイル電圧V1に、充電時には一次コイル電圧V1chにそれぞれ切り換えられる。   The voltage V1 applied to the primary coil 5 is detected by the voltage detector 39 as the primary coil terminal voltage during the preliminary search process and the optimum position search process. The control unit 33 controls the primary coil current I1 so that the voltage V1 becomes a predetermined induced voltage by the induced voltage setting unit 34. The induced voltage setting unit 34 switches the primary coil terminal voltage to the primary coil voltage V1 during the above-described preliminary search process and optimum position search process, and to the primary coil voltage V1ch during charging.

なお、検索時、上記一次コイル5の電圧V1(誘導電圧),充電時の印加電圧V1ch等の値は、制御部33のメモリ部に記憶されており、必要に応じて呼び出される。そして、一次コイル5の印加電圧V1は、前述したように一次コイル5が最適電磁結合位置にあって、二次コイル7に所定ダミー電流I2dが流れているときの結合誘導電圧に等しいが、予備検索処理時においては、それ以上の電圧としてもよい。また、充電時の一次コイル電圧V1chは、上記印加電圧V1よりも高い。   At the time of search, values such as the voltage V1 (inductive voltage) of the primary coil 5 and the applied voltage V1ch at the time of charging are stored in the memory unit of the control unit 33 and are called up as necessary. The applied voltage V1 of the primary coil 5 is equal to the coupling induction voltage when the primary coil 5 is at the optimum electromagnetic coupling position and the predetermined dummy current I2d flows through the secondary coil 7 as described above. In the search process, a voltage higher than that may be used. Further, the primary coil voltage V1ch during charging is higher than the applied voltage V1.

次に、本充電装置1における充電処理の詳細について、上記図7〜11、および、図12,13の概略のフローチャートを用いて説明する。   Next, details of the charging process in the charging device 1 will be described with reference to the schematic flowcharts of FIGS. 7 to 11 and FIGS.

図12は、前述したように本充電装置における充電処理のメインルーチンのフローチャートであり、図13は、図12の充電処理のメインルーチンで呼び出されるサブルーチン「予備検索処理」の概略のフローチャートである。   FIG. 12 is a flowchart of the main routine of the charging process in the present charging device as described above, and FIG. 13 is a schematic flowchart of a subroutine “preliminary search process” called by the main routine of the charging process of FIG.

制御部33の制御のもとで図12のメインルーチンのステップS1にて図13に示すサブルーチンの「予備検索処理」が呼び出される。「予備検索処理」のステップS11で移動制御部35の駆動制御部36によりX,Yモータ14,19が駆動され、一次コイル5が予め設定されている移動軌跡(図17の破線で示す軌跡)に沿ってX,Y軸方向に移動する。   Under the control of the control unit 33, the “preliminary search process” of the subroutine shown in FIG. 13 is called in step S1 of the main routine of FIG. In step S11 of the “preliminary search process”, the X and Y motors 14 and 19 are driven by the drive control unit 36 of the movement control unit 35, and the primary coil 5 is set in advance (the locus indicated by the broken line in FIG. 17). Along the X and Y axes.

ステップS12にて上記移動軌跡上の位置(図17の点P1 等)で電圧V1 を印加した状態で計測タイミングパルス出力時に一次コイル電流I1 の計測を行う。ステップS13で計測値に変化があり、その計測値が電流I1dを超える値であった場合、磁気結合領域内(最適磁気結合位置を含む範囲)に到達したとして、ステップS14に進む。上記計測値に変化がなかった場合は、ステップS11に戻る。   In step S12, the primary coil current I1 is measured when the measurement timing pulse is output in a state where the voltage V1 is applied at a position on the movement locus (point P1 etc. in FIG. 17). If the measured value is changed in step S13 and the measured value exceeds the current I1d, it is determined that the magnetic coupling region (range including the optimum magnetic coupling position) has been reached, and the process proceeds to step S14. If there is no change in the measured value, the process returns to step S11.

ステップS14では、上記計測電流値とともに上記到達移動点の座標を記憶する。   In step S14, the coordinates of the reaching movement point are stored together with the measured current value.

続いて、ステップS15で上記移動軌跡の全ての移動点における一次コイル電流I1 の計測が終了したかをチェックし、終了した場合は、ステップS16に進み、ステップS14で上記磁気結合領域内の記憶した移動点に一次コイル5を移動させる。但し、記憶した移動点が複数である場合は、上記計測電流値の少ない方(より最適磁気結合位置に近い方)の移動点に一次コイル5を移動させ、メインルーチンに戻る。   Subsequently, in step S15, it is checked whether or not the measurement of the primary coil current I1 at all the movement points of the movement locus is completed. If completed, the process proceeds to step S16, and in step S14, the data stored in the magnetic coupling area is stored. The primary coil 5 is moved to the moving point. However, when there are a plurality of stored movement points, the primary coil 5 is moved to the movement point with the smaller measured current value (the closer to the optimum magnetic coupling position), and the process returns to the main routine.

ここで、上述したサブルーチン「予備検索処理」のさらなる詳細動作について、図14,17を用い、その具体例に沿って説明する。   Here, further detailed operations of the above-described subroutine “preliminary search processing” will be described with reference to FIGS.

図14は、図13のサブルーチン「予備検索処理」における具体例の処理の流れ(フローA)を示す図である。図17は、図14の予備検索動作のフローAにおける一次コイルの載置台上での移動軌跡を示した図である。   FIG. 14 is a diagram showing a flow (flow A) of a specific example in the subroutine “preliminary search process” of FIG. FIG. 17 is a diagram showing a movement locus of the primary coil on the mounting table in the flow A of the preliminary search operation of FIG.

予備検索処理においては、図14のフローAに示すように充電装置1の電源スイッチ4のオンに伴って一次コイル5の初期位置P0 を認識し、一次コイル5を初期位置P0 から原点となる点P1 に移動させる(F1 )。なお、この原点位置は、X,Yセンサ20,22に出力によって検出される。   In the preliminary search process, the initial position P0 of the primary coil 5 is recognized as the power switch 4 of the charging apparatus 1 is turned on as shown in the flow A of FIG. 14, and the primary coil 5 is set to the origin from the initial position P0. Move to P1 (F1). This origin position is detected by outputs to the X and Y sensors 20, 22.

続いて、一次コイル5を図17の破線に沿って移動させ(F2 )、一次コイル5が各移動点P1 〜P24に到達したときのタイミングで送電側である一次コイル5の電流I1 を計測する(F3 )。   Subsequently, the primary coil 5 is moved along the broken line in FIG. 17 (F2), and the current I1 of the primary coil 5 on the power transmission side is measured at the timing when the primary coil 5 reaches each of the moving points P1 to P24. (F3).

一次コイル5と二次コイル7とが所定の離間距離外にある場合は、非磁気結合状態にあり、一次コイル5の負荷がない状態であり、一次コイルの電流I1 の変化は生じない(F4 )。   When the primary coil 5 and the secondary coil 7 are outside the predetermined separation distance, the primary coil 5 is in a non-magnetic coupling state, the primary coil 5 is not loaded, and the primary coil current I1 does not change (F4). ).

一次コイル5が図17の移動点P20に到達すると、一次コイル(送電側)5と二次コイル(受電側)7とが一部で重なる状態(電磁結合状態)となり、一次コイル電流が流れ、その電流I1 が計測される(F5 )。その計測値と移動位置座標とをメモリに記憶する(F6 )。   When the primary coil 5 reaches the moving point P20 in FIG. 17, the primary coil (power transmission side) 5 and the secondary coil (power reception side) 7 partially overlap (electromagnetic coupling state), and the primary coil current flows. The current I1 is measured (F5). The measured value and the movement position coordinate are stored in the memory (F6).

一次コイル5の全移動軌跡の移動と電流計測を終了したことを確認後、一次コイル5の移動点P20が二次コイル7の位置に近い(電磁結合位置)と判断し、一次コイル5を該移動点P20に移動させて本予備検索動作を終了する。   After confirming that the movement of all the movement paths of the primary coil 5 and the current measurement have been completed, it is determined that the movement point P20 of the primary coil 5 is close to the position of the secondary coil 7 (electromagnetic coupling position), and the primary coil 5 is The preliminary search operation is terminated by moving to the movement point P20.

上述したサブルーチン「予備検索処理」に続いてメインルーチンのステップS2でサブルーチンの「最適位置検索処理」が呼び出される。   Subsequent to the subroutine “preliminary search process”, the subroutine “optimum position search process” is called in step S2 of the main routine.

サブルーチンの「最適位置検索処理」は、移動点P20(後述する図18の点Paと同一点)からスタートして、まず、一次コイル5を+,−X軸方向に所定距離移動量Δdずつ移動させる。その移動位置で一次コイル電流I1 を計測する。上記計測電流値がX軸方向移動範囲で最小か、または、より小さいをチェックし、最小、または、より小さい値を示す位置に一次コイル5を移動させる。続いて、一次コイル5を+,−Y軸方向に所定距離移動量Δdずつ移動させ、その移動位置で一次コイル電流I1 を計測する。上記計測電流値がY軸方向移動範囲で最小か、または、より小さいかをチェックし、最小、または、より小さい値を示す位置に一次コイル5を移動させる。   The “optimum position search process” of the subroutine starts from a movement point P20 (the same point as point Pa in FIG. 18 described later), and first moves the primary coil 5 by a predetermined distance movement amount Δd in the + and −X axis directions. Let The primary coil current I1 is measured at the moving position. It is checked whether the measured current value is minimum or smaller in the movement range in the X-axis direction, and the primary coil 5 is moved to a position showing a minimum or smaller value. Subsequently, the primary coil 5 is moved by a predetermined distance movement amount Δd in the + and -Y axis directions, and the primary coil current I1 is measured at the movement position. It is checked whether the measured current value is minimum or smaller in the movement range in the Y-axis direction, and the primary coil 5 is moved to a position indicating a minimum or smaller value.

その後、+,−X,Y軸方向の所定距離移動量Δd/2だけ移動させることによって、より細かい移動範囲での一次コイル電流I1 の変化を計測し、一次コイル電流I1 が最小値、または、より小さい値が得られる点(最適電磁結合位置となる)を検索し、計測電流値がI1dに、あるいは、I1dに極めて近くなった移動点(例えば、図18の点Ph)を上記最適電磁結合位置として本サブルーチンを終了し、メインルーチンに戻る。上記一次コイル5が到達した最適電磁結合位置は、カメラ6がセットされた二次コイル7の位置P00(図18)と一致、または、略一致する。   After that, by moving by a predetermined distance movement amount Δd / 2 in the +, −X, and Y axis directions, the change in the primary coil current I1 in a finer movement range is measured, and the primary coil current I1 is the minimum value, or A point at which a smaller value is obtained (becomes the optimum electromagnetic coupling position) is searched, and a moving point where the measured current value is very close to I1d or very close to I1d (for example, point Ph in FIG. 18) is determined as the optimum electromagnetic coupling. This subroutine is terminated as a position, and the process returns to the main routine. The optimum electromagnetic coupling position reached by the primary coil 5 coincides with or substantially coincides with the position P00 (FIG. 18) of the secondary coil 7 on which the camera 6 is set.

ここで、上述したサブルーチン「最適位置検索処理」のさらなる詳細動作について、図15〜18を用い、その具体例に沿って説明する。   Here, further detailed operations of the above-described subroutine “optimum position search process” will be described with reference to FIGS.

図15,16は、上記サブルーチン「最適位置検索処理」における具体例の処理の流れ(フローB)を示す図である。図18は、図15,16の最適位置検索動作のフローBにおける一次コイルの載置台上での移動軌跡を示す図である。   FIGS. 15 and 16 are diagrams showing a flow of processing (flow B) of a specific example in the subroutine “optimum position search processing”. FIG. 18 is a diagram showing a movement locus of the primary coil on the mounting table in the flow B of the optimum position search operation of FIGS.

図15のフローBにおいては、まず、上述の予備検索動作によって検索された移動点Pa(すなわち、点P20)における一次コイル電流Iaを計測し、記憶する(F11)。そして、一次コイル5のX方向の移動による一次コイル電流の変化の計測を開始する(F12)。図18に示すように−X方向へ所定の距離Δdだけ移動し、その移動点Pbを記憶し、かつ、点Pbにおける一次コイル電流Ibを計測して、記憶する(F13,F14)。なお、一次コイル5が目的とする最適電磁結合位置から離れていくと誘電電圧V(=上記一次コイル印加電圧V1 )を保つために一次コイル5に電流をより多く流す必要がある。   In the flow B of FIG. 15, first, the primary coil current Ia at the moving point Pa (that is, the point P20) searched by the above-described preliminary search operation is measured and stored (F11). And the measurement of the change of the primary coil current by the movement of the X direction of the primary coil 5 is started (F12). As shown in FIG. 18, it moves by a predetermined distance Δd in the −X direction, stores the moving point Pb, and measures and stores the primary coil current Ib at the point Pb (F13, F14). When the primary coil 5 moves away from the target optimum electromagnetic coupling position, it is necessary to flow more current through the primary coil 5 in order to maintain the dielectric voltage V (= the primary coil applied voltage V1).

一次コイル電流IaとIbを比較する(F15)。Ia<Ibである場合、点Pb側は目的点から離れると判断し、一次コイル5を逆方向(+方向)へΔdだけ移動する。その移動点をPcとする(F16)。点Pcで一次コイル電流を計測し、その電流値Icを記憶する(F17)。   The primary coil currents Ia and Ib are compared (F15). When Ia <Ib, it is determined that the point Pb side is away from the target point, and the primary coil 5 is moved in the reverse direction (+ direction) by Δd. The moving point is set as Pc (F16). The primary coil current is measured at the point Pc, and the current value Ic is stored (F17).

電流値IcとIa,Ibとを比較する(F18)。Ic<Ia、かつ、Ic<Ibであれば、点Pcの方向が目的点(最適電磁結合位置)に近づいたと判断して点PcのX方向座標を記憶する(F19)。そこで、X方向の検索(移動と計測)を一旦中止し、Y方向の検索(移動と計測)を開始する(F20)。   The current value Ic is compared with Ia and Ib (F18). If Ic <Ia and Ic <Ib, it is determined that the direction of the point Pc has approached the target point (optimal electromagnetic coupling position), and the X-direction coordinate of the point Pc is stored (F19). Therefore, the search (movement and measurement) in the X direction is temporarily stopped, and the search (movement and measurement) in the Y direction is started (F20).

なお、上記Y方向の移動に移る前にさらにX方向の移動と電流計測を続行してX方向の電流最小値の位置を検索してからY方向の移動と計測に移行するようにしてもよい。   Before moving to the Y direction, the X direction movement and current measurement may be continued to search for the position of the minimum current value in the X direction, and then move to the Y direction movement and measurement. .

一次コイル5を点Pcから−Y方向へΔdだけ移動させ、点Pdで計測した一次コイル電流をIdとして記憶する(F21,F22)。電流IdとIcを比較して(F23)、Ic<Idであれば、−Y方向は目的点から離れると判断して一次コイル5を点Pcから+Y方向にΔdだけ移動させる(F24)。その到達点Peにて一次コイル電流Ieを計測し、記憶する(F25)。   The primary coil 5 is moved from the point Pc in the −Y direction by Δd, and the primary coil current measured at the point Pd is stored as Id (F21, F22). The currents Id and Ic are compared (F23). If Ic <Id, it is determined that the -Y direction is away from the target point, and the primary coil 5 is moved from the point Pc by + d in the + Y direction (F24). The primary coil current Ie is measured and stored at the arrival point Pe (F25).

電流IeとIc,Idとを比較する(F26)。Ie<Ic、かつ、Ie<Idであれば、点Pe側が目的点に近づくと判断して点PeのY方向座標を記憶する。そして、Y方向の検索を一旦中止し、再度、X方向の検索を開始する(F27)。   The current Ie is compared with Ic and Id (F26). If Ie <Ic and Ie <Id, it is determined that the point Pe side approaches the target point, and the Y-direction coordinate of the point Pe is stored. Then, the search in the Y direction is temporarily stopped and the search in the X direction is started again (F27).

なお、ここでも上記X方向の移動に移る前にさらにY方向の検索を続行してY方向の電流最小値の位置を検索してからX方向の検索を行うようにしてもよい。   In this case as well, the search in the Y direction may be continued before the movement in the X direction, and the search in the X direction may be performed after searching for the position of the minimum current value in the Y direction.

図16に示すように前回のX方向の検索で−X方向(左方向)が目的点から離れることが解っているので+X方向にΔdだけ一次コイル5を移動させ、その移動点Pfでの一次コイル電流Ifを計測し、記憶する(F28,F29)。   As shown in FIG. 16, in the previous search in the X direction, it is known that the -X direction (left direction) is away from the target point, so the primary coil 5 is moved by Δd in the + X direction, and the primary at the movement point Pf. The coil current If is measured and stored (F28, F29).

電流IfとIeとを比較する(F30)。If<Ieであれば、+X方向が目的点に近づいた方向であると判断し、X方向の検索を中止してY方向の検索に移る(F31)。   The currents If and Ie are compared (F30). If If <Ie, it is determined that the + X direction is the direction approaching the target point, the search in the X direction is stopped, and the search in the Y direction is started (F31).

一次コイル5を点PfからΔdだけ+Y方向に移動させる(F32)。その移動点Pgにて一次コイル電流Igを計測し、記憶する(F33)。   The primary coil 5 is moved in the + Y direction by Δd from the point Pf (F32). The primary coil current Ig is measured and stored at the moving point Pg (F33).

電流IgとIfとを比較する(F34)。If<Igであれば、前回のY方向も共に+方向であったことから目的点を通り過ぎたと判断する。そして、−Y方向に半値のΔd/2だけ戻し、その移動点Phで計測した電流Ihを記憶する(F35)。そこで、Y方向の検索を終了し、再度X方向の検索に移る。   The currents Ig and If are compared (F34). If If <Ig, since the previous Y direction was also the + direction, it is determined that the target point has been passed. Then, the half value Δd / 2 is returned in the −Y direction, and the current Ih measured at the moving point Ph is stored (F35). Therefore, the search in the Y direction is terminated, and the search again in the X direction.

+X方向にΔdだけ移動し(F36)、その移動点Piでの電流Iiを計測し、記憶する(F37)。   It moves by Δd in the + X direction (F36), and measures and stores the current Ii at the moving point Pi (F37).

電流IiとIhとを比較する(F38)。Ii>Ihであれば、目的点を通り過ぎたと判断し、半値のΔd/2だけ−X方向に戻り(F39)、その移動点Pjでの電流Ijを計測し、記憶する(F40)。   The currents Ii and Ih are compared (F38). If Ii> Ih, it is determined that the vehicle has passed the target point, the half value Δd / 2 is returned in the −X direction (F39), and the current Ij at the moving point Pj is measured and stored (F40).

電流IjとIhとを比較し、Ij>Ihであれば、前回のY方向も共に+方向であったことから目的点を通り過ぎたと判断し、半値のΔd/2だけ−X方向に戻し、移動点Phに移動させる(F41)。同じ方向に半値のΔd/2だけ戻ったことで移動点Phが最適磁気結合位置であると判断し、最適位置検索処理を終了する(F42)。   The currents Ij and Ih are compared, and if Ij> Ih, the previous Y direction is also the + direction, so it is determined that the target point has been passed, and the half-value Δd / 2 is returned to the −X direction by the half value Δd / 2. Move to point Ph (F41). The movement point Ph is determined to be the optimum magnetic coupling position by returning by half value Δd / 2 in the same direction, and the optimum position search process is terminated (F42).

その後、一次コイル5の端子電圧を充電時の印加電圧V1chに切り換え、二次コイル7を介してカメラ6側の電池54の充電が開始される。   Thereafter, the terminal voltage of the primary coil 5 is switched to the applied voltage V1ch at the time of charging, and charging of the battery 54 on the camera 6 side is started via the secondary coil 7.

以上、説明したように本実施形態の充電装置1によれば、上述した予備検索動作および最適位置検索動作により一次コイル5と二次コイル7との電磁結合状態で最も効率的なエネルギー給電が行われる位置を検索し、その位置で効率のよい電力伝送を行うことができる。   As described above, according to the charging device 1 of the present embodiment, the most efficient energy feeding is performed in the electromagnetic coupling state between the primary coil 5 and the secondary coil 7 by the preliminary search operation and the optimum position search operation described above. It is possible to search for a position to be detected and perform efficient power transmission at the position.

そして、一次コイル5と二次コイル7との電磁結合位置が最も効率的なエネルギー給電が行われる位置関係でない場合には、最も効率的なエネルギー給電が行われる位置関係となるように制御部33により二次コイル7の所定のダミー電流I2dを流すための一次コイル電流がもっとも少なくなる位置を検索し、当該一次コイル5と当該二次コイル7との最適な相対位置をもとめることができる。   And when the electromagnetic coupling position of the primary coil 5 and the secondary coil 7 is not the positional relationship in which the most efficient energy feeding is performed, the control unit 33 is set so as to have the positional relationship in which the most efficient energy feeding is performed. Thus, a position where the primary coil current for causing the predetermined dummy current I2d of the secondary coil 7 to flow is minimized is searched for, and the optimum relative position between the primary coil 5 and the secondary coil 7 can be obtained.

この発明は、上記各実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記各実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

本発明による電力伝送装置は、電子機器へ無接点方式で電力を供給する電力伝送装置において、効率よくエネルギー給電が行うことができ、構成も簡単である電力伝送装置とし利用可能である。   INDUSTRIAL APPLICABILITY The power transmission device according to the present invention can be used as a power transmission device that can efficiently supply energy and has a simple configuration in a power transmission device that supplies power to an electronic device in a contactless manner.

本発明の一実施形態の電力伝送装置である充電装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the charging device which is the electric power transmission apparatus of one Embodiment of this invention. 図1の充電装置に内蔵されるXY駆動機構部の斜視図である。It is a perspective view of the XY drive mechanism part incorporated in the charging device of FIG. 図1の充電装置に内蔵される電気回路部と電磁結合されるカメラの充電回路部との主要電気回路図である。FIG. 2 is a main electric circuit diagram of an electric circuit unit built in the charging device of FIG. 1 and a charging circuit unit of an electromagnetically coupled camera. 図1の充電装置に組み込まれる一次コイルの平面図である。It is a top view of the primary coil integrated in the charging device of FIG. 図4のA−A断面図である。It is AA sectional drawing of FIG. 図1のカメラの電源用電池への充電時における充電圧と充電電流の変化を示す図である。It is a figure which shows the change of the charging pressure and charging current at the time of the charge to the battery for power supplies of the camera of FIG. 図1の充電装置における一次コイル位置の予備検索動作時から最適位置検索動作時を経て充電動作時開始時までの一次コイル電流変化と二次コイル電流変化の例を示す図である。FIG. 2 is a diagram illustrating an example of primary coil current change and secondary coil current change from a preliminary search operation of a primary coil position in the charging device of FIG. 1 through an optimal position search operation to a start of charging operation. 図1のカメラ側の二次コイルと充電装置側の一次コイルとが所定離間距離範囲内にあって、上記二次コイルに所定のダミー電流を流すとき、上記二次コイルと上記一次コイルとの離間位置に対する上記一次コイルに流れる電流の変化を示す図である。When the secondary coil on the camera side and the primary coil on the charging device side in FIG. 1 are within a predetermined distance range and a predetermined dummy current is passed through the secondary coil, the secondary coil and the primary coil It is a figure which shows the change of the electric current which flows into the said primary coil with respect to a separation position. 図7の予備検索動作時における計測タイミングパルスに対する一次コイル電流の変化を示す図である。It is a figure which shows the change of the primary coil current with respect to the measurement timing pulse at the time of the preliminary | backup search operation | movement of FIG. 図7に示す二次コイルに所定のダミー電流を流した状態で図18に示すように移動点が変化したときの一次コイルの離間距離に対する一次コイル電流の変化の例を示す図である。It is a figure which shows the example of a change of the primary coil current with respect to the separation distance of a primary coil when a movement point changes as shown in FIG. 18 in the state which sent the predetermined dummy current to the secondary coil shown in FIG. 図7の最適位置検索動作状態での一次コイルのX,Y軸移動量の変化と一次コイルの電流の変化を示す図である。It is a figure which shows the change of the X and Y-axis movement amount of the primary coil in the optimal position search operation state of FIG. 7, and the change of the electric current of a primary coil. 図1の充電装置による「充電処理」のメインルーチンのフローチャートである。4 is a flowchart of a main routine of “charging process” by the charging device of FIG. 1. 図12の充電処理のメインルーチンで呼び出されるサブルーチン「予備検索処理」のフローチャートである。13 is a flowchart of a subroutine “preliminary search process” called in the main routine of the charging process of FIG. 12. 図12のメインルーチンで呼び出される図13のサブルーチン「予備検索処理」における具体例の処理の流れ(フローA)を示す図である。It is a figure which shows the flow (flow A) of the process of the specific example in the subroutine "preliminary search process" of FIG. 13 called by the main routine of FIG. 図12のメインルーチンで呼び出されるサブルーチン「最適位置検索処理」における具体例の処理の流れ(フローB)の一部を示す図である。FIG. 13 is a diagram showing a part of a processing flow (flow B) of a specific example in a subroutine “optimum position search processing” called in the main routine of FIG. 12. 図12のメインルーチンで呼び出されるサブルーチン「最適位置検索処理」における具体例の処理の流れ(フローB)の他の一部を示す図である。It is a figure which shows another part of the flow (flow B) of the process of the specific example in the subroutine "optimum position search process" called by the main routine of FIG. 図14の予備検索動作のフローAでの一次コイルの載置台上での移動軌跡を示した図である。It is the figure which showed the movement locus | trajectory on the mounting base of the primary coil in the flow A of the preliminary | backup search operation | movement of FIG. 図15,16の最適位置検索動作のフローBでの一次コイルの載置台上での移動軌跡を示す図である。It is a figure which shows the movement locus | trajectory on the mounting base of the primary coil in the flow B of the optimal position search operation | movement of FIG.

符号の説明Explanation of symbols

1 …充電装置(電力伝送装置)
5 …一次コイル
6 …カメラ(電子機器)
7 …二次コイル
10 …XY駆動機構部(移動手段)
31 …電流検出部(電流検出手段)
32 …DC−AC変換回路部(供給手段)
34 …誘導電圧設定部(電流制御手段)
37 …位置判定部(判定手段)
39 …電圧検出部(電圧検出手段)
35 …移動制御部(移動制御手段)
I2d…二次コイル側ダミー電流
V1 …一次コイル側結合誘導電圧
1 ... Charging device (power transmission device)
5 ... Primary coil 6 ... Camera (electronic equipment)
7 ... Secondary coil 10 ... XY drive mechanism (moving means)
31 ... Current detection part (current detection means)
32 ... DC-AC conversion circuit section (supply means)
34 ... Induction voltage setting section (current control means)
37 ... Position determination unit (determination means)
39: Voltage detection unit (voltage detection means)
35 ... Movement control unit (movement control means)
I2d ... secondary coil side dummy current V1 ... primary coil side coupling induced voltage

Claims (4)

電子機器へ無接点方式で電力を供給する電力伝送装置において、
上記電子機器に設けられた二次コイルと磁気的に結合する一次コイルと、
上記一次コイルに電流を供給する供給手段と、
上記一次コイルと上記二次コイルとが磁気的に結合することにより、当該二次コイルに所定のダミー電流が供給された際に、当該ダミー電流に対応して発生する一次コイル側の誘電電圧を検出する電圧検出手段と、
上記発生した誘電電圧が上記一次コイルと上記二次コイルとが最も効率的に磁気的に結合した際に発生する結合誘電電圧よりも小さい場合に、上記一次コイルの電圧が当該結合誘電電圧となるように上記供給手段を制御して上記一次コイルに流れる電流を増加させる電流制御手段と、
一次コイルに供給される電流値を検出する電流検出手段と、
上記検出された上記一次コイルを流れる電流値に基づいて、上記一次コイルと上記二次コイルとの位置関係を判定する判定手段と、
を具備したことを特徴とする電力伝送装置。
In power transmission devices that supply power to electronic devices in a contactless manner,
A primary coil that is magnetically coupled to a secondary coil provided in the electronic device;
Supply means for supplying current to the primary coil;
When the primary coil and the secondary coil are magnetically coupled, when a predetermined dummy current is supplied to the secondary coil, a dielectric voltage on the primary coil side corresponding to the dummy current is generated. Voltage detecting means for detecting;
When the generated dielectric voltage is smaller than the combined dielectric voltage generated when the primary coil and the secondary coil are most effectively magnetically coupled, the voltage of the primary coil becomes the combined dielectric voltage. Current control means for controlling the supply means to increase the current flowing through the primary coil,
Current detection means for detecting a current value supplied to the primary coil;
Determination means for determining the positional relationship between the primary coil and the secondary coil based on the detected current value flowing through the primary coil;
A power transmission device comprising:
さらに、上記一次コイルを移動させる移動手段と、
上記判定手段によって上記一次コイルと上記二次コイルとの位置関係が最も充電に適している位置ではないと判定された際に、上記移動手段を制御して上記一次コイルを任意の方向へ移動させる移動制御手段と、
を具備し、上記移動制御手段は、上記一次コイルを流れる電流値が最も小さくなるように上記移動手段によって上記一次コイルを任意の方向へ移動させることを特徴とする請求項1記載の電力伝送装置。
A moving means for moving the primary coil;
When the determining means determines that the positional relationship between the primary coil and the secondary coil is not the most suitable position for charging, the moving means is controlled to move the primary coil in an arbitrary direction. Movement control means;
2. The power transmission device according to claim 1, wherein the movement control unit moves the primary coil in an arbitrary direction by the moving unit so that a current value flowing through the primary coil is minimized. .
上記移動制御手段は、各移動位置において上記電流検出手段で検出された一次コイルの電流値を比較することによって、当該一次コイルの移動方向を決定する移動方向決定手段を含むことを特徴とする請求項2記載の電力伝送装置。 The movement control means includes movement direction determination means for determining a movement direction of the primary coil by comparing current values of the primary coil detected by the current detection means at each movement position. Item 3. The power transmission device according to Item 2. 上記電流制御手段は、上記一次コイルと上記二次コイルとの位置関係が最も充電に適している位置にあると判定された場合に上記供給手段から上記一次コイルに供給される電流量を本充電用の電流量に切換えるようにしたことを特徴とする請求項1乃至3記載の電力伝送装置。 The current control means is configured to charge the amount of current supplied from the supply means to the primary coil when it is determined that the positional relationship between the primary coil and the secondary coil is most suitable for charging. 4. The power transmission device according to claim 1, wherein the current transmission amount is switched to a current amount.
JP2006289138A 2006-10-24 2006-10-24 Power transmission device Pending JP2008109762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006289138A JP2008109762A (en) 2006-10-24 2006-10-24 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289138A JP2008109762A (en) 2006-10-24 2006-10-24 Power transmission device

Publications (1)

Publication Number Publication Date
JP2008109762A true JP2008109762A (en) 2008-05-08

Family

ID=39442677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289138A Pending JP2008109762A (en) 2006-10-24 2006-10-24 Power transmission device

Country Status (1)

Country Link
JP (1) JP2008109762A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247194A (en) * 2007-12-18 2009-10-22 Sanyo Electric Co Ltd Battery charger cradle
JP2010074894A (en) * 2008-09-16 2010-04-02 Sanyo Electric Co Ltd Solar charger
JP2010088178A (en) * 2008-09-30 2010-04-15 Fujitsu Ltd Charging device and charging method
JP2010259172A (en) * 2009-04-22 2010-11-11 Panasonic Electric Works Co Ltd Non-contact power supply system
JP2010263663A (en) * 2009-04-28 2010-11-18 Sanyo Electric Co Ltd Device with built-in battery and charging pad
JP2010288429A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2010288430A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2011004474A (en) * 2009-06-16 2011-01-06 Sanyo Electric Co Ltd Charging cradle
JP2011030418A (en) * 2007-10-09 2011-02-10 Powermat Ltd Inductive power providing system having moving outlet
JP2011205829A (en) * 2010-03-26 2011-10-13 Honda Motor Co Ltd Noncontact charging system
JP2011229314A (en) * 2010-04-21 2011-11-10 Sanyo Electric Co Ltd Charging device, and, method of controlling charging device
JP2012514967A (en) * 2009-01-06 2012-06-28 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Contactless power supply
DE112010002338T5 (en) 2009-06-25 2012-08-02 Tanashin Denki Co., Ltd. Two-dimensional displacement device
JP2012170271A (en) * 2011-02-16 2012-09-06 Toko Inc Wireless power transmission device
JP2013106427A (en) * 2011-11-14 2013-05-30 Ntt Docomo Inc Wireless charger and foreign matter detection method
JP5229414B1 (en) * 2012-05-17 2013-07-03 パナソニック株式会社 Portable terminal charger and car using it
JP2014064460A (en) * 2007-12-18 2014-04-10 Panasonic Corp Charging holder case
JP2014155303A (en) * 2013-02-07 2014-08-25 Nec Saitama Ltd Charger and charging method
JP2014526137A (en) * 2011-06-30 2014-10-02 パウル・ファーレ・ゲーエムベーハー・ウント・コー・カーゲー Flat coil for non-contact inductive energy transfer
JP2014529886A (en) * 2011-08-16 2014-11-13 コメート グループ ゲーエムベーハー Rotating transmitter for machine tools
JP5632083B2 (en) * 2012-01-26 2014-11-26 パナソニック株式会社 Drive device
WO2015015771A1 (en) * 2013-07-31 2015-02-05 パナソニック株式会社 Wireless power-transfer system and power-transmission device
DE102014212258A1 (en) * 2014-06-26 2015-12-31 Robert Bosch Gmbh An induction energy transmission device and method for detecting position and / or presence by means of an induction energy transmission device
CN105659468A (en) * 2013-10-21 2016-06-08 松下知识产权经营株式会社 Mobile terminal charging device and automobile using same
JP2017017771A (en) * 2015-06-26 2017-01-19 トヨタ自動車株式会社 Non-contact power transmission device
JP2017118675A (en) * 2015-12-24 2017-06-29 日置電機株式会社 Measuring apparatus
KR20220000340U (en) * 2020-07-29 2022-02-07 선전 아이츠크키 테크놀로지 컴퍼니., 리미티드. Wireless charging stand
WO2024043085A1 (en) * 2022-08-25 2024-02-29 パナソニックIpマネジメント株式会社 Charging device and charging method

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101524892B1 (en) * 2007-10-09 2015-06-01 파워매트 테크놀로지스 엘티디. Inductive power providing system having moving outlets
JP2011030418A (en) * 2007-10-09 2011-02-10 Powermat Ltd Inductive power providing system having moving outlet
US9124106B2 (en) 2007-12-18 2015-09-01 Panasonic Corporation Battery charger cradle
US8786252B2 (en) 2007-12-18 2014-07-22 Panasonic Corporation Battery charger cradle
JP2014079167A (en) * 2007-12-18 2014-05-01 Panasonic Corp Charging holder case
JP2014064460A (en) * 2007-12-18 2014-04-10 Panasonic Corp Charging holder case
JP2009247194A (en) * 2007-12-18 2009-10-22 Sanyo Electric Co Ltd Battery charger cradle
US9312711B2 (en) 2007-12-18 2016-04-12 Panasonic Corporation Battery charger cradle
JP2010074894A (en) * 2008-09-16 2010-04-02 Sanyo Electric Co Ltd Solar charger
JP2010088178A (en) * 2008-09-30 2010-04-15 Fujitsu Ltd Charging device and charging method
US8890369B2 (en) 2009-01-06 2014-11-18 Access Business Group International Llc Inductive power supply
JP2012514967A (en) * 2009-01-06 2012-06-28 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Contactless power supply
JP2010259172A (en) * 2009-04-22 2010-11-11 Panasonic Electric Works Co Ltd Non-contact power supply system
JP2010263663A (en) * 2009-04-28 2010-11-18 Sanyo Electric Co Ltd Device with built-in battery and charging pad
JP2010288430A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2014003903A (en) * 2009-06-15 2014-01-09 Sanyo Electric Co Ltd Charge stand
JP2010288429A (en) * 2009-06-15 2010-12-24 Sanyo Electric Co Ltd Charging cradle
JP2011004474A (en) * 2009-06-16 2011-01-06 Sanyo Electric Co Ltd Charging cradle
DE112010002338T5 (en) 2009-06-25 2012-08-02 Tanashin Denki Co., Ltd. Two-dimensional displacement device
US8907619B2 (en) 2009-06-25 2014-12-09 Tanashin Denki Co., Ltd. Wireless charger installed with a two-dimensional moving mechanism
JP2014207859A (en) * 2010-03-26 2014-10-30 本田技研工業株式会社 Non-contact charging system
JP2011205829A (en) * 2010-03-26 2011-10-13 Honda Motor Co Ltd Noncontact charging system
JP2011229314A (en) * 2010-04-21 2011-11-10 Sanyo Electric Co Ltd Charging device, and, method of controlling charging device
JP2012170271A (en) * 2011-02-16 2012-09-06 Toko Inc Wireless power transmission device
JP2014526137A (en) * 2011-06-30 2014-10-02 パウル・ファーレ・ゲーエムベーハー・ウント・コー・カーゲー Flat coil for non-contact inductive energy transfer
JP2014529886A (en) * 2011-08-16 2014-11-13 コメート グループ ゲーエムベーハー Rotating transmitter for machine tools
JP2017163831A (en) * 2011-08-16 2017-09-14 コメート グループ ゲーエムベーハー Rotary transmitter for machine tool, tool head comprising rotary transmitter, and method for transmitting data with rotary transmitter
JP2013106427A (en) * 2011-11-14 2013-05-30 Ntt Docomo Inc Wireless charger and foreign matter detection method
JP5632083B2 (en) * 2012-01-26 2014-11-26 パナソニック株式会社 Drive device
JPWO2013111549A1 (en) * 2012-01-26 2015-05-11 パナソニック株式会社 Drive device
US9167157B2 (en) 2012-01-26 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Drive apparatus
JP5229414B1 (en) * 2012-05-17 2013-07-03 パナソニック株式会社 Portable terminal charger and car using it
JP2014155303A (en) * 2013-02-07 2014-08-25 Nec Saitama Ltd Charger and charging method
CN105393432A (en) * 2013-07-31 2016-03-09 松下电器产业株式会社 Wireless power-transfer system and power-transmission device
WO2015015771A1 (en) * 2013-07-31 2015-02-05 パナソニック株式会社 Wireless power-transfer system and power-transmission device
US9991748B2 (en) 2013-07-31 2018-06-05 Panasonic Corporation Wireless power transmission system and power transmission device
CN105393432B (en) * 2013-07-31 2018-12-28 松下电器产业株式会社 Wireless power transmission system and power transmission device
CN105659468A (en) * 2013-10-21 2016-06-08 松下知识产权经营株式会社 Mobile terminal charging device and automobile using same
EP3062415A4 (en) * 2013-10-21 2016-11-23 Panasonic Ip Man Co Ltd Mobile terminal charging device and automobile using same
JPWO2015059912A1 (en) * 2013-10-21 2017-03-09 パナソニックIpマネジメント株式会社 Portable terminal charger and car using it
DE102014212258A1 (en) * 2014-06-26 2015-12-31 Robert Bosch Gmbh An induction energy transmission device and method for detecting position and / or presence by means of an induction energy transmission device
JP2017017771A (en) * 2015-06-26 2017-01-19 トヨタ自動車株式会社 Non-contact power transmission device
JP2017118675A (en) * 2015-12-24 2017-06-29 日置電機株式会社 Measuring apparatus
KR20220000340U (en) * 2020-07-29 2022-02-07 선전 아이츠크키 테크놀로지 컴퍼니., 리미티드. Wireless charging stand
KR200496771Y1 (en) * 2020-07-29 2023-04-19 선전 아이츠크키 테크놀로지 컴퍼니., 리미티드. Wireless charging stand
WO2024043085A1 (en) * 2022-08-25 2024-02-29 パナソニックIpマネジメント株式会社 Charging device and charging method

Similar Documents

Publication Publication Date Title
JP2008109762A (en) Power transmission device
JP2009195034A (en) Non-contact charging device
JP5340017B2 (en) Built-in battery and charging stand
JP5362330B2 (en) Charging stand
JP5643886B2 (en) Charging stand
JP4614961B2 (en) Method and apparatus for controlling an inductively coupled power transfer system
US20110025133A1 (en) Wireless power transmission system
JP2012110135A (en) Charging cradle, charging system, and charging method
JP2011114985A (en) Apparatus with built-in battery and charging pad
CN110635574A (en) Multi-coil for wirelessly transmitting power
JP2011259534A (en) Battery-integrated apparatus and charging stand
KR101780163B1 (en) Wireless power supply system and power transmission device
WO2012132144A1 (en) Charging platform
JP2012095456A (en) Non-contact power transmission system, primary side apparatus and secondary side apparatus
JP2010206866A (en) Electronic equipment and charger
JP2012023913A (en) Non-contact power feeding device
JP2017051074A (en) Non-contact power transmission device and non-contact power supply system
RU2727524C1 (en) Wireless charger, system, control method, charging equipment and data medium
JP5430046B2 (en) Charging stand
JP2015179704A (en) Power-feeding pad and non-contact charge system for forklift employing power-feeding pad, and power-receiving pad and secondary-side power-receiving circuit for non-contact power-feeding facility employing power-receiving pad
KR20170033079A (en) Wireless charging apparatus for obtaining charging compatibility
TW201044424A (en) Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation
JP6718133B2 (en) Wireless power receiving device and wireless power transmission system
Shi et al. Detection of metallic foreign objects and electric vehicles using auxiliary coil sets for dynamic inductive power transfer systems
JP2012110085A (en) Built-in battery apparatus, and built-in battery apparatus and charger