JP2008106304A - Apparatus for forming thin film - Google Patents

Apparatus for forming thin film Download PDF

Info

Publication number
JP2008106304A
JP2008106304A JP2006290053A JP2006290053A JP2008106304A JP 2008106304 A JP2008106304 A JP 2008106304A JP 2006290053 A JP2006290053 A JP 2006290053A JP 2006290053 A JP2006290053 A JP 2006290053A JP 2008106304 A JP2008106304 A JP 2008106304A
Authority
JP
Japan
Prior art keywords
electrode
thin film
film forming
portions
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006290053A
Other languages
Japanese (ja)
Other versions
JP4868283B2 (en
Inventor
Masahiro Tatsukawa
昌弘 辰川
Shin Shimozawa
慎 下沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006290053A priority Critical patent/JP4868283B2/en
Publication of JP2008106304A publication Critical patent/JP2008106304A/en
Application granted granted Critical
Publication of JP4868283B2 publication Critical patent/JP4868283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for forming a uniform thin film. <P>SOLUTION: The apparatus for forming the thin film has an earth electrode placed in one side of a substrate to be thin-film-formed thereon in the film-forming chamber, and a high-frequency electrode placed in the other side. The high-frequency electrode comprises a main body part of the electrode, which is connected to a high-frequency power source and has a gas-introducing port for introducing a reaction gas therethrough, and a surface electrode part having a gas circulation hole in the plate face. The earth electrode and the-high frequency electrode generates plasma discharge in between them to form the thin film on the surface to be film formed of the substrate. The high-frequency electrode 4 is formed of a plurality of surface electrodes 40 that are formed by dividing the surface electrode part and of which the end parts are folded onto each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、成膜室内に配置した接地電極と高周波電極との間でプラズマ放電を発生させて、薄膜形成用基板の成膜面に、薄膜太陽電池、半導体、感光体などに用いられる各種薄膜の形成を行うための薄膜形成装置に関し、詳しくは、前記高周波電極を分割構造に形成して取り扱いを容易にした薄膜形成装置に関する。   In the present invention, plasma discharge is generated between a ground electrode and a high-frequency electrode arranged in a film forming chamber, and various thin films used for a thin film solar cell, a semiconductor, a photoreceptor, etc. on a film forming surface of a thin film forming substrate. In particular, the present invention relates to a thin film forming apparatus in which the high-frequency electrode is formed in a divided structure for easy handling.

薄膜太陽電池は、薄型・軽量であるとともに、低コストで製造でき、さらに大面積化が容易であることなどから、今後の太陽電池の主流になると考えられている。薄膜太陽電池は、例えば、電気絶縁性を有する可撓性フィルム基板上に、第1電極(金属電極)、薄膜半導体層からなる光電変換層および第2電極(透明電極)が積層されてなる光電変換素子(またはセル)が複数形成される。ある光電変換素子の第1電極と隣接する光電変換素子の第2電極とを電気的に接続することを次々繰り返すことにより、最初の光電変換素子の第1電極と最後の光電変換素子の第2電極とに必要な電圧を出力させることができる。   Thin film solar cells are considered to become the mainstream of future solar cells because they are thin and lightweight, can be manufactured at low cost, and are easy to enlarge. A thin film solar cell is, for example, a photoelectric film in which a first electrode (metal electrode), a photoelectric conversion layer made of a thin film semiconductor layer, and a second electrode (transparent electrode) are stacked on a flexible film substrate having electrical insulation. A plurality of conversion elements (or cells) are formed. By sequentially connecting the first electrode of a certain photoelectric conversion element and the second electrode of the adjacent photoelectric conversion element one after another, the first electrode of the first photoelectric conversion element and the second electrode of the last photoelectric conversion element A voltage necessary for the electrodes can be output.

このように薄膜太陽電池は、その内部に各種薄膜が積層された構造を有し、通常、これらの薄膜は、プラズマ放電を利用した薄膜形成装置を用いて形成される。可撓性フィルム基板に対する薄膜の形成方法としては、現在、主に、ロールツーロール方式またはステッピングロール方式がある。両方式とも複数のロールによる基板搬送手段を備え、ロールツーロール方式は、各成膜室内を連続的に移動する基板上に連続的に成膜する方式であり、一方、ステッピングロール方式は、各成膜室内で同時に停止させた基板上に成膜し、成膜の終わった基板部分を次の成膜室へ送り出す方式である。このうちステッピングロール方式の薄膜形成装置は、隣接する成膜室間のガス相互拡散を防止できることから、各薄膜の特性が安定して得られるなどの点で優れている。   Thus, the thin film solar cell has a structure in which various thin films are laminated therein, and these thin films are usually formed using a thin film forming apparatus utilizing plasma discharge. Currently, there are mainly a roll-to-roll system or a stepping roll system as a method for forming a thin film on a flexible film substrate. Both types include substrate transport means using a plurality of rolls, and the roll-to-roll method is a method of continuously forming a film on a substrate that moves continuously in each film formation chamber, while the stepping roll method is In this method, a film is formed on a substrate that is simultaneously stopped in the film formation chamber, and the substrate portion after film formation is sent to the next film formation chamber. Among these, the stepping roll type thin film forming apparatus is excellent in that the characteristics of each thin film can be obtained stably because gas diffusion between adjacent film forming chambers can be prevented.

図10は従来のステッピングロール方式の薄膜形成装置の構成概略図である。図10に示す薄膜形成装置100は、共通真空室101内に、可撓性フィルム基板200の巻出し用のコア102aを有するアンワインダー室102と、可撓性フィルム基板200に金属電極、光電変換層および透明電極などの薄膜を形成するための複数の独立した処理空間としての成膜室103と、可撓性フィルム基板200の巻取り用のコア104aを有するワインダー室104とを備える。可撓性フィルム基板200は、アンワインダー室102のコア102aから巻き出されてワインダー室104のコア104aで巻き取られる間に、各成膜室103で所定の薄膜が形成されるようになっている。   FIG. 10 is a schematic configuration diagram of a conventional stepping roll type thin film forming apparatus. A thin film forming apparatus 100 shown in FIG. 10 includes an unwinder chamber 102 having a core 102a for unwinding a flexible film substrate 200 in a common vacuum chamber 101, and a metal electrode and photoelectric conversion on the flexible film substrate 200. A film forming chamber 103 as a plurality of independent processing spaces for forming thin films such as layers and transparent electrodes, and a winder chamber 104 having a core 104 a for winding the flexible film substrate 200 are provided. As the flexible film substrate 200 is unwound from the core 102a of the unwinder chamber 102 and wound around the core 104a of the winder chamber 104, a predetermined thin film is formed in each film forming chamber 103. Yes.

各成膜室103では、スパッタ成膜またはプラズマ化学気相成長法(以下「プラズマCVD法」という。)により成膜が行われる。例えば、プラズマCVD法により成膜するステッピングロール方式の場合には、順に、成膜室103の開放、可撓性フィルム基板200の1フレーム移動、成膜室103の封止、原料ガスの導入、圧力制御、放電開始、放電終了、原料ガスの停止、ガス引き、成膜室103の開放、といった手順を繰り返して成膜が行われる。   In each film formation chamber 103, film formation is performed by sputtering film formation or plasma chemical vapor deposition (hereinafter referred to as “plasma CVD method”). For example, in the case of a stepping roll method in which a film is formed by plasma CVD, the film forming chamber 103 is opened, the flexible film substrate 200 is moved by one frame, the film forming chamber 103 is sealed, a source gas is introduced, Film formation is performed by repeating the steps of pressure control, discharge start, discharge end, source gas stop, gas drawing, and film formation chamber 103 opening.

図11および図12は成膜室の一構成例を示す図であって、図11は開放時の成膜室の概略断面図、図12は封止時の成膜室の概略断面図である。ただし、図11および図12では、図10に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。   FIG. 11 and FIG. 12 are diagrams showing a configuration example of the film forming chamber, FIG. 11 is a schematic cross-sectional view of the film forming chamber when opened, and FIG. 12 is a schematic cross-sectional view of the film forming chamber when sealed. . However, in FIG. 11 and FIG. 12, the same elements as those shown in FIG. 10 are denoted by the same reference numerals, and detailed description thereof is omitted.

上記図10に示した成膜室103は、図11に示すように、断続的に搬送されてくる可撓性フィルム基板200の両側に、函状の成膜部室壁体103aと成膜部室壁体103bとが対向配置されて構成されている。封止時には、図12に示すように、可撓性フィルム基板200を挟んで成膜部室103cおよび成膜部室103dの独立した処理空間が構成されるようになっている。成膜部室103cには、ヒータ106aを内蔵した接地電極106が配置され、成膜部室103dには、電源108に接続された高周波電極105が配置されるようになっている。成膜室103と高周波電極105の電極取付ベース105aとの間はシール107で絶縁されている。   As shown in FIG. 11, the film formation chamber 103 shown in FIG. 10 has a box-shaped film formation chamber wall 103a and film formation chamber walls on both sides of the flexible film substrate 200 that is intermittently conveyed. The body 103b is disposed so as to face the body 103b. At the time of sealing, as shown in FIG. 12, independent processing spaces for the film forming unit chamber 103c and the film forming unit chamber 103d are formed with the flexible film substrate 200 interposed therebetween. A ground electrode 106 with a built-in heater 106a is disposed in the film forming unit chamber 103c, and a high-frequency electrode 105 connected to a power source 108 is disposed in the film forming unit chamber 103d. The film forming chamber 103 and the electrode mounting base 105 a of the high frequency electrode 105 are insulated by a seal 107.

成膜時には、成膜部室壁体103aが図11に示した位置から図12に示した位置まで移動し、接地電極106が可撓性フィルム基板200を押さえ、成膜部室壁体103bの開口側端面に取り付けられたシール部材103eに接触する。これにより、可撓性フィルム基板200と高周波電極105との間に成膜空間109が形成される。   During film formation, the film formation chamber wall 103a moves from the position shown in FIG. 11 to the position shown in FIG. 12, and the ground electrode 106 presses the flexible film substrate 200 to open the film formation chamber wall 103b. It contacts the seal member 103e attached to the end face. Thereby, a film formation space 109 is formed between the flexible film substrate 200 and the high-frequency electrode 105.

このように構成される各成膜室103において、高周波電極105へ高周波電圧を印加することにより、成膜空間109にプラズマを発生させ、図示しない導入管から導入された原料ガスを分解して可撓性フィルム基板200上に膜が形成されるようになる。   In each of the film forming chambers 103 configured as described above, by applying a high frequency voltage to the high frequency electrode 105, plasma is generated in the film forming space 109, and the source gas introduced from the introduction pipe (not shown) can be decomposed. A film is formed on the flexible film substrate 200.

図13は、従来の一般的な薄膜形成装置における電極構造を示したもので、図11と同一部分は同符号を付して同一部分の説明は省略して説明する。
高周波電極105は、電極本体105aと、ガス導入口105bと、表面電極とも呼ばれるシャワー電極としての1枚の電極板105cとを有する。反応ガスは、ガス導入口105bから導入されて電極板105cの貫通孔より 可撓性フィルム基板側に噴射される。
FIG. 13 shows an electrode structure in a conventional general thin film forming apparatus. The same parts as those in FIG. 11 are denoted by the same reference numerals, and description of the same parts is omitted.
The high-frequency electrode 105 includes an electrode body 105a, a gas introduction port 105b, and a single electrode plate 105c serving as a shower electrode, also called a surface electrode. The reaction gas is introduced from the gas introduction port 105b and sprayed from the through hole of the electrode plate 105c to the flexible film substrate side.

上記成膜室103で例えばアモルファスシリコン(a−Si)を成膜する場合、高周波電極105の電極板105cの表面にa−Si膜が付着してその膜厚が数十μmになると、そのa−Si膜が内部応力によって剥離してフレークとなって可撓性フィルム基板200に付着し、ピンホールなどの要因になる。そのため、電極板105c表面をサンドブラストで凹凸化することによって、可撓性フィルム基板200に対し安定して剥離のない成膜が行える最大付着膜厚を50μm〜100μm程度まで伸ばすようにすることが行われる。最大付着膜厚に達した段階で、図10の共通真空室101内を大気開放して電極板105cの交換を行い、取り外した電極板105cは洗浄装置を用いて酸洗い処理する。   In the case where amorphous silicon (a-Si) is formed in the film formation chamber 103, for example, when the a-Si film adheres to the surface of the electrode plate 105c of the high-frequency electrode 105 and the film thickness becomes several tens of micrometers, the a The Si film peels off due to internal stress, becomes flakes, adheres to the flexible film substrate 200, and causes a pinhole or the like. For this reason, the surface of the electrode plate 105c is roughened by sandblasting, so that the maximum adhesion film thickness that allows stable film formation without peeling to the flexible film substrate 200 is extended to about 50 μm to 100 μm. Is called. When the maximum adhesion film thickness is reached, the inside of the common vacuum chamber 101 in FIG. 10 is opened to the atmosphere to replace the electrode plate 105c, and the removed electrode plate 105c is pickled using a cleaning device.

そのため、電極板105cは、薄膜形成装置100が大面積薄膜形成に対応できるようになってきている反面、洗浄装置の洗浄容器内積が小さいことや、電極板105cの取り付け、取り外し作業時における取り扱い性を向上させるために、図14ないし図16に示すように、4枚に分割して構成している。ここでは4枚に分割しているが、電極板の大きさとハンドリング性を考慮して4枚以外に分割しても良い。また、大面積の基板上に薄膜を形成する装置では、各電極板105cは、電極本体105aとの電気的コンタクトを確保するため、複数の固定用ねじ105dにて電極本体105aに締結されるようになっている。図14に示したガス導入口105bから導入される反応ガスは、電極本体105aで4方向に分配され、図15および図16に示すそれぞれの電極板105cの孔105eから噴射される。ただし、図15および図16には、4枚の電極板105cのうち1枚にのみ孔105eを図示し、残りの3枚についてはその図示を省略している(特許文献1参照)。
特開2005−2423
For this reason, the electrode plate 105c is capable of handling large-area thin film formation by the thin film forming apparatus 100, while the inner volume of the cleaning container of the cleaning apparatus is small, and handling properties at the time of attaching and removing the electrode plate 105c In order to improve this, as shown in FIGS. 14 to 16, it is divided into four pieces. Although it is divided into four sheets here, it may be divided into four sheets in consideration of the size of the electrode plate and the handleability. Further, in an apparatus for forming a thin film on a large-area substrate, each electrode plate 105c is fastened to the electrode body 105a with a plurality of fixing screws 105d in order to ensure electrical contact with the electrode body 105a. It has become. The reaction gas introduced from the gas inlet 105b shown in FIG. 14 is distributed in four directions by the electrode main body 105a, and is injected from the holes 105e of the respective electrode plates 105c shown in FIGS. However, in FIGS. 15 and 16, the hole 105e is illustrated in only one of the four electrode plates 105c, and the illustration of the remaining three is omitted (see Patent Document 1).
JP-A-2005-2423

しかしながら、上記薄膜形成装置によれば、表面電極を4分割することによって、加熱による伸び・歪等によって各表面電極と電極本体との間に隙間が生じ、その間から成膜ガスが漏れることがあった。前記隙間は線状であり、表面電極の貫通孔と比較して断面積が大きいため、前記貫通孔を通過するガス量と比べて相対的に多くなる。結果放電空間中におけるガス密度分布が大きくなり、膜厚分布が大きくなるという問題があった。さらに上記課題を解決するために、電極本体と表面電極を接続するネジの本数を多くすると、表面電極交換等の作業時間が多くなり、生産性が低下するという問題があった。   However, according to the thin film forming apparatus, by dividing the surface electrode into four, gaps are generated between the surface electrodes and the electrode main body due to elongation / strain due to heating, and the film forming gas may leak from there. It was. Since the gap is linear and has a larger cross-sectional area than the through hole of the surface electrode, the gap is relatively larger than the amount of gas passing through the through hole. As a result, there is a problem that the gas density distribution in the discharge space becomes large and the film thickness distribution becomes large. Further, in order to solve the above problems, if the number of screws connecting the electrode main body and the surface electrode is increased, there is a problem that the work time for replacing the surface electrode is increased and productivity is lowered.

また、電極板を電極中心のみで成膜室に固定する場合、電極の加熱による歪や洗浄時における変形等により、成膜中対向電極と平行にならない場合がある。これは電極板のサイズが大きくなる程顕著であり、電極面内の任意の部位で電極間距離が異なることに起因した膜厚分布の悪化が生じるという問題があった。   In addition, when the electrode plate is fixed to the film formation chamber only at the center of the electrode, it may not be parallel to the counter electrode during film formation due to distortion due to heating of the electrode, deformation during cleaning, or the like. This is more conspicuous as the size of the electrode plate is increased, and there is a problem that the film thickness distribution is deteriorated due to the difference between the distances between the electrodes at any part in the electrode surface.

本発明は、上記課題を解決し、均一な成膜を生成することができる薄膜形成装置を提供することを目的とする。   An object of this invention is to provide the thin film formation apparatus which solves the said subject and can produce | generate a uniform film-forming.

本発明は、上記課題を解決するため、成膜室内の薄膜形成用基板の片側に接地電極を、他方側に高周波電極を配置し、該高周波電極を、高周波電源に接続され、反応ガスが導入されるガス導入口を有する電極本体部と、板面に、ガス流通孔を有する表面電極部とで構成し、前記接地電極と前記高周波電極との間のプラズマ放電によって前記薄膜形成用基板の成膜面に薄膜を形成する薄膜形成装置であって、前記表面電極部を、分割し、組み付けた前記高周波電極において、
前記分割表面電極部を、前記電極本体部に対して着脱自在に構成し、隣り合う前記分割表面電極部相互間に、それぞれ重合部を設け、これら重合部を介して前記対向する電極本体部に固定したことにある。
さらに、本発明は、前記各分割表面電極部の重合部を、前記対向する電極本体部の縁部双方に跨るように形成し、該重合部に前記電極本体部の縁部のネジ孔に対応する取付孔を千鳥状に形成し、これら取付孔を介して前記対向する電極本体部に共締めしたことにある。
また、本発明は、前記表面電極部を、それぞれ縦横に4分割構造に形成するとともに、前記縦横に4分割に形成した分割表面電極部相互間に、隣接する分割表面電極部の裏表を逆にすることで互いに同一面位置になるように重合する段差状の延出部を形成し、これら延出部に、対向する電極本体部の縁部のネジ孔に一致する取付孔を、前記分割表面電極部の裏表で一致するように形成し、前記分割表面電極部の延出部を重ねた重合部の取付孔を用いて千鳥状に前記電極本体部の縁部のネジ孔に螺着したことにある。
さらに、本発明は、前記高周波電極の周縁部と成膜室内壁面との間に、断続的に支柱を介在させたことにある。
In order to solve the above problems, the present invention has a ground electrode on one side of a thin film forming substrate in a film forming chamber and a high-frequency electrode on the other side, the high-frequency electrode is connected to a high-frequency power source, and a reaction gas is introduced. The thin-film forming substrate is formed by plasma discharge between the ground electrode and the high-frequency electrode. The electrode main body has a gas inlet and the surface electrode has a gas flow hole on the plate surface. In the thin film forming apparatus for forming a thin film on the film surface, the surface electrode portion is divided and assembled in the high frequency electrode,
The divided surface electrode portion is configured to be detachable from the electrode main body portion, and a superposed portion is provided between the adjacent divided surface electrode portions, and the opposing electrode main body portion is provided through the superposed portions. It is fixed.
Further, in the present invention, the overlapping portion of each of the divided surface electrode portions is formed so as to straddle both edges of the opposing electrode main body portion, and the overlapping portion corresponds to the screw hole of the edge portion of the electrode main body portion. The mounting holes to be formed are formed in a zigzag shape, and are fastened together with the opposing electrode main body portions through the mounting holes.
Further, according to the present invention, the surface electrode parts are formed in a four-part structure in the vertical and horizontal directions, and the front and back sides of the adjacent divided surface electrode parts are reversed between the divided surface electrode parts formed in the vertical and horizontal parts. Stepped extensions that overlap so that they are coplanar with each other are formed, and mounting holes that match the screw holes at the edges of the opposing electrode body are formed on the divided surfaces. It was formed so as to match the front and back of the electrode part, and was screwed into the screw hole at the edge of the electrode body part in a zigzag manner using the mounting hole of the overlapped part where the extended part of the divided surface electrode part overlapped It is in.
Furthermore, the present invention is that a support column is intermittently interposed between the peripheral edge portion of the high-frequency electrode and the wall surface of the film forming chamber.

本発明によれば、以下の効果を奏する。
請求項1によれば、前記表面電極部を、それぞれ複数に分割し、隣り合う前記分割表面電極部相互間に、それぞれ重合部を設け、これら重合部を介して前記対向する電極本体部に固定したので、分割表面電極部間からのガス漏れを防止することができる。よって、薄膜形成用基板上に均一な薄膜が形成される。さらに、従来の高周波電極に比べて高周波分割電極が小形軽量化されるため、取り扱い性の向上が図れると共に、洗浄器を小型化出来る。
請求項2によれば、各分割表面電極部の重合部を、前記対向する電極本体部の縁部双方に跨るように形成し、該重合部に、前記電極本体部の縁部の取付孔に対応する取付孔を千鳥状に形成し、これら取付孔を介して前記対向する電極本体部に共締めしたので、取付孔の数を低減できるとともに、着脱作業時の工数を削減することができる。
請求項3によれば、前記電極本体部と前記表面電極部を、それぞれ縦横に4分割構造に形成するとともに、前記縦横に4分割に形成した分割表面電極部相互間に、隣接する分割表面電極部の裏表を逆にすることで互いに同一面位置になるように重合する段差状の延出部を形成し、これら延出部に、対向する電極本体部の縁部のネジ孔に一致する取付孔を、前記分割表面電極部の裏表で一致するように形成し、前記分割表面電極部の延出部を重ねた重合部の取付孔を用いて千鳥状に前記電極本体部の縁部のネジ孔に螺着したので、同一の形状に形成した分割表面電極部を用いる事ができる。この様に分割表面電極を共通化する事により、分割表面電極の表裏を逆転させて再使用する事が可能になるため、分割表面電極のメンテナンス周期を伸ばす事が可能になる。
請求項4によれば、高周波電極の周縁部と成膜室内壁面との間に、電気絶縁性を有する支柱を介在させたので、高周波電極を確実に固定でき、熱歪や変形に起因した電極間距離のずれを回避することが出来る。
The present invention has the following effects.
According to claim 1, each of the surface electrode portions is divided into a plurality of portions, and overlapping portions are provided between the adjacent divided surface electrode portions, and are fixed to the opposing electrode main body portions via these overlapping portions. Therefore, gas leakage from between the divided surface electrode portions can be prevented. Therefore, a uniform thin film is formed on the thin film forming substrate. Furthermore, since the high-frequency division electrode is reduced in size and weight as compared with the conventional high-frequency electrode, the handleability can be improved and the cleaning device can be downsized.
According to claim 2, the overlapping portion of each divided surface electrode portion is formed so as to straddle both edges of the opposing electrode main body portion, and the overlapping portion is formed in the mounting hole of the edge portion of the electrode main body portion. Corresponding mounting holes are formed in a staggered manner and are fastened to the opposing electrode main body portions via these mounting holes, so that the number of mounting holes can be reduced and the number of man-hours for attaching and detaching operations can be reduced.
According to claim 3, the electrode main body portion and the surface electrode portion are formed in a four-part structure in the vertical and horizontal directions, and adjacent divided surface electrodes are provided between the divided surface electrode portions formed in the vertical and horizontal directions. Stepped extensions that overlap so that they are in the same plane position by reversing the front and back of the parts, and mounting to match these screw holes on the edge of the opposing electrode body A hole is formed so as to coincide with the front and back sides of the divided surface electrode part, and the screw of the edge of the electrode main body part is formed in a staggered manner using the mounting hole of the overlapping part where the extended parts of the divided surface electrode part are overlapped Since it is screwed into the hole, it is possible to use divided surface electrode portions formed in the same shape. By sharing the divided surface electrode in this way, the front and back of the divided surface electrode can be reversed and reused, so that the maintenance cycle of the divided surface electrode can be extended.
According to the fourth aspect, since the electrically insulating post is interposed between the peripheral edge of the high-frequency electrode and the wall surface of the film forming chamber, the high-frequency electrode can be securely fixed, and the electrode is caused by thermal distortion or deformation. A gap in the distance can be avoided.

以下、本発明の実施の形態を、図面を参照しながら詳細に説明する。
図1は、開放時の成膜室を示す概略断面図、図2は高周波電極を示す正面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic sectional view showing a film forming chamber when opened, and FIG. 2 is a front view showing a high-frequency electrode.

図1および図2において、1は薄膜形成装置の成膜室であり、この成膜室1は、断続的に搬送されてくる可撓性フィルム基板等の薄膜形成用基板2を挟んで、成膜室壁体10a,10bが対向して配設されている。これら成膜室壁体10a,10bの内面側の対向面には、軸線上に電極取付ベース11,12が設けられている。電極取付ベース11には、薄膜形成用基板2の非成膜面側に配置される接地電極3が取付けられ、他方側の電極取付ベース12には、高周波電源が接続され、高電圧が印加される高周波電極4が接地電極3に対向して取り付けられている。接地電極3と高周波電極4は、薄膜形成用基板2を挟んで、成膜室1内に互いに対向して配置されている。また、成膜室壁体10bと電極取付ベース12の間は、シール10cで電気的に絶縁されている。但し、成膜室壁体10bと電極取付ベース12が同電位である場合には、シール10cは導電性でも良い。   1 and 2, reference numeral 1 denotes a film forming chamber of a thin film forming apparatus. The film forming chamber 1 sandwiches a thin film forming substrate 2 such as a flexible film substrate that is intermittently conveyed. The film chamber wall bodies 10a and 10b are arranged to face each other. Electrode mounting bases 11 and 12 are provided on the axis on the opposing surfaces on the inner surfaces of these film forming chamber walls 10a and 10b. A ground electrode 3 disposed on the non-film-forming surface side of the thin film forming substrate 2 is attached to the electrode attachment base 11, and a high frequency power source is connected to the other electrode attachment base 12 to apply a high voltage. A high frequency electrode 4 is attached to face the ground electrode 3. The ground electrode 3 and the high-frequency electrode 4 are disposed opposite to each other in the film forming chamber 1 with the thin film forming substrate 2 interposed therebetween. The film forming chamber wall 10b and the electrode mounting base 12 are electrically insulated by a seal 10c. However, when the film forming chamber wall 10b and the electrode mounting base 12 are at the same potential, the seal 10c may be conductive.

前記高周波電極4は、接地電極3側から見て、縦横にそれぞれ2分割して4分割構造に形成されている。これら高周波分割電極4A,4B,4C,4Dは、表面側に表面電極としての分割表面電極部(分割電極板部)40が配置され、裏面側に電極本体部41が配置されている。高周波分割電極4A,4B,4C,4Dの内部は、それぞれ中空に形成され、この中空部42には、前記電極取付ベース12の内部に形成されたガス通路12aから4つに分岐されて、高周波分割電極4A,4B,4C,4Dの各電極本体部41の壁面に形成された各ガス導入口41aを通して反応ガスが導入されるものである。分割表面電極部40には、例えば5mm〜50mm間隔で直径0.5mm〜2mmの複数のガス流通孔43を開けたアルミニウムやステンレススティールの金属板が用いられる。   The high-frequency electrode 4 is formed into a four-part structure by dividing the high-frequency electrode 4 vertically and horizontally as viewed from the ground electrode 3 side. Each of the high-frequency divided electrodes 4A, 4B, 4C, and 4D has a divided surface electrode portion (divided electrode plate portion) 40 as a surface electrode disposed on the front surface side, and an electrode main body portion 41 disposed on the back surface side. The insides of the high-frequency division electrodes 4A, 4B, 4C, and 4D are each formed hollow, and the hollow portion 42 is branched into four from a gas passage 12a formed in the electrode mounting base 12 to generate high-frequency waves. A reactive gas is introduced through each gas introduction port 41a formed in the wall surface of each electrode body 41 of the divided electrodes 4A, 4B, 4C, 4D. For the divided surface electrode portion 40, for example, an aluminum or stainless steel metal plate having a plurality of gas flow holes 43 having a diameter of 0.5 mm to 2 mm at intervals of 5 mm to 50 mm is used.

反応ガスは、電極本体部41内に形成されたガス導入口41aから導入され、電極本体部41で4つの高周波分割電極4A,4B,4C,4Dの中空部42へと分配され、それぞれの分割表面電極部40のガス流通孔43から、接地電極3側に配置された薄膜形成用基板2の成膜面側に向かって噴射されるようになっている。   The reaction gas is introduced from a gas introduction port 41a formed in the electrode main body 41, and is distributed to the hollow portions 42 of the four high-frequency divisional electrodes 4A, 4B, 4C, 4D by the electrode main body 41, and each division is performed. The gas flow holes 43 of the surface electrode portion 40 are jetted toward the film forming surface side of the thin film forming substrate 2 disposed on the ground electrode 3 side.

前記高周波電極4の周縁部と成膜室壁体10bとの間には、前記電極取付ベース12と同等の厚みを有する絶縁体の支柱5が設けられ、各高周波分割電極4A,4B,4C,4Dの保持を図っている。
支柱5は、成膜室壁体10bの内壁面に、前記高周波電極4の周縁部に対応するようにして取付けられており、この支柱5と前記電極取付ベース12に跨って各高周波分割電極4A,4B,4C,4Dをネジ等によって固定している。尚、支柱5は、断続的に設けられている。
Between the peripheral edge of the high-frequency electrode 4 and the film forming chamber wall 10b, an insulating support column 5 having a thickness equivalent to that of the electrode mounting base 12 is provided, and each of the high-frequency divided electrodes 4A, 4B, 4C, 4D is maintained.
The support column 5 is attached to the inner wall surface of the film forming chamber wall 10b so as to correspond to the peripheral edge portion of the high-frequency electrode 4, and the high-frequency divisional electrodes 4A straddle the support column 5 and the electrode mounting base 12. , 4B, 4C, 4D are fixed by screws or the like. In addition, the support | pillar 5 is provided intermittently.

図1ないし図4は、本発明の第1の実施形態である。高周波電極を構成する4つの高周波分割電極4A,4B,4C,4Dの隣り合う分割表面電極40の端部を重合する様に構成したものである。分割表面電極部40は、一つの角部から両側の二辺に沿って段差状の延出部40aが一定幅で設けられている。これら分割表面電極部40は、隣接する分割表面電極部40の裏表を逆にすることで、互いに同一面位置になるように重なる前記延出部40aが形成されている。   1 to 4 show a first embodiment of the present invention. The four high-frequency divisional electrodes 4A, 4B, 4C, and 4D that constitute the high-frequency electrode are configured so that the end portions of the adjacent divided surface electrodes 40 are superposed. The divided surface electrode part 40 is provided with a stepped extension part 40a with a constant width from one corner part along two sides on both sides. The divided surface electrode portions 40 are formed with the extending portions 40a that overlap each other so as to be in the same plane position by reversing the front and back of the adjacent divided surface electrode portions 40.

前記分割表面電極部40は、隣接する分割表面電極部40との延出部40a相互間で形成される重合部44を介して対向する電極本体部41の縁部に形成されたネジ孔41b(図5、図6参照)にそれぞれネジ留めされている。
上記延出部40aには、長手方向に沿って一定間隔で、裏表で一致する取付孔40bが形成されている。角部40cに設けられる延出部40aの先端部は、斜めにカットされて対角線に配置される分割表面電極部40の角部40cを突き合わせるように形成されている。
The divided surface electrode portion 40 is formed with a screw hole 41b (formed at an edge portion of the electrode body portion 41 facing each other through a superposed portion 44 formed between the extended portions 40a with the adjacent divided surface electrode portion 40. 5 and 6), respectively.
The extending portion 40a is formed with mounting holes 40b that coincide with each other at regular intervals along the longitudinal direction. The distal end portion of the extending portion 40a provided on the corner portion 40c is formed so as to abut the corner portion 40c of the divided surface electrode portion 40 that is cut obliquely and disposed diagonally.

この第1の実施の形態では、分割表面電極部40を電極本体部41に、図示しないネジを介してそれぞれ螺着する。このとき、対角線の一方に配置される分割表面電極部40に対して、対角線の他方に配置される分割表面電極部40の角部40cを突き合わせて配置する。次に、隣接する分割表面電極部40を裏返して、隣りあう分割表面電極部40の延出部40aを互いに重ねて、表面が面一になるように組み合わせ(図3、図4参照)、電極本体部41に重ねる。そして、分割表面電極部40は、重合部44の取付孔40bを介して対向する電極本体部41のネジ孔41b(図5、図6参照)に、ネジ45を螺合してネジ留めする。こうして、分割表面電極部40は、それぞれ対向する電極本体部41にネジ留めされるとともに、隣り合う電極本体部41にネジ留めされる。このようにして組み立てられた高周波分割電極4A,4B,4C,4Dは、支柱5と前記電極取付ベース12にそれぞれ固定される。   In the first embodiment, the divided surface electrode portion 40 is screwed to the electrode main body portion 41 via screws (not shown). At this time, the corner portion 40c of the divided surface electrode portion 40 arranged on the other side of the diagonal line is arranged to face the divided surface electrode portion 40 arranged on one side of the diagonal line. Next, the adjacent divided surface electrode portions 40 are turned over, and the extending portions 40a of the adjacent divided surface electrode portions 40 are overlapped with each other so that the surfaces are flush with each other (see FIGS. 3 and 4). Overlay the main body 41. Then, the split surface electrode portion 40 is screwed by screwing a screw 45 into a screw hole 41b (see FIGS. 5 and 6) of the electrode main body portion 41 facing through the attachment hole 40b of the overlapping portion 44. Thus, the divided surface electrode portions 40 are screwed to the electrode body portions 41 facing each other, and are screwed to the adjacent electrode body portions 41. The high-frequency division electrodes 4A, 4B, 4C, 4D assembled in this way are fixed to the support column 5 and the electrode mounting base 12, respectively.

したがって、第1の実施の形態によれば、分割表面電極部40は、延出部40aを互いに重ねる事により、分割表面電極部40の重合部からのガス漏れを防止することができるため、薄膜形成用基板2上に均一な薄膜が形成される。
図5ないし図7は、電極本体部41への分割表面電極部40の取付けを示したもので、電極本体部41への組み付けには、分割表面電極部40の取付孔40bを電極本体部41のネジ孔41bに合わせてネジ留めする。分割表面電極部40の延出部40aが重合する部分では、取付孔40bおよびネジ孔41bを互いに対応する位置に千鳥状に形成することで、重合する部分の取付孔40bおよびネジ孔41bの数を削減できることから、ネジの本数を削減できると共に、作業工数を低減できる。
Therefore, according to the first embodiment, the split surface electrode portion 40 can prevent gas leakage from the overlapping portion of the split surface electrode portion 40 by overlapping the extending portions 40a with each other. A uniform thin film is formed on the forming substrate 2.
5 to 7 show the attachment of the divided surface electrode portion 40 to the electrode main body portion 41. For the assembly to the electrode main body portion 41, the attachment holes 40b of the divided surface electrode portion 40 are provided in the electrode main body portion 41. The screw hole 41b is screwed. In the portion where the extended portion 40a of the divided surface electrode portion 40 is overlapped, the mounting holes 40b and the screw holes 41b are formed in a staggered manner at positions corresponding to each other, whereby the number of the mounting holes 40b and the screw holes 41b in the overlapping portion is formed. Since the number of screws can be reduced, the number of work steps can be reduced.

図8ないし図9は本発明の第2の実施形態を示したもので、この場合、隣接する分割表面電極部40の裏表を逆にすることで、互いに同一面位置になるように重合する段差状の延出部40aを形成したものである。
延出部40aには、長手方向に沿って一定間隔で、取付孔40bを2列に形成し、分割表面電極部40の組み付けには、1列目の取付孔40bと2列目の取付孔40bを交互に用いる、いわゆる取付孔40bを千鳥状に用いてネジ留めすればよいので、分割表面電極部40の共通化を図ることができる。これらの取付孔40bは、分割表面電極部40の裏表で一致するように形成され、分割表面電極部40の延出部40aを重ねた重合部の取付孔40bを用いて千鳥状に電極本体部41の縁部のネジ孔41bに螺着することができる。
この様に分割表面電極40を共通化する事により、分割表面電極40の表裏を逆転させて再使用する事が可能になるため、分割表面電極40のメンテナンス周期を伸ばす事が可能になる。
なお、電極本体部41のネジ孔41bは、図5ないし図7(a)(b)に示すように、千鳥状に形成して、交互にネジ留めを行うようにしてもよい。
FIGS. 8 to 9 show a second embodiment of the present invention. In this case, the steps of overlapping the adjacent divided surface electrode portions 40 so as to be in the same plane position by reversing the front and back of the adjacent divided surface electrode portions 40. A shaped extending portion 40a is formed.
In the extended portion 40a, the mounting holes 40b are formed in two rows at regular intervals along the longitudinal direction. For the assembly of the divided surface electrode portion 40, the mounting holes 40b in the first row and the mounting holes in the second row are provided. Since the so-called mounting holes 40b that use 40b alternately may be screwed in a zigzag pattern, the divided surface electrode portions 40 can be shared. These mounting holes 40b are formed so as to coincide with each other on the front and back sides of the divided surface electrode part 40, and electrode main body parts are formed in a staggered manner using the mounting holes 40b of the overlapping part where the extending parts 40a of the divided surface electrode part 40 are overlapped. It can be screwed into the screw hole 41b at the edge of 41.
By sharing the divided surface electrode 40 in this manner, the front and back of the divided surface electrode 40 can be reversed and reused, so that the maintenance cycle of the divided surface electrode 40 can be extended.
Note that the screw holes 41b of the electrode main body 41 may be formed in a zigzag shape and screwed alternately as shown in FIGS. 5 to 7A and 7B.

また、電極本体部41と成膜室壁体10bとの間に介在させる支柱5は、絶縁性の材質のもの、もしくは一部絶縁性の材質を介在した構造にしている。また、成膜室壁体10bと支柱5とを接続するネジと、支柱5と電極本体部41を接続するネジは別のものとし、かつ両者が接触しないよう配置する。但し、成膜室壁体10bが、電極板と同電位である場合、導電性の支柱でも良く、前記2つのネジが接触しても良い。   Further, the support column 5 interposed between the electrode main body 41 and the film forming chamber wall 10b is made of an insulating material or a partly insulating material. Further, the screw connecting the film forming chamber wall 10b and the column 5 and the screw connecting the column 5 and the electrode main body 41 are different from each other and arranged so as not to contact each other. However, when the film forming chamber wall 10b is at the same potential as the electrode plate, it may be a conductive support or the two screws may be in contact with each other.

以上述べたように、上記実施の形態によれば、高周波電極4を、接地電極3側から見て、縦横に2分割して4分割構造に形成したので、分解、組立て作業を容易に行うことができるとともに、小形の容器内で洗浄作業を行うことができる。分割表面電極部40の隣り合う端部が重合されるので、分割表面電極部40の重合部からのガス漏れを防止することができ、薄膜形成用基板2上に均一な薄膜を形成することができる。   As described above, according to the above-described embodiment, the high-frequency electrode 4 is divided into two parts vertically and horizontally when viewed from the ground electrode 3 side, so that it can be easily disassembled and assembled. In addition, the cleaning operation can be performed in a small container. Since the adjacent end portions of the divided surface electrode portion 40 are polymerized, gas leakage from the overlapping portion of the divided surface electrode portion 40 can be prevented, and a uniform thin film can be formed on the thin film forming substrate 2. it can.

なお、本発明は、上記実施の形態のみに限定されるものではなく、例えば、上記実施の形態では、高周波電極4を4分割して高周波分割電極4A,4B,4C,4Dを形成したが、4分割に限らず、2分割以上など多分割することもできる。なお、電極本体部41は分割表面電極部40の互いに重合する延出部40aによって結合されるので、分割表面電極部40と同様に4分割構造に形成しても良く、一体構造であっても良い。また、高周波電極4を、支持するための電極取付ベース12と支柱5はどのような形状でも良く、支柱5の数および幅も任意に設定することができる。高周波電極4を電極取付ベース12と支柱5に取付ける構造はどのような取り付け方法でもよい。その他、本発明の要旨を変更しない範囲内で適宜変更して実施し得ることができることは言うまでもない。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the high frequency electrode 4 is divided into four to form the high frequency divided electrodes 4A, 4B, 4C, 4D. Not only four divisions but also multiple divisions such as two divisions or more can be performed. Since the electrode body 41 is joined by the extended portions 40a of the divided surface electrode portions 40 that overlap with each other, it may be formed in a four-part structure as in the case of the divided surface electrode part 40, or may be an integral structure. good. Further, the electrode mounting base 12 and the support columns 5 for supporting the high-frequency electrode 4 may have any shape, and the number and width of the support columns 5 can be arbitrarily set. The attachment method of the high-frequency electrode 4 to the electrode attachment base 12 and the column 5 may be any attachment method. In addition, it cannot be overemphasized that it can change suitably and can implement within the range which does not change the gist of the present invention.

第1の実施の形態の薄膜形成装置における開放時の成膜室を示す断面図である。It is sectional drawing which shows the film-forming chamber at the time of opening in the thin film forming apparatus of 1st Embodiment. 図1の高周波電極を示す概念図である。It is a conceptual diagram which shows the high frequency electrode of FIG. 図1の高周波電極の分割表面電極部を示す分解斜視図である。It is a disassembled perspective view which shows the division | segmentation surface electrode part of the high frequency electrode of FIG. 図3の分割表面電極部の重合部を示す分解斜視図である。It is a disassembled perspective view which shows the superposition | polymerization part of the division | segmentation surface electrode part of FIG. 高周波分割電極の千鳥状の取付孔を示す概念図である。It is a conceptual diagram which shows the staggered attachment hole of a high frequency division | segmentation electrode. 図5の分解斜視図である。FIG. 6 is an exploded perspective view of FIG. 5. 高周波分割電極の重合部を示し、(a)は平面図、(b)は(a)の右側面図である。The superposition | polymerization part of a high frequency division | segmentation electrode is shown, (a) is a top view, (b) is a right view of (a). 第2の実施の形態の高周波電極の分割表面電極部を示す分解斜視図である。It is a disassembled perspective view which shows the division | segmentation surface electrode part of the high frequency electrode of 2nd Embodiment. 図8の分割表面電極部の重合部を示す分解斜視図である。It is a disassembled perspective view which shows the superimposition part of the division | segmentation surface electrode part of FIG. 従来のステッピングロール方式の薄膜形成装置の構成概略図である。It is the structure schematic of the conventional stepping roll type thin film forming apparatus. 開放時の成膜室の概略断面図である。It is a schematic sectional drawing of the film-forming chamber at the time of opening. 封止時の成膜室の概略断面図である。It is a schematic sectional drawing of the film-forming chamber at the time of sealing. 従来の高周波電極を用いた薄膜形成装置を示す断面図である。It is sectional drawing which shows the thin film forming apparatus using the conventional high frequency electrode. 従来の高周波電極を示す断面図である。It is sectional drawing which shows the conventional high frequency electrode. 従来の高周波電極の平面図である。It is a top view of the conventional high frequency electrode. 従来の高周波電極の斜視図である。It is a perspective view of the conventional high frequency electrode.

符号の説明Explanation of symbols

1 成膜室
2 薄膜形成用基板
3 接地電極
4 高周波電極
5 支柱
11,12 電極取付ベース
40 分割表面電極部
41 電極本体部
42 中空部
43 ガス流通孔
44 重合部
45 ネジ
4A,4B,4C,4D 高周波分割電極
12a ガス通路
40a 延出部
40b 取付孔
40c 角部
41a ガス導入口
41b ネジ孔
DESCRIPTION OF SYMBOLS 1 Deposition chamber 2 Substrate for thin film formation 3 Ground electrode 4 High frequency electrode 5 Strut 11, 12 Electrode mounting base 40 Divided surface electrode portion 41 Electrode body portion 42 Hollow portion 43 Gas flow hole 44 Polymerization portion 45 Screw 4A, 4B, 4C, 4D High-frequency division electrode 12a Gas passage 40a Extension part 40b Mounting hole 40c Corner part 41a Gas introduction port 41b Screw hole

Claims (4)

成膜室内の薄膜形成用基板の片側に接地電極を、他方側に高周波電極を配置し、該高周波電極を、高周波電源に接続され、反応ガスが導入されるガス導入口を有する電極本体部と、板面に、ガス流通孔を有する表面電極部とで構成し、前記接地電極と前記高周波電極との間のプラズマ放電によって前記薄膜形成用基板の成膜面に薄膜を形成する薄膜形成装置で、前記表面電極部を、複数に分割し、電極本体部と分割表面電極部とを一体に形成した高周波分割電極において、
前記分割表面電極部を、前記電極本体部に対して着脱自在に構成し、隣り合う前記分割表面電極部相互間に、それぞれ重合部を設け、これら重合部を介して前記電極本体部に固定したことを特徴とする薄膜形成装置。
An electrode main body having a gas introduction port in which a ground electrode is disposed on one side of the substrate for forming a thin film in the film formation chamber and a high-frequency electrode is disposed on the other side, the high-frequency electrode is connected to a high-frequency power source and a reaction gas is introduced; A thin film forming apparatus comprising a surface electrode portion having gas flow holes on a plate surface, and forming a thin film on the film forming surface of the thin film forming substrate by plasma discharge between the ground electrode and the high frequency electrode. In the high-frequency split electrode in which the surface electrode portion is divided into a plurality, and the electrode main body portion and the split surface electrode portion are integrally formed,
The divided surface electrode portion is configured to be detachable with respect to the electrode main body portion, and overlapping portions are provided between the adjacent divided surface electrode portions, respectively, and fixed to the electrode main body portion via these overlapping portions. A thin film forming apparatus.
前記各分割表面電極部の重合部を、前記電極本体部の縁部に跨るように形成し、該重合部に、前記電極本体部の縁部のネジ孔に対応する取付孔を千鳥状に形成し、これら取付孔を介して前記対向する電極本体部に共締めしたことを特徴とする請求項1に記載の薄膜形成装置。   The overlapping portions of the divided surface electrode portions are formed so as to straddle the edge portions of the electrode main body portions, and the mounting holes corresponding to the screw holes at the edge portions of the electrode main body portions are formed in a staggered manner in the overlapping portion. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is fastened together with the opposing electrode main body through the mounting holes. 前記電極本体部と前記表面電極部を、それぞれ縦横に4分割構造に形成するとともに、前記縦横に4分割に形成した分割表面電極部相互間に、隣接する分割表面電極部の裏表を逆にすることで互いに同一面位置になるように重合する段差状の延出部を形成し、これら延出部に、対向する電極本体部の縁部のネジ孔に一致する取付孔を、前記分割表面電極部の裏表で一致するように形成し、前記分割表面電極部の延出部を重ねた重合部の取付孔を用いて千鳥状に前記電極本体部の縁部のネジ孔に螺着したことを特徴とする請求項1または2に記載の薄膜形成装置。   The electrode body part and the surface electrode part are formed in a four-part structure in the vertical and horizontal directions, and the front and back sides of the adjacent divided surface electrode parts are reversed between the divided surface electrode parts formed in the vertical and horizontal parts. In this way, the stepped extension portions that are superposed so as to be flush with each other are formed, and the attachment holes corresponding to the screw holes at the edges of the opposing electrode main body portions are formed in the extension surface portions. It was formed so as to coincide with the front and back of the part, and it was screwed into the screw hole at the edge of the electrode body part in a zigzag manner using the attachment hole of the overlapping part where the extension part of the divided surface electrode part was overlapped The thin film forming apparatus according to claim 1, wherein the apparatus is a thin film forming apparatus. 前記高周波電極の周縁部と成膜室内壁面との間に、断続的に支柱を介在させたことを特徴とする請求項1ないし3のいずれか1項に記載の薄膜形成装置。   4. The thin film forming apparatus according to claim 1, wherein struts are intermittently interposed between a peripheral portion of the high-frequency electrode and a wall surface in the film forming chamber.
JP2006290053A 2006-10-25 2006-10-25 Thin film forming equipment Expired - Fee Related JP4868283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006290053A JP4868283B2 (en) 2006-10-25 2006-10-25 Thin film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290053A JP4868283B2 (en) 2006-10-25 2006-10-25 Thin film forming equipment

Publications (2)

Publication Number Publication Date
JP2008106304A true JP2008106304A (en) 2008-05-08
JP4868283B2 JP4868283B2 (en) 2012-02-01

Family

ID=39439915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290053A Expired - Fee Related JP4868283B2 (en) 2006-10-25 2006-10-25 Thin film forming equipment

Country Status (1)

Country Link
JP (1) JP4868283B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168609A (en) * 2009-01-21 2010-08-05 Fuji Electric Systems Co Ltd Apparatus for forming thin film
JP2010255076A (en) * 2009-04-28 2010-11-11 Sharp Corp Plasma treatment apparatus and plasma treatment method
WO2012132575A1 (en) * 2011-03-28 2012-10-04 シャープ株式会社 Shower plate, vapor-phase growth apparatus, and vapor-phase growth method
KR101844068B1 (en) 2010-08-31 2018-03-30 후지필름 가부시키가이샤 Film deposition device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147879A (en) * 1996-11-15 1998-06-02 Kokusai Electric Co Ltd Plasma treatment system
JP2002359232A (en) * 2001-05-31 2002-12-13 Tokyo Electron Ltd Plasma treatment apparatus
JP2005002423A (en) * 2003-06-12 2005-01-06 Fuji Electric Holdings Co Ltd Thin film deposition system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147879A (en) * 1996-11-15 1998-06-02 Kokusai Electric Co Ltd Plasma treatment system
JP2002359232A (en) * 2001-05-31 2002-12-13 Tokyo Electron Ltd Plasma treatment apparatus
JP2005002423A (en) * 2003-06-12 2005-01-06 Fuji Electric Holdings Co Ltd Thin film deposition system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168609A (en) * 2009-01-21 2010-08-05 Fuji Electric Systems Co Ltd Apparatus for forming thin film
JP2010255076A (en) * 2009-04-28 2010-11-11 Sharp Corp Plasma treatment apparatus and plasma treatment method
KR101844068B1 (en) 2010-08-31 2018-03-30 후지필름 가부시키가이샤 Film deposition device
JP2012216744A (en) * 2010-11-10 2012-11-08 Sharp Corp Vapor growth device and vapor growth method
WO2012132575A1 (en) * 2011-03-28 2012-10-04 シャープ株式会社 Shower plate, vapor-phase growth apparatus, and vapor-phase growth method

Also Published As

Publication number Publication date
JP4868283B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US20150303037A1 (en) Substrate Processing Apparatus
KR101148760B1 (en) Plasma cvd apparatus
EP2784176B1 (en) Deposition platform for flexible substrates
TW201237213A (en) Plasma cvd apparatus
JP4868283B2 (en) Thin film forming equipment
JP2005217425A (en) Plasma cvd equipment and plasma cvd method for double-sided coating
US9873945B2 (en) Common deposition platform, processing station, and method of operation thereof
WO2009098893A1 (en) Vapor deposition film formation method
US10734607B2 (en) Organic light emitting diode display panel and method for encapsulating same
JP2009062579A (en) Film deposition system
JP5377749B2 (en) Plasma generator
CN101553902B (en) Apparatus and method for manufacturing semiconductor element and semiconductor element manufactured by the method
US20100196591A1 (en) Modular pvd system for flex pv
WO2013030959A1 (en) Plasma film forming apparatus and plasma film forming method
JP4126810B2 (en) Thin film solar cell manufacturing equipment
JP2005002423A (en) Thin film deposition system
JP2010168609A (en) Apparatus for forming thin film
JP2001226776A (en) Thin film deposition system by plasma discharge and method of manufacturing shower electrode for the system
JPH06275547A (en) Thin film forming device
JPH08293491A (en) Manufacturing apparatus of thin film photoelectric conversion element
JP7286477B2 (en) Thin film forming equipment
JPH0650734B2 (en) Thin film manufacturing equipment for amorphous silicon solar cells
JP3617664B2 (en) Thin film photoelectric conversion device manufacturing equipment
JP2001053313A (en) Device for manufacturing thin-film photoelectric conversion element
JP2010171244A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees