JP2008073611A - High pressure treating device - Google Patents

High pressure treating device Download PDF

Info

Publication number
JP2008073611A
JP2008073611A JP2006255315A JP2006255315A JP2008073611A JP 2008073611 A JP2008073611 A JP 2008073611A JP 2006255315 A JP2006255315 A JP 2006255315A JP 2006255315 A JP2006255315 A JP 2006255315A JP 2008073611 A JP2008073611 A JP 2008073611A
Authority
JP
Japan
Prior art keywords
chamber
plate member
pressure
substrate
pressure fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006255315A
Other languages
Japanese (ja)
Inventor
Kimitsugu Saito
公続 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2006255315A priority Critical patent/JP2008073611A/en
Publication of JP2008073611A publication Critical patent/JP2008073611A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the efficiency of surface treatment by improving the replaceability of a high pressure fluid in the vicinity of the surface of a material to be treated and to enhance the degree of cleaning by evading generation of a dead space in a treating chamber. <P>SOLUTION: A partitioning plate 4 forms an upper stream chamber 12 and a lower stream chamber 13 by partitioning the treating chamber 11 to the upper side and the lower side. A substrate W is placed to the lower chamber 13 at a stationary state by feeding SCCO<SB>2</SB>to the upper stream chamber 12 from a pressure fluid feed part 2. The partitioning plate 4 is provided with a penetrating opening 41. A rotation driving part 5 rotates the partitioning plate 4 through a driving shaft 6 attached to the partitioning plate 4. When the partitioning plate 4 rotates through one rotation, a locus drawn by the lower side opening of the penetrating opening 41 covers the whole surface of the substrate W. Thereby, SCCO<SB>2</SB>is sprayed over the whole surface of the substrate W. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、高圧流体、例えば亜臨界状態または超臨界状態の高圧流体を用いて、基板などの被処理体の表面に所定の表面処理(洗浄処理、リンス処理や乾燥処理など)を施す高圧処理装置に関するものである。   The present invention provides a high-pressure treatment in which a predetermined surface treatment (cleaning treatment, rinsing treatment, drying treatment, etc.) is performed on the surface of an object to be treated such as a substrate using a high-pressure fluid, for example, a subcritical or supercritical high-pressure fluid. It relates to the device.

半導体製造プロセスの中でレジストを用いてパターン形成する場合、パターン形成後に不要となるレジストや、エッチングの時に生成して基板上に残存してしまうエッチングポリマー等の不要物・汚染物質を基板から除去するための洗浄工程が必須工程となる。そこで、高圧流体を基板などの被処理体の表面に接触させて該被処理体に対して洗浄処理や乾燥処理などの表面処理を施す高圧処理装置が提案されている(特許文献1〜3参照)。   When forming a pattern using a resist in the semiconductor manufacturing process, unnecessary resist and contaminants such as a resist that becomes unnecessary after pattern formation and an etching polymer that is generated during etching and remains on the substrate are removed from the substrate. The cleaning process for this is an essential process. In view of this, there has been proposed a high-pressure processing apparatus in which a high-pressure fluid is brought into contact with the surface of an object to be processed such as a substrate and the object to be processed is subjected to surface treatment such as cleaning or drying (see Patent Documents 1 to 3). ).

例えば特許文献1,2記載の高圧処理装置では、処理チャンバー内に配置された基板の上方に回転部材を設け、この回転部材を回転して処理チャンバー内の高圧流体を撹拌することにより、表面処理の均一性および効率の向上を図っている。また、例えば特許文献3記載の高圧処理装置では、処理チャンバー内に配置された基板の上方に中空の回転吹き付け部材を設け、この回転吹き付け部材の内部空間に高圧流体を供給し、回転吹き付け部材の下面に設けられた吹き付け口から基板に向けて高圧流体を吹き付けつつ回転吹き付け部材を回転することで、表面処理の促進を図っている。   For example, in the high-pressure processing apparatus described in Patent Documents 1 and 2, the surface treatment is performed by providing a rotating member above the substrate disposed in the processing chamber and agitating the high-pressure fluid in the processing chamber by rotating the rotating member. To improve uniformity and efficiency. Further, for example, in the high pressure processing apparatus described in Patent Document 3, a hollow rotary spraying member is provided above the substrate disposed in the processing chamber, and a high pressure fluid is supplied to the internal space of the rotary spraying member. The surface treatment is promoted by rotating the rotary spray member while spraying the high-pressure fluid from the spray port provided on the lower surface toward the substrate.

特開2003−51474号公報(段落0032、図13)Japanese Patent Laying-Open No. 2003-51474 (paragraph 0032, FIG. 13) 特開平11−87306号公報(段落0014、図1)JP-A-11-87306 (paragraph 0014, FIG. 1) 特表2005−503019号公報(段落0176、図26)JP-T-2005-503019 (paragraph 0176, FIG. 26)

しかしながら、上記従来の特許文献1,2記載の高圧処理装置では、回転部材と基板とで挟まれた空間に対して積極的に高圧流体を供給するための手段が設けられていない。したがって、必ずしも表面処理の効率を高めることができるというわけではない。特に、回転部材を基板に近接配置させると、処理効率が著しく低下してしまうことがあった。すなわち、このような配置構造を採用すると、回転部材の回転動作によって回転部材と基板とで挟まれた空間に高圧流体が滞留してしまうことがあった。これは同空間における高圧流体の置換性悪化を意味するものであり、処理効率の低下要因となってしまう。   However, in the conventional high-pressure processing apparatuses described in Patent Documents 1 and 2, no means for positively supplying a high-pressure fluid to a space sandwiched between the rotating member and the substrate is provided. Therefore, it is not always possible to increase the efficiency of the surface treatment. In particular, when the rotating member is disposed close to the substrate, the processing efficiency may be significantly reduced. That is, when such an arrangement structure is employed, the high-pressure fluid may stay in the space between the rotating member and the substrate due to the rotating operation of the rotating member. This means deterioration of the replaceability of the high-pressure fluid in the same space, which causes a reduction in processing efficiency.

これに対し、特許文献3記載の装置では、上記したように回転吹き付け部材を設け、該部材から基板に向けて高圧流体を吹き付けつつ該部材を回転させているため、特許文献1,2記載の装置よりも高い効率で処理を行うことができる。しかしながら、特許文献3記載の高圧処理装置では、回転吹き付け部材の基板側以外の空間、すなわち回転吹き付け部材の上方および外周面側はデッドスペースとなっている。このようなデッドスペースが処理チャンバーの内部に存在すると、その部分に高圧流体が滞留し、この滞留部分にパーティクルが蓄積されて、クリーン度が低下することとなる。特に近年の技術進歩により、半導体ウエハに形成される回路の線幅はサブミクロンレベルにまで微細化しているため、回路にパーティクル(ゴミ等の不要物質)が付着していると、品質が劣化し製品歩留まりの低下を招くことから、クリーン度に対する要求は益々厳しくなっている。   On the other hand, in the apparatus described in Patent Document 3, the rotating spray member is provided as described above, and the member is rotated while spraying high-pressure fluid from the member toward the substrate. Processing can be performed with higher efficiency than the apparatus. However, in the high-pressure processing apparatus described in Patent Document 3, a space other than the substrate side of the rotary spraying member, that is, the upper side and the outer peripheral surface side of the rotary spraying member are dead spaces. When such a dead space exists inside the processing chamber, the high-pressure fluid stays in that portion, and particles accumulate in this staying portion, resulting in a reduction in cleanliness. In particular, due to recent technological advances, the line width of circuits formed on semiconductor wafers has been reduced to the submicron level, so if particles (unnecessary substances such as dust) adhere to the circuits, the quality will deteriorate. The demand for cleanliness has become more and more severe due to the decrease in product yield.

この発明は上記課題に鑑みなされたものであり、被処理体の表面近傍における高圧流体の置換性を向上して表面処理の効率を向上するとともに、処理チャンバー内にデッドスペースが生じるのを回避してクリーン度を向上することができる高圧処理装置を提供することを目的とする。   The present invention has been made in view of the above problems, and improves the efficiency of the surface treatment by improving the replaceability of the high-pressure fluid in the vicinity of the surface of the object to be processed, and avoids the occurrence of dead space in the processing chamber. An object of the present invention is to provide a high-pressure processing apparatus that can improve the cleanliness.

この発明にかかる高圧処理装置は、圧力容器の内部に設けられた処理チャンバー内に配置された被処理体の表面に対して高圧流体を用いて所定の表面処理を施す高圧処理装置であって、上記目的を達成するため、処理チャンバーを高圧流体の流れの方向で上流下流に仕切ることで上流チャンバーと下流チャンバーとを形成する板部材と、上流チャンバーに高圧流体を供給する高圧流体供給手段と、板部材をその面法線にほぼ平行な回転軸回りに回転させる回転駆動手段とを備え、被処理体は、下流チャンバーに静止状態で表面が板部材に対向するように配置され、板部材には、上流チャンバーと下流チャンバーとを連通する連通部が設けられていることを特徴としている。   A high-pressure treatment apparatus according to the present invention is a high-pressure treatment apparatus that performs a predetermined surface treatment using a high-pressure fluid on a surface of an object to be processed disposed in a treatment chamber provided in a pressure vessel, In order to achieve the above object, a plate member that forms an upstream chamber and a downstream chamber by partitioning the processing chamber upstream and downstream in the direction of the flow of the high-pressure fluid, high-pressure fluid supply means that supplies the high-pressure fluid to the upstream chamber, A rotation driving means for rotating the plate member about a rotation axis substantially parallel to the surface normal, and the object to be processed is disposed in the downstream chamber in a stationary state so that the surface faces the plate member. Is characterized in that a communication portion for communicating the upstream chamber and the downstream chamber is provided.

このように構成された発明によれば、処理チャンバーが板部材により高圧流体の流れる方向で上流下流に仕切られて上流チャンバーと下流チャンバーとが形成され、その上流チャンバーに高圧流体が供給され、下流チャンバーに被処理体が静止状態で表面が板部材に対向するように配置されている。そして、板部材には、上流チャンバーと下流チャンバーとを連通する連通部が設けられているため、上流チャンバーに供給された高圧流体は、その連通部を通って被処理体に向かって吐出される。したがって、被処理体の表面における高圧流体の置換性は良好なものとなっており、表面処理の効率を向上することができる。また、板部材はその面法線にほぼ平行な回転軸回りに回転されるため、高圧流体が相対速度をもって被処理体の表面に吹き付けられることから、さらに表面処理が促進されることとなる。また、上流チャンバーおよび下流チャンバーは、それぞれ板部材と処理チャンバーの内壁とによって形成されるため、処理チャンバー内にデッドスペースが形成される余地はない。したがって、パーティクルが滞留するような部位が存在せず、クリーン度を向上することができる。ここで、板部材は、処理チャンバーを上下に仕切るもので、上流チャンバーは処理チャンバーの上部に形成され、下流チャンバーは処理チャンバーの下部に形成されているとしてもよい。   According to the invention thus configured, the processing chamber is partitioned upstream and downstream by the plate member in the direction in which the high-pressure fluid flows to form the upstream chamber and the downstream chamber, the high-pressure fluid is supplied to the upstream chamber, and the downstream The object to be processed is disposed in the chamber so that the surface thereof faces the plate member in a stationary state. Since the plate member is provided with a communication portion that communicates the upstream chamber and the downstream chamber, the high-pressure fluid supplied to the upstream chamber is discharged toward the object to be processed through the communication portion. . Therefore, the replaceability of the high-pressure fluid on the surface of the object to be processed is good, and the efficiency of the surface treatment can be improved. Further, since the plate member is rotated around a rotation axis substantially parallel to the surface normal, the high-pressure fluid is sprayed on the surface of the object to be processed at a relative speed, and thus the surface treatment is further promoted. Further, since the upstream chamber and the downstream chamber are each formed by the plate member and the inner wall of the processing chamber, there is no room for forming a dead space in the processing chamber. Therefore, there is no portion where particles stay, and the cleanliness can be improved. Here, the plate member divides the processing chamber vertically, and the upstream chamber may be formed in the upper part of the processing chamber and the downstream chamber may be formed in the lower part of the processing chamber.

また、連通部は、板部材の1回転により連通部の被処理体側開口が描く軌跡が被処理体の表面全体をカバーするように、板部材に設けられているとすると、被処理体の全面に亘って直接高圧流体を吹き付けることが可能になる。   Further, assuming that the communication portion is provided on the plate member so that the locus drawn by the opening on the processing object side of the communication portion by one rotation of the plate member covers the entire surface of the processing object, It is possible to spray the high-pressure fluid directly over the range.

また、連通部は、板部材の回転中心を含むように設けられ、板部材には、該板部材に回転駆動手段の駆動力を伝達するための駆動軸が固定されており、駆動軸の端面には、回転中心を含むように溝部が穿設されるとともに、該溝部を挟むように複数の凸部が突設されており、各凸部が板部材の回転中心に設けられた連通部を除く板部材の表面に当接して、駆動軸が板部材に固定されているとしてもよい。このように構成された発明によれば、板部材の回転中心に対向する被処理体の表面に対して、駆動軸によって妨げられることなく、直接高圧流体を吹き付けることができる。   The communication portion is provided so as to include the center of rotation of the plate member, and a drive shaft for transmitting the driving force of the rotation driving means to the plate member is fixed to the plate member, and the end surface of the drive shaft In addition, a groove portion is formed so as to include the rotation center, and a plurality of protrusions are provided so as to sandwich the groove portion, and a communication portion provided at the rotation center of the plate member is provided. The drive shaft may be fixed to the plate member in contact with the surface of the removed plate member. According to the invention configured as described above, the high-pressure fluid can be directly sprayed on the surface of the object to be processed facing the rotation center of the plate member without being obstructed by the drive shaft.

また、圧力容器の側壁の内周面には、溝が全周に亘ってほぼ水平に穿設され、板部材は、その外周端が溝内に入り込んでいるとすると、板部材によって、上流チャンバーと下流チャンバーとの間をより確実に仕切ることができる。また、高圧流体の排出口が、下流チャンバーに対応する圧力容器の側壁に設けられているとしてもよい。   Further, if the groove is formed almost horizontally on the inner peripheral surface of the side wall of the pressure vessel and the outer peripheral end of the plate member enters the groove, the plate member causes the upstream chamber to And the downstream chamber can be more reliably partitioned. Further, a high-pressure fluid discharge port may be provided on the side wall of the pressure vessel corresponding to the downstream chamber.

なお、本発明における「被処理体の表面」とは、表面処理を施すべき面を意味しており、「被処理体」が例えば半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板である場合、その基板の両主面のうち回路パターンなどが形成された一方主面に対して表面処理を施す必要がある場合には、該一方主面が本発明の「被処理体の表面」に相当する。また、他方主面に対して表面処理を施す必要がある場合には、該他方主面が本発明の「被処理体の表面」に相当する。もちろん、両面実装基板のように両主面に対して表面処理を施す必要がある場合には、両主面が本発明の「被処理体の表面」に相当する。   The “surface of the object to be processed” in the present invention means a surface to be subjected to surface treatment, and the “object to be processed” is, for example, a semiconductor wafer, a glass substrate for photomask, a glass substrate for liquid crystal display, plasma. In the case of various substrates such as display glass substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, and magneto-optical disk substrates, circuit patterns are formed on both main surfaces of the substrate. On the other hand, when it is necessary to perform surface treatment on the one main surface, the one main surface corresponds to the “surface of the object to be processed” of the present invention. Moreover, when it is necessary to perform surface treatment with respect to the other main surface, this other main surface is equivalent to the "surface of a to-be-processed object" of this invention. Of course, when it is necessary to perform surface treatment on both main surfaces like a double-sided mounting substrate, both main surfaces correspond to the “surface of the object to be processed” of the present invention.

また、「被処理体」としては、半導体基板に限定されず、金属、プラスチック、セラミックス等の各種基材の上に、異種物質の非連続または連続層が形成もしくは残留しているようなものが含まれる。   In addition, the “object to be processed” is not limited to a semiconductor substrate, and is such that a discontinuous or continuous layer of a different substance is formed or remains on various base materials such as metal, plastic, ceramics and the like. included.

また、本発明における「表面処理」とは、例えばレジストが付着した半導体基板のように汚染物質が付着している被処理体から、汚染物質を剥離・除去する洗浄処理が代表例としてあげられる。また、洗浄処理に限られず、高圧流体を用いて、被処理体の表面から不要な物質を除去する処理(例えば、乾燥、リンス等)は、全て本発明の高圧処理装置の対象とすることができる。   The “surface treatment” in the present invention is typically exemplified by a cleaning treatment for removing and removing contaminants from an object to which the contaminants are attached, such as a semiconductor substrate to which a resist is attached. In addition, the treatment for removing unnecessary substances from the surface of the object to be treated using a high-pressure fluid (for example, drying, rinsing, etc.) is not limited to the cleaning treatment, and all of the treatments are targets of the high-pressure treatment apparatus of the present invention. it can.

また、本発明において、用いられる高圧流体としては、安全性、価格、超臨界状態にするのが容易、といった点で、二酸化炭素が好ましい。二酸化炭素以外には、水、アンモニア、亜酸化窒素、エタノール等も使用可能である。高圧流体を用いるのは、拡散係数が高く、溶解した汚染物質を媒体中に分散することができるためであり、その高圧流体を超臨界流体にした場合には、気体と液体の中間の性質を有するようになり、拡散係数は気体に近づき、微細なパターン部分にもよく浸透することができる。また、高圧流体の密度は、液体に近く、気体に比べて遥かに大量の助剤を含むことができる。   In the present invention, the high-pressure fluid used is preferably carbon dioxide from the viewpoints of safety, cost, and easy supercritical state. In addition to carbon dioxide, water, ammonia, nitrous oxide, ethanol and the like can be used. The high pressure fluid is used because it has a high diffusion coefficient and can disperse dissolved pollutants in the medium. When the high pressure fluid is a supercritical fluid, it has an intermediate property between gas and liquid. The diffusion coefficient approaches the gas and can penetrate well into fine pattern portions. Also, the density of the high-pressure fluid is close to that of a liquid and can contain a much larger amount of auxiliary agent than gas.

ここで、本発明における「高圧流体」とは、1MPa以上の圧力の流体である。好ましく用いることのできる高圧流体は、高密度、高溶解性、低粘度、高拡散性の性質が認められる流体であり、さらに好ましいものは超臨界状態または亜臨界状態の流体である。二酸化炭素を超臨界流体とするには31.1℃、7.4MPa以上とすればよい。洗浄並びに洗浄後のリンス工程や乾燥・現像工程等は、5〜30MPaの亜臨界流体または超臨界流体(高圧流体)を用いることが好ましく、7.4〜30MPaの下でこれらの処理を行うことがより好ましい。   Here, the “high pressure fluid” in the present invention is a fluid having a pressure of 1 MPa or more. The high-pressure fluid that can be preferably used is a fluid in which high-density, high-solubility, low-viscosity, and high-diffusibility properties are observed, and more preferable is a fluid in a supercritical state or subcritical state. In order to use carbon dioxide as a supercritical fluid, the temperature may be 31.1 ° C. and 7.4 MPa or more. It is preferable to use a subcritical fluid or supercritical fluid (high pressure fluid) of 5 to 30 MPa for the rinsing process and the drying / development process after washing and washing, and performing these treatments under 7.4 to 30 MPa. Is more preferable.

この発明にかかる高圧処理装置によれば、高圧流体が板部材の連通部を通って被処理体に向かって吐出されるため、被処理体の表面における高圧流体の置換性は良好なものとなっており、表面処理の効率を向上することができる。また、処理チャンバー内にデッドスペースが形成される余地はないため、パーティクルが滞留するような部位が存在せず、クリーン度を向上することができる。   According to the high-pressure processing apparatus according to the present invention, the high-pressure fluid is discharged toward the object to be processed through the communicating portion of the plate member, so that the replaceability of the high-pressure fluid on the surface of the object to be processed is good. Therefore, the efficiency of the surface treatment can be improved. In addition, since there is no room for forming a dead space in the processing chamber, there is no portion where particles stay, and the cleanliness can be improved.

図1は、この発明にかかる高圧処理装置の一実施形態を示す図である。この高圧処理装置は、圧力容器1の内部に形成される処理チャンバー11に超臨界二酸化炭素(以下「SCCO」という)を導入し、その処理チャンバー11において保持されている略円形の半導体ウエハなどの基板Wに対して所定の洗浄処理、リンス処理および乾燥処理などの表面処理を行う装置である。以下、その構成および動作について詳細に説明する。 FIG. 1 is a diagram showing an embodiment of a high-pressure processing apparatus according to the present invention. The high-pressure processing apparatus introduces supercritical carbon dioxide (hereinafter referred to as “SCCO 2 ”) into a processing chamber 11 formed inside the pressure vessel 1, and has a substantially circular semiconductor wafer held in the processing chamber 11. This is a device that performs surface treatment such as predetermined cleaning, rinsing, and drying on the substrate W. Hereinafter, the configuration and operation will be described in detail.

圧力容器1は、円筒状の上部容器1aと下部容器1bとの2分割構成となっており、基板Wのロード時およびアンロード時には両者が分離して処理チャンバー11を開き、表面処理の実行時には両者が密着して処理チャンバー11を閉じるようになっている。上部容器1aと下部容器1bとの接触部には、処理チャンバー11を密閉するために、例えばフッ素樹脂からなるシール部材1cが全周に亘って設けられている。   The pressure vessel 1 is divided into a cylindrical upper vessel 1a and a lower vessel 1b. When the substrate W is loaded and unloaded, the pressure vessel 1 is separated to open the treatment chamber 11, and when performing surface treatment. Both are in close contact with each other so as to close the processing chamber 11. A sealing member 1c made of, for example, a fluororesin is provided at the contact portion between the upper container 1a and the lower container 1b so as to seal the processing chamber 11 over the entire circumference.

処理チャンバー11には、円形薄板状の仕切板4が配設されている。仕切板4は、処理チャンバー11を基板Wからみた上方の空間を基板Wに近い空間と基板Wから離れる空間に上下、すなわちSCCOの流れる方向に上流下流に仕切ることで上流チャンバー12と下流チャンバー13とを形成するもので、本発明の「板部材」に相当する。圧力容器1の側壁13aの内周面11aには、溝11bが全周に亘ってほぼ水平に穿設されており、仕切板4の外周端が溝11bに嵌まり込んでいる。仕切板4には、後述する貫通孔41が設けられている。 A circular thin plate-like partition plate 4 is disposed in the processing chamber 11. The partition plate 4 divides the upper space when the processing chamber 11 is viewed from the substrate W into a space close to the substrate W and a space away from the substrate W, that is, upstream and downstream in the direction in which the SCCO 2 flows. 13 and corresponds to the “plate member” of the present invention. A groove 11b is formed almost horizontally on the inner peripheral surface 11a of the side wall 13a of the pressure vessel 1, and the outer peripheral end of the partition plate 4 is fitted in the groove 11b. The partition plate 4 is provided with a through hole 41 to be described later.

そして、圧力容器1の側壁13aの上流チャンバー12に対応する部分には、流入路14が設けられており、この流入路14を介して上流チャンバー12が高圧流体供給部2に連通している。高圧流体供給部2は、本発明の「高圧流体」としてSCCOを処理チャンバー11に向けて圧送するものである。また、圧力容器1の側壁13aの下流チャンバー13に対応する部分には、排出路15の開口15aが設けられており、この排出路15を介して下流チャンバー13が貯留部3に連通している。また、基板Wは、下流チャンバー13に静止状態で表面が仕切板4に対向するように配置されている。 An inflow path 14 is provided in a portion corresponding to the upstream chamber 12 of the side wall 13 a of the pressure vessel 1, and the upstream chamber 12 communicates with the high-pressure fluid supply unit 2 through the inflow path 14. The high-pressure fluid supply unit 2 pumps SCCO 2 toward the processing chamber 11 as the “high-pressure fluid” of the present invention. Further, an opening 15 a of the discharge path 15 is provided in a portion corresponding to the downstream chamber 13 of the side wall 13 a of the pressure vessel 1, and the downstream chamber 13 communicates with the storage unit 3 through the discharge path 15. . Further, the substrate W is disposed in the downstream chamber 13 so that the surface thereof faces the partition plate 4 in a stationary state.

貯留部3としては、例えば気液分離容器等を設ければ良く、気液分離容器を用いてSCCOを気体部分と液体部分とに分離し、別々の経路を通して廃棄する。あるいは、各成分を回収(および必要により精製)して再利用してもよい。なお、気液分離容器により分離された気体成分と液体成分は、別々の経路を通して系外へ排出してもよい。また、この実施形態では、高圧処理装置が貯留部3を備えているが、装置が貯留部を備えずに、例えば装置外に設けられた貯留部を利用するようにしてもよい。なお、図1では、説明の便宜上、貯留部3を2箇所に示している。 As the storage unit 3, for example, a gas-liquid separation container or the like may be provided, and the SCCO 2 is separated into a gas part and a liquid part using the gas-liquid separation container and discarded through separate paths. Alternatively, each component may be recovered (and purified if necessary) and reused. In addition, you may discharge | emit the gas component and liquid component which were isolate | separated by the gas-liquid separation container out of the system through a separate path | route. Moreover, in this embodiment, although the high-pressure processing apparatus is provided with the storage part 3, you may make it utilize the storage part provided outside the apparatus, for example, without an apparatus being provided with the storage part. In addition, in FIG. 1, the storage part 3 is shown in two places for convenience of explanation.

そして、下流チャンバー13と貯留部3との間には、圧力調整弁(図示省略)が介装されており、コントローラ(図示省略)からの制御指令に基づき圧力調整弁が開くと、処理チャンバー11内の高圧流体などが貯留部3に排出される一方、圧力調整弁が閉じられると、処理チャンバー11に高圧流体を閉じ込めることができる。また、圧力調整弁の開閉制御により処理チャンバー11内の圧力を調整することも可能である。   A pressure regulating valve (not shown) is interposed between the downstream chamber 13 and the storage unit 3, and when the pressure regulating valve is opened based on a control command from a controller (not shown), the processing chamber 11 When the high pressure fluid or the like is discharged to the reservoir 3 while the pressure regulating valve is closed, the high pressure fluid can be confined in the processing chamber 11. It is also possible to adjust the pressure in the processing chamber 11 by controlling the opening and closing of the pressure regulating valve.

回転駆動部5は、鉛直方向にほぼ平行な回転軸回りに仕切板4を回転させるものである。すなわち、仕切板4には駆動軸6が取り付けられており、この駆動軸6は圧力容器1に設けられた軸通路を通って圧力容器1外に延設され、回転駆動部5に連結されている。そして、コントローラからの制御指令に基づき回転駆動部5が駆動されると、仕切板4が回転するように構成されている。   The rotation drive unit 5 rotates the partition plate 4 about a rotation axis substantially parallel to the vertical direction. That is, a drive shaft 6 is attached to the partition plate 4. The drive shaft 6 extends outside the pressure vessel 1 through an axial passage provided in the pressure vessel 1, and is connected to the rotation drive unit 5. Yes. And it is comprised so that the partition plate 4 may rotate, if the rotation drive part 5 is driven based on the control command from a controller.

次に、図2を参照して、仕切板4について詳述する。図2(a)は駆動軸6が仕切板4に取り付けられた状態の斜視図、(b)は駆動軸6および仕切板4の分解正面図、(c)は駆動軸6が取り外された仕切板4の平面図、(d)は(c)のD−D線断面図、(e)は駆動軸6の端面6aを示す斜視図、(f)は仕切板4と仕切板に設けられた貫通孔41と基板Wとの大小関係を説明する図である。   Next, the partition plate 4 will be described in detail with reference to FIG. 2A is a perspective view of the drive shaft 6 attached to the partition plate 4, FIG. 2B is an exploded front view of the drive shaft 6 and the partition plate 4, and FIG. 2C is a partition with the drive shaft 6 removed. The plan view of the plate 4, (d) is a sectional view taken along the line DD of (c), (e) is a perspective view showing the end surface 6 a of the drive shaft 6, and (f) is provided on the partition plate 4 and the partition plate. It is a figure explaining the magnitude relationship between the through-hole 41 and the board | substrate W. FIG.

仕切板4には、本発明の「連通部」として、表面から裏面に貫通する貫通孔41が透設されている。この貫通孔41は、スリット状で、仕切板4の中心を通るように(すなわち直径に沿って)、設けられている。貫通孔41は、下流側の下側開口41aと上流側の上側開口41bとを有し、これらの開口41a,41bを連通することで、上流チャンバー12と下流チャンバー13とを連通している。仕切板4の直径をL1とし、貫通孔41の長手方向の寸法をL2とし、基板Wの直径をL3とすると、L1>L2>L3になるように形成されている。すなわち、仕切板4が1回転すると、貫通孔41の下側開口41aが描く軌跡が基板Wの表面全体をカバーするようになっている。   The partition plate 4 is provided with a through hole 41 penetrating from the front surface to the back surface as the “communication portion” of the present invention. The through hole 41 is slit-shaped and is provided so as to pass through the center of the partition plate 4 (that is, along the diameter). The through hole 41 has a lower opening 41a on the downstream side and an upper opening 41b on the upstream side, and the upstream chamber 12 and the downstream chamber 13 are communicated with each other by communicating these openings 41a and 41b. When the diameter of the partition plate 4 is L1, the longitudinal dimension of the through hole 41 is L2, and the diameter of the substrate W is L3, L1> L2> L3. That is, when the partition plate 4 rotates once, the locus drawn by the lower opening 41a of the through hole 41 covers the entire surface of the substrate W.

駆動軸6の端面6aには、回転中心6bを含むように溝部63が穿設されるとともに、この溝部63を挟むように2つの凸部61,62が突設されている。そして、この凸部61,62が、仕切板4の貫通孔41を除く表面領域4a,4bにそれぞれ装着して、駆動軸6が仕切板4に固定されている。   A groove 63 is formed on the end surface 6a of the drive shaft 6 so as to include the rotation center 6b, and two protrusions 61 and 62 are provided so as to sandwich the groove 63. The protrusions 61 and 62 are attached to the surface regions 4 a and 4 b except for the through holes 41 of the partition plate 4, and the drive shaft 6 is fixed to the partition plate 4.

次に、上記のように構成された高圧処理装置の動作について説明する。上部容器1aと下部容器1bとを分離して処理チャンバー11を開いた状態で、産業用ロボット等のハンドリング装置や搬送機構により被処理体たる基板Wが1枚、処理チャンバー11の下流チャンバー13にローディングされると、上部容器1aと下部容器1bとを密着して処理チャンバー11を閉じて処理準備を完了する。それに続いて、高圧流体供給部2から処理チャンバー11の上流チャンバー12へのSCCO圧送を開始すると、SCCOが処理チャンバー11の上流チャンバー12に圧送されていく。また、高圧流体供給部2からの処理チャンバー11へのSCCO圧送開始と同時またはそれに引き続いて、回転駆動部5を駆動して仕切板4を回転させる。 Next, the operation of the high pressure processing apparatus configured as described above will be described. In a state where the upper container 1a and the lower container 1b are separated and the processing chamber 11 is opened, one substrate W, which is an object to be processed, is handled in the downstream chamber 13 of the processing chamber 11 by a handling device such as an industrial robot or a transport mechanism. When loaded, the upper container 1a and the lower container 1b are brought into close contact with each other, and the processing chamber 11 is closed to complete the processing preparation. Subsequently, when SCCO 2 pumping from the high-pressure fluid supply unit 2 to the upstream chamber 12 of the processing chamber 11 is started, SCCO 2 is pumped to the upstream chamber 12 of the processing chamber 11. At the same time as or after the start of SCCO 2 pumping from the high-pressure fluid supply unit 2 to the processing chamber 11, the rotation driving unit 5 is driven to rotate the partition plate 4.

仕切板4には貫通孔41が透設されているため、上流チャンバー12に圧送されたSCCOは、貫通孔41を通って下流チャンバー13に流入し、処理チャンバー11内の処理圧力が徐々に上昇していく。このとき、圧力調整弁をコントローラからの開閉指令に応じて開閉制御することで、処理チャンバー11内の処理圧力が所定値(例えば20MPa)に保たれる。なお、この開閉制御による圧力調整は後で説明する減圧処理が完了するまで継続される。 Since the partition plate 4 is provided with a through hole 41, the SCCO 2 pumped to the upstream chamber 12 flows into the downstream chamber 13 through the through hole 41, and the processing pressure in the processing chamber 11 gradually increases. It rises. At this time, the processing pressure in the processing chamber 11 is maintained at a predetermined value (for example, 20 MPa) by controlling the opening and closing of the pressure regulating valve in accordance with an opening / closing command from the controller. The pressure adjustment by the opening / closing control is continued until the decompression process described later is completed.

このようにSCCO送給の開始により洗浄工程が始まるが、このときSCCOの送給は連続的に行う。上流チャンバー12に供給されたSCCOは、仕切板4の貫通孔41を通って基板Wに向かって吐出される。したがって、基板Wの表面におけるSCCOの置換性は良好なものとなっている。また、仕切板4が回転されるため、SCCOが相対速度をもって基板Wの表面に吹き付けられることとなる。こうしてSCCOが下流チャンバー13に供給されて基板Wの表面にSCCOが接触し、基板Wに付着しているレジスト、レジスト残渣などの不要物質が剥離除去される。また、不要物質を随伴させたSCCOは排出路15を通って貯留部3へ送られる。 As described above, the cleaning process starts by starting the SCCO 2 feeding. At this time, the SCCO 2 feeding is continuously performed. SCCO 2 supplied to the upstream chamber 12 is discharged toward the substrate W through the through hole 41 of the partition plate 4. Therefore, the substitutability of SCCO 2 on the surface of the substrate W is good. Further, since the partition plate 4 is rotated, the SCCO 2 is sprayed on the surface of the substrate W at a relative speed. In this way, SCCO 2 is supplied to the downstream chamber 13, SCCO 2 comes into contact with the surface of the substrate W, and unnecessary substances such as resist and resist residues attached to the substrate W are peeled and removed. In addition, SCCO 2 accompanied by unnecessary substances is sent to the storage unit 3 through the discharge path 15.

そして、洗浄工程が完了すると、SCCO圧送を停止し、仕切板4の回転を停止する。そして、圧力調整弁の開閉を制御することで処理チャンバー11内を常圧に戻す。この減圧過程において、処理チャンバー11内に残留するSCCOは気体になって蒸発するので、基板Wの表面にシミ等が発生するなどの不具合を発生させることなく、基板Wを乾燥させることができる。しかも、近年、基板表面に微細パターンが形成されることが多く、乾燥処理の際に微細パターンが破壊されるという問題がクローズアップされているが、減圧乾燥を用いることで上記問題を解消することができる。 When the cleaning process is completed, the SCCO 2 pumping is stopped, and the rotation of the partition plate 4 is stopped. And the inside of the processing chamber 11 is returned to a normal pressure by controlling opening and closing of the pressure regulating valve. In this decompression process, the SCCO 2 remaining in the processing chamber 11 becomes a gas and evaporates, so that the substrate W can be dried without causing defects such as spots on the surface of the substrate W. . Moreover, in recent years, a fine pattern is often formed on the surface of the substrate, and the problem that the fine pattern is destroyed during the drying process has been highlighted, but the above problem can be solved by using reduced pressure drying. Can do.

そして、処理チャンバー11が常圧に戻ると、処理チャンバー11を開き、産業用ロボット等のハンドリング装置や搬送機構により洗浄処理済みの基板Wをアンロードする。こうして、一連の表面処理、つまり洗浄処理(レジスト剥離除去処理)+乾燥処理が完了する。そして、次の未処理の基板Wが搬送されてくると、上記動作が繰り返されていく。   When the processing chamber 11 returns to normal pressure, the processing chamber 11 is opened, and the substrate W that has been cleaned is unloaded by a handling device such as an industrial robot or a transport mechanism. Thus, a series of surface treatments, that is, cleaning treatment (resist stripping removal treatment) + drying treatment is completed. Then, when the next unprocessed substrate W is transferred, the above operation is repeated.

以上のように、この実施形態によれば、処理チャンバー11を仕切板4により上下に仕切って上流チャンバー12と下流チャンバー13とを形成し、上流チャンバー12にSCCOを供給し、下流チャンバー13に基板Wを静止状態で表面が仕切板4に対向するように配置している。そして、仕切板4には、上流チャンバー12と下流チャンバー13とを連通する貫通孔41が設けられているため、上流チャンバー12に供給されたSCCOは貫通孔41を通って基板Wに向かって吐出される。したがって、基板Wの表面におけるSCCOの置換性は良好なものとなっており、表面処理の効率を向上することができる。また、仕切板4は駆動軸6を介して回転駆動部5により鉛直方向にほぼ平行な回転軸回りに回転されるため、SCCOが相対速度をもって基板Wの表面に吹き付けられることから、さらに表面処理を促進することができる。 As described above, according to this embodiment, the processing chamber 11 is vertically divided by the partition plate 4 to form the upstream chamber 12 and the downstream chamber 13, SCCO 2 is supplied to the upstream chamber 12, and the downstream chamber 13 is supplied to the downstream chamber 13. The board | substrate W is arrange | positioned so that the surface may oppose the partition plate 4 in a stationary state. Since the partition plate 4 is provided with a through hole 41 that allows the upstream chamber 12 and the downstream chamber 13 to communicate with each other, the SCCO 2 supplied to the upstream chamber 12 passes through the through hole 41 toward the substrate W. Discharged. Therefore, the substituting property of SCCO 2 on the surface of the substrate W is good, and the efficiency of the surface treatment can be improved. Further, since the partition plate 4 is rotated around the rotation axis substantially parallel to the vertical direction by the rotation drive unit 5 via the drive shaft 6, the SCCO 2 is sprayed on the surface of the substrate W at a relative speed. Processing can be facilitated.

また、この実施形態によれば、上流チャンバー12は、底板となる仕切板4と処理チャンバー11の内壁とによって形成され、下流チャンバー13は、天板となる仕切板4と処理チャンバー11の内壁とによって形成されている。その結果、処理チャンバー11内にデッドスペースが形成される余地はない。したがって、パーティクルが滞留するような部位が存在せず、クリーン度を向上することができる。   In addition, according to this embodiment, the upstream chamber 12 is formed by the partition plate 4 serving as the bottom plate and the inner wall of the processing chamber 11, and the downstream chamber 13 is formed of the partition plate 4 serving as the top plate and the inner wall of the processing chamber 11. Is formed by. As a result, there is no room for forming a dead space in the processing chamber 11. Therefore, there is no portion where particles stay, and the cleanliness can be improved.

また、この実施形態によれば、仕切板4の中心を通るように貫通孔41を設けるとともに、基板Wの直径L3に対して貫通孔41の寸法L2をL2>L3としている。したがって、仕切板4が1回転すると、貫通孔41の下側開口41aが描く軌跡が基板Wの表面全体をカバーすることができる。これによって、基板Wの全面に亘って、SCCOを吹き付けることができる。 Further, according to this embodiment, the through hole 41 is provided so as to pass through the center of the partition plate 4, and the dimension L2 of the through hole 41 is set to L2> L3 with respect to the diameter L3 of the substrate W. Therefore, when the partition plate 4 rotates once, the locus drawn by the lower opening 41a of the through hole 41 can cover the entire surface of the substrate W. As a result, SCCO 2 can be sprayed over the entire surface of the substrate W.

また、この実施形態によれば、駆動軸6の端面6aに、回転中心6bを含むように溝部63を穿設し、この溝部63を挟むように2つの凸部61,62を突設して、この凸部61,62が、仕切板4の貫通孔41を除く表面領域4a,4bにそれぞれ装着して、駆動軸6を仕切板4に固定している。したがって、仕切板4の回転中心に対向する基板Wの表面に対して、駆動軸6によって妨げられることなく、直接SCCOを吹き付けることができる。 Further, according to this embodiment, the groove portion 63 is formed in the end surface 6a of the drive shaft 6 so as to include the rotation center 6b, and the two convex portions 61 and 62 are provided so as to sandwich the groove portion 63. The convex portions 61 and 62 are respectively attached to the surface regions 4 a and 4 b excluding the through holes 41 of the partition plate 4, thereby fixing the drive shaft 6 to the partition plate 4. Therefore, the SCCO 2 can be directly sprayed on the surface of the substrate W facing the rotation center of the partition plate 4 without being obstructed by the drive shaft 6.

また、この実施形態によれば、圧力容器1の側壁13aの内周面11aに溝11bを全周に亘ってほぼ水平に穿設し、仕切板4の外周端を溝11bに嵌まり込むように構成しているため、処理チャンバー11を、上流チャンバー12と下流チャンバー13とに確実に仕切ることができる。   Further, according to this embodiment, the groove 11b is formed almost horizontally over the entire circumference 11a of the side wall 13a of the pressure vessel 1, and the outer peripheral end of the partition plate 4 is fitted into the groove 11b. Therefore, the processing chamber 11 can be reliably partitioned into the upstream chamber 12 and the downstream chamber 13.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、スリット状の貫通孔41を仕切板4に設けているが、本発明の「連通部」は、これに限られない。図3は仕切板4に設けられる貫通孔の変形形態を示す図である。図3(a)の仕切板4には、その中心4cから半径に沿って円形の貫通孔42が2列に互い違いに設けられている。また、図3(b)の仕切板4には、その中心4cから半径に沿って放射状に円形の貫通孔43が設けられている。また、図3(c)の仕切板4には、その中心4cから半径に沿ってスリット状の貫通孔44が設けられている。図3(a)〜(c)において、仕切板4が1回転すると、貫通孔42〜44は、それぞれ、その下側開口が描く軌跡が基板Wの表面全体をカバーするように、設けられている。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the slit-shaped through hole 41 is provided in the partition plate 4, but the “communication portion” of the present invention is not limited to this. FIG. 3 is a view showing a modified form of the through hole provided in the partition plate 4. In the partition plate 4 of FIG. 3A, circular through holes 42 are alternately provided in two rows along the radius from the center 4c. Further, the partition plate 4 in FIG. 3B is provided with circular through-holes 43 radially from the center 4c along the radius. Further, the partition plate 4 of FIG. 3C is provided with a slit-like through hole 44 along the radius from the center 4c. 3A to 3C, when the partition plate 4 rotates once, the through holes 42 to 44 are provided so that the trajectory drawn by the lower opening covers the entire surface of the substrate W, respectively. Yes.

また、上記実施形態では、圧力容器1の側壁13aの内周面11aに溝11bを全周に亘ってほぼ水平に設け、仕切板4の外周端を溝11bに嵌まり込むようにしているが、これに限られない。例えば図4に示すように、圧力容器1の側壁13aの内周面11aに溝を設けず、仕切板4の外周端と内周面11aとの間に微小隙間を有するように構成してもよい。この形態でも、上記実施形態と同様の効果を得ることができる。   Moreover, in the said embodiment, although the groove | channel 11b is provided in the inner peripheral surface 11a of the side wall 13a of the pressure vessel 1 substantially horizontally over the perimeter, and the outer peripheral end of the partition plate 4 fits in the groove | channel 11b, Not limited to. For example, as shown in FIG. 4, a groove may not be provided on the inner peripheral surface 11a of the side wall 13a of the pressure vessel 1, and a minute gap may be provided between the outer peripheral end of the partition plate 4 and the inner peripheral surface 11a. Good. Also in this form, the same effect as the above embodiment can be obtained.

また、上記実施形態では、SCCO(超臨界二酸化炭素)を単独で用いて、表面処理を実行しているが、これに限られず、SCCOに薬液を溶解した処理流体を用いて、表面処理を実行するようにしてもよい。また、上記実施形態では、上流チャンバー12にSCCOを供給し、基板Wを下流チャンバー13に配置しているが、上下を逆にしてもよい。すなわち、上流チャンバー12を下部に配置し、その上部に下流チャンバー13を配置するように上下を逆にしてもよい。 In the above embodiment, SCCO using 2 (supercritical carbon dioxide) alone, although running surface treatment is not limited thereto, using the processing fluid that has dissolved drug solution SCCO 2, surface treatment May be executed. In the above embodiment, the upstream chamber 12 supplies the SCCO 2, but are arranged the substrate W to the downstream chamber 13 may be upside down. That is, the upper chamber 12 may be disposed at the lower portion and the upper and lower portions may be reversed so that the downstream chamber 13 is disposed at the upper portion.

ところで、上述したように、上記実施形態の高圧処理装置では、処理チャンバー11を密閉するために、上部容器1aと下部容器1bとの接触部には、例えばフッ素樹脂からなるシール部材1cが全周に亘って設けられている。ここで、高圧流体を用いた表面処理では、高圧流体の温度は60℃以上になることが多い。このような高温状態が続くと、シール部材1cを構成する樹脂の劣化が進むため、シール部材1cの交換頻度が高くならざるを得なくなる。そうすると、消耗品としてのシール部材1cのランニングコストが上昇する。また、シール部材1cの交換の度に高圧処理装置の動作を停止しなければならないため装置の稼働率が低下してしまう。そこで、シール部材1cの近傍を冷却することで、シール部材1cの長寿命化を図ることが考えられる。   Incidentally, as described above, in the high-pressure processing apparatus of the above-described embodiment, in order to seal the processing chamber 11, the sealing member 1c made of, for example, a fluororesin is provided around the contact portion between the upper container 1a and the lower container 1b. Are provided. Here, in the surface treatment using a high-pressure fluid, the temperature of the high-pressure fluid is often 60 ° C. or higher. If such a high temperature state continues, deterioration of the resin constituting the seal member 1c proceeds, and the replacement frequency of the seal member 1c must be increased. If it does so, the running cost of the sealing member 1c as a consumable will rise. Moreover, since the operation of the high-pressure processing apparatus must be stopped every time the seal member 1c is replaced, the operating rate of the apparatus is lowered. Therefore, it is conceivable to extend the life of the seal member 1c by cooling the vicinity of the seal member 1c.

しかしながら、単にシール部材1cの近傍を冷却したのでは、シール部材1cの近傍の内壁面の温度が低下し、処理チャンバー11内の温度分布が悪化してしまう。つまり、処理チャンバー11の中央部分とシール部材1cの近傍部分とで空間的に温度差が発生してしまう。一般に、半導体ウエハプロセスでは、温度分布の均一性がプロセス性能に大きく影響する。したがって、シール部材1cの冷却によって処理チャンバー11内の温度分布に悪影響を与えないようにすることが必要である。   However, if the vicinity of the sealing member 1c is simply cooled, the temperature of the inner wall surface in the vicinity of the sealing member 1c is lowered, and the temperature distribution in the processing chamber 11 is deteriorated. That is, a spatial temperature difference occurs between the central portion of the processing chamber 11 and the vicinity of the seal member 1c. In general, in semiconductor wafer processes, the uniformity of temperature distribution greatly affects the process performance. Therefore, it is necessary to prevent the temperature distribution in the processing chamber 11 from being adversely affected by the cooling of the seal member 1c.

そこで、以上の点を考慮した構成例について説明する。図5は圧力容器1の部分拡大図である。図5において、上部容器1aおよび下部容器1bは、それぞれ、互いに接触する部分が外周に向けて延設された延設部1d,1eを備えている。そして、この延設部1d,1eには、シール部材1cに対応して冷却水ジャケット16,16が全周に亘って設けられている。冷却水ジャケット16,16は壁内に埋め込まれた水路で、内部に冷却水が循環している。また、冷却水ジャケット16,16より処理チャンバー11側の上部容器1aおよび下部容器1bには、それぞれ冷却水ジャケット16,16に対応して、温水が循環する温水ジャケット17,17が全周に亘って設けられている。   Therefore, a configuration example in consideration of the above points will be described. FIG. 5 is a partially enlarged view of the pressure vessel 1. In FIG. 5, each of the upper container 1a and the lower container 1b includes extending portions 1d and 1e in which portions that contact each other extend toward the outer periphery. The extending portions 1d and 1e are provided with cooling water jackets 16 and 16 over the entire circumference corresponding to the seal member 1c. The cooling water jackets 16 and 16 are water passages embedded in the wall, and the cooling water circulates inside. Further, in the upper container 1a and the lower container 1b closer to the processing chamber 11 than the cooling water jackets 16 and 16, hot water jackets 17 and 17 through which hot water circulates correspond to the cooling water jackets 16 and 16, respectively. Is provided.

このように、図5の形態によれば、冷却水ジャケット16,16によりシール部材1cを冷却しているため、シール部材1cの劣化を防止することができる。また、温水ジャケット17,17によって、冷却水ジャケット16,16による温度低下の影響を遮断しているため、処理チャンバー11内の温度分布の均一性を保持することができる。また、延設部1d,1eの分だけ冷却水ジャケット16,16の位置が圧力容器1の内周面11aから遠くなっているため、冷却水ジャケット16,16による処理チャンバー11への悪影響を緩和することができる。また、延設部1d,1eの分だけ圧力容器1のフットプリントが増大するものの、処理チャンバー11の内部形状を図1の装置と同一形状に維持することができるという利点がある。   Thus, according to the form of FIG. 5, since the sealing member 1c is cooled by the cooling water jackets 16 and 16, deterioration of the sealing member 1c can be prevented. Moreover, since the influence of the temperature drop by the cooling water jackets 16 and 16 is blocked by the hot water jackets 17 and 17, the uniformity of the temperature distribution in the processing chamber 11 can be maintained. Further, since the positions of the cooling water jackets 16 and 16 are farther from the inner peripheral surface 11a of the pressure vessel 1 by the extended portions 1d and 1e, the adverse effects on the processing chamber 11 due to the cooling water jackets 16 and 16 are alleviated. can do. Further, although the footprint of the pressure vessel 1 is increased by the extension portions 1d and 1e, there is an advantage that the internal shape of the processing chamber 11 can be maintained in the same shape as the apparatus of FIG.

図6は別の形態例を示す圧力容器1の部分拡大図である。図6において、上部容器1aの下端周縁部13bは、内周面11aより外周側に向かって広がって形成されている。そして、この下端周縁部13bの直ぐ外周側に、シール部材1cと冷却水ジャケット16,16とが全周に亘って設けられている。また、下端周縁部13bの天面13cに、排出路15の開口15aが設けられている。   FIG. 6 is a partially enlarged view of the pressure vessel 1 showing another embodiment. In FIG. 6, the lower end peripheral part 13b of the upper container 1a is formed so as to expand from the inner peripheral surface 11a toward the outer peripheral side. And the sealing member 1c and the cooling water jackets 16 and 16 are provided over the perimeter on the immediate outer peripheral side of this lower end peripheral part 13b. Moreover, the opening 15a of the discharge path 15 is provided in the top | upper surface 13c of the lower end peripheral part 13b.

このように、図6の形態によれば、冷却水ジャケット16,16によりシール部材1cを冷却しているため、シール部材1cの劣化を防止することができる。また、冷却水ジャケット16,16の近傍に排出路15の開口15aを設けているため、処理チャンバー11内におけるSCCOの流れとして、基板W側を上流とし、冷却水ジャケット16,16側を下流とすることができる。これによって、冷却水ジャケット16,16により冷却された低温のSCCOが基板Wに逆流して、基板W近傍の温度が低下するのを防止することができる。 Thus, according to the form of FIG. 6, since the sealing member 1c is cooled by the cooling water jackets 16 and 16, the deterioration of the sealing member 1c can be prevented. Further, since the opening 15a of the discharge passage 15 is provided in the vicinity of the cooling water jackets 16 and 16, the SCCO 2 flow in the processing chamber 11 is the upstream side of the substrate W and the downstream side of the cooling water jackets 16 and 16 is downstream. It can be. As a result, it is possible to prevent the low-temperature SCCO 2 cooled by the cooling water jackets 16 and 16 from flowing back to the substrate W and lowering the temperature in the vicinity of the substrate W.

図7は別の形態例を示す圧力容器1の部分拡大図である。図7の形態は、図6の形態に流体抵抗部を設けたものである。すなわち、図7において、上部容器1aの側壁13aの内周面11a側を下方に延設した流体抵抗部13cが設けられ、この流体抵抗部13cには貫通孔による流体路13dが設けられている。つまり、流体抵抗部13cは下端周縁部13bを塞ぐ蓋のようになっており、下流チャンバー13と下端周縁部13bとは流体抵抗部13c内の流体路13dによって連通されている。   FIG. 7 is a partially enlarged view of the pressure vessel 1 showing another embodiment. The form of FIG. 7 is provided with a fluid resistance portion in the form of FIG. That is, in FIG. 7, a fluid resistance portion 13c is provided in which the inner peripheral surface 11a side of the side wall 13a of the upper container 1a extends downward, and the fluid resistance portion 13c is provided with a fluid path 13d by a through hole. . That is, the fluid resistance portion 13c is like a lid that closes the lower end peripheral portion 13b, and the downstream chamber 13 and the lower end peripheral portion 13b are communicated with each other by the fluid path 13d in the fluid resistance portion 13c.

このように、図7の形態によれば、下端周縁部13bの下流チャンバー13側に流体抵抗部13cが設けられているため、下流チャンバー13に比べて下端周縁部13bの圧力を低くすることができる。これによって、低温のSCCOが基板Wに逆流するのを一層確実に防止することができる。なお、流体抵抗部13cの形態は図7に示すものに限られない。すなわち図7では貫通孔が設けられた板状になっているが、例えば多孔質体やメッシュ状のもので構成してもよい。要は、流体の流れに対して抵抗となり、かつ下流チャンバー13と下端周縁部13bとを連通するものであればよい。 Thus, according to the form of FIG. 7, since the fluid resistance portion 13 c is provided on the downstream chamber 13 side of the lower end peripheral portion 13 b, the pressure of the lower end peripheral portion 13 b can be made lower than that of the downstream chamber 13. it can. Thereby, it is possible to prevent the low-temperature SCCO 2 from flowing back to the substrate W more reliably. In addition, the form of the fluid resistance part 13c is not restricted to what is shown in FIG. That is, in FIG. 7, it has a plate shape with through-holes, but it may be made of, for example, a porous material or a mesh-like material. The point is that it is resistant to the flow of the fluid and communicates with the downstream chamber 13 and the lower edge portion 13b.

なお、上記実施形態では、基板Wを水平に保持して処理するように処理チャンバー11を水平に設置した場合について説明しているが、これに限られず、例えば処理チャンバーを鉛直方向に設置したり、斜めに傾斜して設置するようにしてもよい。これらの場合には、仕切板をその面法線にほぼ平行な回転軸回りに回転させるようにすればよい。   In the above embodiment, the case where the processing chamber 11 is installed horizontally so as to process the substrate W while holding it horizontally is described. However, the present invention is not limited to this. For example, the processing chamber is installed in the vertical direction. Alternatively, it may be installed obliquely. In these cases, the partition plate may be rotated around a rotation axis substantially parallel to the surface normal.

本発明は、高圧流体を用いて基板などの被処理体に表面処理を施す高圧処理装置に適用される。   The present invention is applied to a high-pressure processing apparatus that performs surface treatment on a target object such as a substrate using a high-pressure fluid.

この発明にかかる高圧処理装置の一実施形態を示す図である。It is a figure showing one embodiment of the high-pressure processing device concerning this invention. (a)は駆動軸が仕切板に取り付けられた状態の斜視図、(b)は駆動軸および仕切板の分解正面図、(c)は駆動軸が取り外された仕切板の平面図、(d)は(c)のD−D線断面図、(e)は駆動軸の端面を示す斜視図、(f)は仕切板と仕切板に設けられた貫通孔と基板との大小関係を説明する図である。(A) is a perspective view of the drive shaft attached to the partition plate, (b) is an exploded front view of the drive shaft and the partition plate, (c) is a plan view of the partition plate with the drive shaft removed, (d) ) Is a sectional view taken along the line DD of (c), (e) is a perspective view showing an end face of the drive shaft, and (f) is a diagram illustrating the size relationship between the partition plate, the through hole provided in the partition plate, and the substrate. FIG. 貫通孔の変形形態を示す図である。It is a figure which shows the deformation | transformation form of a through-hole. 高圧処理装置の変形形態を示す図である。It is a figure which shows the modification of a high pressure processing apparatus. 圧力容器の構成例を示す部分拡大図である。It is the elements on larger scale which show the structural example of a pressure vessel. 圧力容器の別の構成例を示す部分拡大図である。It is the elements on larger scale which show another structural example of a pressure vessel. 圧力容器のさらに別の構成例を示す部分拡大図である。It is the elements on larger scale which show another structural example of a pressure vessel.

符号の説明Explanation of symbols

1…圧力容器、2…高圧流体供給部(高圧流体供給手段)、4…仕切板(板部材)、5…回転駆動部(回転駆動手段)、6…駆動軸、6a…駆動軸の端面、6b…駆動軸の回転中心、61,62…凸部、63…溝部、11…処理チャンバー、11a…圧力容器の側壁の内周面、11b…溝、12…上流チャンバー、13…下流チャンバー、13a…圧力容器の側壁、15a…排出路の開口(排出口)、41〜44…貫通孔(連通部)、41a…下側開口(被処理体側開口)、W…基板(被処理体)   DESCRIPTION OF SYMBOLS 1 ... Pressure vessel, 2 ... High pressure fluid supply part (high pressure fluid supply means), 4 ... Partition plate (plate member), 5 ... Rotation drive part (rotation drive means), 6 ... Drive shaft, 6a ... End surface of a drive shaft, 6b: Rotation center of drive shaft, 61, 62 ... Projection, 63 ... Groove, 11 ... Processing chamber, 11a ... Inner peripheral surface of side wall of pressure vessel, 11b ... Groove, 12 ... Upstream chamber, 13 ... Downstream chamber, 13a ... side wall of pressure vessel, 15a ... opening of discharge path (discharge port), 41 to 44 ... through hole (communication part), 41a ... lower side opening (object to be processed side), W ... substrate (object to be processed)

Claims (6)

圧力容器の内部に設けられた処理チャンバー内に配置された被処理体の表面に対して高圧流体を用いて所定の表面処理を施す高圧処理装置において、
前記処理チャンバーを前記高圧流体の流れの方向で上流下流に仕切ることで上流チャンバーと下流チャンバーとを形成する板部材と、
前記上流チャンバーに前記高圧流体を供給する高圧流体供給手段と、
前記板部材をその面法線にほぼ平行な回転軸回りに回転させる回転駆動手段と
を備え、
前記被処理体は、前記下流チャンバーに静止状態で表面が前記板部材に対向するように配置され、
前記板部材には、前記上流チャンバーと前記下流チャンバーとを連通する連通部が設けられている
ことを特徴とする高圧処理装置。
In a high-pressure processing apparatus that performs a predetermined surface treatment using a high-pressure fluid on the surface of an object to be processed disposed in a processing chamber provided inside a pressure vessel,
A plate member that forms an upstream chamber and a downstream chamber by partitioning the processing chamber upstream and downstream in the direction of the flow of the high-pressure fluid;
High pressure fluid supply means for supplying the high pressure fluid to the upstream chamber;
Rotation driving means for rotating the plate member around a rotation axis substantially parallel to the surface normal,
The object to be processed is disposed in a stationary state in the downstream chamber so that the surface faces the plate member,
The high-pressure processing apparatus, wherein the plate member is provided with a communicating portion that communicates the upstream chamber and the downstream chamber.
前記板部材は、前記処理チャンバーを上下に仕切るもので、前記上流チャンバーは前記処理チャンバーの上部に形成され、前記下流チャンバーは前記処理チャンバーの下部に形成されている請求項1記載の高圧処理装置。   2. The high-pressure processing apparatus according to claim 1, wherein the plate member divides the processing chamber up and down, the upstream chamber is formed in an upper portion of the processing chamber, and the downstream chamber is formed in a lower portion of the processing chamber. . 前記連通部は、前記板部材の1回転により前記連通部の被処理体側開口が描く軌跡が前記被処理体の表面全体をカバーするように、前記板部材に設けられている請求項1または2記載の高圧処理装置。   The said communication part is provided in the said plate member so that the locus | trajectory which the to-be-processed object side opening of the said communication part draws by one rotation of the said plate member may cover the whole surface of the said to-be-processed object. The high-pressure processing apparatus described. 前記連通部は、前記板部材の回転中心を含むように設けられ、
前記板部材には、該板部材に前記回転駆動手段の駆動力を伝達するための駆動軸が固定されており、
前記駆動軸の端面には、回転中心を含むように溝部が穿設されるとともに、該溝部を挟むように複数の凸部が突設されており、前記各凸部が前記板部材の回転中心に設けられた連通部を除く前記板部材の表面に当接して、前記駆動軸が前記板部材に固定されている請求項3記載の高圧処理装置。
The communication portion is provided so as to include the rotation center of the plate member,
A driving shaft for transmitting the driving force of the rotation driving means to the plate member is fixed to the plate member,
A groove portion is formed on the end surface of the drive shaft so as to include the rotation center, and a plurality of convex portions are provided so as to sandwich the groove portion, and each of the convex portions is a rotation center of the plate member. The high-pressure processing apparatus according to claim 3, wherein the drive shaft is fixed to the plate member in contact with the surface of the plate member excluding the communication portion provided on the plate.
前記圧力容器の側壁の内周面には、溝が全周に亘ってほぼ水平に穿設され、
前記板部材は、その外周端が前記溝内に入り込んでいる請求項1ないし4のいずれかに記載の高圧処理装置。
On the inner peripheral surface of the side wall of the pressure vessel, a groove is drilled almost horizontally over the entire circumference,
The high-pressure processing apparatus according to any one of claims 1 to 4, wherein an outer peripheral end of the plate member enters the groove.
前記高圧流体の排出口が、前記下流チャンバーに対応する前記圧力容器の側壁に設けられている請求項1ないし5のいずれかに記載の高圧処理装置。   The high-pressure processing apparatus according to claim 1, wherein the high-pressure fluid discharge port is provided on a side wall of the pressure vessel corresponding to the downstream chamber.
JP2006255315A 2006-09-21 2006-09-21 High pressure treating device Withdrawn JP2008073611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255315A JP2008073611A (en) 2006-09-21 2006-09-21 High pressure treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255315A JP2008073611A (en) 2006-09-21 2006-09-21 High pressure treating device

Publications (1)

Publication Number Publication Date
JP2008073611A true JP2008073611A (en) 2008-04-03

Family

ID=39346226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255315A Withdrawn JP2008073611A (en) 2006-09-21 2006-09-21 High pressure treating device

Country Status (1)

Country Link
JP (1) JP2008073611A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530919A (en) * 2015-10-04 2018-10-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process chamber with reduced volume
US10573510B2 (en) 2015-10-04 2020-02-25 Applied Materials, Inc. Substrate support and baffle apparatus
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10636677B2 (en) 2017-08-18 2020-04-28 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10636669B2 (en) 2018-01-24 2020-04-28 Applied Materials, Inc. Seam healing using high pressure anneal
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
US10685830B2 (en) 2017-11-17 2020-06-16 Applied Materials, Inc. Condenser system for high pressure processing system
US10704141B2 (en) 2018-06-01 2020-07-07 Applied Materials, Inc. In-situ CVD and ALD coating of chamber to control metal contamination
US10714331B2 (en) 2018-04-04 2020-07-14 Applied Materials, Inc. Method to fabricate thermally stable low K-FinFET spacer
US10720341B2 (en) 2017-11-11 2020-07-21 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10777405B2 (en) 2015-10-04 2020-09-15 Applied Materials, Inc. Drying process for high aspect ratio features
US10847360B2 (en) 2017-05-25 2020-11-24 Applied Materials, Inc. High pressure treatment of silicon nitride film
US10854483B2 (en) 2017-11-16 2020-12-01 Applied Materials, Inc. High pressure steam anneal processing apparatus
US10957533B2 (en) 2018-10-30 2021-03-23 Applied Materials, Inc. Methods for etching a structure for semiconductor applications
KR20210032603A (en) * 2019-09-16 2021-03-25 세메스 주식회사 Apparatus and method for treating substrate
US10998200B2 (en) 2018-03-09 2021-05-04 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11011392B2 (en) 2012-11-26 2021-05-18 Applied Materials, Inc. Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device structures
US11018032B2 (en) 2017-08-18 2021-05-25 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11177128B2 (en) 2017-09-12 2021-11-16 Applied Materials, Inc. Apparatus and methods for manufacturing semiconductor structures using protective barrier layer
US11227797B2 (en) 2018-11-16 2022-01-18 Applied Materials, Inc. Film deposition using enhanced diffusion process
WO2022113971A1 (en) * 2020-11-25 2022-06-02 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
US11424137B2 (en) 2015-10-04 2022-08-23 Applied Materials, Inc. Drying process for high aspect ratio features
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
JP7386120B2 (en) 2020-04-02 2023-11-24 株式会社Screenホールディングス Substrate processing equipment
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011392B2 (en) 2012-11-26 2021-05-18 Applied Materials, Inc. Stiction-free drying process with contaminant removal for high-aspect ratio semiconductor device structures
US10573510B2 (en) 2015-10-04 2020-02-25 Applied Materials, Inc. Substrate support and baffle apparatus
US11133174B2 (en) 2015-10-04 2021-09-28 Applied Materials, Inc. Reduced volume processing chamber
JP2018530919A (en) * 2015-10-04 2018-10-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process chamber with reduced volume
US11424137B2 (en) 2015-10-04 2022-08-23 Applied Materials, Inc. Drying process for high aspect ratio features
US10777405B2 (en) 2015-10-04 2020-09-15 Applied Materials, Inc. Drying process for high aspect ratio features
US11705337B2 (en) 2017-05-25 2023-07-18 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10847360B2 (en) 2017-05-25 2020-11-24 Applied Materials, Inc. High pressure treatment of silicon nitride film
US11018032B2 (en) 2017-08-18 2021-05-25 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11462417B2 (en) 2017-08-18 2022-10-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11469113B2 (en) 2017-08-18 2022-10-11 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10636677B2 (en) 2017-08-18 2020-04-28 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11177128B2 (en) 2017-09-12 2021-11-16 Applied Materials, Inc. Apparatus and methods for manufacturing semiconductor structures using protective barrier layer
US11756803B2 (en) 2017-11-11 2023-09-12 Applied Materials, Inc. Gas delivery system for high pressure processing chamber
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US10720341B2 (en) 2017-11-11 2020-07-21 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US10854483B2 (en) 2017-11-16 2020-12-01 Applied Materials, Inc. High pressure steam anneal processing apparatus
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US10685830B2 (en) 2017-11-17 2020-06-16 Applied Materials, Inc. Condenser system for high pressure processing system
US10636669B2 (en) 2018-01-24 2020-04-28 Applied Materials, Inc. Seam healing using high pressure anneal
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US10998200B2 (en) 2018-03-09 2021-05-04 Applied Materials, Inc. High pressure annealing process for metal containing materials
US10714331B2 (en) 2018-04-04 2020-07-14 Applied Materials, Inc. Method to fabricate thermally stable low K-FinFET spacer
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10704141B2 (en) 2018-06-01 2020-07-07 Applied Materials, Inc. In-situ CVD and ALD coating of chamber to control metal contamination
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
US11110383B2 (en) 2018-08-06 2021-09-07 Applied Materials, Inc. Gas abatement apparatus
US10957533B2 (en) 2018-10-30 2021-03-23 Applied Materials, Inc. Methods for etching a structure for semiconductor applications
US11227797B2 (en) 2018-11-16 2022-01-18 Applied Materials, Inc. Film deposition using enhanced diffusion process
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
KR20210032603A (en) * 2019-09-16 2021-03-25 세메스 주식회사 Apparatus and method for treating substrate
KR102360937B1 (en) * 2019-09-16 2022-02-11 세메스 주식회사 Apparatus and method for treating substrate
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film
JP7386120B2 (en) 2020-04-02 2023-11-24 株式会社Screenホールディングス Substrate processing equipment
US11955350B2 (en) 2020-04-02 2024-04-09 SCREEN Holdings Co., Ltd. Substrate processing apparatus
WO2022113971A1 (en) * 2020-11-25 2022-06-02 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Similar Documents

Publication Publication Date Title
JP2008073611A (en) High pressure treating device
US20070295365A1 (en) Substrate processing method and substrate processing apparatus
US10915026B2 (en) Substrate treating apparatus and substrate treating method
JP2008135557A (en) Substrate processing apparatus and substrate processing method
JP2010056218A (en) Substrate processing apparatus, and substrate processing method
US11335550B2 (en) Method and apparatus for cleaning semiconductor wafer
JP2009105367A (en) Wafer spin chuck and etching device equipped with spin chuck
KR20070055346A (en) Liquid processing method, liquid processing apparatus and computer readable medium with controlling program therefor
KR100822511B1 (en) Substrate processing apparatus and substrate processing method
JP2006093497A (en) Substrate cleaning device
JP2020080350A (en) Substrate processing apparatus
JP2009021409A (en) Freezing processor, freezing processing method, and substrate processing device
JP2009004596A (en) High pressure treatment apparatus
JP5528927B2 (en) Substrate cleaning apparatus and substrate cleaning method
WO2006030561A1 (en) Substrate treatment apparatus
JP2012209285A (en) Substrate processing apparatus
JP2009070946A (en) Substrate treating apparatus
JP2008300454A (en) Substrate-treating device and substrate treatment method
JP4936878B2 (en) Substrate processing apparatus and substrate processing method
KR102387542B1 (en) Air supply system and apparatus for treating substrate
KR102113931B1 (en) Substrate treatment method and substrate treatment device
US20080029123A1 (en) Sonic and chemical wafer processor
KR101939905B1 (en) Substrate processing apparatus and substrate processing method
JP6280789B2 (en) Substrate processing apparatus and substrate processing method
JP2005203713A (en) Apparatus and method for treating substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201