JP2008093611A - Manufacturing method of water containing extremely fine air bubble and water containing extremely fine air bubble - Google Patents

Manufacturing method of water containing extremely fine air bubble and water containing extremely fine air bubble Download PDF

Info

Publication number
JP2008093611A
JP2008093611A JP2006280513A JP2006280513A JP2008093611A JP 2008093611 A JP2008093611 A JP 2008093611A JP 2006280513 A JP2006280513 A JP 2006280513A JP 2006280513 A JP2006280513 A JP 2006280513A JP 2008093611 A JP2008093611 A JP 2008093611A
Authority
JP
Japan
Prior art keywords
water
microbubbles
particle size
less
extremely fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280513A
Other languages
Japanese (ja)
Other versions
JP4931201B2 (en
Inventor
Masayoshi Takahashi
正好 高橋
Kaneo Chiba
金夫 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
REO Laboratory Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
REO Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, REO Laboratory Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006280513A priority Critical patent/JP4931201B2/en
Publication of JP2008093611A publication Critical patent/JP2008093611A/en
Application granted granted Critical
Publication of JP4931201B2 publication Critical patent/JP4931201B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of water containing the stably present extremely fine air bubbles with not more than 3 μm particle diameter by utilizing no physical stimulation. <P>SOLUTION: First, the extremely fine air bubbles with not more than 50 μm particle diameter are generated in the water with 10 μS/cm or above electric conductance and 100 mg/L or below normal hexane extract concentration. After that, the particle diameter of the extremely fine air bubbles is diminished by allowing them to naturally float in the water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、あらゆる技術分野にその有用性が潜在する、極微小気泡を含む水の製造方法および当該方法により製造されてなる極微小気泡を含む水に関する。   The present invention relates to a method for producing water containing ultrafine bubbles, which has potential utility in all technical fields, and water containing ultrafine bubbles produced by the method.

粒径が3μm以下の極微小気泡には、超音波に対する非線形応答があり、また、動植物に対して優れた活性化効果があることなどが知られており、近年、その利用価値が注目されている。しかしながら、このような極微細気泡は、通常の条件で水中に発生させても極めて不安定であり、数秒のオーダーで完全溶解して消滅してしまう。本発明者らは、極微小気泡を水中で安定に存在させる方法を長年に亘って研究しており、その研究成果として、特許文献1において、水中に発生させた粒径が数十μmの微小気泡に対し、放電や超音波照射や多孔板通過などの物理的刺激を与えることで、これを急激に縮小させる方法を提案している。しかしながら、この方法は、物理的刺激を与えるため装置設備を必要とする。従って、より簡易な方法の開発が望まれている。
特開2005−245817号公報
It is known that ultrafine bubbles with a particle size of 3 μm or less have a non-linear response to ultrasonic waves and have an excellent activation effect on animals and plants. Yes. However, such ultrafine bubbles are extremely unstable even when generated in water under normal conditions, and completely dissolve and disappear in the order of several seconds. The inventors of the present invention have been researching for a long time how to make microbubbles exist stably in water. As a result of the research, in Patent Document 1, a microparticle having a particle size of several tens of μm is generated. A method of abruptly reducing bubbles by applying physical stimulation such as discharge, ultrasonic irradiation, and perforation through a perforated plate is proposed. However, this method requires equipment to provide physical stimulation. Therefore, development of a simpler method is desired.
JP 2005-245817 A

そこで本発明は、物理的刺激を利用することなく、粒径が3μm以下の極微小気泡を安定に存在させてなる水の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing water in which ultrafine bubbles having a particle size of 3 μm or less are stably present without using physical stimulation.

上記の点に鑑みてなされた本発明の粒径が3μm以下の極微小気泡を含む水の製造方法は、請求項1記載の通り、電気伝導度が10μS/cm以上でノルマルヘキサン抽出物濃度が100mg/L以下の水中に、粒径が50μm以下の微小気泡を発生させた後、水中で自然浮遊させてその粒径を縮小させることを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、少なくとも1分間、微小気泡を水中で自然浮遊させることを特徴とする。
また、請求項3記載の製造方法は、請求項1記載の製造方法において、微小気泡を発生させる水の電気伝導度を、電解質を加えることで調整することを特徴とする。
また、請求項4記載の製造方法は、請求項1記載の製造方法において、微小気泡を発生させる水のノルマルヘキサン抽出物濃度を、酸化剤を加えることで調整することを特徴とする。
また、本発明の粒径が3μm以下の極微小気泡を含む水は、請求項5記載の通り、電気伝導度が10μS/cm以上でノルマルヘキサン抽出物濃度が100mg/L以下の水中に、粒径が50μm以下の微小気泡を発生させた後、水中で自然浮遊させてその粒径を縮小させることにより製造されてなることを特徴とする。
また、請求項6記載の水は、請求項5記載の水において、極微小気泡の半減期が30分〜15日であることを特徴とする。
In view of the above points, the method for producing water containing ultrafine bubbles having a particle size of 3 μm or less according to the present invention has a conductivity of 10 μS / cm or more and a normal hexane extract concentration as described in claim 1. A feature is that microbubbles having a particle size of 50 μm or less are generated in water of 100 mg / L or less and then naturally suspended in water to reduce the particle size.
The manufacturing method according to claim 2 is characterized in that in the manufacturing method according to claim 1, microbubbles are naturally suspended in water for at least 1 minute.
The manufacturing method according to claim 3 is characterized in that, in the manufacturing method according to claim 1, the electrical conductivity of water that generates microbubbles is adjusted by adding an electrolyte.
The manufacturing method according to claim 4 is characterized in that, in the manufacturing method according to claim 1, the normal hexane extract concentration of water generating microbubbles is adjusted by adding an oxidizing agent.
Further, the water containing ultrafine bubbles having a particle size of 3 μm or less according to the present invention, as described in claim 5, is obtained by adding particles in water having an electric conductivity of 10 μS / cm or more and a normal hexane extract concentration of 100 mg / L or less. It is produced by generating microbubbles having a diameter of 50 μm or less, and then naturally floating in water to reduce the particle size.
Further, the water according to claim 6 is characterized in that, in the water according to claim 5, the half-life of the ultrafine bubbles is from 30 minutes to 15 days.

本発明によれば、物理的刺激を利用することなく、粒径が3μm以下の極微小気泡を安定に存在させてなる水の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for producing water in which ultrafine bubbles having a particle size of 3 μm or less are stably present without using physical stimulation.

本発明の粒径が3μm以下の極微小気泡を含む水の製造方法は、電気伝導度が10μS/cm以上でノルマルヘキサン抽出物濃度が100mg/L以下の水中に、粒径が50μm以下の微小気泡を発生させた後、水中で自然浮遊させてその粒径を縮小させることを特徴とするものである。ある程度の水深(例えば20cm以上)を有する水槽内や天然水域において、水の電気伝導度を10μS/cm以上とし、かつ、ノルマルヘキサン抽出物濃度を100mg/L以下とした上で、粒径が50μm以下の微小気泡を発生させた後、水中で自然浮遊させると、微小気泡は、その気液界面に水中のイオン、例えば、水酸基イオン、プロトン(水素イオン)、電気伝導度の調整のために電解質を加えた場合やもともと水中に電解質が存在する場合には電解質イオンなどを濃縮させながら縮小し、ついには濃縮されたイオンが気泡を覆うことによって気泡内部の気体の溶解を抑制することで、粒径が3μm以下にまで縮小した気泡であっても水中で安定に存在せしめることができる。本発明の方法によって製造される粒径が3μm以下の極微小気泡を含む水は、動植物に対する活性化などに利用できる。   The method for producing water containing ultrafine bubbles having a particle size of 3 μm or less according to the present invention is a method for producing a microparticle having a particle size of 50 μm or less in water having an electric conductivity of 10 μS / cm or more and a normal hexane extract concentration of 100 mg / L or less. After the bubbles are generated, the particles are naturally suspended in water to reduce the particle size. In an aquarium or natural water area having a certain depth (for example, 20 cm or more), the electrical conductivity of water is 10 μS / cm or more and the normal hexane extract concentration is 100 mg / L or less, and the particle size is 50 μm. When the following microbubbles are generated and then floated naturally in water, the microbubbles will have ions in the water, such as hydroxyl ions, protons (hydrogen ions), and electrolyte to adjust the electrical conductivity at the gas-liquid interface. When the electrolyte is present in the water or when the electrolyte originally exists, it is reduced while concentrating the electrolyte ions, etc., and finally the concentrated ions cover the bubbles, thereby suppressing the dissolution of the gas inside the bubbles. Even bubbles whose diameter is reduced to 3 μm or less can be stably present in water. Water containing ultrafine bubbles having a particle size of 3 μm or less produced by the method of the present invention can be used for activation of animals and plants.

本発明において、水中に粒径が50μm以下の微小気泡を発生させる方法は特段限定されるものではなく、自体公知の方法を採用することができる。例えば、気液混合物を流動下において攪拌することにより行うことができる。この場合、回転子などを利用して半径が10cm以下の渦流を強制的に生じせしめ、壁面などの障害物や相対速度の異なる流体に気液混合物を打ち当てることにより、渦流中に獲得した気体成分を渦の消失とともに分散させることで、所望の微小気泡を大量に発生させることができる。また、2気圧以上の高圧下で気体を水中に溶解させた後、これを大気圧に開放することにより生じた溶解気体の過飽和条件から気泡を発生させることができる。この場合、圧力の開放部位において、水流と障害物を利用して半径が1mm以下の渦を多数発生させ、渦流の中心域における水の分子揺動を起因として多量の気相の核(気泡核)を形成させるとともに、過飽和条件に伴ってこれらの気泡核に向かって水中の気体成分を拡散させ、気泡核を成長させることにより、所望の微小気泡を大量に発生させることができる。なお、これらの方法によって発生した気泡群の濃度は100個/mL以上であり、1000個/mLよりも多い値となることも稀ではない(必要であれば特開2000−51107号公報や特開2003−265938号公報などを参照のこと)。   In the present invention, the method for generating microbubbles having a particle size of 50 μm or less in water is not particularly limited, and a method known per se can be employed. For example, it can be performed by stirring the gas-liquid mixture under flow. In this case, the gas acquired in the eddy current is generated by forcibly generating a vortex with a radius of 10 cm or less using a rotor and hitting the gas-liquid mixture against obstacles such as walls and fluids with different relative velocities. By dispersing the components together with the disappearance of the vortex, a large amount of desired microbubbles can be generated. Further, bubbles can be generated from the supersaturated condition of the dissolved gas generated by dissolving the gas in water under a high pressure of 2 atmospheres or more and then releasing the gas to atmospheric pressure. In this case, a large number of vortices with a radius of 1 mm or less are generated at the pressure release site using water flow and obstacles, and a large amount of gas phase nuclei (bubble nuclei due to water molecular fluctuations in the central region of the vortex flow. ), And by diffusing gas components in water toward these bubble nuclei along with the supersaturation condition to grow the bubble nuclei, a large amount of desired microbubbles can be generated. The concentration of the bubbles generated by these methods is 100 / mL or more, and it is not rare that the value is higher than 1000 / mL (see Japanese Patent Application Laid-Open No. 2000-51107 or specially if necessary). (See, eg, Japanese Unexamined Patent Publication No. 2003-265938).

微小気泡を発生させる水の電気伝導度は、必要に応じて電解質を加えることで調整することが望ましい。電解質としては塩化ナトリウムや塩酸や硫酸や硝酸などを使用することができる。   It is desirable to adjust the electrical conductivity of water that generates microbubbles by adding an electrolyte as necessary. As the electrolyte, sodium chloride, hydrochloric acid, sulfuric acid, nitric acid, or the like can be used.

微小気泡を発生させる水のノルマルヘキサン抽出物濃度は、必要に応じて酸化剤を加えることで調整することが望ましい。酸化剤としてはオゾンや、過マンガン酸カリウムなどの各種化合物を使用することができる。   It is desirable to adjust the normal hexane extract concentration of water that generates microbubbles by adding an oxidizing agent as necessary. As the oxidizing agent, various compounds such as ozone and potassium permanganate can be used.

本発明者らは、様々な条件下における微小気泡の特性を長年に亘って研究することにより、本発明に関して下記の知見を得た。即ち、水中に粒径が50μm以下の微小気泡を発生させると、気泡の気液界面に水酸基イオンやプロトンが集積する。これは水が有している構造的な要因に関連したものであり、特に水酸基イオンが集積しやすい傾向にある。このため、pHが4以上では界面自体はマイナスに帯電している(この現象についての詳細は本発明者によって公表された文献、例えば、Journal of Physical Chemistry B 109-46, pp21858-21864, ζ Potential of Microbubbles in Aqueous Solutions: Electrical Properties of the Gas-Water Interface, M. Takahashi,などを参照のこと)。ただし、電気伝導度の調整のために電解質を加えた場合やもともと水中に電解質が存在する場合、電解質の陽イオンやプロトンが静電気的な作用により界面周辺に引き寄せられて、所謂電気二重層を形成するため、帯電性は気泡周囲の極めて局所的な現象となる。このように微小気泡は水酸基イオンやプロトンおよびその周囲の電解質イオンに取り囲まれているが、これらのイオンは気泡からの気体の溶解を著しく制限するものではないため、気泡はその内部の気体を溶解させることにより表面積を急速に減少させる。これに伴う気泡粒径の減少は、ヤング・ラプラスの法則に基づいて内部の気体を強く加圧する。加圧された気体はヘンリーの法則に従って気泡周囲の水中に溶け込むため、気泡は縮小速度を上昇させながらついには水中で消滅する(この現象についての詳細は本発明者らによって公表された文献、例えば、Journal of Physical Chemistry B 107-10, pp2171-2173, Effect of Shrinking Microbubble on Gas Hydrate Formation, M. Takahashi, et.al.,などを参照のこと)。   The present inventors have obtained the following knowledge regarding the present invention by studying the characteristics of microbubbles under various conditions over many years. That is, when microbubbles having a particle size of 50 μm or less are generated in water, hydroxyl ions and protons accumulate at the gas-liquid interface of the bubbles. This is related to structural factors possessed by water, and in particular, hydroxyl ions tend to accumulate. Therefore, when the pH is 4 or more, the interface itself is negatively charged (details of this phenomenon are disclosed in the literature published by the present inventor, for example, Journal of Physical Chemistry B 109-46, pp21858-21864, ζ Potential. of Microbubbles in Aqueous Solutions: Electrical Properties of the Gas-Water Interface, M. Takahashi, etc.). However, when an electrolyte is added to adjust the electrical conductivity or when the electrolyte originally exists in water, the electrolyte's cations and protons are attracted to the periphery of the interface by electrostatic action, forming a so-called electric double layer. Therefore, the charging property is a very local phenomenon around the bubble. In this way, the microbubbles are surrounded by hydroxyl ions, protons and surrounding electrolyte ions, but these ions do not significantly limit the dissolution of the gas from the bubbles, so the bubbles dissolve the gas inside. To reduce the surface area rapidly. The accompanying reduction in the bubble particle size strongly pressurizes the internal gas based on Young's Laplace law. The pressurized gas dissolves into the water around the bubble according to Henry's law, so the bubble eventually disappears in the water while increasing the shrinkage rate (details on this phenomenon are described in the literature published by the inventors, for example, , Journal of Physical Chemistry B 107-10, pp2171-2173, Effect of Shrinking Microbubble on Gas Hydrate Formation, M. Takahashi, et.al.

今般、本発明者らは、上記の条件において気泡粒径の縮小速度が0.5μm/秒を超えると、気液界面の移動速度が水中における電解質イオンの拡散速度よりも有意に速くなり、逃げ切れなくなった電解質イオンが気液界面に濃縮し始めることを世界に先駆けて発見した。この気液界面におけるイオン濃度の上昇割合は気泡粒径の減少に伴って増加する傾向にあり、最終的にはイオン濃度として100Mを超える極めて特異なイオン場が形成される。この場合に水中に脂質分が多いと、気液界面に有効なイオン場の形成がなされないことになる。従って、微小気泡を発生させる水のノルマルヘキサン抽出物濃度は100mg/L以下とする。また、水中の微小気泡に対して物理的刺激が存在すると、縮小過程にある気泡の界面における圧バランスに乱れが生じて気泡が分裂し、高濃度のイオン場の形成が阻害される。そこで、水中に発生させた微小気泡は、物理的刺激を与えることなく自然浮遊させる。水中で微小気泡を自然浮遊させる時間は、少なくとも1分間であることが望ましい。こうすることで、水中の微小気泡は、気液界面に存在するイオンの熱分子運動の微妙なバランスの乱れからその一部はそのまま水中に完全溶解するものの、残りは気液界面全体に調和の取れた高濃度のイオンの殻を形成することが可能となる。高濃度のイオンの殻は、Salting−out現象により水中への気体の溶解を抑制し、その結果として、粒径が3μm以下の極微小気泡を水中である程度の長期に亘って安定に存在せしめることができる。この極微小気泡は、最終的には水中に完全溶解するものの、水の電解質濃度などに応じて、半減期が30分〜15日間程度の存在となる。   Now, when the reduction rate of the bubble particle diameter exceeds 0.5 μm / sec under the above conditions, the moving speed of the gas-liquid interface becomes significantly faster than the diffusion rate of the electrolyte ions in water, and the escape is not complete. We discovered for the first time in the world that the electrolyte ions disappeared and began to concentrate at the gas-liquid interface. The rate of increase in ion concentration at the gas-liquid interface tends to increase as the bubble particle size decreases, and an extremely unique ion field exceeding 100 M is finally formed as the ion concentration. In this case, if the water contains a large amount of lipid, an effective ion field cannot be formed at the gas-liquid interface. Therefore, the normal hexane extract concentration of water that generates microbubbles is 100 mg / L or less. In addition, when a physical stimulus is present for minute bubbles in water, the pressure balance at the interface of the bubbles in the process of shrinking is disturbed, the bubbles break up, and the formation of a high concentration ion field is inhibited. Therefore, the microbubbles generated in the water are naturally suspended without giving a physical stimulus. The time for allowing the microbubbles to naturally float in water is preferably at least 1 minute. By doing this, some of the microbubbles in the water are completely dissolved in the water as they are due to the subtle disturbance of the thermal molecular motion of ions existing at the gas-liquid interface, but the rest are in harmony with the entire gas-liquid interface. It is possible to form a shell of high-density ions taken. The high-concentration ion shell suppresses the dissolution of gas in water by the salting-out phenomenon, and as a result, microbubbles with a particle size of 3 μm or less can stably exist in water for a certain long period of time. Can do. Although these microbubbles are finally completely dissolved in water, they have a half-life of about 30 minutes to 15 days depending on the electrolyte concentration of water.

以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted.

実施例1:
自体公知の微小気泡発生装置(必要であれば特開2003−265938号公報を参照のこと)を使用して、20Lの容器に水道水(電気伝導度が10μS/cm以上でノルマルヘキサン抽出物濃度が100mg/L以下)を満たし、そこに4気圧の空気加圧から大気圧開放により過飽和条件を作り出して微小気泡を発生させた。微小気泡発生装置を作動中の微小気泡の粒径分布を図1に示す(計測は市販の液中パーティクルカウンターによる)。図1から明らかなように、微小気泡の粒度分布には2つのピークが認められた。なお、微小気泡を含む水は牛乳のような乳白色であった。
次に、微小気泡発生装置の作動を止め、水中の微小気泡に物理的刺激を与えることなくこれを1分間以上自然浮遊させたところ、水は透明な状況に至った。微小気泡発生装置の作動を止めてから30分間経過後の微小気泡の粒度分布を図2に示す(計測は市販の光遮断方式の液中パーティクルカウンターによる)。図2から明らかなように、微小気泡の粒度分布には粒径が3μm以下の極微小気泡のピークが認められた。このピークはその後に微小気泡発生装置を再作動させることで消滅したこと、また、微小気泡発生装置の作動を止めてから30分間経過後の水を加熱すると、過加熱状態の形成が強く抑制されたことから、水中には粒径が3μm以下の極微小気泡が存在することは明らかであり、本発明によれば、このような極微小気泡を安定に存在せしめた水を製造できることがわかった。
Example 1:
Using a well-known microbubble generator (see Japanese Patent Application Laid-Open No. 2003-265938 if necessary), tap water (conductivity of normal hexane extract with an electric conductivity of 10 μS / cm or more) in a 20 L container. Was 100 mg / L or less), and supersaturation conditions were created by releasing the atmospheric pressure from air pressure of 4 atm to generate microbubbles. The particle size distribution of the microbubbles operating the microbubble generator is shown in FIG. 1 (measurement is performed with a commercially available liquid particle counter). As is apparent from FIG. 1, two peaks were observed in the particle size distribution of the microbubbles. The water containing microbubbles was milky white like milk.
Next, when the operation of the microbubble generating device was stopped and the microbubbles in the water were naturally floated for 1 minute or more without giving a physical stimulus, the water became transparent. FIG. 2 shows the particle size distribution of the microbubbles 30 minutes after the operation of the microbubble generator is stopped (measurement is performed with a commercially available light-blocking liquid particle counter). As is clear from FIG. 2, a peak of extremely microbubbles having a particle size of 3 μm or less was observed in the particle size distribution of the microbubbles. This peak disappeared after the microbubble generator was restarted, and when the water was heated for 30 minutes after the microbubble generator was turned off, the formation of an overheated state was strongly suppressed. From the above, it is clear that ultrafine bubbles having a particle size of 3 μm or less exist in water, and according to the present invention, it was found that water in which such ultrafine bubbles were stably present could be produced. .

本発明は、物理的刺激を利用することなく、粒径が3μm以下の極微小気泡を安定に存在させてなる水の製造方法を提供することができる点において産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that it can provide a method for producing water in which ultrafine bubbles having a particle size of 3 μm or less are stably present without using physical stimulation.

実施例1における微小気泡発生装置を作動中の微小気泡の粒径分布を示すグラフである。It is a graph which shows the particle size distribution of the microbubble which is operating the microbubble generator in Example 1. 同、微小気泡発生装置の作動を止めてから30分間経過後の微小気泡の粒度分布を示すグラフである。It is a graph which shows the particle size distribution of the micro bubble after progress for 30 minutes after stopping operation | movement of a micro bubble generator similarly.

Claims (6)

粒径が3μm以下の極微小気泡を含む水の製造方法であって、電気伝導度が10μS/cm以上でノルマルヘキサン抽出物濃度が100mg/L以下の水中に、粒径が50μm以下の微小気泡を発生させた後、水中で自然浮遊させてその粒径を縮小させることを特徴とする製造方法。   A method for producing water containing ultrafine bubbles having a particle size of 3 μm or less, wherein the microbubbles have a particle size of 50 μm or less in water having an electric conductivity of 10 μS / cm or more and a normal hexane extract concentration of 100 mg / L or less. After the generation of water, the particle size is reduced by naturally floating in water. 少なくとも1分間、微小気泡を水中で自然浮遊させることを特徴とする請求項1記載の製造方法。   The method according to claim 1, wherein the microbubbles are naturally suspended in water for at least 1 minute. 微小気泡を発生させる水の電気伝導度を、電解質を加えることで調整することを特徴とする請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the electric conductivity of water for generating microbubbles is adjusted by adding an electrolyte. 微小気泡を発生させる水のノルマルヘキサン抽出物濃度を、酸化剤を加えることで調整することを特徴とする請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the concentration of the normal hexane extract of water that generates microbubbles is adjusted by adding an oxidizing agent. 電気伝導度が10μS/cm以上でノルマルヘキサン抽出物濃度が100mg/L以下の水中に、粒径が50μm以下の微小気泡を発生させた後、水中で自然浮遊させてその粒径を縮小させることにより製造されてなることを特徴とする粒径が3μm以下の極微小気泡を含む水。   After generating microbubbles with a particle size of 50 μm or less in water having an electrical conductivity of 10 μS / cm or more and a normal hexane extract concentration of 100 mg / L or less, the particle size is reduced by naturally floating in water. Water containing ultrafine bubbles having a particle size of 3 μm or less, wherein 極微小気泡の半減期が30分〜15日であることを特徴とする請求項5記載の水。   The water according to claim 5, wherein the half-life of the microbubbles is 30 minutes to 15 days.
JP2006280513A 2006-10-13 2006-10-13 Method for producing water containing ultrafine bubbles and water containing ultrafine bubbles Active JP4931201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280513A JP4931201B2 (en) 2006-10-13 2006-10-13 Method for producing water containing ultrafine bubbles and water containing ultrafine bubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280513A JP4931201B2 (en) 2006-10-13 2006-10-13 Method for producing water containing ultrafine bubbles and water containing ultrafine bubbles

Publications (2)

Publication Number Publication Date
JP2008093611A true JP2008093611A (en) 2008-04-24
JP4931201B2 JP4931201B2 (en) 2012-05-16

Family

ID=39377027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280513A Active JP4931201B2 (en) 2006-10-13 2006-10-13 Method for producing water containing ultrafine bubbles and water containing ultrafine bubbles

Country Status (1)

Country Link
JP (1) JP4931201B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919534B2 (en) 2006-10-25 2011-04-05 Revalesio Corporation Mixing device
JP2011520609A (en) * 2008-05-19 2011-07-21 エンテグリース,インコーポレイテッド Gasification system and method for creating a gas-free solution in a liquid
US8349191B2 (en) 1997-10-24 2013-01-08 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
US8617616B2 (en) 2006-10-25 2013-12-31 Revalesio Corporation Methods of wound care and treatment
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
CN113358684A (en) * 2021-06-14 2021-09-07 大连理工大学 Experimental device and method for promoting generation of hydrate by applying nuclear magnetic observation microbubbles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000447A (en) * 1997-12-30 2000-01-07 Hirobumi Onari Swirling type fine bubble generator
JP2005246294A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Oxygen-nanobubble water and production method therefor
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2005342656A (en) * 2004-06-04 2005-12-15 Nakajima Kogyo:Kk Method and apparatus for dissolving gas component into deep layer region of sea

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000447A (en) * 1997-12-30 2000-01-07 Hirobumi Onari Swirling type fine bubble generator
JP2005246294A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Oxygen-nanobubble water and production method therefor
JP2005245817A (en) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology Production method of nano-bubble
JP2005342656A (en) * 2004-06-04 2005-12-15 Nakajima Kogyo:Kk Method and apparatus for dissolving gas component into deep layer region of sea

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349191B2 (en) 1997-10-24 2013-01-08 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US9034195B2 (en) 1997-10-24 2015-05-19 Revalesio Corporation Diffuser/emulsifier for aquaculture applications
US8617616B2 (en) 2006-10-25 2013-12-31 Revalesio Corporation Methods of wound care and treatment
US9004743B2 (en) 2006-10-25 2015-04-14 Revalesio Corporation Mixing device for creating an output mixture by mixing a first material and a second material
US8445546B2 (en) 2006-10-25 2013-05-21 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8449172B2 (en) 2006-10-25 2013-05-28 Revalesio Corporation Mixing device for creating an output mixture by mixing a first material and a second material
US8470893B2 (en) 2006-10-25 2013-06-25 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US8609148B2 (en) 2006-10-25 2013-12-17 Revalesio Corporation Methods of therapeutic treatment of eyes
US9402803B2 (en) 2006-10-25 2016-08-02 Revalesio Corporation Methods of wound care and treatment
US8784897B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of therapeutic treatment of eyes
US8784898B2 (en) 2006-10-25 2014-07-22 Revalesio Corporation Methods of wound care and treatment
US9511333B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US9512398B2 (en) 2006-10-25 2016-12-06 Revalesio Corporation Ionic aqueous solutions comprising charge-stabilized oxygen-containing nanobubbles
US8962700B2 (en) 2006-10-25 2015-02-24 Revalesio Corporation Electrokinetically-altered fluids comprising charge-stabilized gas-containing nanostructures
US7919534B2 (en) 2006-10-25 2011-04-05 Revalesio Corporation Mixing device
US8410182B2 (en) 2006-10-25 2013-04-02 Revalesio Corporation Mixing device
US9523090B2 (en) 2007-10-25 2016-12-20 Revalesio Corporation Compositions and methods for treating inflammation
US10125359B2 (en) 2007-10-25 2018-11-13 Revalesio Corporation Compositions and methods for treating inflammation
US9745567B2 (en) 2008-04-28 2017-08-29 Revalesio Corporation Compositions and methods for treating multiple sclerosis
US8980325B2 (en) 2008-05-01 2015-03-17 Revalesio Corporation Compositions and methods for treating digestive disorders
US8844909B2 (en) 2008-05-19 2014-09-30 Entegris, Inc. Gasification systems and methods for making bubble free solutions of gas in liquid
JP2011520609A (en) * 2008-05-19 2011-07-21 エンテグリース,インコーポレイテッド Gasification system and method for creating a gas-free solution in a liquid
US9272000B2 (en) 2009-04-27 2016-03-01 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9011922B2 (en) 2009-04-27 2015-04-21 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US8815292B2 (en) 2009-04-27 2014-08-26 Revalesio Corporation Compositions and methods for treating insulin resistance and diabetes mellitus
US9198929B2 (en) 2010-05-07 2015-12-01 Revalesio Corporation Compositions and methods for enhancing physiological performance and recovery time
US9492404B2 (en) 2010-08-12 2016-11-15 Revalesio Corporation Compositions and methods for treatment of taupathy
CN113358684A (en) * 2021-06-14 2021-09-07 大连理工大学 Experimental device and method for promoting generation of hydrate by applying nuclear magnetic observation microbubbles

Also Published As

Publication number Publication date
JP4931201B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4931201B2 (en) Method for producing water containing ultrafine bubbles and water containing ultrafine bubbles
JP5294370B2 (en) Method for producing water containing reactive species and water containing reactive species
JP4144669B2 (en) Method for producing nanobubbles
JP4921333B2 (en) Method for producing carbon dioxide nanobubble water
US8137703B2 (en) Ozone water and production method therefor
Vedadi et al. Structure and dynamics of shock-induced nanobubble collapse in water
JP2008237950A (en) Production method for hydroxyl radical-containing water and hydroxyl radical-containing water
Wu et al. Generation and characterization of submicron size bubbles
JP4802154B2 (en) Ultrafine bubble generator
JP4378543B2 (en) How to crush microbubbles
JP2005246294A (en) Oxygen-nanobubble water and production method therefor
JP4921332B2 (en) Method for producing nitrogen nanobubble water
JPH10286594A (en) Water purification device
CN104624070A (en) Gas-liquid mixing system and gas-liquid mixing method
Hasegawa et al. Electrical potential of microbubble generated by shear flow in pipe with slits
JP2018103090A (en) Device and method of producing functional water
Zhang et al. Physicochemical characteristics and the scale inhibition effect of air nanobubbles (A-NBs) in a circulating cooling water system
JP2018176148A (en) Component such as ultramicro particles floating on sea surface is dissolved in sea water. mechanism of natural world is utilized. nanobubble generator which generates nanomicroparticle water in air to dissolve the particles in liquid by compression dissolution to work as functional water
Talabazar et al. Chemical effects in “hydrodynamic cavitation on a chip”: The role of cavitating flow patterns
JP2010253405A (en) Apparatus and method for generating electrolytic fine bubble water for beverages
JP2007117853A (en) Fine bubble generator
JP4851400B2 (en) Treatment apparatus and treatment method using nanobubble-containing magnetic active water, and nanobubble-containing magnetic active water production apparatus
JP4890377B2 (en) Nanobubble-containing magnetic active water production apparatus and nanobubble-containing magnetic active water production method
JP2011050931A (en) Method for generating hydroxyl radical in water
JP2010167365A (en) Functional water production method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4931201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250