JP2008099884A - Condition estimating apparatus - Google Patents

Condition estimating apparatus Download PDF

Info

Publication number
JP2008099884A
JP2008099884A JP2006285181A JP2006285181A JP2008099884A JP 2008099884 A JP2008099884 A JP 2008099884A JP 2006285181 A JP2006285181 A JP 2006285181A JP 2006285181 A JP2006285181 A JP 2006285181A JP 2008099884 A JP2008099884 A JP 2008099884A
Authority
JP
Japan
Prior art keywords
state
driver
frequency distribution
eye
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006285181A
Other languages
Japanese (ja)
Inventor
Eisaku Akutsu
英作 阿久津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006285181A priority Critical patent/JP2008099884A/en
Publication of JP2008099884A publication Critical patent/JP2008099884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Emergency Alarm Devices (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a condition estimating apparatus which improves a precision of estimating a condition of a subject. <P>SOLUTION: The condition estimating apparatus 1 is equipped with a camera 2 photographing a face of a driver and an estimation processing unit 3 for estimating an awareness state (a degree of arousal) of the driver based on the captured image by the camera 2. The estimation processing unit 3 includes an image processing part 5 which performs image processing on the captured image by the camera 2 and detects the amount of opening of driver's eyes, an open eye/closed eye extracting part 6 which sorts detected values of the amount of opening of eyes for a prescribed time obtained by the image processing part 5 according to prescribed widths, creates a frequency distribution showing a relation between each detected value of the amount of opening of eyes and the detected frequency, and extracts the maximum value of an envelope approximate curve obtained from the frequency distribution, and an awareness state estimating part 7 for determining the awareness state of the driver from a time variation of the maximum value of the envelope approximate curve extracted by the part 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば自動車の運転者の意識状態等を推定する状態推定装置に関するものである。   The present invention relates to a state estimation device that estimates, for example, a driver's consciousness state.

運転者の意識状態等を推定する状態推定装置としては、例えば特許文献1に記載されているものが知られている。この特許文献1に記載の状態推定装置は、カメラの画像データから眼の開度を検出し、その開度の時系列データから複数の極小値を抽出し、これらの極小値を開眼候補群と閉眼候補群とに分離し、その開眼候補群及び閉眼候補群に基づいて閉眼閾値を設定して、運転者の意識状態を推定するものである。
特開2004−41485号公報
As a state estimation device for estimating a driver's consciousness state, for example, a device described in Patent Document 1 is known. The state estimation device described in Patent Document 1 detects an eye opening from image data of a camera, extracts a plurality of local minimum values from time series data of the opening, and uses these local minimum values as an eye opening candidate group. It separates into a closed eye candidate group, a closed eye threshold is set based on the open eye candidate group and the closed eye candidate group, and the driver's consciousness state is estimated.
JP 2004-41485 A

しかしながら、上記従来技術においては、運転者の意識状態を推定するにあたって、開眼及び閉眼のいずれの状態であるかを識別するための閉眼閾値が必要となるので、この閉眼閾値の設定を誤ると推定精度に悪影響を与えてしまう。一般に人間の開眼状態は多様であり、瞳の大きな人もいれば、閉眼との区別がつきにくい人もいるので、カメラの画像データから閉眼閾値を設定することは困難である。また、車載を考慮して低コストのカメラを用いた場合には、短い瞬き状態の開眼・閉眼を正確に検出することは難しいため、閉眼閾値を的確に設定することが出来ない。その結果、運転者の意識状態の推定精度が低下してしまう。   However, in the above-described prior art, when estimating the driver's consciousness state, a closed eye threshold value for identifying whether the eye is open or closed is required, and it is assumed that the setting of the closed eye threshold value is incorrect. The accuracy will be adversely affected. In general, there are various open eye states of humans, and there are some people with large pupils, and there are some people who are difficult to distinguish from closed eyes, so it is difficult to set the closed eye threshold from the image data of the camera. In addition, when a low-cost camera is used in consideration of in-vehicle use, it is difficult to accurately detect a short blinking eye opening / closing, so the eye closing threshold cannot be set accurately. As a result, the estimation accuracy of the driver's consciousness state is lowered.

本発明の目的は、対象者の状態の推定精度を向上させることができる状態推定装置を提供することである。   The objective of this invention is providing the state estimation apparatus which can improve the estimation precision of a subject's state.

本発明の状態推定装置は、対象者の状態に関する特徴量を検出する検出手段と、検出手段で検出した特徴量の度数分布を作成し、当該度数分布の極値を抽出する抽出手段と、抽出手段で抽出した度数分布の極値の時間変化に基づいて対象者の状態を推定する推定手段とを備えることを特徴とするものである。   The state estimation apparatus according to the present invention includes a detection unit that detects a feature amount related to a subject's state, an extraction unit that creates a frequency distribution of the feature amount detected by the detection unit, and extracts an extreme value of the frequency distribution. And an estimation means for estimating the state of the subject based on the temporal change of the extreme value of the frequency distribution extracted by the means.

このように本発明においては、対象者の状態に関する特徴量を検出し、その検出値の度数分布を作成し、当該度数分布の極値を抽出する。ここで、例えば対象者の意識(覚醒)状態が変化すると、対象者の意識状態に関する特徴量の度数分布が変化し、これに伴って当該度数分布の極値も変化するようになる。従って、意識状態に関する特徴量の度数分布の極値の時間変化から、対象者の意識状態を直接的に推定することができる。そこで、対象者の状態に関する特徴量の度数分布の極値の時間変化に基づいて対象者の状態を推定することにより、対象者の状態を判定するための閾値を設定する必要が無いため、閾値の設定誤りに起因した誤推定を防止することができる。これにより、対象者の意識状態等の推定を高精度に行うことが可能となる。   As described above, in the present invention, a feature amount related to the state of the subject is detected, a frequency distribution of the detected values is created, and an extreme value of the frequency distribution is extracted. Here, for example, when the consciousness (awakening) state of the subject changes, the frequency distribution of the feature amount related to the consciousness state of the subject changes, and the extreme value of the frequency distribution also changes accordingly. Therefore, the consciousness state of the subject can be directly estimated from the temporal change of the extreme value of the frequency distribution of the feature amount related to the consciousness state. Therefore, it is not necessary to set a threshold for determining the state of the subject by estimating the state of the subject based on the temporal change of the extreme value of the frequency distribution of the feature amount related to the state of the subject. It is possible to prevent erroneous estimation due to the setting error. This makes it possible to estimate the consciousness state of the subject person with high accuracy.

また、本発明は、車両に搭載された状態推定装置であって、運転者の状態に関する特徴量を検出する検出手段と、検出手段で検出した特徴量の度数分布を作成し、当該度数分布の極値を抽出する抽出手段と、抽出手段で抽出した度数分布の極値の時間変化に基づいて運転者の状態を推定する推定手段とを備えることを特徴とするものである。   In addition, the present invention is a state estimation device mounted on a vehicle, and includes a detection unit that detects a feature amount related to a driver's state, a frequency distribution of the feature amount detected by the detection unit, and the frequency distribution An extraction means for extracting an extreme value and an estimation means for estimating a driver's state based on a temporal change of the extreme value of the frequency distribution extracted by the extraction means are provided.

このように本発明においては、運転者の状態に関する特徴量を検出し、その検出値の度数分布を作成し、当該度数分布の極値を抽出する。ここで、例えば運転者の意識(覚醒)状態が変化すると、運転者の意識状態に関する特徴量の度数分布が変化し、これに伴って当該度数分布の極値も変化するようになる。従って、意識状態に関する特徴量の度数分布の極値の時間変化から、運転者の意識状態を直接的に推定することができる。そこで、運転者の状態に関する特徴量の度数分布の極値の時間変化に基づいて運転者の状態を推定することにより、運転者の状態を判定するための閾値を設定する必要が無いため、閾値の設定誤りに起因した誤推定を防止することができる。これにより、運転者の意識状態等の推定を高精度に行うことが可能となる。   As described above, in the present invention, the feature amount related to the driver's state is detected, the frequency distribution of the detected value is created, and the extreme value of the frequency distribution is extracted. Here, for example, when the driver's consciousness (awakening) state changes, the frequency distribution of the feature amount related to the driver's consciousness state changes, and the extreme value of the frequency distribution also changes accordingly. Therefore, the driver's consciousness state can be directly estimated from the temporal change of the extreme value of the frequency distribution of the feature amount related to the consciousness state. Therefore, it is not necessary to set a threshold for determining the driver's state by estimating the driver's state based on the temporal change of the extreme value of the frequency distribution of the feature amount related to the driver's state. It is possible to prevent erroneous estimation due to the setting error. This makes it possible to estimate the driver's consciousness state and the like with high accuracy.

好ましくは、運転者の状態は、運転者の覚醒状態であり、検出手段は、運転者の状態に関する特徴量として運転者の開眼度を検出する。この場合には、運転者の開眼度の度数分布の極値を抽出し、この極値の時間変化に基づいて運転者の覚醒状態を推定することになるので、個人差の大きい開眼・閉眼を識別するための閾値を設定しなくて済む。   Preferably, the driver's state is the driver's arousal state, and the detection unit detects the degree of eye opening of the driver as a feature amount related to the driver's state. In this case, the extreme value of the frequency distribution of the driver's degree of eye opening is extracted, and the driver's arousal state is estimated based on the time change of this extreme value. It is not necessary to set a threshold value for identification.

このとき、好ましくは、抽出手段は、開眼度の検出頻度の度数分布を作成する。運転者の意識が低下してくると、開眼度の高い状態の検出頻度が少なくなり、開眼度の低い状態の検出頻度が多くなる。そこで、開眼度の検出頻度の度数分布を作成し、当該度数分布の極値の時間変化を検出することにより、運転者の覚醒状態を確実に推定することができる。   At this time, the extraction unit preferably creates a frequency distribution of the detection frequency of the eye opening degree. When the driver's consciousness decreases, the detection frequency of a state with a high degree of eye opening decreases, and the detection frequency of a state with a low degree of eye opening increases. Therefore, a driver's arousal state can be reliably estimated by creating a frequency distribution of the frequency of detection of the degree of eye opening and detecting temporal changes in the extreme values of the frequency distribution.

また、抽出手段は、開眼度の検出継続時間の度数分布を作成してもよい。運転者の意識が低下してくると、開眼度の高い状態の検出継続時間が短くなり、開眼度の低い状態の検出継続時間が長くなる。そこで、開眼度の検出継続時間の度数分布を作成し、当該度数分布の極値の時間変化を検出することにより、運転者の覚醒状態を確実に推定することができる。   Further, the extraction unit may create a frequency distribution of detection duration time of the eye opening degree. When the driver's consciousness decreases, the detection duration time in a state with a high degree of eye opening becomes shorter, and the detection duration time in a state with a low degree of eye opening becomes longer. Therefore, a driver's arousal state can be reliably estimated by creating a frequency distribution of the detection duration time of the eye opening degree and detecting a temporal change in the extreme value of the frequency distribution.

また、好ましくは、車両の走行状態を検出する手段を更に備え、抽出手段は、車両の走行状態毎に、検出手段で検出した特徴量の度数分布を作成する。車両の走行状態(例えば速度)が一定になるほど、運転者にとって運転の緊張感が継続せずに意識が低下してくる傾向にある。従って、運転者の覚醒状態の推定をより高精度に行うためには、車両の走行状態毎に度数分布の極値の時間変化を検出するのが好適である。   Preferably, the vehicle further includes means for detecting the running state of the vehicle, and the extracting means creates a frequency distribution of the feature amount detected by the detecting means for each running state of the vehicle. As the traveling state (for example, speed) of the vehicle becomes constant, the driver's consciousness tends to decrease without continuing the tension of driving. Therefore, in order to estimate the driver's arousal state with higher accuracy, it is preferable to detect the time change of the extreme value of the frequency distribution for each traveling state of the vehicle.

本発明によれば、対象者の状態の推定精度を向上させることができる。これにより、例えば居眠り運転を効果的に防止することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the estimation precision of a subject's state can be improved. Thereby, for example, it becomes possible to effectively prevent a drowsy driving.

以下、本発明に係わる状態推定装置の好適な実施形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a state estimation device according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係わる状態推定装置の第1実施形態を示す概略構成図である。同図において、本実施形態の状態推定装置1は、自動車等の車両に搭載されている。状態推定装置1は、運転者の顔を撮像するカメラ2と、このカメラ2の撮像画像に基づいて、運転者の意識状態(覚醒度)を推定する推定処理ユニット3と、この推定処理ユニット3による推定結果に応じて警報を発する警報器4とを備えている。カメラ2は、運転者の片眼を含む部位のみを撮像するように構成されていても良いし(図2参照)、運転者の両眼を含む顔全体を撮像するように構成されていても良い。   FIG. 1 is a schematic configuration diagram showing a first embodiment of a state estimation apparatus according to the present invention. In the figure, the state estimation device 1 of the present embodiment is mounted on a vehicle such as an automobile. The state estimation device 1 includes a camera 2 that captures the driver's face, an estimation processing unit 3 that estimates a driver's consciousness state (wakefulness) based on an image captured by the camera 2, and the estimation processing unit 3. And an alarm device 4 that issues an alarm in accordance with the estimation result of. The camera 2 may be configured to image only a part including one eye of the driver (see FIG. 2), or may be configured to image the entire face including both eyes of the driver. good.

推定処理ユニット3は、画像処理部5と、開眼・閉眼抽出部6と、意識状態推定部7とを有している。   The estimation processing unit 3 includes an image processing unit 5, an eye opening / closing eye extraction unit 6, and a consciousness state estimation unit 7.

画像処理部5は、カメラ2の撮像画像を画像処理し、運転者の開眼量(開眼度)を検出する。画像処理部5は、図2に示すように、運転者の眼における上まぶたと下まぶたとの間の最大長さPを画素(ピクセル)数で表したものを、運転者の開眼量として検出する。画像処理部5は、例えば100ms周期のタイミングで運転者の開眼量を連続的に検出する。画像処理部5により得られた検出データの一例を図3に示す。図3において、横軸が計測時間を示し、縦軸が開眼量の検出生値(開眼量検出値)を示している。   The image processing unit 5 performs image processing on the captured image of the camera 2 and detects the amount of eye opening (opening degree) of the driver. As shown in FIG. 2, the image processing unit 5 detects the maximum length P between the upper eyelid and the lower eyelid in the driver's eye as the number of pixels (pixels) as the driver's eye opening amount. To do. For example, the image processing unit 5 continuously detects the eye opening amount of the driver at a timing of a cycle of 100 ms. An example of the detection data obtained by the image processing unit 5 is shown in FIG. In FIG. 3, the horizontal axis represents the measurement time, and the vertical axis represents the detection raw value of the eye opening amount (the eye opening amount detection value).

開眼・閉眼抽出部6は、画像処理部5により得られた検出データに基づいて運転者の開眼・閉眼状態を抽出する。開眼・閉眼抽出部6による処理手順の詳細を図4に示す。   The eye opening / closing eye extraction unit 6 extracts the eye opening / closing state of the driver based on the detection data obtained by the image processing unit 5. The details of the processing procedure performed by the eye opening / closing eye extraction unit 6 are shown in FIG.

同図において、まず画像処理部5により得られた開眼量検出値を順次取り込む(手順101)。そして、最新の所定時間分の開眼量検出値をメモリに記憶する(手順102)。このとき、検出周期毎に順次最新のデータに更新され、最も古いデータが消去される。   In the figure, first, the eye opening amount detection values obtained by the image processing unit 5 are sequentially fetched (procedure 101). Then, the eye opening amount detection value for the latest predetermined time is stored in the memory (procedure 102). At this time, the latest data is sequentially updated every detection cycle, and the oldest data is deleted.

続いて、メモリに記憶されている所定時間分の開眼量検出値(画素数)を所定幅(ここでは1画素)毎に分類し、その分類された所定幅毎の各開眼量検出値の検出頻度を計数する(手順103)。続いて、所定幅毎の各開眼量検出値と検出頻度との関係を示す2軸の度数分布を作成し、その度数分布に対して包絡近似を行う(手順104)。   Subsequently, the eye opening amount detection values (number of pixels) for a predetermined time stored in the memory are classified for each predetermined width (here, one pixel), and detection of each eye opening amount detection value for each of the classified predetermined widths is performed. The frequency is counted (procedure 103). Subsequently, a biaxial frequency distribution indicating the relationship between each eye-opening amount detection value for each predetermined width and the detection frequency is created, and envelope approximation is performed on the frequency distribution (procedure 104).

図5は、各開眼量検出値の検出頻度の度数分布の一例を示したものである。図5において、横軸が検出頻度(回数)を示し、縦軸が開眼量検出値を示している。また、図中の線Qは、棒グラフ状の度数分布に対して包絡近似を施して得られた包絡近似曲線を示している。   FIG. 5 shows an example of the frequency distribution of the detection frequency of each eye opening amount detection value. In FIG. 5, the horizontal axis represents the detection frequency (number of times), and the vertical axis represents the eye opening amount detection value. A line Q in the figure indicates an envelope approximation curve obtained by performing envelope approximation on a bar graph-like frequency distribution.

続いて、手順104で得られた包絡近似曲線の極大値(山の頂点)を抽出する(手順105)。例えば図5に示す包絡近似曲線Qでは、点a,bが極大値となる。   Subsequently, the maximum value (peak of the mountain) of the envelope approximation curve obtained in the procedure 104 is extracted (procedure 105). For example, in the envelope approximate curve Q shown in FIG. 5, the points a and b have maximum values.

意識状態推定部7は、開眼・閉眼抽出部6で抽出された包絡近似曲線の極大値の時間変化に基づいて、運転者の意識状態を判定する。意識状態推定部7による処理手順の詳細を図6に示す。   The consciousness state estimation unit 7 determines the driver's consciousness state based on the temporal change in the maximum value of the envelope approximation curve extracted by the open / closed eye extraction unit 6. The details of the processing procedure by the consciousness state estimation unit 7 are shown in FIG.

同図において、まず所定時間分の開眼量検出値の記憶更新毎に得られた包絡近似曲線の極大値のデータを順次取り込む(手順111)。そして、時間経過による包絡近似曲線の極大値の変化具合から、運転者の意識が低下しているかどうか、つまり運転者が眠くなっているかどうかを判定する(手順112)。   In the figure, first, the maximum value data of the envelope approximation curve obtained every time the eye opening amount detection value is updated for a predetermined time is sequentially fetched (procedure 111). Then, it is determined from the degree of change in the maximum value of the envelope approximation curve over time whether or not the driver's consciousness is lowered, that is, whether or not the driver is sleepy (procedure 112).

具体的には、図7(a)に示すように、開眼量が大きいほうの分布(開眼分布)Aの極大値aの検出頻度が高く、開眼量が小さいほうの分布(閉眼分布)Bの極大値bの検出頻度が低くなるような傾向にある状況では、運転者の意識としては通常状態にあると判定する。なお、図7(a)に示すような閉眼分布Bが存在するのは、通常状態では運転者が眼の瞬きを頻繁に行うためである。一方、図7(b)に示すように、開眼分布Aの極大値aの検出頻度が低く、閉眼分布Bの極大値bの検出頻度が高くなるような傾向にある状況では、運転者の意識が低下して眠くなっている状態にあると判定する。   Specifically, as shown in FIG. 7 (a), the maximum value a of the distribution (open eye distribution) A having the larger eye opening amount is detected more frequently and the distribution (closed eye distribution) B having the smaller eye opening amount is detected. In a situation where the detection frequency of the maximum value b tends to be low, the driver's consciousness is determined to be in the normal state. Note that the closed eye distribution B as shown in FIG. 7A exists because the driver frequently blinks in the normal state. On the other hand, as shown in FIG. 7B, in the situation where the detection frequency of the maximum value a of the open eye distribution A is low and the detection frequency of the maximum value b of the closed eye distribution B tends to be high, the driver's consciousness Is determined to be in a state of falling asleep.

そして、手順112で運転者の意識が低下したと判定されたときは、警報器4から警報を発生させるように警報器4を制御する(手順113)。   And when it determines with a driver | operator's consciousness falling by the procedure 112, the alarm device 4 is controlled to generate an alarm from the alarm device 4 (procedure 113).

以上のように本実施形態においては、所定時間分の開眼量検出値を所定幅毎に分類し、その分類された各開眼量検出値の検出頻度の度数分布を作成し、その度数分布の包絡近似線の極大値を抽出し、包絡近似線の極大値の時間変化に基づいて運転者の意識状態を推定する。従って、特に開眼・閉眼を識別するための閾値を設定して二値化処理を行う必要が無いため、閾値の設定誤りによる意識状態の推定精度の悪化を防ぐことができる。また、瞬時に発生する瞬きを検出するために高速画像処理が可能な高価な開眼・閉眼センサ等を使用しなくても、運転者の意識状態を的確に推定することができる。これにより、運転者の意識状態の推定を高精度に且つ安価に行うことが可能となる。   As described above, in the present embodiment, the eye-opening amount detection values for a predetermined time are classified for each predetermined width, the frequency distribution of the detection frequency of each classified eye-opening amount detection value is created, and the envelope of the frequency distribution The maximum value of the approximate line is extracted, and the driver's consciousness state is estimated based on the time change of the maximum value of the envelope approximate line. Accordingly, since it is not necessary to set a threshold value for distinguishing between open / closed eyes and to perform binarization processing, it is possible to prevent deterioration of the estimation accuracy of the consciousness state due to a threshold setting error. Further, it is possible to accurately estimate the driver's consciousness state without using an expensive eye-opening / closing-eye sensor capable of high-speed image processing in order to detect a blink that occurs instantaneously. This makes it possible to estimate the driver's consciousness state with high accuracy and at low cost.

上記第1実施形態では、所定幅毎に分類された各開眼量検出値の検出頻度の度数分布を作成し、この度数分布を用いて意識状態の推定を行ったが、各開眼量検出値の検出頻度の度数分布に代えて、各開眼量検出値の検出継続時間の度数分布を作成しても良い。以下、その変形例について説明する。   In the first embodiment, a frequency distribution of the detection frequency of each eye opening amount detection value classified for each predetermined width is created, and the consciousness state is estimated using this frequency distribution. Instead of the frequency distribution of the detection frequency, a frequency distribution of the detection duration time of each eye opening amount detection value may be created. Hereinafter, the modification is demonstrated.

図8は、推定処理ユニット3の開眼・閉眼抽出部6による他の処理手順の詳細を示すフローチャートである。   FIG. 8 is a flowchart showing details of another processing procedure performed by the eye opening / closing eye extraction unit 6 of the estimation processing unit 3.

同図において、まず図4に示す手順101,102を実行した後、メモリに記憶されている所定時間分の開眼量検出値(画素数)を所定幅(ここでは1画素)毎に分類し、その分類された所定幅毎の各開眼量検出値の検出継続時間を計測する(手順106)。開眼量検出値の検出継続時間は、例えば図9に示すように表される。これにより、時間経過による開眼量検出値の検出継続時間の変化状況が分かる。   In the figure, first, after executing the steps 101 and 102 shown in FIG. 4, the eye-opening amount detection values (number of pixels) for a predetermined time stored in the memory are classified for each predetermined width (here, one pixel), The detection duration time of each eye opening amount detection value for each classified predetermined width is measured (procedure 106). The detection duration time of the eye opening amount detection value is expressed as shown in FIG. 9, for example. Thereby, the change state of the detection duration time of the eye-opening amount detection value over time can be known.

続いて、分類された所定幅毎の各開眼量検出値と各開眼量検出値の検出継続時間とその検出継続時間の頻度との関係を示す3軸の度数分布を作成し、その度数分布に対して包絡近似を行う(手順107)。この時に得られる包絡近似曲線は、図10に示すようなものとなる。そして、包絡近似曲線の極大値を抽出する(手順108)。   Subsequently, a triaxial frequency distribution indicating the relationship between each eye opening amount detection value for each classified predetermined width, the detection duration time of each eye opening amount detection value, and the frequency of the detection duration time is created. Envelope approximation is performed for the procedure (step 107). The envelope approximation curve obtained at this time is as shown in FIG. Then, the maximum value of the envelope approximation curve is extracted (procedure 108).

その後、意識状態推定部7において、上記のようにして得られた包絡近似曲線の極大値の時間変化に基づいて、運転者の意識状態を判定する。   Thereafter, the consciousness state estimation unit 7 determines the driver's consciousness state based on the temporal change of the maximum value of the envelope approximation curve obtained as described above.

具体的には、図10に示す破線Rでは、開眼量が大きいほうの分布(開眼分布)Aの極大値aの検出継続時間が長く、且つその検出継続時間の頻度が高くなっており、開眼量が小さいほうの分布(閉眼分布)Bの極大値bの検出継続時間が短く、且つその検出継続時間の頻度が低くなっている。この状況では、運転者の意識としては通常状態にあると判定される。なお、閉眼分布Bが存在するのは、通常状態では運転者が眼の瞬きを頻繁に行うためである。 Specifically, in the broken line R shown in FIG. 10, the detection duration time of the maximum value a 1 of the distribution (eye opening distribution) A 1 having the larger eye opening amount is longer and the frequency of the detection duration time is higher. The detection duration of the maximum value b 1 of the distribution (closed eye distribution) B 1 having the smaller eye opening amount is short, and the frequency of the detection duration is low. In this situation, it is determined that the driver's consciousness is in a normal state. Incidentally, there is a closed-eye distribution B 1 represents, because performing frequent blinking driver eye under normal conditions.

一方、図10に示す実線Sでは、開眼分布Aの極大値aの検出継続時間が短く、且つその検出継続時間の頻度が低くなっており、閉眼分布Bの極大値bの検出継続時間が長く、且つその検出継続時間の頻度が高くなっている。この状況では、運転者の意識が低下して眠くなっている状態にあると判定される。 On the other hand, the solid line S shown in FIG. 10, a short detection duration of the maximum value a 2 of eye opening distribution A 2 is and and lower the frequency of the detection duration, detection of eye closure distribution B 2 maxima b 2 The duration is long and the frequency of the detection duration is high. In this situation, it is determined that the driver's consciousness is lowered and sleepy.

従って、本変形実施形態においても、運転者の意識状態の推定を高精度に且つ安価に行うことができる。   Therefore, also in the present modified embodiment, it is possible to estimate the driver's consciousness state with high accuracy and at low cost.

図11は、本発明に係わる状態推定装置の第2実施形態を示す概略構成図である。図中、上述した実施形態と同一または同等の要素には同じ符号を付し、その説明を省略する。   FIG. 11: is a schematic block diagram which shows 2nd Embodiment of the state estimation apparatus concerning this invention. In the figure, the same or equivalent elements as those in the embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

同図において、本実施形態の状態推定装置10は、上記の実施形態におけるカメラ2、推定処理ユニット3及び警報器4に加え、車両の走行速度を計測する車速センサ11を備えている。推定処理ユニット3は、上記の実施形態における開眼・閉眼抽出部6及び意識状態推定部7に代えて、開眼・閉眼抽出部12及び意識状態推定部13を有している。   In the same figure, the state estimation apparatus 10 of this embodiment is provided with the vehicle speed sensor 11 which measures the traveling speed of a vehicle in addition to the camera 2, the estimation processing unit 3, and the alarm device 4 in the above embodiment. The estimation processing unit 3 includes an eye opening / closing eye extraction unit 12 and a consciousness state estimation unit 13 instead of the eye opening / closing eye extraction unit 6 and the consciousness state estimation unit 7 in the above embodiment.

図12は、開眼・閉眼抽出部12による処理手順の詳細を示すフローチャートである。同図において、まず画像処理部5により得られた開眼量検出値と車速センサ11の計測値(車速計測値)とを順次取り込む(手順121)。そして、最新の所定時間分の開眼量検出値を車速計測値と共にメモリに記憶する(手順122)。   FIG. 12 is a flowchart showing details of a processing procedure performed by the eye opening / closing eye extraction unit 12. In the figure, first, the eye-opening amount detection value obtained by the image processing unit 5 and the measurement value (vehicle speed measurement value) of the vehicle speed sensor 11 are sequentially fetched (procedure 121). Then, the eye opening amount detection value for the latest predetermined time is stored in the memory together with the vehicle speed measurement value (step 122).

続いて、メモリに記憶されている所定時間分の開眼量検出値を所定幅毎に分類し、その分類された所定幅毎の各開眼量検出値の検出頻度を計数する(手順123)。続いて、所定幅毎の各開眼量検出値と検出頻度との関係を示す2軸の度数分布を、予め区分けされた所定の車速範囲(例えば20km/h)毎に作成し、車速範囲毎の各度数分布に対して包絡近似を行う(手順124)。そして、各車速範囲における包絡近似曲線の極大値を抽出する(手順125)。   Subsequently, the eye-opening amount detection values for a predetermined time stored in the memory are classified for each predetermined width, and the detection frequency of each eye-opening amount detection value for each classified predetermined width is counted (procedure 123). Subsequently, a biaxial frequency distribution indicating the relationship between each eye opening detection value for each predetermined width and the detection frequency is created for each predetermined vehicle speed range (for example, 20 km / h), and Envelope approximation is performed for each frequency distribution (procedure 124). Then, the maximum value of the envelope approximation curve in each vehicle speed range is extracted (procedure 125).

図13は、意識状態推定部13による処理手順の詳細を示すフローチャートである。同図において、まず各車速範囲について所定時間分の開眼量検出値の記憶更新毎に得られた包絡近似曲線の極大値のデータを順次取り込む(手順131)。そして、各車速範囲について時間経過による包絡近似曲線の極大値の変化具合から、運転者の意識が低下したかどうかを判定する(手順132)。運転者の意識状態の判定手法は、図6に示す手順112(図7に示すもの)と同様である。運転者の意識が低下したと判定されたときは、警報器4から警報を発生させるように警報器4を制御する(手順133)。   FIG. 13 is a flowchart showing details of a processing procedure by the consciousness state estimation unit 13. In the figure, first, the maximum value data of the envelope approximation curve obtained every time the eye opening amount detection value for a predetermined time is updated for each vehicle speed range is sequentially fetched (procedure 131). Then, it is determined whether or not the driver's consciousness has decreased from the change in the maximum value of the envelope approximation curve over time for each vehicle speed range (procedure 132). The determination method of the driver's consciousness state is the same as the procedure 112 (shown in FIG. 7) shown in FIG. When it is determined that the driver's consciousness has decreased, the alarm device 4 is controlled to generate an alarm from the alarm device 4 (step 133).

ところで、車両の走行速度が一定でない場合には、運転者にとってはある程度の緊張感が保たれるので、意識の低下が起こりにくいが、例えば高速道路において車両の走行速度が一定である場合には、運転者にとって緊張感が保たれにくくなり、意識の低下が生じやすくなる。   By the way, when the traveling speed of the vehicle is not constant, a certain degree of tension is maintained for the driver, so that the consciousness is hardly lowered, but for example, when the traveling speed of the vehicle is constant on an expressway This makes it difficult for the driver to maintain a sense of tension and causes a decrease in consciousness.

本実施形態においては、所定幅毎に分類された各開眼量検出値の検出頻度の度数分布を予め分けられた車速範囲毎に作成し、各車速範囲において度数分布の包絡近似曲線の極大値を抽出し、同一車速範囲における包絡近似曲線の極大値の時間変化に基づいて運転者の意識状態を推定するので、運転者の意識状態の推定をより高精度に行うことができる。   In the present embodiment, a frequency distribution of the detection frequency of each eye opening amount detection value classified for each predetermined width is created for each vehicle speed range, and the maximum value of the envelope approximation curve of the frequency distribution is calculated for each vehicle speed range. Since the driver's consciousness state is estimated based on the time variation of the maximum value of the envelope approximation curve in the same vehicle speed range, the driver's consciousness state can be estimated with higher accuracy.

なお、運転者の意識状態を推定するにあたっては、前述した第1実施形態の変形例と同様に、各開眼量検出値の検出頻度の度数分布の代わりに、各開眼量検出値の検出継続時間の度数分布を作成しても良い。以下、その変形例について説明する。   In estimating the driver's consciousness state, the detection duration of each eye opening amount detection value is used instead of the frequency distribution of the detection frequency of each eye opening amount detection value, as in the modification of the first embodiment described above. The frequency distribution may be created. Hereinafter, the modification is demonstrated.

図14は、開眼・閉眼抽出部12による他の処理手順の詳細を示すフローチャートである。   FIG. 14 is a flowchart showing details of another processing procedure performed by the eye opening / closing eye extraction unit 12.

同図において、まず上記の手順121,122を実行した後、メモリに記憶されている所定時間分の開眼量検出値を所定幅毎に分類し、その分類された所定幅毎の各開眼量検出値の検出継続時間を計測する(手順126)。続いて、所定幅毎の各開眼量検出値と各開眼量検出値の検出継続時間とその検出継続時間の頻度との関係を示す3軸の度数分布を、予め区分けされた所定の車速範囲(例えば20km/h)毎に作成し、車速範囲毎の各度数分布に対して包絡近似を行う(手順127)。そして、各車速範囲における包絡近似曲線の極大値を抽出する(手順128)。   In the figure, first, after executing the above steps 121 and 122, the eye opening amount detection values for a predetermined time stored in the memory are classified for each predetermined width, and each eye opening amount detection for each classified predetermined width is performed. The value detection duration is measured (procedure 126). Subsequently, a triaxial frequency distribution indicating the relationship between each eye opening amount detection value for each predetermined width, the detection duration time of each eye opening amount detection value, and the frequency of the detection duration time is divided into a predetermined vehicle speed range ( For example, every 20 km / h), and envelope approximation is performed on each frequency distribution for each vehicle speed range (procedure 127). Then, the maximum value of the envelope approximate curve in each vehicle speed range is extracted (procedure 128).

その後、意識状態推定部13において、上記のようにして得られた同一車速範囲における包絡近似曲線の極大値の時間変化に基づいて、運転者の意識状態を判定する。この判定手法は、図10に示すものと同様である。   Thereafter, the consciousness state estimation unit 13 determines the driver's consciousness state based on the time variation of the maximum value of the envelope approximation curve in the same vehicle speed range obtained as described above. This determination method is the same as that shown in FIG.

このような本変形実施形態においても、運転者の意識状態の推定をより高精度に行うことができる。   Also in this modified embodiment, it is possible to estimate the driver's consciousness state with higher accuracy.

また、上記の第2実施形態及びその変形例では、予め決められた車速範囲毎に度数分布を作成して、運転者の意識状態を推定するようにしたが、その車速以外の走行状態、例えば道路種別(例えば高速道路及び一般道路)若しくは道路曲率毎に度数分布を作成して、運転者の意識状態を推定しても良い。   Moreover, in said 2nd Embodiment and its modification, frequency distribution was created for every predetermined vehicle speed range, and the driver's consciousness state was estimated, but driving conditions other than the vehicle speed, for example, A frequency distribution may be created for each road type (for example, an expressway and a general road) or for each road curvature to estimate the driver's consciousness state.

以上、本発明に係わる状態推定装置の好適な実施形態について幾つか説明してきたが、本発明は上記実施形態に限定されるものではない。例えば上記実施形態は、運転者の意識状態(覚醒度)の推定を行うものであるが、本発明の状態推定装置は、運転者の感情や興奮度等といった状態の推定にも適用可能である。この場合には、運転者の状態に関する特徴量として、運転者の脈拍数や心拍数等を検出する。   Although several preferred embodiments of the state estimation device according to the present invention have been described above, the present invention is not limited to the above embodiments. For example, although the above embodiment estimates the driver's consciousness state (wakefulness), the state estimation device of the present invention can also be applied to state estimation such as the driver's emotion and excitement level. . In this case, the driver's pulse rate, heart rate, or the like is detected as a feature amount related to the driver's state.

また、上記実施形態は、推定処理ユニット3の推定結果が警報器4に送られるものであるが、本発明の状態推定装置は、各種運転システムの制御入力として使用することができる。   Moreover, although the said embodiment sends the estimation result of the estimation process unit 3 to the alarm device 4, the state estimation apparatus of this invention can be used as a control input of various driving systems.

さらに、上記実施形態は、運転者の状態を推定するために車両に搭載されるものであるが、本発明の状態推定装置は、車載用以外にも適用可能である。   Furthermore, although the said embodiment is mounted in a vehicle in order to estimate a driver | operator's state, the state estimation apparatus of this invention is applicable besides a vehicle-mounted thing.

本発明に係わる状態推定装置の第1実施形態を示す概略構成図である。It is a schematic block diagram which shows 1st Embodiment of the state estimation apparatus concerning this invention. 図1に示した画像処理部により画像処理される部位の一例を示す図である。It is a figure which shows an example of the site | part by which an image process is performed by the image process part shown in FIG. 図1に示した画像処理部により得られる検出データの一例を示すグラフである。It is a graph which shows an example of the detection data obtained by the image processing part shown in FIG. 図1に示した開眼・閉眼抽出部による処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the process sequence by the eye opening and closing eye extraction part shown in FIG. 図1に示した開眼・閉眼抽出部により得られる各開眼量検出値の検出頻度の度数分布及び包絡近似曲線の一例を示すグラフである。3 is a graph showing an example of a frequency distribution of detection frequencies of each eye opening amount obtained by an eye opening / closing eye extraction unit shown in FIG. 1 and an envelope approximation curve. 図1に示した意識状態推定部による処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the process sequence by the consciousness state estimation part shown in FIG. 図1に示した意識状態推定部により運転者の意識状態を判定する手法を示すグラフである。It is a graph which shows the method of determining a driver | operator's consciousness state by the consciousness state estimation part shown in FIG. 図1に示した開眼・閉眼抽出部による他の処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the other process sequence by the eye opening / closing eye extraction part shown in FIG. 図1に示した開眼・閉眼抽出部により得られる開眼量検出値の検出継続時間の一例を示すグラフである。3 is a graph illustrating an example of a detection duration time of an eye opening amount detection value obtained by an eye opening / closing eye extraction unit illustrated in FIG. 1. 図1に示した意識状態推定部により運転者の意識状態を判定する他の手法を示すグラフである。It is a graph which shows the other method of determining a driver | operator's consciousness state by the consciousness state estimation part shown in FIG. 本発明に係わる状態推定装置の第2実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the state estimation apparatus concerning this invention. 図11に示した開眼・閉眼抽出部による処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the process sequence by the eye opening / closing eye extraction part shown in FIG. 図11に示した意識状態推定部による処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the process sequence by the consciousness state estimation part shown in FIG. 図11に示した開眼・閉眼抽出部による他の処理手順の詳細を示すフローチャートである。12 is a flowchart showing details of another processing procedure by the eye opening / closing eye extraction unit shown in FIG.

符号の説明Explanation of symbols

1…状態推定装置、2…カメラ(検出手段)、3…推定処理ユニット、5…画像処理部(検出手段)、6…開眼・閉眼抽出部(抽出手段)、7…意識状態推定部(推定手段)、10…状態推定装置、11…車速センサ、12…開眼・閉眼抽出部(抽出手段)、13…意識状態推定部(推定手段)。
DESCRIPTION OF SYMBOLS 1 ... State estimation apparatus, 2 ... Camera (detection means), 3 ... Estimation processing unit, 5 ... Image processing part (detection means), 6 ... Eye opening and closing eye extraction part (extraction means), 7 ... Consciousness state estimation part (estimation) Means), 10 ... state estimation device, 11 ... vehicle speed sensor, 12 ... open eye / closed eye extraction unit (extraction means), 13 ... conscious state estimation unit (estimation means).

Claims (6)

対象者の状態に関する特徴量を検出する検出手段と、
前記検出手段で検出した前記特徴量の度数分布を作成し、当該度数分布の極値を抽出する抽出手段と、
前記抽出手段で抽出した前記度数分布の極値の時間変化に基づいて前記対象者の状態を推定する推定手段とを備えることを特徴とする状態推定装置。
A detecting means for detecting a feature amount related to the state of the subject;
An extraction means for creating a frequency distribution of the feature amount detected by the detection means and extracting an extreme value of the frequency distribution;
A state estimation apparatus comprising: an estimation unit configured to estimate the state of the subject based on a temporal change of an extreme value of the frequency distribution extracted by the extraction unit.
車両に搭載された状態推定装置であって、
運転者の状態に関する特徴量を検出する検出手段と、
前記検出手段で検出した前記特徴量の度数分布を作成し、当該度数分布の極値を抽出する抽出手段と、
前記抽出手段で抽出した前記度数分布の極値の時間変化に基づいて前記運転者の状態を推定する推定手段とを備えることを特徴とする状態推定装置。
A state estimation device mounted on a vehicle,
Detecting means for detecting a characteristic amount related to the driver's condition;
An extraction means for creating a frequency distribution of the feature amount detected by the detection means and extracting an extreme value of the frequency distribution;
A state estimation device comprising: estimation means for estimating the state of the driver based on a temporal change of the extreme value of the frequency distribution extracted by the extraction means.
前記運転者の状態は、前記運転者の覚醒状態であり、
前記検出手段は、前記運転者の状態に関する特徴量として前記運転者の開眼度を検出することを特徴とする請求項2記載の状態推定装置。
The driver's state is the driver's arousal state,
The state estimation apparatus according to claim 2, wherein the detection unit detects the degree of eye opening of the driver as a feature amount related to the state of the driver.
前記抽出手段は、前記開眼度の検出頻度の度数分布を作成することを特徴とする請求項3記載の状態推定装置。   The state estimation apparatus according to claim 3, wherein the extraction unit creates a frequency distribution of the detection frequency of the eye opening degree. 前記抽出手段は、前記開眼度の検出継続時間の度数分布を作成することを特徴とする請求項3記載の状態推定装置。   The state estimation apparatus according to claim 3, wherein the extraction unit creates a frequency distribution of the detection duration of the eye opening degree. 前記車両の走行状態を検出する手段を更に備え、
前記抽出手段は、前記車両の走行状態毎に、前記検出手段で検出した前記特徴量の度数分布を作成することを特徴とする請求項2〜5のいずれか一項記載の状態推定装置。


Means for detecting a running state of the vehicle;
6. The state estimation apparatus according to claim 2, wherein the extraction unit creates a frequency distribution of the feature amount detected by the detection unit for each traveling state of the vehicle.


JP2006285181A 2006-10-19 2006-10-19 Condition estimating apparatus Pending JP2008099884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285181A JP2008099884A (en) 2006-10-19 2006-10-19 Condition estimating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285181A JP2008099884A (en) 2006-10-19 2006-10-19 Condition estimating apparatus

Publications (1)

Publication Number Publication Date
JP2008099884A true JP2008099884A (en) 2008-05-01

Family

ID=39434681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285181A Pending JP2008099884A (en) 2006-10-19 2006-10-19 Condition estimating apparatus

Country Status (1)

Country Link
JP (1) JP2008099884A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010224637A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Drowsiness assessment device and program
JP2010273800A (en) * 2009-05-27 2010-12-09 Hamamatsu Photonics Kk Blinking measuring apparatus and blinking measuring method
JP2013120442A (en) * 2011-12-06 2013-06-17 Denso Corp Opened/closed eye detection device
US8576081B2 (en) 2009-02-13 2013-11-05 Toyota Jidosha Kabushiki Kaisha Physiological condition estimation device and vehicle control device
DE102016108475A1 (en) 2015-05-07 2016-11-10 Suzuki Motor Corporation Einschlaferfassungsvorrichtung
JP2018537787A (en) * 2015-12-14 2018-12-20 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for classifying at least one eye opening data of a vehicle occupant and method and apparatus for detecting drowsiness and / or microsleep of a vehicle occupant
JP2019068933A (en) * 2017-10-06 2019-05-09 カルソニックカンセイ株式会社 Estimation device and estimation method
CN110049724A (en) * 2016-12-14 2019-07-23 三菱电机株式会社 Condition estimating device
WO2019198179A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Passenger state determination device, alarm output control device, and passenger state determination method
CN112041910A (en) * 2018-03-30 2020-12-04 索尼半导体解决方案公司 Information processing apparatus, mobile device, method, and program
US11589787B2 (en) 2017-12-20 2023-02-28 Nec Corporation Drowsiness estimating device, drowsiness estimating method, and drowsiness estimating program recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000571A (en) * 2001-06-18 2003-01-07 Mitsubishi Electric Corp Device and method for estimating arousal level
JP2006109980A (en) * 2004-10-13 2006-04-27 Nissan Motor Co Ltd Vigilance determining device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003000571A (en) * 2001-06-18 2003-01-07 Mitsubishi Electric Corp Device and method for estimating arousal level
JP2006109980A (en) * 2004-10-13 2006-04-27 Nissan Motor Co Ltd Vigilance determining device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576081B2 (en) 2009-02-13 2013-11-05 Toyota Jidosha Kabushiki Kaisha Physiological condition estimation device and vehicle control device
JP2010224637A (en) * 2009-03-19 2010-10-07 Toyota Central R&D Labs Inc Drowsiness assessment device and program
JP2010273800A (en) * 2009-05-27 2010-12-09 Hamamatsu Photonics Kk Blinking measuring apparatus and blinking measuring method
JP2013120442A (en) * 2011-12-06 2013-06-17 Denso Corp Opened/closed eye detection device
DE102016108475A1 (en) 2015-05-07 2016-11-10 Suzuki Motor Corporation Einschlaferfassungsvorrichtung
JP2018537787A (en) * 2015-12-14 2018-12-20 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and apparatus for classifying at least one eye opening data of a vehicle occupant and method and apparatus for detecting drowsiness and / or microsleep of a vehicle occupant
US10891503B2 (en) 2015-12-14 2021-01-12 Robert Bosch Gmbh Method and device for classifying eye opening data of at least one eye of an occupant of a vehicle, and method and device for detecting drowsiness and/or microsleep of an occupant of a vehicle
CN110049724A (en) * 2016-12-14 2019-07-23 三菱电机株式会社 Condition estimating device
JP2019068933A (en) * 2017-10-06 2019-05-09 カルソニックカンセイ株式会社 Estimation device and estimation method
US11589787B2 (en) 2017-12-20 2023-02-28 Nec Corporation Drowsiness estimating device, drowsiness estimating method, and drowsiness estimating program recording medium
CN112041910B (en) * 2018-03-30 2023-08-18 索尼半导体解决方案公司 Information processing apparatus, mobile device, method, and program
CN112041910A (en) * 2018-03-30 2020-12-04 索尼半导体解决方案公司 Information processing apparatus, mobile device, method, and program
WO2019198179A1 (en) * 2018-04-11 2019-10-17 三菱電機株式会社 Passenger state determination device, alarm output control device, and passenger state determination method
JP7118136B2 (en) 2018-04-11 2022-08-15 三菱電機株式会社 PASSENGER STATE DETERMINATION DEVICE, WARNING OUTPUT CONTROL DEVICE AND PASSENGER STATE DETERMINATION METHOD
US11315361B2 (en) 2018-04-11 2022-04-26 Mitsubishi Electric Corporation Occupant state determining device, warning output control device, and occupant state determining method
JPWO2019198179A1 (en) * 2018-04-11 2020-12-03 三菱電機株式会社 Passenger status determination device, warning output control device and passenger status determination method

Similar Documents

Publication Publication Date Title
JP2008099884A (en) Condition estimating apparatus
JP5447657B2 (en) Biological condition determination device
US8576081B2 (en) Physiological condition estimation device and vehicle control device
Morris et al. Lane change intent prediction for driver assistance: On-road design and evaluation
US9694680B2 (en) System and method for determining drowsy state of driver
US8306271B2 (en) Drowsiness assessment device and program
JP6387892B2 (en) Sleepiness detection device
US20140205149A1 (en) Doze detection method and apparatus thereof
WO2014119235A1 (en) Alertness level detection device and alertness level detection method
CN110211335B (en) Method and device for detecting a microsleep of a driver of a vehicle
JP6707969B2 (en) Arousal level determination device
JP6399311B2 (en) Dozing detection device
JP4529394B2 (en) Driver&#39;s vehicle driving characteristic estimation device
JP2009223752A (en) Drowsy driving risk determination device
CN114423343A (en) Cognitive function estimation device, learning device, and cognitive function estimation method
JP5292671B2 (en) Awakening degree estimation apparatus, system and method
EP3056375B1 (en) Sleepiness detecting device
JP2008301957A (en) Mental state inference device
JP2009266100A (en) Driver state estimation apparatus and program
JP3292035B2 (en) Arousal level estimation device
JP2008250859A (en) Arousal determining device
US10945651B2 (en) Arousal level determination device
JP2018130342A (en) Wakefulness estimation device, wakefulness estimation method and wakefulness estimation system
JP2007328455A (en) Device and method for evaluating driving quality
JP2008073335A (en) Awakening decline detecting device and awakening decline detection program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410