JP2008076122A - Angle and displacement sensor - Google Patents

Angle and displacement sensor Download PDF

Info

Publication number
JP2008076122A
JP2008076122A JP2006253700A JP2006253700A JP2008076122A JP 2008076122 A JP2008076122 A JP 2008076122A JP 2006253700 A JP2006253700 A JP 2006253700A JP 2006253700 A JP2006253700 A JP 2006253700A JP 2008076122 A JP2008076122 A JP 2008076122A
Authority
JP
Japan
Prior art keywords
angle
displacement sensor
transmitting member
flexible
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006253700A
Other languages
Japanese (ja)
Inventor
Yukio Fujimoto
藤本由紀夫
Arif Setyanto Taufiq
タウフィック・アリフ・セテイアント
Mare Hoshino
星野希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2006253700A priority Critical patent/JP2008076122A/en
Publication of JP2008076122A publication Critical patent/JP2008076122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that it has been difficult for a rotary encoder etc. applicable to the measurement of angular changes of sections which rotate on a center of rotation to measure angular changes of sections such as a joint part of a body of which the center of rotation is unknown or moves with rotation. <P>SOLUTION: A distortion detection element 200 in which both surfaces of a flexible elastic body 10 are sandwiched between piezoelectric films 1A and 1B is arranged at a neutral shaft in the vicinity of one end part of a tension transmitting member 30 made of a soft material. Parts of the tension transmitting member 30 and the distortion detection element 200 are superposed on and restrained to each other to form a part for restraining bending deformation of the distortion detection element 200. A means for providing tension for the member is pasted to and constituted at the other end part of the tension transmitting member 30. A bending angle generated due to the addition of an external force to the tension transmitting member 30 is detected as electrical output of the distortion detection sensor 200. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、線分が移動したときの、移動前の線分と移動後の線分の角度変化と、相対的変位を測定する変位センサに関する。とくに、構造部材の変形、ロボットや身体部位の関節部の角度変化や変形、2つの対象物の移動に伴う相対的位置の変化を測定する技術分野に関する。   The present invention relates to a displacement sensor that measures an angular change and a relative displacement of a line segment before movement and a line segment after movement when the line segment moves. In particular, the present invention relates to a technical field for measuring deformation of a structural member, angle change or deformation of a joint part of a robot or a body part, and a change of a relative position accompanying movement of two objects.

従来、角度変化を測定するセンサにはロータリーエンコーダやポテンショメータがある。また長さ変化を測定するセンサには、レーザ変位計、作動トランス型変位計、静電容量型変位計、歪みゲージ式変位計などがある。また、本発明者らはゴムのような柔軟な弾性部材の伸び、あるいは伸びた状態からの収縮量を測定するセンサを特許文献1で提案している。しかしながら、ロータリーエンコーダやポテンショメータは回転中心周りに回転する部位の角度変化を測定するもので、対象物が変形したときの対象物の所定の2つの点を結ぶ線分の角度変化を測定することは困難であった。また、身体の関節部のように、回転中心が不明な場合や、回転に伴って回転中心が移動する部位の角度変化を測定することとは困難であった。   Conventionally, there are a rotary encoder and a potentiometer as a sensor for measuring an angle change. Sensors that measure the change in length include a laser displacement meter, an operating transformer displacement meter, a capacitance displacement meter, a strain gauge displacement meter, and the like. In addition, the present inventors have proposed a sensor for measuring the elongation of a flexible elastic member such as rubber or the amount of contraction from the stretched state in Patent Document 1. However, rotary encoders and potentiometers measure the change in angle of the part that rotates around the center of rotation, and measuring the change in the angle of a line segment connecting two predetermined points of the object when the object is deformed It was difficult. Moreover, it is difficult to measure the angle change of a part where the center of rotation is unknown, such as a joint part of the body, or where the center of rotation moves with the rotation.

特許文献2は、圧電性セラミックを混入した柔軟な樹脂圧電素子を使用した角度センサーを使用して、回転中心が不明な場合や、回転に伴って回転中心が移動する部位、例えば屈伸運動をする部位の角度計測を行なう方法を提案している。しかし、屈伸運動を行なう部材上の特定の点の位置を計測するには回転角度の計測に加えて屈伸運動の支点と前記点の間の距離を知る必要があり、屈伸運動前後で該距離が変化する場合は回転角度の計測のみでは前記点の位置決定は困難である。従って、対象物の所定の2つの点を結ぶ線分が回転すると同時に長さ変化を生じる場合には、角度変化を検出するセンサと長さ変化を検出するセンサを2つ併用する必要があった。
特願2005−170378 特開平6−174407号広報
Patent Document 2 uses an angle sensor using a flexible resin piezoelectric element mixed with piezoelectric ceramic, and when the center of rotation is unknown or a part where the center of rotation moves with rotation, for example, bending and stretching movements. A method for measuring the angle of a part has been proposed. However, in order to measure the position of a specific point on a member that performs bending and stretching movements, it is necessary to know the distance between the fulcrum of bending and stretching movements and the point in addition to the measurement of the rotation angle. When changing, it is difficult to determine the position of the point only by measuring the rotation angle. Therefore, in the case where a length change occurs simultaneously with the rotation of a line connecting two predetermined points of an object, it is necessary to use two sensors for detecting an angle change and two for detecting a length change. .
Japanese Patent Application No. 2005-170378 JP-A-6-174407

本発明は、対象物が変形するときの対象物の所定の2つの点を結ぶ線分の角度変化を検出できる角度センサ及び、対象物の所定の2つの点を結ぶ線分が回転すると同時に長さ変化を生じる場合に、角度変化と長さ変化を一体化したセンサ部で検出して、2つの点を結ぶ線分の相対的変位を測定できる変位センサを提供することが課題である。   The present invention provides an angle sensor that can detect an angle change of a line segment connecting two predetermined points of the object when the target object is deformed, and a long line at the same time as the line segment connecting the two predetermined points of the object rotates. It is an object to provide a displacement sensor capable of measuring the relative displacement of a line segment connecting two points by detecting a change in angle and a change in length when a change in length occurs.

上記課題を解決するための本発明の角度及び変位センサは、図1に示すように柔軟な弾性薄板10とその両面に配設された一対の圧電フィルム1A、1Bからなる歪み検出素子200を、柔軟な張力伝達部材30の一方の端部の曲げの中立軸位置に配設し、該柔軟な張力伝達部材30の所定長さに亘って設けられた変形拘束部材40により、前記歪検出素子200の一部の長さの曲げ変形を拘束するよう配置し、前記柔軟な張力伝達部材30の他方の先端部には張力負荷部材60を取り付けて構成したことを特徴とする。ここで歪検出素子200としては、柔軟な弾性薄板10を圧電フイルム1A,1Bでサンドイッチ状に挟んで構成されるもの又はそれに類似する構成が適用できる。歪検出素子200を柔軟な張力伝達部材30の曲げの中立軸位置に配設するとは、例えば柔軟な張力伝達部材30の一方の端から前記中立軸に沿って、同張力伝達部材30の幅方向に平行な溝を設け、該溝に歪検出素子を挟むことあるいは類似の方法を言う。変形拘束部材40は、典型的には断面形状がコ字形のクリップ状の部材、又は剛性のある2枚の板材であって相互の間隔を調整する手段を付したもの等により、コ字形の部分又は前記2枚の剛性のある板材の間に歪検出素子200を配設した柔軟な張力伝達部材を置き、外面から強く挟む機構又は類似の機構を有する部材である(請求項1)。   As shown in FIG. 1, the angle and displacement sensor of the present invention for solving the above problems includes a strain detecting element 200 comprising a flexible elastic thin plate 10 and a pair of piezoelectric films 1A and 1B disposed on both sides thereof. The strain detecting element 200 is arranged by a deformation restraining member 40 disposed at a neutral axis position of one end of the flexible tension transmitting member 30 and provided over a predetermined length of the flexible tension transmitting member 30. The flexible tension transmitting member 30 is arranged to restrain bending deformation of a part of the length, and a tension load member 60 is attached to the other tip of the flexible tension transmitting member 30. Here, as the strain detection element 200, a structure in which a flexible elastic thin plate 10 is sandwiched between piezoelectric films 1A and 1B or a structure similar thereto can be applied. The arrangement of the strain detecting element 200 at the neutral axis position of the flexible tension transmitting member 30 is, for example, from the one end of the flexible tension transmitting member 30 along the neutral axis in the width direction of the tension transmitting member 30. A parallel method is provided, and a strain detection element is sandwiched between the grooves, or a similar method. The deformation restraining member 40 is typically a U-shaped part, such as a clip-shaped member having a U-shaped cross-section or two rigid plate members with a means for adjusting the distance between them. Alternatively, it is a member having a mechanism or a similar mechanism in which a flexible tension transmitting member having a strain detecting element 200 disposed between the two rigid plates is placed between the two rigid plates.

上記課題を解決するための本発明の角度及び変位センサの他の構成は、図2に示すように柔軟な弾性薄板11とその両面に配設された一対の圧電フィルム2A、2Bからなる歪み検出素子201を、柔軟な張力伝達部材31の一方の端部の曲げの中立軸位置に配設し、該柔軟な張力伝達部30の材所定長さに亘って設けられた変形拘束部材41により、前記歪検出素子201の一部の長さの曲げ変形を拘束するよう配置し、柔軟な弾性薄板12とその両面に配設された一対の圧電フィルム3A、3Bからなる歪み検出素子202を、前記の柔軟な張力伝達部材31の他方の端部の曲げの中立軸位置に配設し、該柔軟な張力伝達部31の該他方の端部の材所定長さに亘って設けられた変形拘束部材42により、前記歪検出素子202の一部の長さの曲げ変形を拘束するよう配置して構成したことを特徴とする。ここで歪検出素子201及び202は上記0005において記述した歪検出素子200と同様の構成であり、また、柔軟な張力伝達部材31は前記0005において記載した同張力伝達部材30と同様な構成であり、変形拘束部材41、42も同様に0005に記載した変形拘束部材40と同様の構成である(請求項2)。   Another configuration of the angle and displacement sensor of the present invention for solving the above-described problem is that, as shown in FIG. 2, a strain detection comprising a flexible elastic thin plate 11 and a pair of piezoelectric films 2A and 2B disposed on both sides thereof. The element 201 is disposed at a neutral axis position of the bending of one end of the flexible tension transmitting member 31, and the deformation restraining member 41 provided over a predetermined length of the flexible tension transmitting unit 30 is used. The strain detection element 202 is arranged so as to constrain bending deformation of a part of the length of the strain detection element 201, and includes a flexible elastic thin plate 12 and a pair of piezoelectric films 3A and 3B disposed on both sides thereof. A deformation restraining member disposed at the neutral axis position of the other end of the flexible tension transmitting member 31 and provided over a predetermined length of the material of the other end of the flexible tension transmitting portion 31 42, the length of a part of the strain detecting element 202 Characterized by being configured by arranging to restrain bending deformation. Here, the strain detection elements 201 and 202 have the same configuration as the strain detection element 200 described in the above 0005, and the flexible tension transmission member 31 has the same configuration as the tension transmission member 30 described in the above 0005. Similarly, the deformation restraining members 41 and 42 have the same configuration as the deformation restraining member 40 described in 0005 (Claim 2).

本発明の角度及び変位センサは、前記変形拘束部材40あるいは41及び42を対象物に回転不可に固定し、前記柔軟な張力伝達部材30又は31に張力を負荷した状態で使用したことを特徴とする(請求項3)。   The angle and displacement sensor of the present invention is characterized in that the deformation restraining member 40 or 41 and 42 is fixed to an object so as not to rotate, and is used in a state where tension is applied to the flexible tension transmitting member 30 or 31. (Claim 3).

本発明の角度及び変位センサは、前記歪検出素子200の曲げ変形により、同素子を構成する圧電フィルム1Aの裏表面間に生じた電荷に対応する出力信号をV1,同じく1Bに生ずる同様の出力信号をV2とし、式(V1−V2)の値を変形拘束部材40と張力伝達部材30のなす角度変化θに応じた信号として出力することを特徴とする。図2の場合には歪検出素子201又は同202を構成する圧電フィルムの表裏に生じた電荷に対応する出力信号をV1,V2として、式(V1−V2)の値を変形拘束部材41と張力伝達部材31のなす、又は変形拘束部材42と張力伝達部材31のなす角度θに応じた信号とする(請求項4)。   The angle and displacement sensor of the present invention has the same output that generates an output signal V1 and 1B corresponding to the electric charge generated between the back surfaces of the piezoelectric film 1A constituting the element due to the bending deformation of the strain detecting element 200. The signal is V2, and the value of the expression (V1-V2) is output as a signal corresponding to the angle change θ between the deformation restraining member 40 and the tension transmitting member 30. In the case of FIG. 2, the output signals corresponding to the charges generated on the front and back of the piezoelectric film constituting the strain detecting element 201 or 202 are V1 and V2, and the value of the expression (V1−V2) is set to the tension of the deformation restraining member 41 and the tension. A signal corresponding to an angle θ formed by the transmission member 31 or between the deformation restraining member 42 and the tension transmission member 31 is used.

本発明の角度及び変位センサの角度検出原理について図3を用いて説明する。ゴム帯板のように、引っ張り剛性に対して曲げ剛性の小さい柔軟な弾性部材の一方の端を、図3(a)のように回転不可に固定して垂直に垂らした状態で、下端部を水平方向に押すと、柔軟な弾性部材は面外に柔軟に変形するので、緩やかなカーブを描いて湾曲する。柔軟な弾性部材には張力が作用していないため、押す速度が速い場合には湾曲部に曲げ振動が生じたり、また、先端部を指で摘んで押す場合には摘み方によって湾曲形状が大きく変化する。また、先端部に大きな角度変化を生じさせるには、柔軟な弾性部材の長さを長くする必要がある。   The angle detection principle of the angle and displacement sensor of the present invention will be described with reference to FIG. As shown in FIG. 3 (a), one end of a flexible elastic member having a small bending rigidity with respect to the tensile rigidity is fixed in a non-rotatable state and hung vertically. When pushed in the horizontal direction, the flexible elastic member is flexibly deformed out of the plane, so that it curves in a gentle curve. Since no tension acts on the flexible elastic member, bending vibration occurs in the curved part when the pressing speed is fast, and when the tip part is picked and pushed with a finger, the bending shape increases depending on how to pick it. Change. Further, in order to cause a large angle change at the tip, it is necessary to increase the length of the flexible elastic member.

ところが、前記柔軟な弾性部材に垂直方向に張力を加えて引き延ばした状態で、水平方向に押すと、図3(b)のように固定部付近のみが小さな曲率半径で湾曲し、固定部から少し離れた位置から下方の柔軟な弾性部材は張力によって曲がりにくくなっているので直線的に伸びる形状に変形する。固定部分の曲率半径は張力が大きいほど小さくなる。このときの柔軟な弾性部材には張力が作用しているので、押す速度が速くても曲げ振動が生じにくく、また、先端部の摘み方によっても固定部付近の角度変化はほとんど変化しない。また、柔軟な弾性部材の長さが短くても角度変化が同じであれば、固定部付近の曲げ変形状態はほとんど影響を受けない。   However, when the flexible elastic member is stretched by applying tension in the vertical direction and pushed in the horizontal direction, only the vicinity of the fixed portion is curved with a small radius of curvature as shown in FIG. Since the flexible elastic member below from the distant position is not easily bent by the tension, it is deformed into a linearly extending shape. The radius of curvature of the fixed portion decreases as the tension increases. Since the tension is applied to the flexible elastic member at this time, bending vibration hardly occurs even if the pressing speed is high, and the angle change in the vicinity of the fixed portion hardly changes depending on how the tip portion is picked. Further, even if the length of the flexible elastic member is short, if the angle change is the same, the bending deformation state in the vicinity of the fixed portion is hardly affected.

本発明の角度及び変位センサは、柔軟な弾性部材に張力を負荷した状態で角度変化を生じさせることにより、センサに局部的な曲げ変形を集中して生じさせ、局部的に曲げ変形した部分に圧電フィルムを配設して曲げ歪みを検出することにより、小さな寸法のセンサで角度変化を精度良く測定でき、角度変化による振動が生じにくく、かつ、張力の負荷方法に影響を受けにくい角度及び変位センサを構成するものである。   In the angle and displacement sensor of the present invention, a local bending deformation is concentrated on the sensor by causing an angle change in a state where tension is applied to a flexible elastic member, and a local bending deformation is caused in the locally bent deformation portion. By detecting the bending strain by installing a piezoelectric film, it is possible to accurately measure the angle change with a small-sized sensor, and the angle and displacement that are less susceptible to vibration due to the angle change and less susceptible to the tension loading method. It constitutes a sensor.

本発明の角度及び変位センサの歪み検出素子200、201、および202について説明する。歪み検出素子を構成する柔軟な弾性薄板10、11および12は厚さ0.1mm〜0.5mmとする。また、柔軟な弾性薄板10、11および12には、弾性率が0.2Mpa〜20Mpaの柔軟な弾性素材を使用する。たとえば、前記柔軟な弾性薄板として、硬度30〜80の天然ゴム、合成ゴム、あるいは各種ゴム素材を組み合わせてなる素材を使用する(請求項5、請求項6)。   The strain detection elements 200, 201, and 202 of the angle and displacement sensor of the present invention will be described. The flexible elastic thin plates 10, 11 and 12 constituting the strain detection element have a thickness of 0.1 mm to 0.5 mm. Further, a flexible elastic material having an elastic modulus of 0.2 Mpa to 20 Mpa is used for the flexible elastic thin plates 10, 11 and 12. For example, as the flexible elastic thin plate, a natural rubber having a hardness of 30 to 80, a synthetic rubber, or a material obtained by combining various rubber materials is used (claims 5 and 6).

歪み検出素子の圧電フィルム1A、1B、2A、2B、3Aおよび3Bには、両面全体に電極を設けた0.02mm〜0.1mmの厚さのものを使用する。圧電フィルムの両面の電極にはそれぞれ電気配線を接続する。また、前記電気配線には積分回路(又はチャージアンプ)または圧電フィルム裏表に生じる電荷を計測する手段を接続し、積分回路を介して得られる出力信号を圧電フィルムの出力信号として測定する。   For the piezoelectric films 1A, 1B, 2A, 2B, 3A and 3B of the strain detection element, those having a thickness of 0.02 mm to 0.1 mm in which electrodes are provided on both surfaces are used. Electrical wiring is connected to the electrodes on both sides of the piezoelectric film. The electrical wiring is connected to an integration circuit (or charge amplifier) or means for measuring charges generated on the front and back of the piezoelectric film, and an output signal obtained via the integration circuit is measured as an output signal of the piezoelectric film.

前記柔軟な弾性部材10、11および12の厚さを0.1mm〜0.5mmにする理由について説明する。前記柔軟な弾性部材の厚さが0.5mmよりも厚いと、一対の圧電フィルムの間隔が大きくなって、曲げ変形によって圧電フィルムには大きな曲げ歪みが生じる。このため、歪み検出素子は曲がりにくくなり、無理に曲げると圧縮側の圧電フィルムに座屈が生じる。また、前記柔軟な弾性部材の厚さを0.1mmよりも薄くすると、容易に曲げ変形するようになるが、圧電フィルムの出力信号が小さくなって、角度変化を精度良く測定することができない。   The reason why the thickness of the flexible elastic members 10, 11 and 12 is 0.1 mm to 0.5 mm will be described. When the thickness of the flexible elastic member is greater than 0.5 mm, the distance between the pair of piezoelectric films becomes large, and a large bending strain occurs in the piezoelectric film due to bending deformation. For this reason, the strain detection element is difficult to bend, and if it is bent forcibly, the compression-side piezoelectric film is buckled. Further, when the thickness of the flexible elastic member is made thinner than 0.1 mm, it is easily bent and deformed, but the output signal of the piezoelectric film becomes small and the angle change cannot be measured with high accuracy.

前記柔軟な弾性薄板10、11および12に弾性率が、0.2Mpa〜20Mpaの柔軟な弾性素材を使用する理由について説明する。柔軟な弾性薄板として金属薄板や硬い樹脂薄板を使用すると、歪み検出素子200、201または202の曲げの剛性が大きくなって、局部的な曲げ変形が生じにくくなる。また、張力伝達部材30あるいは31から歪み検出素子200、201又は202の先端部に移る境界部分でも別の角度変化を生じて、柔軟な張力伝達部材の複数箇所で角度変化を生じるようになるので、角度変化を精度良く測定することができない。曲げ変形を変形拘束部材40、41又は42と張力伝達部材30又は31との境界部の一箇所に集中して生じさせ、かつ、曲率半径を小さく曲げるためには、上記弾性率の範囲の柔軟な弾性薄板を使用するのが好適である。   The reason for using a flexible elastic material having an elastic modulus of 0.2 Mpa to 20 Mpa for the flexible elastic thin plates 10, 11 and 12 will be described. When a metal thin plate or a hard resin thin plate is used as the flexible elastic thin plate, the bending rigidity of the strain detection element 200, 201 or 202 is increased, and local bending deformation is less likely to occur. In addition, another angle change occurs at the boundary portion that moves from the tension transmission member 30 or 31 to the tip of the strain detection element 200, 201, or 202, and the angle change occurs at a plurality of locations of the flexible tension transmission member. The angle change cannot be measured with high accuracy. In order to cause the bending deformation to be concentrated at one place on the boundary between the deformation restraining member 40, 41 or 42 and the tension transmitting member 30 or 31, and to bend the radius of curvature small, the flexibility within the above elastic modulus range is required. It is preferable to use a thin elastic plate.

柔軟な張力伝達部材30および31には、弾性率が0.2Mpa〜20Mpaの柔軟な弾性部材を用いる。たとえば、柔軟な張力伝達部材30又は31には硬度30〜80の天然ゴム、合成ゴム、あるいは各種ゴム素材を組み合わせてなる柔軟な弾性部材を使用する。柔軟な張力伝達部材30又は31と前記歪み検出素子の柔軟な弾性薄板10、11又は12には同じ素材を用いても良い。あるいは、柔軟な張力伝達部材30又は31に弾性特性のある伸縮布帛などを用いることもできる(請求項7)。   As the flexible tension transmitting members 30 and 31, a flexible elastic member having an elastic modulus of 0.2 Mpa to 20 Mpa is used. For example, as the flexible tension transmitting member 30 or 31, a flexible elastic member formed by combining natural rubber having a hardness of 30 to 80, synthetic rubber, or various rubber materials is used. The same material may be used for the flexible tension transmitting member 30 or 31 and the flexible elastic thin plate 10, 11 or 12 of the strain detecting element. Alternatively, a stretchable fabric having elastic characteristics can be used for the flexible tension transmitting member 30 or 31 (claim 7).

前記柔軟な張力伝達部材30および31に硬い弾性部材を用いない理由は、歪み検出素子200、201及び202を配設した部分で張力伝達部材は2層構造となるので、張力伝達部材が硬いとこの部分が小さな曲率半径では曲がりにくくなり、無理に曲げると圧縮側の張力伝達部材に座屈が生じるためである。すなわち、歪み検出素子を配設した部分のセンサの曲げ剛性を小さくして、局部的な曲げ変形を集中して生じさせるには柔軟な弾性部材を用いるのが好適である。   The reason for not using a hard elastic member for the flexible tension transmitting members 30 and 31 is that the tension transmitting member has a two-layer structure in the portion where the strain detecting elements 200, 201 and 202 are disposed. This is because this portion is difficult to bend at a small radius of curvature, and if it is bent forcibly, buckling occurs in the tension transmitting member on the compression side. That is, it is preferable to use a flexible elastic member in order to reduce the bending rigidity of the sensor in the portion where the strain detection element is disposed and to cause local bending deformation in a concentrated manner.

次に、本発明の角度及び変位センサの歪み検出素子200、201及び202を配設した部分の横断面形状について説明する。上述したように、柔軟な張力伝達部材30又は31に柔軟な弾性部材を用いた場合であっても、柔軟な張力伝達部材30又は31の横断面積が大きいと、歪み検出素子200、201又は202の局部的な曲げを阻害することになる。柔軟な張力伝達部材30又は31は、歪み検出素子200、201又は202に張力を伝達する役目と、歪み検出素子の曲げ変形を阻害することなく形状を保持する役目を果たせれば、できるだけ曲げ剛性が小さいのが好適である。   Next, the cross-sectional shape of the portion where the strain detection elements 200, 201 and 202 of the angle and displacement sensor of the present invention are disposed will be described. As described above, even when a flexible elastic member is used for the flexible tension transmitting member 30 or 31, if the cross sectional area of the flexible tension transmitting member 30 or 31 is large, the strain detecting element 200, 201 or 202 is used. This will inhibit local bending. If the flexible tension transmitting member 30 or 31 can play the role of transmitting the tension to the strain detecting element 200, 201 or 202 and holding the shape without hindering the bending deformation of the strain detecting element, the flexible tension transmitting member 30 or 31 can be bent as much as possible. Is preferably small.

このため、前記歪み検出素子200、201又は202を配設した部分の角度及び変位センサの横断面において、柔軟な張力伝達部材の曲げ剛性(E2×I2)が、歪み検出素子の曲げ剛性(E0×I0+E1×I1)、(但しE0、E1、E2はそれぞれ圧電フィルム、柔軟な弾性薄板、柔軟な張力伝達部材の弾性率、I0、I1、I2はそれぞれ、一対の圧電フィルム、柔軟な弾性薄板、柔軟な張力伝達部材の断面ニ次モーメント)よりも小さくなるように作製するのが良い(請求項8)。   For this reason, the bending rigidity (E2 × I2) of the flexible tension transmitting member is equal to the bending rigidity (E0) of the flexible tension transmitting member in the angle of the portion where the strain detecting element 200, 201 or 202 is disposed and in the cross section of the displacement sensor. × I0 + E1 × I1), where E0, E1, and E2 are each a piezoelectric film, a flexible elastic thin plate, and an elastic modulus of a flexible tension transmitting member, and I0, I1, and I2 are a pair of piezoelectric films, a flexible elastic thin plate, It is preferable to make it smaller than the second moment of inertia of the flexible tension transmitting member.

図4は本発明の角度及び変位センサに張力を負荷して使用するもう一つの理由を、請求項1に記載の角度及び変位センサを例に説明する図である。図4(a)のように張力を負荷しない状態で角度及び変位センサが曲げ変形すると、変形拘束部材40付近の柔軟な張力伝達部材30と圧電フィルム1Aは、引っ張り側では滑らかに伸びて曲げ変形するが、圧縮側では圧縮歪みによって柔軟な張力伝達部材30と圧電フィルム1Bに座屈が生じて表面が凹凸状態になる。圧縮側表面の凹凸は曲げ角度がある程度以上に大きくなると生じ、また、柔軟な張力伝達部材30の厚さが厚くなるほど生じ易くなる。ところが、図4(b)のように張力を負荷した状態で曲げ変形すると、柔軟な張力伝達部材30と歪み検出素子200の横断面全体に一様な引っ張り歪みが加わるので、検出素子200が大きく折れ曲がった場合でも圧縮側表面に凹凸が生じることなく滑らかに変形するようになる。   FIG. 4 is a diagram illustrating another reason for using the angle and displacement sensor of the present invention with tension applied thereto, taking the angle and displacement sensor according to claim 1 as an example. When the angle and displacement sensor is bent and deformed without applying tension as shown in FIG. 4A, the flexible tension transmitting member 30 and the piezoelectric film 1A in the vicinity of the deformation restraining member 40 are smoothly stretched and bent on the pulling side. However, on the compression side, buckling occurs in the flexible tension transmitting member 30 and the piezoelectric film 1B due to compressive strain, and the surface becomes uneven. Concavities and convexities on the compression side surface are generated when the bending angle is larger than a certain degree, and are more likely to occur as the thickness of the flexible tension transmitting member 30 increases. However, when bending deformation is performed with tension applied as shown in FIG. 4B, uniform tensile strain is applied to the entire cross-section of the flexible tension transmitting member 30 and the strain detecting element 200, so that the detecting element 200 is large. Even when it is bent, it is smoothly deformed without causing irregularities on the compression side surface.

変形拘束部材40、41および42について説明する。変形拘束部材は歪み検出素子の一部分を曲げ変形しないように拘束した状態で対象物に角度及び変位センサを固定するものであるから、金属などの剛性のある素材で作製し、また、歪み検出素子200、201又は202の両面側を拘束できるものが良い。   The deformation restraining members 40, 41 and 42 will be described. The deformation restraining member fixes the angle and displacement sensor to the object in a state in which a part of the strain detecting element is constrained so as not to bend and deform. Therefore, the deformation restraining member is made of a rigid material such as a metal. What can restrain both sides of 200, 201, or 202 is good.

歪み検出素子200、201および202の長さと、歪み検出素子端部の所定長さの部分において曲げ変形を拘束する変形拘束部材の寸法関係について請求項1に記載の角度及び変位センサを例に説明する。図1において、変形拘束部材40で変形を拘束されていない部分の歪み検出素子200の長さは、歪み検出素子200と柔軟な張力伝達部材30の厚さを加えた全体厚さの5倍よりも長く作製する。また、歪み検出素子が変形拘束部材で変形が拘束されている部分の長さは、同拘束されていない部分の長さと略同じ長さにする(請求項9)。   The angle and displacement sensor according to claim 1 will be described as an example of the dimensional relationship between the length of the strain detection elements 200, 201, and 202 and the deformation restraining member that restrains the bending deformation at a predetermined length portion at the end of the strain detection element. To do. In FIG. 1, the length of the strain detection element 200 in the portion where the deformation is not restrained by the deformation restraining member 40 is more than five times the total thickness including the thickness of the strain detection element 200 and the flexible tension transmitting member 30. Also make long. Further, the length of the portion of the strain detecting element where the deformation is restrained by the deformation restraining member is set to be substantially the same as the length of the portion not restrained (claim 9).

図5は本発明の角度及び変位センサの引っ張り側の圧電フィルム1Aに作用する曲げ歪みε(x)(但しxは図5における圧電フィルムの左端からの距離)と、張力による引っ張り歪みε(x)を模式的に示した図である。局部的に曲げ変形を生じた部分の歪み検出素子200の曲率半径は、図5(a)に示す圧電フィルム1Aの曲げ歪み分布からわかるように、曲がり部分で一様ではなく、変形拘束部材40との境界部で最大になり、柔軟な張力伝達部材30の先端部に移動するに従って減少する。したがって、歪み検出素子200の拘束されていない部分の全体の長さは、同曲げ変形している部分の長さより長いことが必要である。 FIG. 5 shows the bending strain ε B (x) (where x is the distance from the left end of the piezoelectric film in FIG. 5) acting on the piezoelectric film 1A on the pull side of the angle and displacement sensor of the present invention, and the tensile strain ε T due to tension. It is the figure which showed (x) typically. As can be seen from the bending strain distribution of the piezoelectric film 1 </ b> A shown in FIG. 5A, the curvature radius of the strain detecting element 200 at the portion where the bending deformation is locally generated is not uniform at the bending portion, and the deformation restraining member 40. And decreases as the tip moves to the tip of the flexible tension transmitting member 30. Therefore, the entire length of the unconstrained portion of the strain detection element 200 needs to be longer than the length of the portion that is bent and deformed.

ところが、歪み検出素子200における曲げ変形が完全に直線的変形に移り変わる位置を判定することは困難であるし、また、張力の大きさによって曲げ変形部分の長さは変化する。曲げ角度を精度良く測定するには、柔軟な張力伝達部材30が直線状になる部分まで歪み検出素子200が伸びている必要があるため、変形拘束部材40で変形を拘束されていない部分の歪み検出素子200の長さは、歪み検出素子200と柔軟な張力伝達部材30の厚さを加えた全体厚さの5倍よりも長く作製するのが良い。   However, it is difficult to determine the position at which the bending deformation in the strain detection element 200 completely changes to a linear deformation, and the length of the bending deformation portion changes depending on the magnitude of the tension. In order to accurately measure the bending angle, the strain detecting element 200 needs to extend to a portion where the flexible tension transmitting member 30 is linear. The length of the detection element 200 is preferably longer than five times the total thickness including the thickness of the strain detection element 200 and the flexible tension transmission member 30.

また、変形拘束部材40で変形を拘束された部分の柔軟な張力伝達部材30は、表面では変形を拘束されているが、内部の歪み検出素子200の圧電フィルム1A、1Bには曲げ歪みが生じるので、変形拘束部材40で変形を拘束された部分の歪み検出素子200の長さも、変形拘束部材40で変形を拘束されていない部分の歪み検出素子200の長さと同程度の長さとするのがよい。   Moreover, although the deformation | transformation of the flexible tension | tensile_strength transmission member 30 of the part restrained by the deformation | transformation restraint member 40 is restrained deformation | transformation on the surface, bending distortion arises in piezoelectric film 1A, 1B of the internal distortion detection element 200. Therefore, the length of the strain detection element 200 in the portion of which the deformation is restrained by the deformation restraining member 40 is also set to the same length as the length of the portion of the strain detection element 200 in which the deformation is not restrained by the deformation restraining member 40. Good.

請求項1の角度及び変位センサを例に、一対の圧電フィルム1A、1Bの出力信号と角度変化θ及び伸び変化δの関係について説明する。歪み検出素子200には張力と曲げが作用するので、圧電フィルム1A、1Bには曲げ歪みε(x)と引っ張り歪みε(x)が生じ、上面が凸に湾曲した場合には、上面側の圧電フィルム1Aの歪みはε(x)=ε(x)+ε(x)、下面側の圧電フィルム1Bの歪みはε(x)=−ε(x)+ε(x)になる。 Taking the angle and displacement sensor of claim 1 as an example, the relationship between the output signals of the pair of piezoelectric films 1A and 1B and the angle change θ and elongation change δ will be described. Since tension and bending act on the strain detecting element 200, bending strain ε B (x) and tensile strain ε T (x) are generated in the piezoelectric films 1A and 1B, and the upper surface is curved in a convex manner. The distortion of the piezoelectric film 1A on the side is ε (x) = ε B (x) + ε T (x), and the distortion of the piezoelectric film 1B on the lower surface side is ε (x) = − ε B (x) + ε T (x) Become.

圧電フィルムの出力信号は歪みの総和に比例するので、一定幅で長さLの圧電フィルムの場合、圧電フィルム1Aの裏表面の電位差V1(又は前記の積分回路の出力電圧をV1とすることもできる。V2も同様)と、圧電フィルム1Bの裏表面の電位差V2はそれぞれ数1のようになる。   Since the output signal of the piezoelectric film is proportional to the total distortion, in the case of a piezoelectric film having a constant width and a length L, the potential difference V1 on the back surface of the piezoelectric film 1A (or the output voltage of the integration circuit may be V1). (V2 is also the same), and the potential difference V2 on the back surface of the piezoelectric film 1B is as shown in Equation (1).

但しkは比例定数である。 However, k is a proportionality constant.

材料力学より、曲げ歪みε(x)と角度変化θの関係は数2で、また、引っ張り歪みε(x)と伸びδの関係は数3で与えられる。 From the material mechanics, the relationship between the bending strain ε B (x) and the angle change θ is given by Equation 2, and the relationship between the tensile strain ε T (x) and the elongation δ is given by Equation 3.

但しhは張力伝達部材40の曲げの中立軸から圧電フィルムの中心までの距離である。
これらの関係を用いて、数1のV1とV2の差分(V1−V2)及び和(V1+V2)を計算すると数4になる。
Here, h is the distance from the neutral axis of bending of the tension transmitting member 40 to the center of the piezoelectric film.
Using these relationships, the difference (V1−V2) and the sum (V1 + V2) between V1 and V2 in Equation 1 are calculated to obtain Equation 4.

すなわち、一対の圧電フィルムの出力信号の差分(V1−V2)が変形拘束部材40と張力伝達部材30とのなす角度変化θに比例し、また、出力信号の和(V1+V2)が張力伝達部材30の伸び変化δに比例することになる。 That is, the difference (V1−V2) between the output signals of the pair of piezoelectric films is proportional to the angle change θ between the deformation restraining member 40 and the tension transmitting member 30, and the sum (V1 + V2) of the output signals is the tension transmitting member 30. It is proportional to the elongation change δ.

また、数4において(V1−V2)は張力伝達部材30の伸びδに無関係であり、(V1+V2)は角度変化θに無関係である。このことは、角度センサとしての使用中にセンサが伸び変形をしても、(V1−V2)は伸びδの影響を受けないことを意味する。一方、後述する本発明の角度及び変位センサーと同様の構成のセンサーで変位計測を行なう場合には、張力伝達部材(30又は31)に角度変化が生じても、(V1+V2)は角度変化θの影響を考慮する必要がないことを意味する。   In Equation 4, (V1−V2) is irrelevant to the elongation δ of the tension transmitting member 30, and (V1 + V2) is irrelevant to the angle change θ. This means that (V1-V2) is not affected by the elongation δ even if the sensor is stretched and deformed during use as an angle sensor. On the other hand, when the displacement measurement is performed by a sensor having the same configuration as the angle and displacement sensor of the present invention described later, even if an angle change occurs in the tension transmission member (30 or 31), (V1 + V2) is an angle change θ. This means there is no need to consider the impact.

本発明の請求項1に記載の角度及び変位センサに張力を負荷する張力負荷部材60について説明する。張力負荷部材60は、柔軟な張力伝達部材30に張力を負荷した状態で対象物などに固定できるものであれば良い。たとえば金属製の張力負荷部材を張力伝達部材に接着して取り付けるか、張力伝達部材にネジ穴をあけて締付けて取り付けることができる。張力負荷部材60の対象物への固定方法は回転自在に固定するのが望ましいが、フックを用いた掛止手段であっても、ボルトによる固定手段であっても良い。   A tension load member 60 for applying tension to the angle and displacement sensor according to claim 1 of the present invention will be described. The tension load member 60 may be any member that can be fixed to an object or the like with tension applied to the flexible tension transmission member 30. For example, it is possible to attach a metal tension load member by adhering to the tension transmission member, or to attach the tension transmission member by making a screw hole in the tension transmission member. Although it is desirable to fix the tension load member 60 to the object in a rotatable manner, the tension load member 60 may be a hooking means or a bolt fixing means.

また、図6に示すように、バネ付の張力負荷部材61のバネを引き延ばして対象物に固定するようにしても良い。このようにすると、柔軟な張力伝達部材30の長さが短くて張力伝達部材の伸び(又は縮み)が少ない場合でも、必要な張力をバネの張力で補うことができる。   Moreover, as shown in FIG. 6, the spring of the tension load member 61 with a spring may be extended and fixed to an object. In this way, even when the length of the flexible tension transmitting member 30 is short and the tension transmitting member is little stretched (or contracted), the necessary tension can be supplemented with the tension of the spring.

次に、本発明の角度及び変位センサーを変位センサとして使用する場合について図12を用いて説明する。説明にあたり、まず、図5(b)の歪み検出素子の圧電フィルム1A、1Bの引っ張り歪みの分布について説明する。角度センサに曲げ変形が生じた場合に、圧電フィルム1A、1Bには負荷した張力に応じて図5(b)に示すような引っ張り歪みε(x)が分布するが、その分布は引っ張り側の圧電フィルム1Aと圧縮側の圧電フィルム1Bで同じである。従って、数4に示したように、一対の圧電フィルム1A、1Bの出力信号の和(V1+V2)からセンサの伸びδに応じた信号を測定することができる。 Next, the case where the angle and displacement sensor of the present invention is used as a displacement sensor will be described with reference to FIG. In the description, first, the distribution of tensile strain of the piezoelectric films 1A and 1B of the strain detection element of FIG. When bending deformation occurs in the angle sensor, a tensile strain ε T (x) as shown in FIG. 5B is distributed on the piezoelectric films 1A and 1B in accordance with the applied tension. The piezoelectric film 1A and the compression-side piezoelectric film 1B are the same. Therefore, as shown in Equation 4, a signal corresponding to the sensor elongation δ can be measured from the sum (V1 + V2) of the output signals of the pair of piezoelectric films 1A and 1B.

すなわち,上述の角度及び変位センサは、一対の圧電フィルムの出力信号の和(V1+V2)からセンサの長さ変化δに応じた信号を検出し、また、(V1―V2)から角度変化θを検出することで変位センサとして用いることができる。この変位は,角度センサを張設したときの張設軸方向をX軸に,張設軸に直角方向をY軸に取ると,図12に示すように、δy=(L1+δ)×sinθ、δx=(L1+δ)×cosθ−L1(但しL1は張設時の角度センサの長さ)で求めることができる(請求項12)。   That is, the angle and displacement sensor described above detects a signal corresponding to the sensor length change δ from the sum of the output signals of the pair of piezoelectric films (V1 + V2), and also detects the angle change θ from (V1−V2). By doing so, it can be used as a displacement sensor. This displacement is calculated by taking the tension axis direction when the angle sensor is stretched as the X axis and the direction perpendicular to the tension axis as the Y axis, as shown in FIG. 12, δy = (L1 + δ) × sin θ, δx. = (L1 + δ) × cos θ−L1 (where L1 is the length of the angle sensor when stretched) (claim 12).

以上説明したように,上記に記載した角度及び変位センサは、いずれも変位センサとしても使用することができる。   As described above, any of the angle and displacement sensors described above can be used as a displacement sensor.

本発明の角度及び変位センサによれば、簡単な構造で、角度変化を精度良く測定できる小型の角度センサを提供することができる。また、角度変化と長さ変化を一体化したセンサ部で検出することにより、対象物の所定の2点、又は2つの対象物の所定の点の間の相対的変位を精度良く測定できる小型の変位センサを提供することができる。これにより、構造部材の変形、ロボットや身体部位の関節部の角度変化や変形、2つの対象物の角度変化や変位の測定を容易に実現することができる。また、複数の角度センサや変位センサを連結したセンサは、複数の点、又は複数の対象物の所定の点を結ぶ複数の線分の角度変化や変位の測定を容易に実現することができる。   According to the angle and displacement sensor of the present invention, it is possible to provide a small angle sensor that can measure an angle change with high accuracy with a simple structure. In addition, by detecting the angle change and the length change with an integrated sensor unit, a small size that can accurately measure the relative displacement between two predetermined points of the object or two predetermined points of the object. A displacement sensor can be provided. As a result, deformation of the structural member, angle change or deformation of the joint portion of the robot or body part, and measurement of the angle change or displacement of the two objects can be easily realized. In addition, a sensor in which a plurality of angle sensors and displacement sensors are connected can easily realize angle change and displacement measurement of a plurality of points or a plurality of line segments connecting predetermined points of a plurality of objects.


(実施例1)
図7は請求項1に記載のセンサを例に、角度変化を測定する方法の一実施例を説明する図である。いま、破線で示す有効長さL0の角度センサの変形拘束部材40を第1の対象物に回転不可に固定し、柔軟な張力負荷部材30に張力を負荷して引き延ばした状態で柔軟な張力負荷部材30を第2の対象物に固定する。このときのセンサの有効長さをL1とする。第2の対象物は変形拘束部材40の延長方向であっても良く、また、初期角度を持って固定しても良い。

(Example 1)
FIG. 7 is a diagram for explaining an embodiment of a method for measuring an angle change, taking the sensor according to claim 1 as an example. Now, the deformation restraining member 40 of the angle sensor having the effective length L0 indicated by the broken line is fixed to the first object so as not to rotate, and the flexible tension load member 30 is stretched by applying tension to the flexible tension load. The member 30 is fixed to the second object. The effective length of the sensor at this time is L1. The second object may be an extension direction of the deformation restraining member 40, or may be fixed with an initial angle.

次に、たとえば、第2の対象物が移動して、図のように角度センサに角度変化θが生じたとする。すると角度変化θは、数4よりθ=(V1−V2)/2khで求めることができる。このとき、角度センサには図のような伸びδ(あるいは、伸びた状態から縮み)を生じるが、上述したように(V1−V2)は伸びδによって影響を受けない。   Next, for example, it is assumed that the second object moves and an angle change θ occurs in the angle sensor as illustrated. Then, the angle change θ can be obtained from Equation 4 by θ = (V1−V2) / 2 kh. At this time, the angle sensor has an elongation δ as shown in the figure (or contracted from the expanded state), but (V1-V2) is not affected by the elongation δ as described above.

(実施例2)
図8は請求項2に記載の角度及び変位センサで角度変化を測定する方法の一実施例を説明する図である。まず、柔軟な張力伝達部材31に張力を負荷した状態で、両端部の変形拘束部材41、42を第1と第2の対象物の面にそれぞれ回転不可に固定する。次に第1と第2の対象物の少なくとも一方が移動して図(b)のように変位したとする。このときの両端部の歪み検出素子201、202の出力信号から、角度変化θ1、θ2をそれぞれ測定すると、2つの対象物の所定の面の相対的な角度変化を測定することができる。
(Example 2)
FIG. 8 is a view for explaining an embodiment of a method for measuring an angle change by the angle and displacement sensor according to claim 2. First, in a state where tension is applied to the flexible tension transmitting member 31, the deformation restraining members 41 and 42 at both ends are fixed to the surfaces of the first and second objects so as not to rotate. Next, it is assumed that at least one of the first and second objects moves and is displaced as shown in FIG. If the angle changes θ1 and θ2 are respectively measured from the output signals of the strain detection elements 201 and 202 at both ends at this time, the relative angle changes of the predetermined surfaces of the two objects can be measured.

(実施例3)
図9は請求項10に記載の角度及び変位センサの一実施例を説明する図である。金属などで作製され、回転関節50で回転自在に連結された2つの剛性部材90、91の回転関節部分に、前記回転関節50の中心に歪み検出素子203の曲げの中立軸が一致し、かつ、前記回転関節50の中心に歪み検出素子が曲げ変形する部分の変形拘束部材44の端部が一致するようにして、変形拘束部材44を剛性部材90に取り付ける。次に、柔軟な張力伝達部材33に張力を負荷した状態で張力負荷部材62をもう一方の剛性部材91に止めピンなどで取り付ける。2つの剛性部材90、91が回転関節部分で回転するときの(V1−V2)を上述した方法で測定すると、2つの剛性部材の角度変化θを測定することができる。
(Example 3)
FIG. 9 is a view for explaining an embodiment of the angle and displacement sensor according to the tenth aspect. The neutral axis of bending of the strain detecting element 203 coincides with the rotary joint portion of the two rigid members 90 and 91 made of metal or the like and rotatably connected by the rotary joint 50, and the center of the rotary joint 50, and The deformation restraining member 44 is attached to the rigid member 90 so that the end of the deformation restraining member 44 at the portion where the strain detecting element is bent and deformed coincides with the center of the rotary joint 50. Next, the tension load member 62 is attached to the other rigid member 91 with a stop pin or the like while the tension is applied to the flexible tension transmission member 33. When (V1−V2) when the two rigid members 90 and 91 rotate at the rotary joint portion is measured by the method described above, the angle change θ between the two rigid members can be measured.

(実施例4)
図10は請求項10に記載の角度及び変位センサの別の実施例を説明する図である。金属などで作製した3つの剛性部材92、93、94を、2つの回転関節51、52で直列に連結する。次に、両端部に歪み検出素子を配設した角度センサの柔軟な張力伝達部材34に張力を負荷した状態で、変形拘束部材45、46を剛性部材92、94に回転不可にそれぞれ固定する。回転関節部で2つの剛性部材92、94が回転すると、歪み検出素子204、205はそれぞれ、回転関節51、52の角度変化に応じて曲げ変形する。そのときの角度変化を両端部の歪み検出素子204,205でそれぞれ測定することで、剛性部材92、93、94の角度変化の状態を測定することができる。
Example 4
FIG. 10 is a view for explaining another embodiment of the angle and displacement sensor according to the tenth aspect. Three rigid members 92, 93, 94 made of metal or the like are connected in series by two rotary joints 51, 52. Next, the deformation restraining members 45 and 46 are fixed to the rigid members 92 and 94 so as not to rotate in a state where tension is applied to the flexible tension transmitting member 34 of the angle sensor in which strain detecting elements are arranged at both ends. When the two rigid members 92 and 94 rotate at the rotary joint, the strain detection elements 204 and 205 bend and deform according to the change in the angle of the rotary joints 51 and 52, respectively. By measuring the change in angle at that time with the strain detection elements 204 and 205 at both ends, the state of change in the angle of the rigid members 92, 93, and 94 can be measured.

(実施例5)
図11は請求項11に記載の角度及び変位センサを連結して長い構造物の変形や複数の対象物の相対変位を計測する用途に適用する実施例である。角度及び変位センサ500、501、502を、図11に示すように連結部材70、71を介して少なくとも2つ連結して、各センサの柔軟な張力伝達部材にそれぞれ張力を負荷した状態で、変形拘束部材を固定具で所定の位置にそれぞれ回転負荷に固定すると、寸法の長い構造部材などの変形や、複数の対象物の相対位置の変化を測定することができる。
(Example 5)
FIG. 11 shows an embodiment applied to an application of measuring the deformation of a long structure and the relative displacement of a plurality of objects by connecting the angle and displacement sensor according to claim 11. As shown in FIG. 11, at least two angle and displacement sensors 500, 501, and 502 are connected via connecting members 70 and 71, and the flexible tension transmitting member of each sensor is deformed in a state where tension is applied. When the restraint member is fixed to a rotational load at a predetermined position by a fixing tool, deformation of a structural member having a long dimension or a change in relative positions of a plurality of objects can be measured.

(実施例6)
図18は変形拘束材40の部分であって柔軟な張力伝達部材30の一部を挟み込む開口の端部48を滑らかな形状に成形した実施例である。前記終端部48において伝達部材30に生じる曲げ変形を滑らかにする目的で該48を半円等、丸みを有する形状とする(請求項13)。なお、変形拘束部材41又は42の同様な開口端部に前記の丸みを帯びた形状を適用することは本発明の実施の範囲である。
(Example 6)
FIG. 18 shows an embodiment in which an end 48 of the opening that is a part of the deformation restraining member 40 and sandwiches a part of the flexible tension transmitting member 30 is formed into a smooth shape. In order to smooth the bending deformation generated in the transmission member 30 at the terminal portion 48, the 48 is formed in a rounded shape such as a semicircle (claim 13). It is within the scope of the present invention to apply the rounded shape to the same opening end of the deformation restraining member 41 or 42.

変形拘束部材40の端部48の角部の形状が直線的であると、該端部において柔軟な張力伝達部材30に滑らかな曲げ変形を形成させることが出来ない場合がある。例えば柔軟な張力伝達部材が直線上に伸びた状態から90度を超えて大きく角度変化した場合に前記状態が発生し得る。ところが、図18のように変形拘束部材40の端部48を滑らかな形状にすると柔軟な張力伝達部材30が90度を超える角度に変形しても、その変形形状は滑らかであり、角度計測に影響がない。   If the shape of the corner portion of the end portion 48 of the deformation restraining member 40 is linear, it may be impossible to form a smooth bending deformation on the flexible tension transmitting member 30 at the end portion. For example, the above-described state can occur when the flexible tension transmitting member changes its angle by more than 90 degrees from a state in which the flexible tension transmitting member extends in a straight line. However, if the end portion 48 of the deformation restraining member 40 is made smooth as shown in FIG. 18, even if the flexible tension transmitting member 30 is deformed to an angle exceeding 90 degrees, the deformed shape is smooth, and it is useful for angle measurement. There is no effect.

アクリルで製作した変形拘束部材40の開口端部にさらに半径1mmの半円形状の棒を接着して丸みを帯びた端部形状48に成形した後、柔軟な張力伝達部材30を片側90度以上に変形させて角度を計測した実験データを図19に示す。図19より90度以上曲げた状態においても、精度の良い角度計測が可能であることが確認できた。   A semicircular rod having a radius of 1 mm is further bonded to the opening end of the deformation restraining member 40 made of acrylic to form a rounded end shape 48, and then the flexible tension transmitting member 30 is 90 degrees or more on one side. FIG. 19 shows experimental data obtained by measuring the angle after deformation. From FIG. 19, it was confirmed that accurate angle measurement was possible even in a state bent 90 degrees or more.

(実施例7)
本発明の角度及び変位センサを用いて行った実験について説明する。図13は0.2mm厚さのシリコンゴムの弾性薄板の両面に長さ50mm、幅13mmの圧電フィルムを配設した歪み検出素子の両面に、0.5mm厚さのシリコンゴムの張力伝達部材を接着し、アクリル樹脂の変形拘束部材を歪み検出素子の端部から25mmの間隔に渡って設けた角度センサ510を、上端部の変形拘束部材をジグに固定して垂直に垂らし(角度センサの初期の有効長さL0=237mm)、センサ先端部に重さ5.7N、10.4N、および12.8Nの錘をそれぞれ吊して振り子のように振らせた。角度変化は分度器を描いたボードをセンサ背面に置いて測定した。振れ角度を種々変化させてセンサの出力信号V1とV2を測定し、抵抗とコンデンサで構成した積分回路を介して電圧記録計で測定した。
(Example 7)
An experiment conducted using the angle and displacement sensor of the present invention will be described. FIG. 13 shows a 0.5 mm-thick silicon rubber tension transmission member on both sides of a strain detection element in which a piezoelectric film having a length of 50 mm and a width of 13 mm is arranged on both sides of a 0.2 mm-thick silicon rubber elastic thin plate. The angle sensor 510, which is bonded and is provided with an acrylic resin deformation restraining member over an interval of 25 mm from the end of the strain detection element, is suspended vertically by fixing the deformation restraining member at the upper end to the jig (initially the angle sensor). Effective length L0 = 237 mm), weights of 5.7 N, 10.4 N, and 12.8 N were suspended from the tip of the sensor and swung like a pendulum. The angle change was measured by placing a board with a protractor on the back of the sensor. The output signals V1 and V2 of the sensor were measured while varying the deflection angle, and measured with a voltage recorder via an integrating circuit composed of a resistor and a capacitor.

そのときの出力信号の差分(V1−V2)と振れ角度変化θとの関係を図14に示す。図において、錘の重さ、すなわちセンサに作用する張力によらず(V1−V2)と角度変化θの間には良い比例関係があることがわかる。すなわち、本発明の角度センサは張力の大きさに影響されることなく角度変化を精度良く測定できることがわかる。   FIG. 14 shows the relationship between the output signal difference (V1−V2) and the deflection angle change θ. In the figure, it can be seen that there is a good proportional relationship between (V1−V2) and the angle change θ regardless of the weight of the weight, that is, the tension acting on the sensor. That is, it can be seen that the angle sensor of the present invention can accurately measure the angle change without being affected by the magnitude of the tension.

次に、角度及び変位センサを用いた変位計測実験について説明する。図15に示すように、角度及び変位センサ600を吊した状態から、センサ先端部の張力負荷部材62を指で掴んで、所定の点Pまで引っ張った状態で一端停止し、次に、指で張力負荷部材62を持って、点Pからさらに別の位置(たとえば点Q)に移動させる実験を行った。実験は碁盤目を描いた板をセンサ背面に置き、角度変化、長さ変化、あるいは角度変化と長さ変化の両方が変化する所定の位置に虫ピンを立てて行った。P点とQ点の座標は種々変えて実験した。   Next, a displacement measurement experiment using an angle and displacement sensor will be described. As shown in FIG. 15, from the state in which the angle and displacement sensor 600 is suspended, the tension load member 62 at the tip of the sensor is grasped with a finger and pulled to a predetermined point P. An experiment was conducted in which the tension load member 62 was held and moved from the point P to another position (for example, the point Q). The experiment was performed by placing a board with a grid pattern on the back of the sensor and placing an insect pin at a predetermined position where the angle change, the length change, or both the angle change and the length change change. Experiments were performed by changing the coordinates of point P and point Q in various ways.

図16に一例として、角度及び変位センサを垂直に垂らして真下に引き延ばし、初期伸びL1−L0=53mmを与えた点Pから、碁盤目板の左側半分の種々の点Qに張力負荷部材62を移動させた場合、および点Qから点Pに戻したときの、圧電フィルムの出力信号の差分(V1−V2)と角度変化θの関係を示す。図より、(V1−V2)と角度変化θの間には、角度変化が90度に達するまで良い比例関係があることがわかる。   As an example in FIG. 16, the tension load member 62 is attached to various points Q on the left half of the grid panel from the point P where the angle and displacement sensor are vertically suspended and stretched right below to give the initial elongation L1−L0 = 53 mm. The relationship between the difference (V1−V2) in the output signal of the piezoelectric film and the angle change θ when moved and when returning from the point Q to the point P is shown. From the figure, it can be seen that there is a good proportional relationship between (V1−V2) and the angle change θ until the angle change reaches 90 degrees.

図17は、上記実験で得られた、圧電フィルムの出力信号の和(V1+V2)と伸びδ(又は伸びた状態からの縮み)の関係を示す。図より、角度変化を生じたときの出力信号の大きさに対して、伸びδが変化したときの出力信号の大きさが小さくて多少ばらつきは見られるが、伸びδに応じた出力信号を得ることができることがわかる。   FIG. 17 shows the relationship between the sum (V1 + V2) of the output signals of the piezoelectric film and the elongation δ (or shrinkage from the stretched state) obtained in the above experiment. As can be seen from the figure, the output signal when the elongation δ changes with respect to the magnitude of the output signal when the angle changes, and there is some variation, but an output signal corresponding to the elongation δ is obtained. You can see that

図中の実線は、前記角度及び変位センサ600を真っ直ぐに引っ張ったときの(V1+V2)と伸びδの関係を実験で別途求め、初期伸びL1−L0=53mm分だけ原点を移動させて、同図に書き加えたものであるが、角度及び変位センサを点Pから点Qに移動させたとき、あるいは点Qから点Pに戻したときの(V1+V2)とδの関係のプロット点と良く一致している。   The solid line in the figure indicates that the relationship between (V1 + V2) and elongation δ when the angle and displacement sensor 600 is pulled straight is separately obtained by experiment, and the origin is moved by the initial elongation L1−L0 = 53 mm. However, when the angle and displacement sensor is moved from the point P to the point Q, or when the angle and displacement sensor is returned from the point Q to the point P, the plot points of (V1 + V2) and δ are in good agreement. ing.

角度及び変位センサの構成の一実施例を説明する図である。It is a figure explaining one Example of a structure of an angle and a displacement sensor. 角度及び変位センサの構成の別の実施例を説明する図である。It is a figure explaining another Example of a structure of an angle and a displacement sensor. 角度及び変位センサの角度検出原理を説明する図である。It is a figure explaining the angle detection principle of an angle and a displacement sensor. 本発明の角度及び変位センサに張力を負荷した状態で使用する理由を説明する図である。It is a figure explaining the reason used in the state which applied tension to the angle and displacement sensor of the present invention. 角度及び変位センサの局部的な曲げ変形部分の曲げ歪みの分布状態を説明する図である。It is a figure explaining the distribution state of the bending distortion of the local bending deformation part of an angle and a displacement sensor. 本発明の角度及び変位センサの張力負荷部材の別の実施例を説明する図である。It is a figure explaining another Example of the tension load member of the angle and displacement sensor of this invention. 請求項1に記載の角度及び変位センサの角度測定方法を説明する図である。It is a figure explaining the angle measuring method of the angle and displacement sensor of Claim 1. 請求項2に記載の角度及び変位センサの角度測定方法を説明する図である。It is a figure explaining the angle measuring method of the angle and displacement sensor of Claim 2. 請求項10に記載の角度及び変位センサの一実施例を説明する図である。It is a figure explaining one Example of the angle and displacement sensor of Claim 10. 請求項10に記載の角度及び変位センサの別の実施例を説明する図である。It is a figure explaining another Example of the angle and displacement sensor of Claim 10. 少なくとも2つの角度及び変位センサを連結してなる角度センサの一実施例を説明する図である。It is a figure explaining one Example of the angle sensor formed by connecting an at least 2 angle and displacement sensor. 角度及び変位センサを用いた変位測定方法を説明する図である。It is a figure explaining the displacement measuring method using an angle and a displacement sensor. 角度及び変位センサの張力負荷部材に錘を吊して振らせる実験を説明する図である。It is a figure explaining the experiment which suspends and shakes a weight to the tension load member of an angle and displacement sensor. 実験で求めた圧電フィルムの出力信号の差分(V1−V2)と振り角度変化θの関係を示す図である。It is a figure which shows the relationship between the difference (V1-V2) of the output signal of the piezoelectric film calculated | required by experiment, and swing angle change (theta). 角度及び変位センサの角度変化と伸び変化を測定する実験を説明する図である。It is a figure explaining the experiment which measures the angle change and elongation change of an angle and a displacement sensor. 角度及び変位センサを用いた実験で求めた圧電フィルムの出力信号の差分(V1−V2)と角度変化θの関係を示す図である。It is a figure which shows the relationship between the difference (V1-V2) of the output signal of a piezoelectric film calculated | required by experiment using an angle and a displacement sensor, and angle change (theta). 角度及び変位センサを用いた実験で求めた圧電フィルムの出力信号の和(V1+V2)と伸びδの関係を示す図である。It is a figure which shows the relationship between the sum (V1 + V2) of the output signal of a piezoelectric film calculated | required by experiment using an angle and a displacement sensor, and elongation (delta). 変形拘束部材の開口端部の形状を改善した角度及び変位センサを示す図である。It is a figure which shows the angle and the displacement sensor which improved the shape of the opening edge part of a deformation | transformation restraint member. 改善した開口端部を有する変形拘束部材の効果を示す実験データである。It is an experimental data which shows the effect of the deformation | transformation restraint member which has the improved opening edge part.

符号の説明Explanation of symbols

1A、1B 圧電フィルム
2A、2B 圧電フィルム
3A、3B 圧電フィルム
4A、4B 圧電フィルム
10、11、12、13 柔軟な弾性薄板
30、31、32 柔軟な張力伝達部材
33、34 柔軟な張力伝達部材
40、41、42 変形拘束部材
43、44 変形拘束部材
45、46 変形拘束部材
48 変形拘束部材開口端部
50 回転関節
51、52 回転関節
60 張力負荷部材
61、62 張力負荷部材
70 連結部材
90、91 剛性部材
92、93、94 剛性部材
200、201、202 歪み検出素子
203 歪み検出素子
204、205 歪み検出素子
500、501、502 角度センサ
510 角度センサ
600 変位センサ
1A, 1B Piezoelectric film 2A, 2B Piezoelectric film 3A, 3B Piezoelectric film 4A, 4B Piezoelectric film 10, 11, 12, 13 Flexible elastic thin plates 30, 31, 32 Flexible tension transmission member 33, 34 Flexible tension transmission member 40 , 41, 42 Deformation restraint members 43, 44 Deformation restraint members 45, 46 Deformation restraint member 48 Deformation restraint member opening end 50 Rotating joints 51, 52 Rotating joint 60 Tension load members 61, 62 Tension load member 70 Connecting members 90, 91 Rigid members 92, 93, 94 Rigid members 200, 201, 202 Strain detection element 203 Strain detection elements 204, 205 Strain detection elements 500, 501, 502 Angle sensor 510 Angle sensor 600 Displacement sensor

Claims (13)

柔軟な弾性薄板10とその両面に配設された一対の圧電フィルム1A、1Bからなる歪み検出素子200と、柔軟な張力伝達部材であって、一方の端部付近の曲げの中立軸位置に前記歪み検出素子200を配設した柔軟な張力伝達部材30と、前記柔軟な張力伝達部材30の端部の所定長さに渡って設けられ、前記歪み検出素子200の一部分の長さの曲げ変形を拘束する変形拘束部材40と、前記柔軟な張力伝達部材30の先端部に取り付けた張力負荷部材60とから構成したことを特徴とする角度及び変位センサ(図1参照)。   A strain detecting element 200 including a flexible elastic thin plate 10 and a pair of piezoelectric films 1A and 1B disposed on both sides thereof, and a flexible tension transmitting member, which is located at a neutral axis position of bending near one end. A flexible tension transmitting member 30 provided with the strain detecting element 200 and a predetermined length of an end of the flexible tension transmitting member 30 are provided, and bending deformation of a part of the length of the strain detecting element 200 is performed. An angle and displacement sensor (see FIG. 1), characterized by comprising a deformation restraining member 40 for restraining and a tension load member 60 attached to the tip of the flexible tension transmitting member 30. 柔軟な弾性薄板11とその両面に配設された一対の圧電フィルム2A及び2Bからなる歪み検出素子201と、柔軟な弾性薄板12とその両面に配設された一対の圧電フィルム3A及び3Bからなるもう一つの歪み検出素子202と、柔軟な張力伝達部材であって両方の端部付近の曲げの中立軸位置に前記歪み検出素子201及び202をそれぞれ配設した柔軟な張力伝達部材31と、前記柔軟な張力伝達部材31の両端の所定長さに渡って設けられ前記歪み検出素子201及び202の一部分の長さの曲げ変形をそれぞれ拘束する変形拘束部材41及び42とから構成したことを特徴とする角度及び変位センサ(図2参照)。   It consists of a flexible elastic thin plate 11 and a strain detecting element 201 consisting of a pair of piezoelectric films 2A and 2B disposed on both sides thereof, and a flexible elastic thin plate 12 and a pair of piezoelectric films 3A and 3B arranged on both sides thereof. Another strain detecting element 202, a flexible tension transmitting member, and a flexible tension transmitting member 31 in which the strain detecting elements 201 and 202 are respectively disposed at the neutral axis positions of bending near both ends; It is composed of deformation restraining members 41 and 42 which are provided over a predetermined length at both ends of the flexible tension transmitting member 31 and restrain the bending deformation of a part of the length of the strain detecting elements 201 and 202, respectively. Angle and displacement sensor (see FIG. 2). 請求項1又は2に記載した変形拘束部材(40あるいは41及び42)を角度又は変位を計測する対象物に回転不可に固定し、前記柔軟な張力伝達部材(30又は31)に張力を負荷した状態で使用したことを特徴とする請求項1又は2に記載の角度及び変位センサ(図7及び図8参照)。   The deformation restraining member (40 or 41 and 42) according to claim 1 or 2 is fixed to an object for measuring an angle or displacement so as not to rotate, and tension is applied to the flexible tension transmitting member (30 or 31). The angle and displacement sensor according to claim 1 or 2, wherein the sensor is used in a state (see Figs. 7 and 8). 請求項1ないし3に記載した歪検出素子(200あるいは201及び202)を構成する一対の圧電フィルムの変形により一方の圧電フイルムから出力される信号V1と他方の圧電フイルムから出力される信号V2の差分(V1−V2)により、それぞれ、変形拘束部材(40あるいは41及び42)と張設された柔軟な張力伝達部材(30又は31)のなす角度変化θに応じた信号の検出をおこなうことを特徴とする請求項1ないし3のいずれかに記載の角度及び変位センサ。   A signal V1 output from one piezoelectric film and a signal V2 output from the other piezoelectric film due to deformation of the pair of piezoelectric films constituting the strain detecting element (200 or 201 and 202) according to claims 1 to 3. According to the difference (V1−V2), a signal corresponding to an angle change θ between the deformation restraining member (40 or 41 and 42) and the flexible tension transmitting member (30 or 31) stretched is detected. The angle and displacement sensor according to any one of claims 1 to 3. 請求項1ないし4に記載の歪検出素子を構成する柔軟な弾性薄板(10あるいは11及び12)が厚さ0.1mm〜0.5mmであることを特徴とする請求項1ないし4のいずれかに記載の角度及び変位センサ。   The flexible elastic thin plate (10 or 11 and 12) constituting the strain detecting element according to any one of claims 1 to 4 has a thickness of 0.1 mm to 0.5 mm. The angle and displacement sensor described in 1. 請求項1ないし5に記載した柔軟な弾性薄板(10あるいは11及び12)の弾性率E1が、0.2Mpa<E1<20Mpaであることを特徴とする請求項1ないし5のいずれかに記載の角度及び変位センサ。   The elastic modulus E1 of the flexible elastic thin plate (10 or 11 and 12) according to any one of claims 1 to 5 is 0.2 Mpa <E1 <20 Mpa, according to any one of claims 1 to 5. Angle and displacement sensor. 請求項1ないし6に記載した柔軟な張力伝達部材(30又は31)の弾性率E2が0.2Mpa<E2<20Mpaであることを特徴とする請求項1ないし6のいずれかに記載の角度及び変位センサ。   The elastic modulus E2 of the flexible tension transmitting member (30 or 31) according to any one of claims 1 to 6 is 0.2 Mpa <E2 <20 Mpa, Displacement sensor. 請求項1ないし7に記載した歪み検出素子(200あるいは201及び202)を配設した部分の角度センサの横断面において、柔軟な張力伝達部材(30又は31)の曲げ剛性(E2×I2)が、前記歪み検出素子の曲げ剛性(E0×I0+E1×I1)、(但しE0、E1、E2はそれぞれ、圧電フィルム、柔軟な弾性薄板、柔軟な張力伝達部材の弾性率、I0、I1、I2はそれぞれ、一対の圧電フィルム、柔軟な弾性薄板、柔軟な張力伝達部材の断面二次モーメント)よりも小さいことを特徴とする請求項1ないし7のいずれかに記載の角度及び変位センサ。   The bending rigidity (E2 × I2) of the flexible tension transmitting member (30 or 31) in the cross section of the angle sensor where the strain detecting element (200 or 201 and 202) according to claim 1 is disposed. , Bending rigidity (E0 × I0 + E1 × I1) of the strain detection element (where E0, E1, E2 are piezoelectric film, flexible elastic thin plate, elastic modulus of flexible tension transmitting member, and I0, I1, I2 are respectively The angle and displacement sensor according to any one of claims 1 to 7, wherein the angle and displacement sensor are smaller than a pair of piezoelectric films, a flexible elastic thin plate, and a sectional moment of inertia of a flexible tension transmitting member. 請求項1ないし8に記載の歪み検出素子(200あるいは201及び202)を配設した部分において、変形拘束部材(40あるいは41及び42)で変形を拘束されていない部分の歪み検出素子(200あるいは201及び202)の長さが、前記歪み検出素子の厚さと柔軟な張力伝達部材(30又は31)の厚さを加えた全体厚さの5倍よりも長いことを特徴とする請求項1ないし8のいずれかに記載の角度及び変位センサ。   A portion where the strain detecting element (200 or 201 and 202) according to claim 1 is disposed, wherein the deformation detecting element (200 or 201 and 202) is not restrained by the deformation restraining member (40 or 41 and 42). The length of 201 and 202) is longer than five times the total thickness of the strain sensing element plus the thickness of the flexible tension transmitting member (30 or 31). The angle and displacement sensor according to claim 8. 請求項1ないし9のいずれかに記載の角度及び変位センサを、回転関節を介して連結された2つまたは3つの剛性部材に、請求項1ないし9のいずれかに記載の張力伝達部材に張力を負荷した状態で取り付けてなる角度及び変位センサであって、前記回転関節の中心に請求項1ないし9のいずれかに記載の歪み検出素子の曲げの中立軸が一致し、かつ、前記回転関節の中心に歪み検出素子が曲げ変形する部分の請求項1ないし9のいずれかに記載の変形拘束部材の端部が一致するように構成したことを特徴とする角度及び変位センサ。   The angle and displacement sensor according to any one of claims 1 to 9 is applied to two or three rigid members connected via a rotary joint, and tension is applied to the tension transmission member according to any one of claims 1 to 9. 10. An angle and displacement sensor attached in a loaded state, wherein the neutral axis of bending of the strain detecting element according to claim 1 is coincident with the center of the rotary joint, and the rotary joint An angle and displacement sensor characterized in that the end of the deformation restraining member according to any one of claims 1 to 9 coincides with a portion where the strain detecting element bends and deforms at the center of the sensor. 請求項1ないし9のいずれかに記載の角度及び変位センサを、連結部材を介して少なくとも2つ連結してなる角度及び変位センサ。   An angle and displacement sensor comprising at least two of the angle and displacement sensors according to claim 1 connected through a connecting member. 請求項1ないし9のいずれかに記載の角度及び変位センサにおいて、請求項4に記載の一対の圧電フィルムの出力信号V1及びV2の和(V1+V2)から、角度及び変位センサの長さ変化δに応じた信号を検出し、角度センサを張設したときの張設軸方向(X軸方向)および張設軸に直角方向(Y軸方向)からの変位を、δy=(L1+δ)×sinθ、δx=(L1+δ)×cosθ−L1(但しL1は張設時の角度及び変位センサの有効長さ)で求めたことを特徴とする角度及び変位センサ。   The angle and displacement sensor according to any one of claims 1 to 9, wherein from the sum (V1 + V2) of the output signals V1 and V2 of the pair of piezoelectric films according to claim 4, the angle and displacement sensor length change δ. The corresponding signal is detected, and the displacement from the tension axis direction (X-axis direction) and the direction perpendicular to the tension axis (Y-axis direction) when the angle sensor is tensioned is expressed as δy = (L1 + δ) × sin θ, δx = (L1 + δ) × cos θ−L1 (where L1 is the angle at the time of stretching and the effective length of the displacement sensor). 請求項1ないし9に記載の変形拘束材(40あるいは41及び42)の部分であって柔軟な張力伝達部材(30又は31)の端部から所定長さの部分を挟み込む開口部分の端部(48)を滑らかな形状に成形したことを特徴とする請求項1ないし9に記載の角度及び変位センサ(図18参照)   An end portion of an opening portion that is a portion of the deformation restraint member (40 or 41 and 42) according to claim 1 to 9 and sandwiches a portion of a predetermined length from the end portion of the flexible tension transmitting member (30 or 31). 48) is formed into a smooth shape, and the angle and displacement sensor according to claim 1-9 (see FIG. 18)
JP2006253700A 2006-09-20 2006-09-20 Angle and displacement sensor Pending JP2008076122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253700A JP2008076122A (en) 2006-09-20 2006-09-20 Angle and displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253700A JP2008076122A (en) 2006-09-20 2006-09-20 Angle and displacement sensor

Publications (1)

Publication Number Publication Date
JP2008076122A true JP2008076122A (en) 2008-04-03

Family

ID=39348365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253700A Pending JP2008076122A (en) 2006-09-20 2006-09-20 Angle and displacement sensor

Country Status (1)

Country Link
JP (1) JP2008076122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223930A (en) * 2009-03-19 2010-10-07 Toshiko Deguchi Rail displacement gauge
JP2011089923A (en) * 2009-10-23 2011-05-06 Asahi Kasei Fibers Corp Sensing member and sensor provided with the sensing member

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105910A (en) * 1980-12-20 1982-07-01 Sumitomo Electric Industries Stress corrosion remedy wire
JPS61170969A (en) * 1985-01-24 1986-08-01 Olympus Optical Co Ltd Head device
JPS6276613A (en) * 1985-09-30 1987-04-08 Toshiba Corp Turntable type continuous vapor growth device
JPS63215A (en) * 1986-06-19 1988-01-05 ヤンマー農機株式会社 Planting device of rice planter
JPS631901A (en) * 1986-06-23 1988-01-06 Toshiba Corp Detection method and apparatus therefor
JPS63150185A (en) * 1986-12-12 1988-06-22 ダイキン工業株式会社 Angle controller in robot
JPS63241409A (en) * 1987-03-30 1988-10-06 Toshin Denki Kk Bend detecting sensor
JPH01110202A (en) * 1987-10-24 1989-04-26 Akira Sugimoto Displacement detector
JPH04273031A (en) * 1990-08-31 1992-09-29 Atochem North America Inc Material sensor
JPH05133707A (en) * 1991-11-12 1993-05-28 Copal Co Ltd Displacement meter
JPH06112547A (en) * 1992-09-29 1994-04-22 Toshiba Corp Flexural displacement actuator
JPH06156977A (en) * 1992-11-25 1994-06-03 Mitsubishi Heavy Ind Ltd Swing angle measuring device
JPH06174407A (en) * 1992-12-03 1994-06-24 Toyo Kako Kk Angle sensor
JPH06347473A (en) * 1993-06-10 1994-12-22 Canon Inc Posture sensor
US5559387A (en) * 1994-05-13 1996-09-24 Beurrier; Henry R. Piezoelectric actuators
JPH11211748A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Machine-electricity conversion element and its manufacture and acceleration sensor
JP2006038710A (en) * 2004-07-28 2006-02-09 Hiroshima Univ Bending deformation sensor and deformation measuring device
JP2006153842A (en) * 2004-11-02 2006-06-15 Hiroshima Univ Sheet for detecting fluctuating load, and fluctuating load detecting circuit
JP2006340944A (en) * 2005-06-10 2006-12-21 Hiroshima Univ Large deformation sensor, and seated person behavior detection sensor/monitor and game/exercising apparatus using the large deformation sensor

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105910A (en) * 1980-12-20 1982-07-01 Sumitomo Electric Industries Stress corrosion remedy wire
JPS61170969A (en) * 1985-01-24 1986-08-01 Olympus Optical Co Ltd Head device
JPS6276613A (en) * 1985-09-30 1987-04-08 Toshiba Corp Turntable type continuous vapor growth device
JPS63215A (en) * 1986-06-19 1988-01-05 ヤンマー農機株式会社 Planting device of rice planter
JPS631901A (en) * 1986-06-23 1988-01-06 Toshiba Corp Detection method and apparatus therefor
JPS63150185A (en) * 1986-12-12 1988-06-22 ダイキン工業株式会社 Angle controller in robot
JPS63241409A (en) * 1987-03-30 1988-10-06 Toshin Denki Kk Bend detecting sensor
JPH01110202A (en) * 1987-10-24 1989-04-26 Akira Sugimoto Displacement detector
JPH04273031A (en) * 1990-08-31 1992-09-29 Atochem North America Inc Material sensor
JPH05133707A (en) * 1991-11-12 1993-05-28 Copal Co Ltd Displacement meter
JPH06112547A (en) * 1992-09-29 1994-04-22 Toshiba Corp Flexural displacement actuator
JPH06156977A (en) * 1992-11-25 1994-06-03 Mitsubishi Heavy Ind Ltd Swing angle measuring device
JPH06174407A (en) * 1992-12-03 1994-06-24 Toyo Kako Kk Angle sensor
JPH06347473A (en) * 1993-06-10 1994-12-22 Canon Inc Posture sensor
US5559387A (en) * 1994-05-13 1996-09-24 Beurrier; Henry R. Piezoelectric actuators
JPH11211748A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Machine-electricity conversion element and its manufacture and acceleration sensor
JP2006038710A (en) * 2004-07-28 2006-02-09 Hiroshima Univ Bending deformation sensor and deformation measuring device
JP2006153842A (en) * 2004-11-02 2006-06-15 Hiroshima Univ Sheet for detecting fluctuating load, and fluctuating load detecting circuit
JP2006340944A (en) * 2005-06-10 2006-12-21 Hiroshima Univ Large deformation sensor, and seated person behavior detection sensor/monitor and game/exercising apparatus using the large deformation sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223930A (en) * 2009-03-19 2010-10-07 Toshiko Deguchi Rail displacement gauge
JP2011089923A (en) * 2009-10-23 2011-05-06 Asahi Kasei Fibers Corp Sensing member and sensor provided with the sensing member

Similar Documents

Publication Publication Date Title
US8495917B2 (en) Apparatus, method, and computer program product for sensing flexural deformation
US8327721B2 (en) Sensor fabric for shape perception
JP6349267B2 (en) 3D displacement measuring device and 3D displacement measuring system
WO2010079660A1 (en) Force sensor
US10989865B2 (en) Stretchable fiber optic sensor
US9316665B2 (en) Estimation of sidewall skew angles of a structure
JP6734372B2 (en) Force measuring device
US20140238132A1 (en) Mems resonant accelerometer
JP2008076122A (en) Angle and displacement sensor
Obinata et al. Vision based tactile sensor using transparent elastic fingertip for dexterous handling
JP5822321B2 (en) Rotational angular acceleration measuring device
TW202107054A (en) Force sensor and sensing element thereof
JP2011080945A (en) Force sensor
US11744512B2 (en) Multibend shape sensor
Masson et al. Design of a generalised charge-based self-sensing model for quasi-static piezoelectric actuators
US11073434B2 (en) Manufacturing method for shear and normal force sensor
TW202118450A (en) Multibend shape sensor
JP6936728B2 (en) Displacement measuring device
Sato et al. Analysis of parallel beam gyroscope
TWI396835B (en) Piezoelectric tactile sensor and its manufacturing method
Nakamoto et al. Structure and fundamental evaluation of magnetic type tactile sensor
Okako et al. Elastomer-embedded MEMS Tactile Sensor for Detecting Normal Force, Bending, and Torsion in Grasping Motion
JP3400578B2 (en) Piezoelectric actuator
TW202138752A (en) Multicontour sensor
US10466267B2 (en) Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090610

A977 Report on retrieval

Effective date: 20110303

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A02