JP2008099346A - Crawler type traveling apparatus - Google Patents

Crawler type traveling apparatus Download PDF

Info

Publication number
JP2008099346A
JP2008099346A JP2006274403A JP2006274403A JP2008099346A JP 2008099346 A JP2008099346 A JP 2008099346A JP 2006274403 A JP2006274403 A JP 2006274403A JP 2006274403 A JP2006274403 A JP 2006274403A JP 2008099346 A JP2008099346 A JP 2008099346A
Authority
JP
Japan
Prior art keywords
driving
drive
torque command
rotational speed
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006274403A
Other languages
Japanese (ja)
Other versions
JP4933210B2 (en
Inventor
Keiji Matsumoto
圭司 松本
Atsushi Terajima
淳 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2006274403A priority Critical patent/JP4933210B2/en
Publication of JP2008099346A publication Critical patent/JP2008099346A/en
Application granted granted Critical
Publication of JP4933210B2 publication Critical patent/JP4933210B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crawler type traveling apparatus to be applied to a traveling vehicle and executing skid prevention control without detecting an actual vehicle speed. <P>SOLUTION: The crawler type traveling apparatus has a configuration in which crawlers 2, 2 are wound between driving wheels 3, 3 and sub-driving wheels 4, 4 and an electric motor 6 is coupled to the driving wheels 3, 3. The apparatus includes a driving torque command setting means 10, the driving wheels 3, 3, a rotating speed detecting means 8, a motor driving circuit and a control means 7 connected them. The apparatus is controlled in such a way that a value form the driving torque command setting means 10 is inputted into the motor driving circuit as a driving torque command value to drive the electric motor 6, an ideal rotation speed of the driving wheels 3, 3 from the driving torque command value, a difference between the ideal rotation speed and the actual rotation speed of the driving wheels 3, 3 detected by the rotation speed detecting means 8, and the riving torque command value of the driving wheels 3, 3 is reduced if the actual rotation speed becomes larger than the ideal rotation speed by a set value or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、クローラ式走行装置の技術、特に電動モータを駆動源とする作業車両に適用し、スリップ防止制御を備えたクローラ式走行装置の技術に関する。   The present invention relates to a crawler type traveling device technology, and more particularly to a crawler type traveling device technology that is applied to a work vehicle that uses an electric motor as a drive source and that has slip prevention control.

従来から、電力を動力源として電動モータを作動させて駆動輪を回動する電気自動車は知られている。該電気自動車の駆動系はさまざまな構成が可能であり、そのうちの一つに左右独立のモータを用いてデファレンシャルギヤを無くす構成が知られている(特許文献1参照)。
該電気自動車の車輪のスリップ防止制御方式として、スリップ率制御方式がある。スリップ率λとは、車体速度と車輪速度の差の相対比であり、λ=0が完全粘着、λ=1が完全空転を意味する。スリップ率制御とは、このλを直接制御するフィードバック制御である。
一方、モデル追従制御の原理を用いた車輪速度制御によるスリップ防止制御方式がある。モデル追従制御では、車両特性を簡単な慣性モーメントとみなし、スリップが生じればその値が急速に小さくなるものとする。一方、モデルの方は滑らない車体モデル、すなわち、一定の慣性モーメントとして両者の差から演算される補正トルクをドライバのトルク指令から差し引くものとする。(特許文献2・3参照)
このモデル追従制御は、空転時にタイヤ慣性を重く見せかける制御であり、速いマイナー制御ループによって初めて得られる効果であるといえる。よって、モデル追従制御は、電気モータの高速で正確なトルク応答(数〜数十[ms])があって初めて可能となる制御である。前記モデル追従制御を利用したスリップ防止制御の利点は、実車速を計測することなく、車輪速度のみを用いることにある。これにより、非駆動輪の速度を検出するなどして車体速度を検出することなく制御を行うことが可能となり、四輪の同時制動などを行うことも可能となる。
特開2005−168278号公報 特開平2−299402号公報 特開平8−182119号公報
2. Description of the Related Art Conventionally, an electric vehicle in which an electric motor is operated using electric power as a power source to rotate drive wheels is known. The drive system of the electric vehicle can have various configurations, and one of them is known to eliminate the differential gear by using left and right independent motors (see Patent Document 1).
As an anti-slip control method for wheels of the electric vehicle, there is a slip rate control method. The slip ratio λ is a relative ratio of the difference between the vehicle body speed and the wheel speed. Λ = 0 means complete adhesion, and λ = 1 means complete idling. The slip ratio control is feedback control that directly controls λ.
On the other hand, there is a slip prevention control method by wheel speed control using the principle of model following control. In the model following control, the vehicle characteristic is regarded as a simple moment of inertia, and if a slip occurs, the value is rapidly reduced. On the other hand, the model is a vehicle body model that does not slip, that is, a correction torque calculated from the difference between the two as a constant moment of inertia is subtracted from the torque command of the driver. (See Patent Documents 2 and 3)
This model following control is control that makes tire inertia appear heavy during idling, and can be said to be an effect obtained for the first time by a fast minor control loop. Therefore, model follow-up control is control that is possible only when there is an accurate torque response (several to several tens [ms]) of the electric motor. The advantage of the anti-slip control using the model following control is that only the wheel speed is used without measuring the actual vehicle speed. As a result, it is possible to perform control without detecting the vehicle body speed by detecting the speed of the non-driving wheels, and it is also possible to simultaneously brake the four wheels.
JP 2005-168278 A JP-A-2-299402 JP-A-8-182119

一方、農業機械の作業環境は、舗装された路面よりも、圃場などの未舗装面が圧倒的に多く、雨天時や路面が浸水している場合には特に車輪若しくは履帯がスリップすることが多かった。また、スリップ制御を行う場合においても、実車速を検出することが難しく、履帯においては非駆動輪が存在しないため、実車速の検出は不可能であった。
そこで、本発明は斯かる課題に鑑み、走行車両に適用し、実車速を検出せずにスリップ防止制御を行うクローラ式走行装置を提供する。
On the other hand, the working environment of agricultural machinery is overwhelmingly more on unpaved surfaces such as fields than paved road surfaces, and wheels or crawlers often slip, especially in rainy weather or when the road surface is flooded. It was. Even when slip control is performed, it is difficult to detect the actual vehicle speed, and since there are no non-driven wheels in the crawler track, it is impossible to detect the actual vehicle speed.
Therefore, in view of such a problem, the present invention provides a crawler type traveling device that is applied to a traveling vehicle and performs slip prevention control without detecting an actual vehicle speed.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.

即ち、請求項1においては、駆動輪と従動輪との間に履帯を巻回し、該駆動輪に電動モータを連結したクローラ式走行装置において、駆動トルク指令設定手段と駆動輪の回転数検知手段とモータ駆動回路と、これらと接続する制御手段を備え、前記駆動トルク指令設定手段からの値を駆動トルク指令値としてモータ駆動回路に入力して電動モータを駆動し、該駆動トルク指令値より駆動輪の理想回転速度を演算するとともに、該理想回転速度と前記回転数検知手段で検知した駆動輪の実回転速度との差を算出し、実回転速度が理想回転速度より設定値以上大きくなると、前記駆動輪の駆動トルク指令値を減少するように制御したものである。   In other words, in the crawler type traveling device in which the crawler belt is wound between the driving wheel and the driven wheel, and the electric motor is connected to the driving wheel, the driving torque command setting means and the rotational speed detection means of the driving wheel are provided. And a motor drive circuit, and a control means connected thereto, and the electric torque is driven by inputting the value from the drive torque command setting means to the motor drive circuit as a drive torque command value, and driving from the drive torque command value While calculating the ideal rotation speed of the wheel, calculating the difference between the ideal rotation speed and the actual rotation speed of the drive wheel detected by the rotation speed detection means, and when the actual rotation speed is larger than the set value by more than the ideal rotation speed, The drive torque command value of the drive wheel is controlled to decrease.

請求項2においては、駆動輪と従動輪との間に履帯を巻回し、該駆動輪に電動モータを連結したクローラ式走行装置において、駆動トルク指令設定手段と駆動輪の回転数検知手段とモータ駆動回路と、これらと接続する制御手段を備え、駆動トルク指令値をモータ駆動回路に入力して電動モータを駆動し、該駆動トルク指令値より駆動輪の理想回転速度を演算するとともに、該理想回転速度と前記回転数検知手段で検知した駆動輪の実回転速度との差を算出し、その差を周波数フィルタに通して特定の周波数領域だけを抽出し、所定のゲインを乗じて駆動トルク補正量を算出し、前記駆動輪の駆動トルク指令値を該駆動トルク補正量だけ減少するように制御したものである。   According to a second aspect of the present invention, in a crawler type traveling device in which a crawler belt is wound between a driving wheel and a driven wheel, and an electric motor is connected to the driving wheel, a driving torque command setting means, a rotational speed detection means for the driving wheel, and a motor A driving circuit and a control means connected to the driving circuit, input a driving torque command value to the motor driving circuit to drive the electric motor, calculate an ideal rotational speed of the driving wheel from the driving torque command value, and Calculate the difference between the rotation speed and the actual rotation speed of the drive wheel detected by the rotation speed detection means, pass the difference through a frequency filter, extract only a specific frequency range, and multiply by a predetermined gain to correct the drive torque The amount is calculated and controlled so that the drive torque command value of the drive wheel is decreased by the drive torque correction amount.

請求項3においては、前記駆動輪の回転数検知手段及び制御手段をそれぞれの駆動輪に一つずつ設け、左右の駆動輪を独立して制御したものである。   According to a third aspect of the present invention, the drive wheel rotational speed detection means and the control means are provided for each drive wheel, and the left and right drive wheels are independently controlled.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、実車速を検出することなくスリップ防止制御を行うことが可能となる。また、それぞれの車輪をモータで駆動することにより、旋回時に制御を行うことが可能となる。また、普通走行時の直進性も向上する。   According to the first aspect of the present invention, the slip prevention control can be performed without detecting the actual vehicle speed. Moreover, it becomes possible to perform control at the time of turning by driving each wheel with a motor. In addition, the straightness during normal driving is also improved.

請求項2においては、実車速を検出することなくスリップ防止制御を行うことが可能となる。また、それぞれの車輪をモータで駆動することにより、旋回時に制御を行うことが可能となる。また、普通走行時の直進性も向上する。   In claim 2, it is possible to perform the anti-slip control without detecting the actual vehicle speed. Moreover, it becomes possible to perform control at the time of turning by driving each wheel with a motor. In addition, the straightness during normal driving is also improved.

請求項3においては、左右の駆動輪がデファレンシャルギヤを用いなくとも、独立して駆動することができる。また、旋回時や普通走行時に左右それぞれの駆動輪の実回転速度を計測することにより、正確にトラクション制御をすることが可能となる。   In claim 3, the left and right drive wheels can be driven independently without using a differential gear. In addition, the traction control can be accurately performed by measuring the actual rotational speeds of the left and right drive wheels during turning or normal traveling.

次に、発明の実施の形態を説明する。
図1は本発明の一実施例に係る作業車両の動力伝達図、図2は作業車両の制御に係るブロック図、図3は本発明の一実施例に係る作業車両の動力伝達図である。
Next, embodiments of the invention will be described.
FIG. 1 is a power transmission diagram of a work vehicle according to one embodiment of the present invention, FIG. 2 is a block diagram according to control of the work vehicle, and FIG. 3 is a power transmission diagram of the work vehicle according to one embodiment of the present invention.

図1に示すように、作業車両1は走行装置としてクローラ式走行装置を備えている。該クローラ式走行装置は駆動輪3・3と従動輪4・4との間に履帯2・2が巻回されており、前記駆動輪3・3は駆動軸5・5に軸支されており、前記駆動軸5・5には、直接または減速機構等を介して電動モータ6・6に連結している。該電動モータ6・6は左右の履帯に対してそれぞれ一つずつ設けている。前記電動モータ6・6を左右の駆動輪3・3に対して一つずつ独立に設けることにより、デファレンシャルギヤを無くし独立して駆動可能となっている。
このようにクローラ式走行装置では、駆動輪と従動輪との間に履帯が巻回されているために、車体速度を従動輪から検出することができない。そこで、駆動輪の回転速度を利用してトラクション制御を行うこととした。
As shown in FIG. 1, the work vehicle 1 includes a crawler type traveling device as a traveling device. In the crawler type traveling device, crawler belts 2 and 2 are wound between driving wheels 3 and 3 and driven wheels 4 and 4, and the driving wheels 3 and 3 are supported by driving shafts 5 and 5. The drive shafts 5 and 5 are connected to the electric motors 6 and 6 directly or through a speed reduction mechanism or the like. One electric motor 6 is provided for each of the left and right crawler belts. By providing the electric motors 6 and 6 independently for the left and right drive wheels 3 and 3, the differential gear is eliminated and the electric motors 6 and 6 can be driven independently.
Thus, in the crawler type traveling device, since the crawler belt is wound between the driving wheel and the driven wheel, the vehicle body speed cannot be detected from the driven wheel. Therefore, traction control is performed using the rotational speed of the drive wheels.

次に前記電動モータ6・6の制御系統について図1及び図2を用いて説明する。前記電動モータ6・6の制御系統は左右のモータそれぞれに独立して存在しており、その構成は同一であるため、ここでは左モータ6について説明する。まず、図示せぬ運転操作部において駆動トルク指令設定手段(速度制御手段)10としてアクセルレバーまたは変速レバー等が配置されており、前記駆動トルク指令設定手段10は制御装置7に接続され速度設定を行えるようにしている。この駆動トルク指令設定手段10によって入力された駆動トルク指令値Fmは、制御手段となる制御装置7及び電動モータ6の駆動回路12に入力される。制御装置7は駆動トルク指令値Fmから次式に従い駆動輪3の回転速度(理想回転速度V)を算出する。   Next, the control system of the electric motors 6 and 6 will be described with reference to FIGS. Since the control system of the electric motors 6 and 6 exists independently for each of the left and right motors and the configuration thereof is the same, only the left motor 6 will be described here. First, an accelerator lever or a shift lever is arranged as a drive torque command setting means (speed control means) 10 in a driving operation unit (not shown), and the drive torque command setting means 10 is connected to the control device 7 to set the speed. I can do it. The drive torque command value Fm input by the drive torque command setting means 10 is input to the control device 7 serving as control means and the drive circuit 12 of the electric motor 6. The control device 7 calculates the rotational speed (ideal rotational speed V) of the drive wheels 3 from the drive torque command value Fm according to the following equation.

Figure 2008099346
Figure 2008099346

ここでは、舗装された路面で走行した際に入力された駆動トルク指令値Fmに対する出力回転速度が理想回転速度Vとなるような等価慣性モーメントがJとして記憶されている。   Here, an equivalent moment of inertia is stored as J such that the output rotational speed corresponding to the drive torque command value Fm input when traveling on a paved road surface is the ideal rotational speed V.

一方、駆動輪3または駆動軸5の近傍には回転数検知手段として回転センサ8が配置され制御装置7と接続されている。該回転センサ8によって実際の駆動輪の回転速度(実回転速度Vw)を検出し、制御装置7へ入力する。制御装置7では前記理想回転速度Vと実回転速度Vwの差を求める。そして、その差を周波数フィルタ(ハイパスフィルタHPS)を通して高周波領域だけを取り出し、その値に制御ゲインKを乗じて駆動トルク補正量を得る。前記補正量と駆動トルク指令値Fmから前記補正量を減じてモータの駆動トルク指令値Fmを補正する。なお、制御ゲインKは、自由に設定できるため、スリップが最小になる値の他に、作業時に最も効率よく牽引力を発揮できる値や、制御が不要な場合に効果を弱くする値に設定することもできる。また、周波数フィルタで補正量の高周波領域だけを取り出すことにより、理想回転と現在回転の定常的な誤差を除外し、スリップ発生の過渡状態のみを制御することができる。   On the other hand, in the vicinity of the drive wheel 3 or the drive shaft 5, a rotation sensor 8 is arranged as a rotation speed detection means and connected to the control device 7. The rotation speed of the actual driving wheel (actual rotation speed Vw) is detected by the rotation sensor 8 and input to the control device 7. The control device 7 obtains the difference between the ideal rotation speed V and the actual rotation speed Vw. Then, only the high frequency region is extracted from the difference through a frequency filter (high pass filter HPS), and the value is multiplied by the control gain K to obtain the drive torque correction amount. The drive torque command value Fm of the motor is corrected by subtracting the correction amount from the correction amount and the drive torque command value Fm. Since the control gain K can be set freely, in addition to the value at which the slip is minimized, the control gain K should be set to a value that can exert the traction force most efficiently during work, or a value that weakens the effect when control is unnecessary. You can also. Further, by taking out only the high frequency region of the correction amount with the frequency filter, it is possible to exclude a steady error between the ideal rotation and the current rotation, and to control only the transient state of slip generation.

実回転速度Vwが理想回転速度Vよりも大きいということは、実回転速度Vwがスリップして空回りすることにより理想回転速度Vより速くなっている可能性がある。そこでその差に応じた量だけ駆動トルクを減少させ制御するものである。すなわち、理想回転速度Vと実回転速度Vwの差を求め、周波数フィルタにより、スリップを防止するのに有効な高周波成分だけを取り出し、制御ゲインKを乗じて、駆動トルク補正量Cを算出し、電動モータ6へフィードバックして駆動トルク指令値Fmから減算して補正する。これにより、電動モータ6の駆動トルクが低減され、理想回転速度Vでの走行が可能となり、スリップが防止される。   The fact that the actual rotation speed Vw is higher than the ideal rotation speed V may be higher than the ideal rotation speed V because the actual rotation speed Vw slips and idles. Therefore, the drive torque is decreased and controlled by an amount corresponding to the difference. That is, the difference between the ideal rotational speed V and the actual rotational speed Vw is obtained, and only a high-frequency component effective for preventing slip is taken out by the frequency filter, multiplied by the control gain K, and the drive torque correction amount C is calculated. It is fed back to the electric motor 6 and subtracted from the drive torque command value Fm for correction. As a result, the driving torque of the electric motor 6 is reduced, traveling at the ideal rotational speed V is possible, and slipping is prevented.

また、旋回走行においては、駆動トルク指令設定手段10により、内側の履帯を駆動する電動モータ6に対する駆動トルク指令値Fmが低い値に設定されることにより、クラッチやブレーキを設けることなく旋回することが可能となる。つまり、ステアリングハンドルまたは操向レバー等の操向操作手段13にその操作を検知する手段を配置し、その操作信号を制御装置7に入力する。直進時には前述したスリップ制御が行われ、旋回操作が行われると、操向操作手段13から操作信号が制御装置7に入力されて、その旋回半径に応じて内側の履帯を駆動する電動モータ6に対して直進時の理想回転速度Vよりも低速の回転速度指令値を駆動回路12に出力し、外側の履帯を駆動する電動モータ6に対して直進時の理想回転速度Vよりも高速の回転速度指令値を駆動回路12に入力するのである。
この旋回の際にスリップした場合にもモデル追従制御によってトルク補正をかけることでスリップを事前に防ぐことが可能となる。つまり、前記同様に、回転センサ8から得られる実回転速度Vwが理想回転速度Vよりも大きいと、その差に応じた量だけ駆動トルクを減少させ制御するものである。すなわち、理想回転速度Vと実回転速度Vwの差を求め、周波数フィルタにより、スリップを防止するのに有効な高周波成分だけを取り出し、制御ゲインKを乗じて駆動トルク補正量Cを算出し、電動モータ6へフィードバックして駆動トルク指令値Fmから減算して補正する。これにより、電動モータ6の駆動トルクが低減され、理想回転速度Vで走行するようにしてスリップを防止する構成としている。
なお、前記周波数フィルタは、本実施例で用いたハイパスフィルタに限定されるわけでなく、バンドパスフィルタなどを採用することもできる。
また、左右の履帯の制御系統はそれぞれが独立して存在しているため、左右のスリップ率に差異が生じている場合にもそれぞれの制御系統によって、理想回転速度での走行を可能とする。つまり、直進操向時で片側のみが滑りやすい地面で走行しているときにおいて、片側のクローラがスリップした時には、両側の電動モータ6の回転数を同数減少させて、直進操向させ、普通の地面を走行しているかのように走行することが可能となる。また、両輪が理想回転速度Vで走行しようとするため、履帯による走行の課題の一つであった直進走行性も向上する。
Further, in turning traveling, the driving torque command setting means 10 sets the driving torque command value Fm for the electric motor 6 that drives the inner crawler belt to a low value, thereby turning without providing a clutch or a brake. Is possible. That is, a means for detecting the operation is disposed in the steering operation means 13 such as a steering handle or a steering lever, and the operation signal is input to the control device 7. When the vehicle goes straight, the above-described slip control is performed, and when a turning operation is performed, an operation signal is input from the steering operation means 13 to the control device 7, and the electric motor 6 that drives the inner crawler belt according to the turning radius is supplied to the electric motor 6. On the other hand, a rotational speed command value lower than the ideal rotational speed V when traveling straight is output to the drive circuit 12, and the rotational speed higher than the ideal rotational speed V when traveling straight with respect to the electric motor 6 that drives the outer crawler track. The command value is input to the drive circuit 12.
Even when slipping during this turning, it is possible to prevent slip in advance by applying torque correction by model following control. That is, as described above, when the actual rotation speed Vw obtained from the rotation sensor 8 is larger than the ideal rotation speed V, the drive torque is decreased and controlled by an amount corresponding to the difference. That is, the difference between the ideal rotational speed V and the actual rotational speed Vw is obtained, and only a high-frequency component effective for preventing slip is extracted by the frequency filter, and the drive torque correction amount C is calculated by multiplying by the control gain K. It is fed back to the motor 6 and subtracted from the drive torque command value Fm for correction. As a result, the driving torque of the electric motor 6 is reduced, and slipping is prevented by traveling at the ideal rotational speed V.
The frequency filter is not limited to the high-pass filter used in the present embodiment, and a band-pass filter or the like can also be employed.
Further, since the control systems for the left and right crawler belts exist independently, even when there is a difference in the left and right slip ratios, it is possible to run at the ideal rotational speed by the respective control systems. In other words, when traveling on the ground on which only one side is slippery during straight traveling, when the crawler on one side slips, the number of rotations of the electric motors 6 on both sides is decreased by the same number, and straight traveling is performed. It is possible to travel as if traveling on the ground. Further, since both wheels try to travel at the ideal rotational speed V, the straight traveling performance, which is one of the problems of traveling by the crawler belt, is also improved.

次に電動モータ6の代わりに可変油圧モータを用いた実施例について説明する。
図3に示すように、可変油圧モータ14・14の出力軸を駆動軸5・5として、該駆動軸5・5上に駆動輪3・3が固設され、該駆動輪3・3と従動輪4・4との間に履帯2・2が巻回されている。前記駆動軸5・5の回転が回転数センサ等よりなる回転数検知手段8・8により回転数が検知され、制御装置7に入力される。該制御装置7は前記同様の構成としている。
前記可変油圧モータ14・14の吐出油路及び吸入油路は切換バルブ16を介して油圧ポンプ17と接続され、該油圧ポンプ17はエンジン40により駆動される。前記切換バルブ16は操作手段により前後進が切り換えられる。
Next, an embodiment using a variable hydraulic motor instead of the electric motor 6 will be described.
As shown in FIG. 3, the output shafts of the variable hydraulic motors 14 and 14 are the drive shafts 5 and 5, and the drive wheels 3 and 3 are fixed on the drive shafts 5 and 5, and the drive wheels 3 and 3 are connected to the drive wheels 3 and 3. The crawler belts 2 and 2 are wound between the driving wheels 4 and 4. The rotational speed of the drive shafts 5 and 5 is detected by rotational speed detection means 8 and 8 including a rotational speed sensor or the like, and is input to the control device 7. The control device 7 has the same configuration as described above.
A discharge oil passage and a suction oil passage of the variable hydraulic motors 14 and 14 are connected to a hydraulic pump 17 through a switching valve 16, and the hydraulic pump 17 is driven by an engine 40. The switching valve 16 is switched forward and backward by operating means.

また、前記可変油圧モータ14の可動斜板18はモータまたはソレノイド等のアクチュエータ15と連結され、該可動斜板18はアクチュエータ15の作動により傾倒角度が変更され出力軸の回転数を変更可能としている。該アクチュエータ15は制御装置7と接続されている。該制御装置7には前記と同様に駆動トルク指令設定手段10と操向操作手段13が接続されて、走行速度を設定可能とし、可動斜板18はこの設定速度に合わせて回動される。   The movable swash plate 18 of the variable hydraulic motor 14 is connected to an actuator 15 such as a motor or a solenoid, and the tilt angle of the movable swash plate 18 is changed by the operation of the actuator 15 so that the rotation speed of the output shaft can be changed. . The actuator 15 is connected to the control device 7. Similarly to the above, the control device 7 is connected to the drive torque command setting means 10 and the steering operation means 13 so that the traveling speed can be set, and the movable swash plate 18 is rotated in accordance with the set speed.

そして、直進走行時または旋回走行時に、スリップした場合には、前記同様に制御される。つまり、回転センサ8から得られる実回転速度Vwと、駆動トルク指令設定手段10と操向操作手段13から得られる理想回転速度Vとの差の変化量が設定値よりも大きいと、その差に応じた量だけ駆動トルクを減少させ制御するものである。すなわち、理想回転速度Vと実回転速度Vwの差を求め、周波数フィルタにより、スリップを防止するのに有効な高周波成分だけを取り出し、制御ゲインKを乗じて駆動トルク補正量Cを算出し、アクチュエータ15へフィードバックされ油圧圧力から減算して補正する。これにより、理想回転速度Vで走行するようにしてスリップを防止する構成としている。なお、左右で送油量が負荷や温度等で若干異なることが生じるので、左右の回転センサ8・8からの信号から、直進時には左右同じ出力回転となるようにアクチュエータ15・15は制御されている。旋回時も、理想回転数となるように制御される。   When slipping during straight traveling or turning, control is performed in the same manner as described above. That is, if the amount of change in the difference between the actual rotational speed Vw obtained from the rotation sensor 8 and the ideal rotational speed V obtained from the drive torque command setting means 10 and the steering operation means 13 is larger than the set value, the difference The drive torque is decreased and controlled by a corresponding amount. That is, the difference between the ideal rotational speed V and the actual rotational speed Vw is obtained, and only the high frequency component effective for preventing the slip is taken out by the frequency filter and multiplied by the control gain K to calculate the drive torque correction amount C, 15 is fed back and subtracted from the hydraulic pressure to correct. Thereby, it is set as the structure which prevents slip by making it drive | work at the ideal rotational speed V. FIG. Note that the oil feed amount on the left and right may vary slightly depending on the load, temperature, etc., so that the actuators 15 and 15 are controlled so that the left and right rotations are the same when rotating straight from the signals from the left and right rotation sensors 8 and 8. Yes. Even during turning, the rotation speed is controlled to be an ideal rotation speed.

以上のように、本発明にかかるクローラ走行装置は、駆動輪3・3と従動輪4・4との間に履帯2・2を巻回し、該駆動輪3・3に電動モータ6を連結したクローラ式走行装置において、駆動トルク指令設定手段10と駆動輪3・3と回転数検知手段8とモータ駆動回路と、これらと接続する制御手段7を備え、前記駆動トルク指令設定手段10からの値を駆動トルク指令値としてモータ駆動回路に入力して電動モータ6を駆動し、該駆動トルク指令値より駆動輪3・3の理想回転速度を演算するとともに、該理想回転速度と前記回転数検知手段8で検知した駆動輪3・3の実回転速度との差を算出し、実回転速度が理想回転速度より設定値以上大きくなると、前記駆動輪3・3の駆動トルク指令値を減少するように制御したものである。このように構成することにより、実車速を検出することなくスリップ防止制御を行うことが可能となる。また、それぞれの車輪をモータで駆動することにより、旋回時に制御を行うことが可能となる。また、普通走行時の直進性も向上する。   As described above, the crawler traveling device according to the present invention winds the crawler belts 2 and 2 between the drive wheels 3 and 3 and the driven wheels 4 and 4 and connects the electric motor 6 to the drive wheels 3 and 3. The crawler type traveling device includes a drive torque command setting means 10, drive wheels 3, 3, a rotational speed detection means 8, a motor drive circuit, and a control means 7 connected thereto, and values from the drive torque command setting means 10. Is input to the motor drive circuit as a drive torque command value to drive the electric motor 6, and the ideal rotation speed of the drive wheels 3 and 3 is calculated from the drive torque command value, and the ideal rotation speed and the rotation speed detecting means are calculated. The difference between the actual rotational speed of the drive wheels 3 and 3 detected in 8 is calculated, and when the actual rotational speed is larger than the ideal rotational speed by a set value or more, the drive torque command value of the drive wheels 3 and 3 is decreased. Controlled. With this configuration, it is possible to perform the slip prevention control without detecting the actual vehicle speed. Moreover, it becomes possible to perform control at the time of turning by driving each wheel with a motor. In addition, the straightness during normal driving is also improved.

また、駆動輪3・3と従動輪4・4との間に履帯2・2を巻回し、該駆動輪3・3に電動モータ6を連結したクローラ式走行装置において、駆動トルク指令設定手段10と駆動輪3・3の回転数検知手段8とモータ駆動回路と、これらと接続する制御手段7を備え、駆動トルク指令値をモータ駆動回路に入力して電動モータ6を駆動し、該電動モータ6の駆動により発生するトルクより駆動輪の理想回転速度を演算するとともに、該理想回転速度と前記回転数検知手段で検知した駆動輪3・3の実回転速度との差を算出し、その値を周波数フィルタに通して特定の周波数領域だけを抽出し、所定のゲインを乗じて駆動トルク補正量Cを算出し、前記駆動輪の駆動トルク指令値を該駆動トルク補正量だけ減少するように制御したものである。このように構成することにより、実車速を検出することなくスリップ防止制御を行うことが可能となる。また、それぞれの車輪をモータで駆動することにより、旋回時に制御を行うことが可能となる。また、普通走行時の直進性も向上する。   Further, in the crawler type traveling device in which the crawler belts 2 and 2 are wound between the drive wheels 3 and 3 and the driven wheels 4 and 4 and the electric motor 6 is connected to the drive wheels 3 and 3, the drive torque command setting means 10 And a rotational speed detection means 8 of the drive wheels 3 and 3, a motor drive circuit, and a control means 7 connected thereto, and a drive torque command value is input to the motor drive circuit to drive the electric motor 6. 6 calculates the ideal rotational speed of the drive wheel from the torque generated by the driving of 6 and calculates the difference between the ideal rotational speed and the actual rotational speed of the drive wheels 3 and 3 detected by the rotational speed detection means. Is passed through a frequency filter, and only a specific frequency region is extracted, a predetermined gain is multiplied to calculate a drive torque correction amount C, and control is performed such that the drive torque command value of the drive wheels is decreased by the drive torque correction amount. It is what. With this configuration, it is possible to perform the slip prevention control without detecting the actual vehicle speed. Moreover, it becomes possible to perform control at the time of turning by driving each wheel with a motor. In addition, the straightness during normal driving is also improved.

また、前記駆動輪3・3の回転数検知手段8及び制御手段7をそれぞれの駆動輪3・3に一つずつ設け、左右の駆動輪3・3を独立して制御したものである。このように構成することにより、左右の駆動輪がデファレンシャルギヤを用いなくとも、独立して駆動することができる。また、旋回時や普通走行時に左右それぞれの駆動輪の実回転速度を計測することにより、正確にトラクション制御をすることが可能となる。   Further, the rotational speed detection means 8 and the control means 7 of the drive wheels 3 and 3 are provided for each of the drive wheels 3 and 3, and the left and right drive wheels 3 and 3 are controlled independently. With this configuration, the left and right drive wheels can be driven independently without using a differential gear. In addition, the traction control can be accurately performed by measuring the actual rotational speeds of the left and right drive wheels during turning or normal traveling.

本発明の一実施例に係る作業車両の動力伝達図。The power transmission diagram of the work vehicle which concerns on one Example of this invention. 作業車両の制御に係るブロック図。The block diagram which concerns on control of a working vehicle. 本発明の一実施例に係る作業車両の動力伝達図。The power transmission diagram of the work vehicle which concerns on one Example of this invention.

符号の説明Explanation of symbols

1 作業車両
2 履帯
6 電動モータ
7 制御装置
DESCRIPTION OF SYMBOLS 1 Work vehicle 2 Crawler belt 6 Electric motor 7 Control apparatus

Claims (3)

駆動輪と従動輪との間に履帯を巻回し、該駆動輪に電動モータを連結したクローラ式走行装置において、駆動トルク指令設定手段と駆動輪の回転数検知手段とモータ駆動回路と、これらと接続する制御手段を備え、前記駆動トルク指令設定手段からの値を駆動トルク指令値としてモータ駆動回路に入力して電動モータを駆動し、該駆動トルク指令値より駆動輪の理想回転速度を演算するとともに、該理想回転速度と前記回転数検知手段で検知した駆動輪の実回転速度との差を算出し、実回転速度が理想回転速度より設定値以上大きくなると、前記駆動輪の駆動トルク指令値を減少するように制御したことを特徴とするクローラ式走行装置。   In a crawler type traveling device in which a crawler belt is wound between a driving wheel and a driven wheel and an electric motor is connected to the driving wheel, a driving torque command setting means, a rotational speed detection means of the driving wheel, a motor driving circuit, and A control means for connecting, driving the electric motor by inputting a value from the drive torque command setting means to the motor drive circuit as a drive torque command value, and calculating an ideal rotational speed of the drive wheel from the drive torque command value A difference between the ideal rotational speed and the actual rotational speed of the driving wheel detected by the rotational speed detection means is calculated, and when the actual rotational speed is larger than the ideal rotational speed by a set value or more, a driving torque command value for the driving wheel is calculated. A crawler type traveling device controlled to reduce the number of wheels. 駆動輪と従動輪との間に履帯を巻回し、該駆動輪に電動モータを連結したクローラ式走行装置において、駆動トルク指令設定手段と駆動輪の回転数検知手段とモータ駆動回路と、これらと接続する制御手段を備え、駆動トルク指令値をモータ駆動回路に入力して電動モータを駆動し、該駆動トルク指令値より駆動輪の理想回転速度を演算するとともに、該理想回転速度と前記回転数検知手段で検知した駆動輪の実回転速度との差を算出し、その差を周波数フィルタに通して特定の周波数領域だけを抽出し、所定のゲインを乗じて駆動トルク補正量を算出し、前記駆動輪の駆動トルク指令値を該駆動トルク補正量だけ減少するように制御したことを特徴とするクローラ式走行装置。   In a crawler type traveling device in which a crawler belt is wound between a driving wheel and a driven wheel and an electric motor is connected to the driving wheel, a driving torque command setting means, a rotational speed detection means of the driving wheel, a motor driving circuit, and A control means for connecting, driving the electric motor by inputting a drive torque command value to the motor drive circuit, calculating an ideal rotation speed of the drive wheel from the drive torque command value, and calculating the ideal rotation speed and the rotation speed; Calculating a difference with the actual rotational speed of the driving wheel detected by the detecting means, extracting the specific frequency region through the difference through the frequency filter, multiplying a predetermined gain, and calculating a driving torque correction amount, A crawler type traveling device, wherein a drive torque command value of a drive wheel is controlled to be decreased by the drive torque correction amount. 前記駆動輪の回転数検知手段及び制御手段をそれぞれの駆動輪に一つずつ設け、左右の駆動輪を独立して制御したことを特徴とする請求項1または請求項2に記載のクローラ式走行装置。
The crawler type traveling according to claim 1 or 2, wherein the drive wheel rotational speed detecting means and the control means are provided for each drive wheel, and the left and right drive wheels are controlled independently. apparatus.
JP2006274403A 2006-10-05 2006-10-05 Crawler type traveling device Expired - Fee Related JP4933210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274403A JP4933210B2 (en) 2006-10-05 2006-10-05 Crawler type traveling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274403A JP4933210B2 (en) 2006-10-05 2006-10-05 Crawler type traveling device

Publications (2)

Publication Number Publication Date
JP2008099346A true JP2008099346A (en) 2008-04-24
JP4933210B2 JP4933210B2 (en) 2012-05-16

Family

ID=39381607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274403A Expired - Fee Related JP4933210B2 (en) 2006-10-05 2006-10-05 Crawler type traveling device

Country Status (1)

Country Link
JP (1) JP4933210B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418797B2 (en) 2008-04-14 2013-04-16 Yanmar Co., Ltd. Work vehicle
JP2013106390A (en) * 2011-11-11 2013-05-30 Ntn Corp Electric vehicle
WO2013176081A1 (en) * 2012-05-21 2013-11-28 パイオニア株式会社 Traction control device, and traction control method
JP2018111447A (en) * 2017-01-13 2018-07-19 株式会社Ihi Travel control device and travel control method
US10981617B2 (en) 2017-04-24 2021-04-20 Honda Motor Co., Ltd. Inverted pendulum type vehicle
WO2022192210A1 (en) * 2021-03-11 2022-09-15 Vortrex LLC Systems and methods for electric track vehicle control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009566A (en) * 2001-06-18 2003-01-10 Nissan Motor Co Ltd Vehicle vibration damping and controlling device using electric motor
JP2003137128A (en) * 2001-11-05 2003-05-14 Honda Motor Co Ltd Crawler type electric working machine
JP2003143706A (en) * 2001-10-30 2003-05-16 Honda Motor Co Ltd Working machine
JP2003219514A (en) * 2002-01-21 2003-07-31 Hitachi Ltd Control device for electric vehicle
JP2006034012A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Method for operating slip ratio of wheel and method for controlling brake power of wheel
JP2006166513A (en) * 2004-12-03 2006-06-22 Nissan Motor Co Ltd Damping controller of electric motor driven vehicle
JP2006197780A (en) * 2005-01-17 2006-07-27 Yanmar Co Ltd Motor direct drive system by generator, and vehicle equipped with it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009566A (en) * 2001-06-18 2003-01-10 Nissan Motor Co Ltd Vehicle vibration damping and controlling device using electric motor
JP2003143706A (en) * 2001-10-30 2003-05-16 Honda Motor Co Ltd Working machine
JP2003137128A (en) * 2001-11-05 2003-05-14 Honda Motor Co Ltd Crawler type electric working machine
JP2003219514A (en) * 2002-01-21 2003-07-31 Hitachi Ltd Control device for electric vehicle
JP2006034012A (en) * 2004-07-16 2006-02-02 Toyota Motor Corp Method for operating slip ratio of wheel and method for controlling brake power of wheel
JP2006166513A (en) * 2004-12-03 2006-06-22 Nissan Motor Co Ltd Damping controller of electric motor driven vehicle
JP2006197780A (en) * 2005-01-17 2006-07-27 Yanmar Co Ltd Motor direct drive system by generator, and vehicle equipped with it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418797B2 (en) 2008-04-14 2013-04-16 Yanmar Co., Ltd. Work vehicle
JP2013106390A (en) * 2011-11-11 2013-05-30 Ntn Corp Electric vehicle
WO2013176081A1 (en) * 2012-05-21 2013-11-28 パイオニア株式会社 Traction control device, and traction control method
JP2013243847A (en) * 2012-05-21 2013-12-05 Pioneer Electronic Corp Traction control device and traction control method
US9333970B2 (en) 2012-05-21 2016-05-10 Pioneer Corporation Traction control device and traction control method
JP2018111447A (en) * 2017-01-13 2018-07-19 株式会社Ihi Travel control device and travel control method
US10981617B2 (en) 2017-04-24 2021-04-20 Honda Motor Co., Ltd. Inverted pendulum type vehicle
WO2022192210A1 (en) * 2021-03-11 2022-09-15 Vortrex LLC Systems and methods for electric track vehicle control
US11713077B2 (en) 2021-03-11 2023-08-01 Vortrex LLC Systems and methods for electric track vehicle control

Also Published As

Publication number Publication date
JP4933210B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5492186B2 (en) Traction control method and device for vehicles with individual drive mechanisms
EP2072785B1 (en) Controlling engine speed within a machine
US8041492B2 (en) Engine load management for power machines
JP4933210B2 (en) Crawler type traveling device
WO2009128172A1 (en) Work vehicle
JP2007127174A (en) Apparatus and method for controlling travelling motion of working vehicle
JP4845839B2 (en) Electric drive vehicle
US5489007A (en) Dynamic braking on an all wheel drive machine
EP1561672B1 (en) Work machine with steering control
US8751132B2 (en) Method for ascertaining a wheel reference speed of a wheel on a vehicle having a hydrostatic drive, and device for ascertaining a wheel reference speed of a wheel of a vehicle having a hydrostatic drive
JP2008094214A (en) Vehicle motion control apparatus
WO2018111165A1 (en) A method for engaging a clutch of a vehicle
JP2003343712A (en) Travelling speed changing structure of working car
JP2008095710A (en) Working vehicle
US20020070056A1 (en) Steering traction control apparatus for a work machine
JP2009186003A (en) Work vehicle
JP2007015456A (en) Three-wheel agricultural machine
JP3181129B2 (en) Anti-slip device for wheel-type construction machinery
WO2021039095A1 (en) Crawler work machine
JPH0735879Y2 (en) Front and rear wheel drive vehicle drive control device
JP2630609B2 (en) Control method of driving force distribution and rear wheel steering angle of four-wheel drive, four-wheel steering vehicle
JPH05338457A (en) Four-wheel drive device for vehicle
JP2869469B2 (en) Transmission control device for continuously variable transmission
JP2002144903A (en) Tractor
KR101398947B1 (en) 4wd type tractor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees