JP2008069193A - Particulate titanium dioxide composition and method for producing the same - Google Patents

Particulate titanium dioxide composition and method for producing the same Download PDF

Info

Publication number
JP2008069193A
JP2008069193A JP2006246576A JP2006246576A JP2008069193A JP 2008069193 A JP2008069193 A JP 2008069193A JP 2006246576 A JP2006246576 A JP 2006246576A JP 2006246576 A JP2006246576 A JP 2006246576A JP 2008069193 A JP2008069193 A JP 2008069193A
Authority
JP
Japan
Prior art keywords
titanium dioxide
fine particle
particle titanium
silicon
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006246576A
Other languages
Japanese (ja)
Inventor
Toshiharu Idei
俊治 出井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2006246576A priority Critical patent/JP2008069193A/en
Publication of JP2008069193A publication Critical patent/JP2008069193A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particulate titanium dioxide composition improving the water dispersibility while maintaining excellent weather resistance and light discoloration resistance as the particulate titanium dioxide composition without deteriorating transparency and ultraviolet absorbency possessed by the particulate titanium dioxide, having excellent water dispersibility and maintaining excellent weather resistance and light discoloration resistance. <P>SOLUTION: The particulate titanium dioxide composition is composed as follows. The particle surface of the particulate titanium dioxide having 5-70 nm average particle diameter is coated with a hydrous oxide of silicon in an amount of 0.1-20% based on the mass of the particulate titanium dioxide and converted into SiO<SB>2</SB>and a hydrous oxide of aluminum in an amount of 0.1-40% in terms of Al<SB>2</SB>O<SB>3</SB>based on the mass of the particulate titanium dioxide is deposited on the hydrous oxide of the silicon. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水分散性が優れ、かつ優れた耐候性、耐光変色性を保持する微粒子二酸化チタン組成物およびその製造方法に関する。   The present invention relates to a fine particle titanium dioxide composition having excellent water dispersibility and having excellent weather resistance and light discoloration resistance, and a method for producing the same.

最大粒子径が100nm(0.1μm)未満の微粒子二酸化チタンは、透明性や紫外線吸収性を有するなど、平均粒子径が100nm以上の二酸化チタン(いわゆる顔料級二酸化チタン)と異なる特性を有しており、その特性を生かして、塗料、化粧料、樹脂用組成物など、幅広い分野に使用されている。   Fine particle titanium dioxide having a maximum particle size of less than 100 nm (0.1 μm) has characteristics different from titanium dioxide (so-called pigment grade titanium dioxide) having an average particle size of 100 nm or more, such as transparency and ultraviolet absorption. Taking advantage of its properties, it is used in a wide range of fields such as paints, cosmetics, and resin compositions.

しかしながら、微粒子二酸化チタンは、顔料級二酸化チタンに比べて粒子径が小さく、光化学的には活性が高いので、顔料級二酸化チタンに比べて耐候性、耐光変色性が劣るという問題がある。   However, fine particle titanium dioxide has a particle diameter smaller than that of pigment grade titanium dioxide and high photochemical activity, and therefore has a problem that weather resistance and light discoloration resistance are inferior to pigment grade titanium dioxide.

そのため、微粒子二酸化チタンに種々の金属化合物(一般的には酸化物または含水酸化物)を被覆することにより、特性改善が試みられてきた。   For this reason, attempts have been made to improve characteristics by coating fine titanium dioxide with various metal compounds (generally oxides or hydrous oxides).

例えば、微粒子二酸化チタンの粒子表面をケイ素およびアルミニウムの酸化物で被覆して、微粒子二酸化チタンの透明性や紫外線吸収性を向上させることが提案されている(特許文献1〜2)。   For example, it has been proposed that the particle surface of fine particle titanium dioxide is coated with an oxide of silicon and aluminum to improve the transparency and ultraviolet absorption of fine particle titanium dioxide (Patent Documents 1 and 2).

また、微粒子二酸化チタンの耐候性や耐光変色性を向上させる目的で、粒子表面を複数の金属酸化物で被覆した微粒子二酸化チタン組成物が提案され、塗料などの分野で幅広く利用されている(特許文献3〜4)。   In addition, for the purpose of improving the weather resistance and light discoloration resistance of fine particle titanium dioxide, a fine particle titanium dioxide composition in which the particle surface is coated with a plurality of metal oxides has been proposed and widely used in the field of paints (patents) Literature 3-4).

ところで、近年は、多くの分野で環境への配慮から、溶媒や分散媒として有機溶剤を使用しない製品を製造しようとする動きが盛んになってきており、塗料の分野などにおいても、水系の組成物が多用されるようになってきた。   By the way, in recent years, due to consideration for the environment in many fields, there has been an increasing trend to manufacture products that do not use organic solvents as solvents and dispersion media. Things have come to be heavily used.

しかしながら、微粒子二酸化チタンの粒子表面を金属酸化物で被覆した従来の微粒子二酸化チタン組成物は、有機溶剤系の塗料の調製などに使用することを前提として改良が行われてきたため、耐候性や耐光変色性などを向上させた微粒子二酸化チタン組成物も、有機溶剤系の塗料の調製に適するようにしつつ、特性向上が図られていた。   However, conventional fine particle titanium dioxide compositions in which the particle surface of fine particle titanium dioxide is coated with a metal oxide have been improved on the premise that they are used for the preparation of organic solvent-based paints. The fine particle titanium dioxide composition with improved discoloration and the like has also been improved in properties while being suitable for the preparation of organic solvent-based paints.

そのため、それら従来の微粒子二酸化チタン組成物を、有機溶剤を使用しない水系塗料に配合すると、凝集しやすいという問題があった。   Therefore, when these conventional fine particle titanium dioxide compositions are blended in water-based paints that do not use organic solvents, there is a problem that they tend to aggregate.

特開昭55−10428号公報Japanese Patent Laid-Open No. 55-10428 特開昭55−154317号公報JP-A-55-154317 特公平7−751号公報Japanese Patent Publication No. 7-751 特許第2878415号公報Japanese Patent No. 2878415

本発明は、上記のような従来技術の問題点を解決し、微粒子二酸化チタンの特徴である優れた透明性および紫外線吸収性を損なうことなく、かつ微粒子二酸化チタン組成物としての優れた耐候性、耐光変色性を保持しつつ、水分散性を向上させ、水分散性が優れ、かつ優れた耐候性、耐光変色性を保持する微粒子二酸化チタン組成物を提供することを目的とする。   The present invention solves the problems of the prior art as described above, without impairing the excellent transparency and ultraviolet absorption characteristic of fine particle titanium dioxide, and excellent weather resistance as a fine particle titanium dioxide composition, An object of the present invention is to provide a fine particle titanium dioxide composition that improves water dispersibility while maintaining light discoloration resistance, has excellent water dispersibility, and has excellent weather resistance and light discoloration resistance.

本発明は、平均粒子径が5〜70nmの微粒子二酸化チタンの粒子表面を、上記微粒子二酸化チタンの質量に対しSiOに換算して1〜20%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に上記微粒子二酸化チタンの質量に対しZrOに換算して0.1〜10%のジルコニウムの含水酸化物およびAlに換算して0.1〜40%のアルミニウムの含水酸化物を沈着させることによって、微粒子二酸化チタンの有する優れた透明性および紫外線吸収性を損なうことなく、微粒子二酸化チタン組成物としての優れた耐候性、耐光変色性を保持しつつ、水分散性を向上させて、上記課題を解決したものである。 In the present invention, the particle surface of fine particle titanium dioxide having an average particle size of 5 to 70 nm is coated with 1 to 20% silicon hydrous oxide in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide. Of 0.1 to 10% of zirconium oxide in terms of ZrO 2 and 0.1 to 40% of aluminum in terms of Al 2 O 3 with respect to the mass of the fine titanium dioxide By depositing the hydrous oxide, water dispersibility is maintained while maintaining excellent weather resistance and light discoloration resistance as a fine particle titanium dioxide composition without impairing the excellent transparency and ultraviolet absorption property of fine particle titanium dioxide. To solve the above problems.

本発明の微粒子二酸化チタン組成物は、水分散性が優れ、かつ優れた耐候性、耐光変色性を保持し、しかも微粒子二酸化チタンの特徴である透明性および紫外線吸収性を有している。   The fine particle titanium dioxide composition of the present invention has excellent water dispersibility, retains excellent weather resistance and light discoloration resistance, and also has transparency and ultraviolet light absorption, which are the characteristics of fine particle titanium dioxide.

本発明の微粒子二酸化チタン組成物が、上記のように優れた水分散性を有するにいたったのは、微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆したことと、そのケイ素の含水酸化物上にジルコニウムの含水酸化物およびアルミニウムの含水酸化物を沈着させたこととによるものである。   The fine particle titanium dioxide composition of the present invention has excellent water dispersibility as described above because the surface of the fine particle titanium dioxide was coated with a hydrous oxide of silicon, and This is because the hydrated zirconium oxide and the hydrated aluminum oxide were deposited on the object.

本発明の微粒子二酸化チタン組成物において、中核となるのは、平均粒子径が5〜70nmの微粒子二酸化チタンであり、この微粒子二酸化チタンとしては、ルチル型のもの、アナターゼ型のもののいずれも用いることができるが、塗料などへの適応性を考えると、熱や溶剤に対する安定性が高いルチル型の方が好ましい。   In the fine particle titanium dioxide composition of the present invention, the core is fine particle titanium dioxide having an average particle diameter of 5 to 70 nm. As the fine particle titanium dioxide, either a rutile type or an anatase type can be used. However, in view of adaptability to paints and the like, the rutile type having high stability against heat and solvent is preferred.

本発明において、中核となる微粒子二酸化チタンの平均粒子径を5〜70nmに特定しているのは、平均粒子径が5nmより小さい微粒子二酸化チタンは、凝集力が強くて均一に分散させることが困難な上に、量産化が困難で工業的に利用できる程度には入手しがたく、また、平均粒子径が70nmより大きい微粒子二酸化チタンでは、それを用いて得られる微粒子二酸化チタン組成物の透明性や紫外線吸収性が低下するおそれがあるからであり、この微粒子二酸化チタンとしては、平均粒子径が20〜50nmのものが特に好ましい。このように、本発明において、微粒子二酸化チタンの平均粒子径を特定しているのは、入手の容易さや透明性、紫外線吸収性などの観点からであって、水分散性に関しては、微粒子二酸化チタンの粒子径はほとんど影響を及ぼさず、上記平均粒子径の範囲内でほぼ同様の水分散性の向上を達成できる。なお、本発明において、微粒子二酸化チタンの平均粒子径は、微粒子二酸化チタンを透明型電子顕微鏡で撮影し(撮影個数は1,000個以上)、撮影された個々の粒子の定方向径(粒子の面積を2分する水平線の長さ)をプロットし、それらを平均することによって求めたものである。   In the present invention, the average particle diameter of the fine particle titanium dioxide serving as the core is specified to be 5 to 70 nm. The fine particle titanium dioxide having an average particle diameter of less than 5 nm has a strong cohesive force and is difficult to disperse uniformly. In addition, it is difficult to achieve mass production and is difficult to obtain industrially, and in the case of fine particle titanium dioxide having an average particle diameter of more than 70 nm, the transparency of the fine particle titanium dioxide composition obtained by using the fine particle titanium dioxide. In other words, the fine particle titanium dioxide having an average particle diameter of 20 to 50 nm is particularly preferable. As described above, in the present invention, the average particle diameter of the fine particle titanium dioxide is specified from the viewpoints of availability, transparency, ultraviolet absorption, and the like. There is almost no influence on the particle diameter of the particles, and substantially the same improvement in water dispersibility can be achieved within the above average particle diameter range. In the present invention, the average particle size of the fine particle titanium dioxide is obtained by photographing the fine particle titanium dioxide with a transparent electron microscope (captured number is 1,000 or more), and the directional direction diameter of each photographed particle (particle size). This is obtained by plotting (the length of a horizontal line that bisects the area) and averaging them.

上記平均粒子径が5〜70nmの微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆するには、例えば、次の方法によって行われる。   For example, the following method is used to coat the surface of fine titanium dioxide particles having an average particle diameter of 5 to 70 nm with a hydrous oxide of silicon.

まず、上記微粒子二酸化チタンの粉末を水中に懸濁し、スラリー状の懸濁液にする。この際、ヘキサメタリン酸ナトリウム、塩酸などの分散助剤を加えてもよい。そして、この懸濁液は、サンドミルのような分散機を通し、微粒子二酸化チタン粉末を凝集状態から解きほぐし、分散状態にしておくことが好ましい。   First, the fine titanium dioxide powder is suspended in water to form a slurry suspension. At this time, a dispersion aid such as sodium hexametaphosphate or hydrochloric acid may be added. The suspension is preferably passed through a disperser such as a sand mill to unwind the fine particle titanium dioxide powder from the agglomerated state and leave it in a dispersed state.

次いで、上記微粒子二酸化チタンの懸濁液に対し、水溶性ケイ素化合物などの水溶液と、中和剤をpH6〜8に保ちながら同時に添加する。   Next, an aqueous solution such as a water-soluble silicon compound and a neutralizing agent are simultaneously added to the suspension of fine particle titanium dioxide while maintaining the pH at 6-8.

上記水溶性ケイ素化合物としては、例えば、ケイ酸ナトリウム、ケイ酸カリウムなどのケイ酸塩、四塩化ケイ素などのハロゲン化ケイ素などが好適に用いられる。中和剤としては、上記水溶性ケイ素化合物の特性に応じ、アルカリまたは酸が用いられる。   As said water-soluble silicon compound, silicates, such as sodium silicate and potassium silicate, silicon halides, such as silicon tetrachloride, etc. are used suitably, for example. As the neutralizing agent, an alkali or an acid is used according to the characteristics of the water-soluble silicon compound.

また、上記のような水溶性ケイ素化合物と中和剤の同時添加に代えて、水溶性ケイ素化合物を先に添加し、次いで中和剤としてのアルカリまたは酸を0.5〜3時間の範囲内で徐々に加えていくことによって中和し、最終的にpHを6〜8に調整するようにしてもよい。添加する水溶性ケイ素化合物の量としては、中核となる微粒子二酸化チタンの質量に対しSiOに換算して0.1〜20%、好ましくは1〜8%、より好ましくは1〜5%となるように化合物量を計算して添加量を決定する。 Further, instead of the simultaneous addition of the water-soluble silicon compound and the neutralizing agent as described above, the water-soluble silicon compound is first added, and then the alkali or acid as the neutralizing agent is within the range of 0.5 to 3 hours. It is also possible to neutralize by gradually adding at pH and finally adjust the pH to 6-8. The amount of the water-soluble silicon compound to be added is 0.1 to 20%, preferably 1 to 8%, more preferably 1 to 5% in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide serving as the core. Thus, the amount of compound is calculated to determine the amount added.

本発明において、微粒子二酸化チタンの粒子表面を被覆するケイ素の含水酸化物の量を、微粒子二酸化チタンの質量に対しSiO換算で0.1〜20%(つまり、中核となる微粒子二酸化チタン100質量部に対してケイ素の含水酸化物がSiOに換算して0.1〜20質量部)にしているのは、ケイ素の含水酸化物の被覆量が上記条件下で0.1%より少ない場合は、目的とする水分散性の向上が得られず、ケイ素の含水酸化物の被覆量が20%より多い場合は、水分散性がかえって低下し、また、透明性、耐水性なども低下するという理由によるものであり、このケイ素の微粒子二酸化チタンの被覆量としては、中核となる微粒子二酸化チタンの質量に対しSiO換算で1〜8%が好ましく、1〜5%がより好ましい。 In the present invention, the amount of the silicon hydrated oxide covering the particle surface of the fine particle titanium dioxide is 0.1 to 20% in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide (that is, 100% by mass of fine particle titanium dioxide as the core) The amount of silicon hydrated oxide is 0.1 to 20 parts by mass in terms of SiO 2 with respect to parts when the amount of silicon hydrated oxide is less than 0.1% under the above conditions. Does not provide the desired improvement in water dispersibility, and when the coating amount of the hydrous oxide of silicon is more than 20%, the water dispersibility is lowered, and the transparency and water resistance are also lowered. The coating amount of the silicon fine particle titanium dioxide is preferably 1 to 8%, more preferably 1 to 5% in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide serving as the core.

また、微粒子二酸化チタンの粒子表面の被覆にあたって、pH6〜8に調整するのは、pHが6より低い場合は、生成するケイ素の含水酸化物の粒子が大きくなって、緻密な表面被覆ができにくいためであり、pHが8より高い場合は、ケイ素の含水酸化物が生成しにくく、目的とする被覆量が得られないという理由によるものである。また、水溶性ケイ素化合物を先に添加し、後から中和剤を添加する場合、その中和剤の添加時期を水溶性ケイ素化合物の添加後0.5〜3時間としているのは、0.5時間より短かい場合は緻密な表面被覆が得られにくく、また、3時間より長い場合は生産性が著しく低下するという理由によるものである。   In addition, when the particle surface of fine titanium dioxide is coated, the pH is adjusted to 6 to 8. When the pH is lower than 6, the generated silicon hydrous oxide particles are large and it is difficult to form a dense surface coating. This is because, when the pH is higher than 8, it is difficult to produce a silicon hydrated oxide, and the target coating amount cannot be obtained. In addition, when the water-soluble silicon compound is added first and the neutralizing agent is added later, the addition time of the neutralizing agent is set to 0.5 to 3 hours after the addition of the water-soluble silicon compound. When the time is shorter than 5 hours, it is difficult to obtain a dense surface coating. When the time is longer than 3 hours, the productivity is remarkably lowered.

つぎに、上記のように、微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆することによって得られた微粒子二酸化チタン組成物(本発明において、この微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆してなる微粒子二酸化チタン組成物を「第1段階の微粒子二酸化チタン組成物」という場合がある)のケイ素の含水酸化物上にジルコニウムの含水酸化物およびアルミニウムの含水酸化物を沈着させる。   Next, as described above, a fine particle titanium dioxide composition obtained by coating the particle surface of fine particle titanium dioxide with a hydrous oxide of silicon (in the present invention, the particle surface of fine particle titanium dioxide is treated with hydrous silicon oxide). The zirconium hydrous oxide and the aluminum hydrous oxide are deposited on the silicon hydrous oxide of the microparticulate titanium dioxide composition coated with a product (sometimes referred to as “first stage microtitanium dioxide composition”). .

本発明において、上記のように、ジルコニウムの含水酸化物を沈着させるとか、アルミニウムの含水酸化物を沈着させるという表現にし、ジルコニウムの含水酸化物で被覆するとか、アルミニウムの含水酸化物で被覆するという表現にしていないのは、ジルコニウムの含水酸化物やアルミニウムの含水酸化物は、たとえ、その量を多くしても、被膜状になりがたく、粒状ないし塊状でケイ素の含水酸化物上に付着するからである。   In the present invention, as described above, it is expressed that zirconium hydrated oxide is deposited or aluminum hydrated oxide is deposited, and is coated with zirconium hydrated oxide or aluminum hydrated oxide. What is not expressed is that the hydrated oxide of zirconium and the hydrated oxide of aluminum are difficult to form a film even if the amount of the hydrated oxide is large, and adhere to the silicon hydrated oxide in a granular or lump form. Because.

従って、これらのジルコニウムの含水酸化物およびアルミニウムの含水酸化物のケイ素の含水酸化物上への沈着は、必ずしも、それらを同時に沈着させる必要はなく、例えば、ジルコニウムの含水酸化物を先に沈着させ、次いでアルミニウムの含水酸化物を沈着させてもよいし、また、その逆に、アルミニウムの含水酸化物を先に沈着させ、次いでジルコニウムの含水酸化物を沈着させてもよい。   Therefore, the deposition of these zirconium hydrous oxide and aluminum hydrous oxide on the silicon hydrous oxide does not necessarily require that they be deposited at the same time. For example, the zirconium hydrous oxide is deposited first. Then, the hydrated aluminum oxide may be deposited, or conversely, the hydrated aluminum oxide may be deposited first, followed by the hydrated zirconium oxide.

そして、ジルコニウムの含水酸化物を先にケイ素の含水酸化物上に沈着させ、次いでアルミニウムの含水酸化物を沈着させた場合、前述したように、ジルコニウムの含水酸化物はケイ素の含水酸化物上に粒状ないし塊状で沈着するので、アルミニウムの含水酸化物の大部分はケイ素の含水酸化物上のジルコニウムの含水酸化物が沈着していない部分に直接沈着する。ただし、アルミニウムの含水酸化物の一部が先に沈着したジルコニウムの含水酸化物上に沈着してもよい。   When the zirconium hydrate oxide is first deposited on the silicon hydrate oxide, and then the aluminum hydrate oxide is deposited, as described above, the zirconium hydrate oxide is deposited on the silicon hydrate oxide. Since it is deposited in the form of particles or lumps, most of the aluminum hydrated oxide is deposited directly on the silicon hydrated oxide where no zirconium hydrated oxide is deposited. However, a part of the hydrated aluminum oxide may be deposited on the hydrated zirconium oxide previously deposited.

また、アルミニウムの含水酸化物を先にケイ素の含水酸化物上に沈着させ、次いでジルコニウムの含水酸化物を沈着させた場合も、アルミニウムの含水酸化物はケイ素の含水酸化物上に粒状ないし塊状に沈着するので、ジルコニウムの含水酸化物の大部分はケイ素の含水酸化物上のアルミニウムの含水酸化物が沈着していない部分に直接沈着する。そして、この場合においても、ジルコニウムの含水酸化物の一部が先に沈着したアルミニウムの含水酸化物上に沈着してもよい。   Also, when aluminum hydrated oxide is first deposited on silicon hydrated oxide, and then zirconium hydrated oxide is deposited, aluminum hydrated oxide is also granular or lumped on silicon hydrated oxide. As it is deposited, the majority of the hydrated zirconium oxide is deposited directly on the silicon hydrated oxide where the aluminum hydrated oxide is not deposited. In this case as well, a part of the hydrated oxide of zirconium may be deposited on the hydrated oxide of aluminum previously deposited.

微粒子二酸化チタンの粒子表面を被覆するケイ素の含水酸化物上へのジルコニウムの含水酸化物の沈着およびアルミニウムの含水酸化物の沈着は、両者を同時に行う場合以外にも、上記のように、両者をわけて(つまり、別々に)行うことができる。そして、これらジルコニウムの含水酸化物の沈着およびアルミニウムの含水酸化物の沈着は、後に詳述するように、水溶性ジルコニウム化合物と中和剤および水溶性アルミニウム化合物と中和剤を用いて行なわれるが、両者をそれぞれにわけて行う場合には、ジルコニウム化合物とアルミニウム化合物の極性が異なっていても実施することができるので、両者を同時に沈着させるよりも、両者を別けて沈着させる方がジルコニウム化合物やアルミニウム化合物の選択範囲が広くなり、実務上好ましい。つまり、両者をわけて行う場合は、例えば、水溶性ジルコニウム化合物として酸性のものを用い、水溶性アルミニウム化合物として塩基性のものを用いて行うことができるが(また、その逆に、水溶性ジルコニウム化合物として塩基性のものを用い、水溶性アルミニウム化合物として酸性のものを用いて行うことができるが)、両者を同時に沈着させる場合には、水溶性ジルコニウム化合物と水溶性アルミニウム化合物は同じ極性のものを用いなければならないという制約がある。   The zirconium hydrous oxide deposition and the aluminum hydrous oxide deposition on the silicon hydrous oxide covering the particle surface of the fine particle titanium dioxide are not limited to the case where both are performed simultaneously. It can be done separately (ie separately). The deposition of the hydrous oxide of zirconium and the deposition of the hydrous oxide of aluminum is performed using a water-soluble zirconium compound and a neutralizing agent and a water-soluble aluminum compound and a neutralizing agent, as will be described in detail later. When both are performed separately, since the zirconium compound and the aluminum compound can be different in polarity, it is more preferable to deposit both separately than to deposit both at the same time. The selection range of the aluminum compound is widened, which is preferable in practice. In other words, when both are performed separately, for example, an acidic compound can be used as the water-soluble zirconium compound and a basic compound can be used as the water-soluble aluminum compound (and vice versa) The basic compound can be used and the acidic compound can be used as the water-soluble aluminum compound.) When both are deposited simultaneously, the water-soluble zirconium compound and the water-soluble aluminum compound have the same polarity. There is a restriction that must be used.

そこで、上記第1段階の微粒子二酸化チタン組成物のケイ素の含水酸化物上にジルコニウムの含水酸化物およびアルミニウムの含水酸化物のケイ素の含水酸化物上に沈着させるにあたって、両者をわけて行う場合から先に説明すると、例えば、次に示すように行われる。第1段階の微粒子二酸化チタン組成物(すなわち、微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆してなる微粒子二酸化チタン組成物)の懸濁液に、中核となる微粒子二酸化チタンの質量に対しZrOとして0.1〜10%、好ましくは0.5〜5%、より好ましくは2〜4%の水溶性ジルコニウム化合物を酸性条件下で添加し、次いで、この塩基性の中和剤を添加して、中和することにより、上記第1段階の微粒子二酸化チタン組成物のケイ素の含水酸化物上にジルコニウムの含水酸化物を沈着させる。 Therefore, when depositing the hydrous oxide of zirconium and the hydrous oxide of aluminum on the hydrous oxide of silicon in the first stage fine particle titanium dioxide composition, the two steps are separately performed. If it demonstrates previously, it will be performed as follows, for example. In the suspension of the first stage fine particle titanium dioxide composition (that is, the fine particle titanium dioxide composition formed by coating the surface of fine particle titanium dioxide with a hydrous oxide of silicon), the mass of fine particle titanium dioxide as the core On the other hand, 0.1 to 10%, preferably 0.5 to 5%, more preferably 2 to 4% of a water-soluble zirconium compound as ZrO 2 is added under acidic conditions, and then this basic neutralizing agent is added. By adding and neutralizing, the hydrous oxide of zirconium is deposited on the hydrous oxide of silicon of the first stage fine particle titanium dioxide composition.

上記水溶性ジルコニウム化合物としては、例えば、硫酸ジルコニウム、硝酸ジルコニウム、オキシ塩化ジルコニウムなどの種々の水溶性ジルコニウム化合物を単独でまたは2種以上用い得るが、前記のように、この水溶性ジルコニウム化合物を酸性条件下で添加するのは、ジルコニウム化合物が酸性条件下でしか溶解できないという理由によるものである。また、先に水溶性ジルコニウム化合物のみを添加し、次いで、中和剤を添加するのは、この順序で添加することで比較的容易に高効率でジルコニウムの含水酸化物を沈着させることができるという理由によるものである。そして、中和剤としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア水、テメラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどの塩基性物質が用いられる。   As the water-soluble zirconium compound, for example, various water-soluble zirconium compounds such as zirconium sulfate, zirconium nitrate, and zirconium oxychloride may be used alone or in combination of two or more. The reason for adding under conditions is that the zirconium compound can only be dissolved under acidic conditions. In addition, adding only the water-soluble zirconium compound first, and then adding the neutralizing agent, it is possible to deposit zirconium hydrous oxide relatively easily by adding in this order. This is for a reason. And as a neutralizing agent, basic substances, such as sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia water, temeramethylammonium hydroxide, tetrabutylammonium hydroxide, are used, for example.

上記のようなジルコニウムの含水酸化物を沈着させるにあたっての水溶性ジルコニウム化合物と中和剤との反応は、特に限定されることはないが、30〜60℃程度の温度で実施することが好ましく、また、その際の時間としては、10〜30分程度が好ましい。   The reaction between the water-soluble zirconium compound and the neutralizing agent in depositing the zirconium hydrous oxide as described above is not particularly limited, but is preferably performed at a temperature of about 30 to 60 ° C. Moreover, as time in that case, about 10 to 30 minutes are preferable.

本発明において、このジルコニウムの含水酸化物の沈着量を中核となる微粒子二酸化チタンの質量に対し、ZrOに換算して0.1〜10%(つまり、中核となる微粒子二酸化チタン100質量部に対してZrOに換算して0.1〜10質量部)にしているのは、ジルコニウムの含水酸化物の沈着量が上記条件下で0.1%より少ない場合は目的とする水分散性の向上が得られず、また、10%より多い場合は水分散性がかえって低下し、透明性も低下するからである。そして、このジルコニウムの含水酸化物の沈着量としては0.5〜5%(つまり、中核となる微粒子二酸化チタンの質量に対しZrOに換算して0.5〜5%)が好ましく、2〜4%がより好ましい。 In the present invention, the amount of zirconium hydrous oxide deposited is 0.1 to 10% in terms of ZrO 2 with respect to the mass of fine particle titanium dioxide as the core (that is, 100 parts by mass of fine particle titanium dioxide as the core). On the other hand, 0.1 to 10 parts by mass in terms of ZrO 2 ) is that when the amount of zirconium hydrous oxide deposited is less than 0.1% under the above conditions, the desired water dispersibility This is because no improvement can be obtained, and if it exceeds 10%, the water dispersibility is lowered and the transparency is also lowered. Further, the deposition amount of the hydrous oxide of zirconium is preferably 0.5 to 5% (that is, 0.5 to 5% in terms of ZrO 2 with respect to the mass of the fine particle titanium dioxide serving as the core), 4% is more preferable.

次に、上記ジルコニウムの含水酸化物を沈着させた微粒子二酸化チタン組成物の懸濁液に、中核となる微粒子二酸化チタンの質量に対し、Alとして0.1〜40%、好ましくは1〜10%、より好ましくは2〜4%の水溶性アルミニウム化合物と中和剤とをpH6〜8に保って同時に添加することにより、アルミニウムの含水酸化物を上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に沈着させる。 Next, 0.1 to 40%, preferably 1 as Al 2 O 3 with respect to the mass of the fine particulate titanium dioxide in the suspension of the fine particulate titanium dioxide composition in which the hydrated oxide of zirconium is deposited. -10%, more preferably 2-4% of a water-soluble aluminum compound and a neutralizing agent are simultaneously added while maintaining the pH at 6-8, whereby the hydrated aluminum oxide is added to the hydrated silicon of the fine particle titanium dioxide composition. Deposit on oxide.

上記のようにして微粒子二酸化チタンの粒子表面を被覆するケイ素の含水酸化物上に、ジルコニウムの含水酸化物およびアルミニウムの含水酸化物を沈着させて得られた微粒子二酸化チタン組成物は、反応終了時、水に懸濁した状態で存在するため、それを濾過し、水洗した後、乾燥して水分を除去し、得られた乾燥物を流体エネルギーミルなどの粉砕機で粉砕して粉末化し、使用に適する状態にする。   The fine particle titanium dioxide composition obtained by depositing the hydrated oxide of zirconium and the hydrated oxide of aluminum on the hydrated oxide of silicon covering the particle surface of the finely divided titanium dioxide as described above is obtained at the end of the reaction. Since it exists in a suspended state in water, it is filtered, washed with water, dried to remove moisture, and the resulting dried product is pulverized with a pulverizer such as a fluid energy mill and used. To make it suitable for use.

上記水溶性アルミニウム化合物としては、例えば、塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、アルミン酸ナトリウム、アルミン酸カリウムなどの種々の水溶性アルミニウム化合物を単独でまたは2種以上用いることができる。   As said water-soluble aluminum compound, various water-soluble aluminum compounds, such as aluminum chloride, aluminum sulfate, aluminum nitrate, sodium aluminate, potassium aluminate, can be used individually or in combination of 2 types or more.

また、中和剤としては、使用する水溶性アルミニウム化合物の極性に応じて適したものを用いればよく、例えば、水溶性アルミニウム化合物が塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウムなどのように水中で酸性を示すものに対しては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなどの塩基性物質が用いられ、水溶性アルミニウム化合物がアルミン酸ナトリウム、アルミン酸カリウムなどのように水中で塩基性を示すものに対しては、例えば、硫酸、硝酸、塩酸、酢酸などの酸性物質が用いられる。   Further, as the neutralizing agent, those suitable for the polarity of the water-soluble aluminum compound to be used may be used. For example, the water-soluble aluminum compound is acidic in water such as aluminum chloride, aluminum sulfate, aluminum nitrate. For example, a basic substance such as sodium hydroxide, potassium hydroxide, lithium hydroxide, or ammonia is used, and the water-soluble aluminum compound is a base in water such as sodium aluminate or potassium aluminate. For example, acidic substances such as sulfuric acid, nitric acid, hydrochloric acid, and acetic acid are used.

上記のように、アルミニウムの含水酸化物を沈着させるにあたって水溶性アルミニウム化合物と中和剤とを同時に添加するのは、一定の濃度でゲル析出を行うことで、アルミニウムの含水酸化物の均一な沈着が可能になるという理由によるものであり、また、その際、pHを6〜8に保つのは、ケイ素の含水酸化物やジルコニウムの含水酸化物を溶解させることなく、アルミニウムの含水酸化物を沈着させることができるという理由によるものである。   As described above, the water-soluble aluminum compound and the neutralizing agent are added at the same time when depositing the aluminum hydrated oxide. By performing gel precipitation at a constant concentration, uniform deposition of the hydrated aluminum oxide is performed. In this case, the pH is maintained at 6 to 8 without depositing the hydrated oxide of silicon or the hydrated oxide of zirconium. It is because it can be made to.

また、上記のようなアルミニウムの含水酸化物を沈着させるにあたっての水溶性アルミニウム化合物と中和剤との反応は、特に限定されることはないが、30〜60℃程度の温度で実施することが好ましく、その際の時間としては10〜30分程度が好ましい。   In addition, the reaction between the water-soluble aluminum compound and the neutralizing agent in depositing the aluminum hydrate oxide as described above is not particularly limited, but may be performed at a temperature of about 30 to 60 ° C. The time at that time is preferably about 10 to 30 minutes.

本発明において、上記アルミニウムの含水酸化物の沈着量を中核となる微粒子二酸化チタンの質量に対しAlに換算して0.1〜40%(つまり、中核となる微粒子二酸化チタン100質量部に対してアルミニウムの含水酸化物がAlに換算して0.1〜40質量部)にしているのは、アルミニウムの含水酸化物の沈着量が上記条件下で0.1%より少ない場合は、目的とする水分散性の向上が得られないからであり、40%より多い場合は、水分散性がかえって低下し、透明性も低下するという理由によるものであり、このアルミニウムの含水酸化物の沈着量としては1〜10%(つまり、中核となる微粒子二酸化チタンの質量に対しAlに換算して1〜10%)が好ましく、2〜4%がより好ましい。 In the present invention, the deposited amount of the above-mentioned aluminum hydrate oxide is 0.1 to 40% in terms of Al 2 O 3 with respect to the mass of the fine particle titanium dioxide as the core (that is, 100 parts by mass of the fine particle titanium dioxide as the core) The amount of aluminum hydrated oxide is 0.1 to 40 parts by mass in terms of Al 2 O 3 ) because the amount of aluminum hydrated oxide deposited is less than 0.1% under the above conditions. In this case, the desired water dispersibility cannot be improved, and when it exceeds 40%, the water dispersibility is lowered and the transparency is lowered. The oxide deposition amount is preferably 1 to 10% (that is, 1 to 10% in terms of Al 2 O 3 with respect to the mass of fine particle titanium dioxide serving as the core), and more preferably 2 to 4%.

微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆してなる微粒子二酸化チタン組成物のケイ素の含水酸化物上に、ジルコニウムの含水酸化物およびアルミニウムの含水酸化物を同時に沈着させるには、上記微粒子二酸化チタン組成物の懸濁液に、水溶性ジルコニウム化合物および水溶性アルミニウム化合物と、中和剤とをpH6〜8に保って添加すればよい。   In order to deposit zirconium hydrous oxide and aluminum hydrous oxide simultaneously on the silicon hydrous oxide of the microparticulate titanium dioxide composition obtained by coating the surface of the microparticle titanium dioxide with the hydrous oxide of silicon, What is necessary is just to add a water-soluble zirconium compound and a water-soluble aluminum compound, and a neutralizing agent to the suspension of the fine particle titanium dioxide composition while maintaining the pH at 6-8.

ただし、上記のように、ジルコニウムの含水酸化物とアルミニウムの含水酸化物を同時に沈着させるには、添加する水溶性ジルコニウム化合物と水溶性アルミニウム化合物との間で反応を避けるため、水溶性ジルコニウム化合物も水溶性アルミニウム化合物も同じ極性を持つものを使用する必要がある。具体的には、水溶性ジルコニウム化合物のほとんどが酸性のものであるため、水溶性アルミニウム化合物も酸性のものを使用する必要がある。例えば、水溶性ジルコニウム化合物として硫酸ジルコニウム、硝酸ジルコニウム、塩化ジルコニウムなどを用い、水溶性アルミニウム化合物としては、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウムなどを用いればよい。そして、中和剤としては水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどの塩基性物質を用いればよい。   However, as described above, in order to simultaneously deposit the hydrous oxide of zirconium and the hydrous oxide of aluminum, in order to avoid a reaction between the water-soluble zirconium compound and the water-soluble aluminum compound to be added, It is necessary to use a water-soluble aluminum compound having the same polarity. Specifically, since most of the water-soluble zirconium compounds are acidic, the water-soluble aluminum compound must also be acidic. For example, zirconium sulfate, zirconium nitrate, zirconium chloride or the like may be used as the water-soluble zirconium compound, and aluminum sulfate, aluminum nitrate, aluminum chloride or the like may be used as the water-soluble aluminum compound. And as a neutralizing agent, basic substances, such as sodium hydroxide, potassium hydroxide, lithium hydroxide, should just be used.

また、水溶性ケイ素化合物、水溶性ジルコニウム化合物、水溶性アルミニウム化合物などは、いずれも、そのまま添加してよいが、あらかじめ水溶液にしておく方が好ましい。その際の濃度としては、特に限定されるものではないが、いずれも、質量基準で、水溶性ケイ素化合物は5〜15%、水溶性ジルコニウム化合物は5〜20%、水溶性アルミニウム化合物は10〜25%程度が好ましい。また、中和剤も、質量基準で10〜60%程度の水溶液にしておくことが好ましい。   Further, any of the water-soluble silicon compound, water-soluble zirconium compound, water-soluble aluminum compound and the like may be added as it is, but it is preferable to prepare an aqueous solution in advance. The concentration at that time is not particularly limited, but in any case, on a mass basis, the water-soluble silicon compound is 5 to 15%, the water-soluble zirconium compound is 5 to 20%, and the water-soluble aluminum compound is 10 to 10. About 25% is preferable. Further, the neutralizing agent is also preferably made into an aqueous solution of about 10 to 60% on a mass basis.

つぎに、実施例をあげて本発明をより具体的に説明する。ただし、本発明はそれらの実施例に例示のもののみに限定されることはない。なお、以下において水溶液や分散液などの濃度を示す%はいずれも質量基準による%(つまり、質量%)である。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples illustrated in these examples. In the following description,% indicating the concentration of an aqueous solution, a dispersion, or the like is% based on mass (that is, mass%).

実施例1
平均粒子径が30nm(0.030μm)の微粒子二酸化チタン(テイカ社製微粒子二酸化チタン、MT−500H)6kgに、水30リットルを投入し、攪拌して懸濁液とし、攪拌を続けながら、その懸濁液中に、SiOに換算してケイ酸ナトリウムを10%含有するケイ酸ナトリウム水溶液0.9kgおよび濃度が24%の水酸化ナトリウム水溶液を懸濁液のpHが7.0になるように同時に添加することにより、上記微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対してSiOに換算して1.5%のケイ素の含水酸化物で被覆した微粒子二酸化チタン組成物を懸濁液の状態で得た。
Example 1
To 6 kg of fine particle titanium dioxide having an average particle diameter of 30 nm (0.030 μm) (fine particle titanium dioxide manufactured by Teica, MT-500H), 30 liters of water was added and stirred to form a suspension. In the suspension, 0.9 kg of an aqueous sodium silicate solution containing 10% sodium silicate in terms of SiO 2 and an aqueous sodium hydroxide solution having a concentration of 24% so that the pH of the suspension is 7.0. At the same time, a particulate titanium dioxide composition in which the particle surface of the particulate titanium dioxide is coated with 1.5% silicon hydrated oxide in terms of SiO 2 with respect to the mass of the particulate titanium dioxide is suspended. Obtained in the state of a turbid liquid.

上記工程を経由することによって得られた微粒子二酸化チタン組成物の懸濁液を、40℃に加熱した後、上記懸濁液のpHが2になるように50%硫酸を添加し、ついで硫酸ジルコニウムをZrOに換算して15%含有する硫酸ジルコニウム水溶液1.2kgを添加し、20%水酸化ナトリウム水溶液を加えて中和することにより、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に中核となる微粒子二酸化チタンの質量に対しZrOに換算して3%のジルコニウムの含水酸化物を沈着させた。 After the suspension of the fine particle titanium dioxide composition obtained through the above steps was heated to 40 ° C., 50% sulfuric acid was added so that the pH of the suspension was 2, and then zirconium sulfate was added. By adding 1.2 kg of a zirconium sulfate aqueous solution containing 15% in terms of ZrO 2 and neutralizing by adding a 20% sodium hydroxide aqueous solution, the fine particle titanium dioxide composition on the silicon hydrous oxide 3% zirconium hydrous oxide was deposited in terms of ZrO 2 with respect to the mass of fine particle titanium dioxide as the core.

つぎに、上記のようにケイ素の含水酸化物上にジルコニウムの含水酸化物を沈着させることによって得られた微粒子二酸化チタン組成物の懸濁液を40℃に保った状態で、アルミン酸ナトリウムをAlに換算して20%含有するアルミン酸ナトリウム水溶液0.9kgと50%硫酸とを懸濁液のpHが7.0になるよう同時に添加することにより、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に中核となる微粒子二酸化チタンの質量に対しAlに換算して3%のアルミニウムの含水酸化物を沈着させた。 Next, in the state where the suspension of the fine particle titanium dioxide composition obtained by depositing the hydrous oxide of zirconium on the hydrous oxide of silicon as described above was maintained at 40 ° C., sodium aluminate was added to Al. By simultaneously adding 0.9 kg of a sodium aluminate aqueous solution containing 20% in terms of 2 O 3 and 50% sulfuric acid so that the pH of the suspension becomes 7.0, the silicon of the fine particle titanium dioxide composition is added. On the hydrous oxide, 3% of the hydrous oxide of aluminum was deposited in terms of Al 2 O 3 with respect to the mass of the fine particle titanium dioxide as the core.

上記のようにして、ケイ素の含水酸化物上にジルコニウムの含水酸化物およびアルミニウムの含水酸化物を沈着させて懸濁液の状態で得られた微粒子二酸化チタン組成物を炉過、洗浄した後、120℃で24時間乾燥した。   After the fine titanium dioxide composition obtained in the state of suspension by depositing the hydrous zirconium oxide and the hydrous aluminum oxide on the hydrous silicon oxide as described above, It dried at 120 degreeC for 24 hours.

得られた乾燥物を流体エネルギーミルで粉砕することによって本発明の微粒子二酸化チタン組成物4kgを得た。この微粒子二酸化チタンは、平均粒子径が30nmの微粒子二酸化チタンの粒子表面を上記中核となる微粒子二酸化チタンの質量に対しSiOに換算して1.5%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に中核となる微粒子二酸化チタンの質量に対してZrOに換算して3%のジルコニウムの含水酸化物およびAlに換算して3%のアルミニウムの含水酸化物を沈着させたものである。 The obtained dried product was pulverized with a fluid energy mill to obtain 4 kg of the fine particle titanium dioxide composition of the present invention. The fine particle titanium dioxide is obtained by coating the particle surface of fine particle titanium dioxide having an average particle size of 30 nm with 1.5% silicon hydrated oxide in terms of SiO 2 with respect to the mass of fine particle titanium dioxide as the core. 3% zirconium hydrous oxide in terms of ZrO 2 and 3% aluminum hydrous oxide in terms of Al 2 O 3 with respect to the mass of fine particulate titanium dioxide on the silicon hydrous oxide Is deposited.

実施例2
実施例1と同様の平均粒子径30nmの微粒子二酸化チタン6kgに、水30リットルを投入し、攪拌して懸濁液とし、攪拌を続けながら、その懸濁液の中に、中核となる微粒子二酸化チタンの質量に対し、SiOに換算してケイ酸ナトリウムを10%含有するケイ酸ナトリウム水溶液0.9kgを添加した後、30分後に、濃度24%の水酸化ナトリウム水溶液を懸濁液のpHが7.0になるように添加することにより、上記微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンに対してSiOに換算して1.5%のケイ素の含水酸化物で被覆した微粒子二酸化チタン組成物を得た。
Example 2
30 liters of water is added to 6 kg of fine particle titanium dioxide having an average particle diameter of 30 nm, which is the same as that in Example 1, and stirred to form a suspension. After adding 0.9 kg of an aqueous sodium silicate solution containing 10% sodium silicate in terms of SiO 2 with respect to the mass of titanium, 30 minutes later, an aqueous solution of sodium hydroxide having a concentration of 24% was added to the pH of the suspension. Is added to 7.0 so that the particle surface of the fine particle titanium dioxide is coated with 1.5% silicon hydrated oxide in terms of SiO 2 with respect to the fine particle titanium dioxide. A composition was obtained.

以後、実施例1と同様に、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上にジルコニウムの含水酸化物およびアルミニウムの含水酸化物を沈着させ、次いで、実施例1と同様に炉過、水洗、乾燥して、目的とする微粒子二酸化チタン組成物を得た。   Thereafter, as in Example 1, a zirconium hydrous oxide and an aluminum hydrous oxide were deposited on the silicon hydrous oxide of the fine particle titanium dioxide composition. And dried to obtain the desired fine particle titanium dioxide composition.

この実施例2の微粒子二酸化チタン組成物は、実施例1の微粒子二酸化チタン組成物と同様に、中核となる微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対しSiOに換算して1.5%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に上記中核となる微粒子二酸化チタンの質量に対しZrOに換算して3%のジルコニウムの含水酸化物およびAlに換算して3%のアルミニウムの含水酸化物を沈着させたものである。 In the same manner as the fine particle titanium dioxide composition of Example 1, the fine particle titanium dioxide composition of Example 2 is obtained by converting the particle surface of fine particle titanium dioxide as the core into SiO 2 with respect to the mass of fine particle titanium dioxide. 5% silicon hydrated oxide and 3% zirconium hydrated oxide and Al 2 O in terms of ZrO 2 with respect to the mass of fine titanium dioxide as the core on the silicon hydrated oxide. In this case, 3% of a water-containing oxide of aluminum in terms of 3 is deposited.

実施例3
実施例1と同様の平均粒子径が30nmの微粒子二酸化チタンの粒子表面を実施例1と同様にケイ素の含水酸化物で被覆して微粒子二酸化チタン組成物を懸濁液の状態で得た。
Example 3
The particle surface of fine particle titanium dioxide having an average particle diameter of 30 nm as in Example 1 was coated with a hydrous silicon oxide in the same manner as in Example 1 to obtain a fine particle titanium dioxide composition in a suspension state.

上記微粒子二酸化チタン組成物の懸濁液を40℃に保ったまま、アルミン酸ナトリウムをAlに換算して20%含有するアルミン酸ナトリウム水溶液0.9kgと50%硫酸とを懸濁液のpHが7.0になるように同時に添加して、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に中核となる微粒子二酸化チタンの質量に対しAlに換算して3%のアルミニウムの含水酸化物を沈着させた。 While maintaining the suspension of the fine particle titanium dioxide composition at 40 ° C., 0.9 kg of sodium aluminate aqueous solution containing 20% of sodium aluminate in terms of Al 2 O 3 and 50% sulfuric acid are suspended. Of 3% in terms of Al 2 O 3 with respect to the mass of fine particulate titanium dioxide on the silicon hydrated oxide of the fine particulate titanium dioxide composition. Aluminum hydrous oxide was deposited.

つぎに、上記ケイ素の含水酸化物上にアルミニウムの含水酸化物を沈着させた微粒子二酸化チタン組成物の懸濁液の温度を40℃に保ったまま、上記懸濁液のpHが2になるように50%硫酸を添加し、ついで硫酸ジルコニウムをZrOに換算して15%含有する硫酸ジルコニウム水溶液1.2kgを投入し、20%水酸化ナトリウム水溶液を添加して中和することにより、ジルコニウムの含水酸化物を沈着させた。 Next, the pH of the suspension is adjusted to 2 while maintaining the temperature of the suspension of the fine particle titanium dioxide composition in which the aluminum oxide is deposited on the silicon oxide. 50% sulfuric acid was added, and then 1.2 kg of zirconium sulfate aqueous solution containing 15% of zirconium sulfate in terms of ZrO 2 was added, and neutralized by adding 20% sodium hydroxide aqueous solution. Hydrous oxide was deposited.

以後、実施例1と同様に、炉過、水洗、乾燥して、平均粒子径が30nmの微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対しSiOに換算して1.5%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に上記中核となる微粒子二酸化チタンの質量に対しZrOに換算して3%の含水酸化物およびAlに換算して3%のアルミニウムの含水酸化物を沈着させた微粒子二酸化チタン組成物を得た。 Thereafter, in the same manner as in Example 1, Royogi, washed with water and dried to an average particle diameter 30nm of the particle surface of the fine particulate titanium dioxide 1.5% in terms of SiO 2 with respect to the mass of the fine particles of titanium dioxide Coated with a hydrous oxide of silicon, 3% hydrous oxide in terms of ZrO 2 and 3% in terms of hydrous oxide of Al 2 O 3 with respect to the mass of fine titanium dioxide as the core on the hydrous oxide of silicon. A fine particle titanium dioxide composition having an aluminum hydrated oxide deposited thereon was obtained.

実施例4
実施例1と同様の平均粒子径が30nmの微粒子二酸化チタン6kgに、水30リットルを投入し、攪拌して懸濁液とし、攪拌を続けながら、その懸濁液中に、SiOに換算してケイ酸ナトリウムを10%含有するケイ酸ナトリウム水溶液0.6kgおよび濃度が24%の水酸化ナトリウム水溶液を懸濁液のpHが7.0になるように同時に添加することにより、上記微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対してSiOに換算して1.0%のケイ素の含水酸化物で被覆した微粒子二酸化チタン組成物を得た。
Example 4
As in Example 1, 30 liters of water was added to 6 kg of fine particle titanium dioxide having an average particle diameter of 30 nm and stirred to form a suspension. While continuing stirring, the suspension was converted to SiO 2. By simultaneously adding 0.6 kg of an aqueous sodium silicate solution containing 10% sodium silicate and an aqueous sodium hydroxide solution having a concentration of 24% so that the pH of the suspension becomes 7.0, the fine particle titanium dioxide A fine particle titanium dioxide composition obtained by coating the particle surface with 1.0% silicon hydrated oxide in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide was obtained.

以後、実施例1と同様に、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上にジルコニウムの含水酸化物およびアルミニウムの含水酸化物を沈着させ、次いで、実施例1と同様に炉過、水洗、乾燥して、目的とする微粒子二酸化チタン組成物を得た。   Thereafter, as in Example 1, a zirconium hydrous oxide and an aluminum hydrous oxide were deposited on the silicon hydrous oxide of the fine particle titanium dioxide composition. And dried to obtain the desired fine particle titanium dioxide composition.

この実施例4の微粒子二酸化チタン組成物は、中核となる微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対しSiOに換算して1.0%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に上記中核となる微粒子二酸化チタンの質量に対しZrOに換算して3%のジルコニウムの含水酸化物およびAlに換算して3%のアルミニウムの含水酸化物を沈着させたものである。 In the fine particle titanium dioxide composition of Example 4, the particle surface of fine particle titanium dioxide as a core is coated with 1.0% silicon hydrated oxide in terms of SiO 2 with respect to the mass of fine particle titanium dioxide, 3% zirconium hydrous oxide in terms of ZrO 2 and 3% aluminum hydrous oxide in terms of Al 2 O 3 with respect to the mass of fine titanium dioxide as the core on the silicon hydrous oxide Is deposited.

実施例5
実施例1と同様の平均粒子径が30nmの微粒子二酸化チタン6kgに、水30リットルを投入し、攪拌して懸濁液とし、攪拌を続けながら、その懸濁液中に、SiOに換算してケイ酸ナトリウムを10%含有するケイ酸ナトリウム水溶液3.0kgおよび濃度が24%の水酸化ナトリウム水溶液を懸濁液のpHが7.0になるように同時に添加することにより、上記微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対してSiOに換算して5.0%のケイ素の含水酸化物で被覆した微粒子二酸化チタン組成物を得た。
Example 5
As in Example 1, 30 liters of water was added to 6 kg of fine particle titanium dioxide having an average particle diameter of 30 nm and stirred to form a suspension. While continuing stirring, the suspension was converted to SiO 2. By simultaneously adding 3.0 kg of an aqueous sodium silicate solution containing 10% sodium silicate and an aqueous sodium hydroxide solution having a concentration of 24% so that the pH of the suspension becomes 7.0, the fine particle titanium dioxide A fine particle titanium dioxide composition obtained by coating the particle surface with 5.0% silicon hydrated oxide in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide was obtained.

以後、実施例1と同様に、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上にジルコニウムの含水酸化物およびアルミニウムの含水酸化物を沈着させ、次いで、実施例1と同様に炉過、水洗、乾燥して、目的とする微粒子二酸化チタン組成物を得た。   Thereafter, as in Example 1, a zirconium hydrous oxide and an aluminum hydrous oxide were deposited on the silicon hydrous oxide of the fine particle titanium dioxide composition. And dried to obtain the desired fine particle titanium dioxide composition.

この実施例5の微粒子二酸化チタン組成物は、中核となる微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対しSiOに換算して5.0%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に上記中核となる微粒子二酸化チタンの質量に対しZrOに換算して3%のジルコニウムの含水酸化物およびAlに換算して3%のアルミニウムの含水酸化物を沈着させたものである。 In the fine particle titanium dioxide composition of Example 5, the particle surface of fine particle titanium dioxide serving as the core is coated with 5.0% silicon hydrated oxide in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide, 3% zirconium hydrous oxide in terms of ZrO 2 and 3% aluminum hydrous oxide in terms of Al 2 O 3 with respect to the mass of fine titanium dioxide as the core on the silicon hydrous oxide Is deposited.

実施例6
実施例1と同様の平均粒子径が30nmの微粒子二酸化チタンの粒子表面を実施例1と同様にケイ素の含水酸化物で被覆して微粒子二酸化チタン組成物を懸濁液の状態で得た。
Example 6
The particle surface of fine particle titanium dioxide having an average particle diameter of 30 nm as in Example 1 was coated with a hydrous silicon oxide in the same manner as in Example 1 to obtain a fine particle titanium dioxide composition in a suspension state.

上記工程を経由することによって得られた微粒子二酸化チタン組成物の懸濁液を、40℃に加熱した後、上記懸濁液のpHが2になるように50%硫酸を添加し、ついで硫酸ジルコニウムをZrOに換算して15%含有する硫酸ジルコニウム水溶液0.8kgを添加し、20%水酸化ナトリウム水溶液を加えて中和することにより、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に中核となる微粒子二酸化チタンの質量に対しZrOに換算して2%のジルコニウムの含水酸化物を沈着させた。 After the suspension of the fine particle titanium dioxide composition obtained through the above steps was heated to 40 ° C., 50% sulfuric acid was added so that the pH of the suspension was 2, and then zirconium sulfate was added. By adding 0.8 kg of a zirconium sulfate aqueous solution containing 15% in terms of ZrO 2 and neutralizing by adding a 20% sodium hydroxide aqueous solution, the fine particle titanium dioxide composition on the silicon hydrous oxide 2% zirconium hydrous oxide was deposited in terms of ZrO 2 with respect to the mass of fine particle titanium dioxide as the core.

つぎに、上記のようにケイ素の含水酸化物上にジルコニウムの含水酸化物を沈着させることによって得られた微粒子二酸化チタン組成物の懸濁液を40℃に保った状態で、アルミン酸ナトリウムをAlに換算して20%含有するアルミン酸ナトリウム水溶液0.9kgと50%硫酸とを懸濁液のpHが7.0になるよう同時に添加することにより、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に中核となる微粒子二酸化チタンの質量に対しAlに換算して3%のアルミニウムの含水酸化物を沈着させた。 Next, in the state where the suspension of the fine particle titanium dioxide composition obtained by depositing the hydrous oxide of zirconium on the hydrous oxide of silicon as described above was maintained at 40 ° C., sodium aluminate was added to Al. By simultaneously adding 0.9 kg of a sodium aluminate aqueous solution containing 20% in terms of 2 O 3 and 50% sulfuric acid so that the pH of the suspension becomes 7.0, the silicon of the fine particle titanium dioxide composition is added. On the hydrous oxide, 3% of the hydrous oxide of aluminum was deposited in terms of Al 2 O 3 with respect to the mass of the fine particle titanium dioxide as the core.

以後、実施例1と同様に、炉過、水洗、乾燥して、平均粒子径が30nmの微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対しSiOに換算して1.5%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に上記中核となる微粒子二酸化チタンの質量に対しZrOに換算して2%の含水酸化物およびAlに換算して3%のアルミニウムの含水酸化物を沈着させた微粒子二酸化チタン組成物を得た。 Thereafter, in the same manner as in Example 1, the furnace surface, water washing, and drying were performed, and the particle surface of the fine particle titanium dioxide having an average particle size of 30 nm was converted to SiO 2 with respect to the mass of the fine particle titanium dioxide to 1.5%. Coated with a hydrous oxide of silicon, 3 % in terms of 2% hydrous oxide and Al 2 O 3 in terms of ZrO 2 with respect to the mass of fine titanium dioxide as the core on the hydrous oxide of silicon. A fine particle titanium dioxide composition having an aluminum hydrated oxide deposited thereon was obtained.

実施例7
実施例1と同様の平均粒子径が30nmの微粒子二酸化チタンの粒子表面を実施例1と同様にケイ素の含水酸化物で被覆して微粒子二酸化チタン組成物を懸濁液の状態で得た。
Example 7
The particle surface of fine particle titanium dioxide having an average particle diameter of 30 nm as in Example 1 was coated with a hydrous silicon oxide in the same manner as in Example 1 to obtain a fine particle titanium dioxide composition in a suspension state.

上記工程を経由することによって得られた微粒子二酸化チタン組成物の懸濁液を、40℃に加熱した後、上記懸濁液のpHが2になるように50%硫酸を添加し、ついで硫酸ジルコニウムをZrOに換算して15%含有する硫酸ジルコニウム水溶液1.6kgを添加し、20%水酸化ナトリウム水溶液を加えて中和することにより、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に中核となる微粒子二酸化チタンの質量に対しZrOに換算して4%のジルコニウムの含水酸化物を沈着させた。 After the suspension of the fine particle titanium dioxide composition obtained through the above steps was heated to 40 ° C., 50% sulfuric acid was added so that the pH of the suspension was 2, and then zirconium sulfate was added. By adding 1.6 kg of zirconium sulfate aqueous solution containing 15% in terms of ZrO 2 and neutralizing by adding 20% sodium hydroxide aqueous solution, the fine particle titanium dioxide composition on the silicon hydrous oxide 4% zirconium hydrous oxide was deposited in terms of ZrO 2 with respect to the mass of fine particle titanium dioxide as the core.

つぎに、上記のようにケイ素の含水酸化物上にジルコニウムの含水酸化物を沈着させることによって得られた微粒子二酸化チタン組成物の懸濁液を40℃に保った状態で、アルミン酸ナトリウムをAlに換算して20%含有するアルミン酸ナトリウム水溶液0.9kgと50%硫酸とを懸濁液のpHが7.0になるよう同時に添加することにより、上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に中核となる微粒子二酸化チタンの質量に対しAlに換算して3%のアルミニウムの含水酸化物を沈着させた。 Next, in the state where the suspension of the fine particle titanium dioxide composition obtained by depositing the hydrous oxide of zirconium on the hydrous oxide of silicon as described above was maintained at 40 ° C., sodium aluminate was added to Al. By simultaneously adding 0.9 kg of a sodium aluminate aqueous solution containing 20% in terms of 2 O 3 and 50% sulfuric acid so that the pH of the suspension becomes 7.0, the silicon of the fine particle titanium dioxide composition is added. On the hydrous oxide, 3% of the hydrous oxide of aluminum was deposited in terms of Al 2 O 3 with respect to the mass of the fine particle titanium dioxide as the core.

以後、実施例1と同様に、炉過、水洗、乾燥して、平均粒子径が30nmの微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対しSiOに換算して1.5%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に上記中核となる微粒子二酸化チタンの質量に対しZrOに換算して4%の含水酸化物およびAlに換算して3%のアルミニウムの含水酸化物を沈着させた微粒子二酸化チタン組成物を得た。 Thereafter, in the same manner as in Example 1, the furnace surface, water washing, and drying were performed, and the particle surface of the fine particle titanium dioxide having an average particle size of 30 nm was converted to SiO 2 with respect to the mass of the fine particle titanium dioxide to 1.5%. It is coated with a hydrous oxide of silicon, and 4% of hydrous oxide in terms of ZrO 2 and 3% in terms of Al 2 O 3 with respect to the mass of fine titanium dioxide as the core on the hydrous oxide of silicon. A fine particle titanium dioxide composition having an aluminum hydrated oxide deposited thereon was obtained.

比較例1
実施例1と同様の平均粒子径が30nmの微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆することなく、その微粒子二酸化チタンの粒子表面に実施例1と同様にジルコニウムの含水酸化物およびアルミニウムの含水酸化物を沈着させて微粒子二酸化チタン組成物とした。
Comparative Example 1
Similar to Example 1, the surface of fine titanium dioxide particles having an average particle diameter of 30 nm is not coated with silicon hydrated oxide. A hydrous oxide of aluminum was deposited to obtain a fine particle titanium dioxide composition.

つまり、この比較例1の微粒子二酸化チタン組成物では、中核となる微粒子二酸化チタンの粒子表面にケイ素の含水酸化物の被覆層がなく、上記微粒子二酸化チタンの粒子表面に直接、上記微粒子二酸化チタンの質量に対しZrOに換算して3%のジルコニウムの含水酸化物およびAlに換算して3%のアルミニウムの含水酸化物が沈着している。 That is, in the fine particle titanium dioxide composition of Comparative Example 1, there is no silicon hydrous oxide coating layer on the surface of the fine particle titanium dioxide as the core, and the fine particle titanium dioxide directly on the fine particle titanium dioxide particle surface. 3% zirconium hydrous oxide in terms of mass and ZrO 2 and 3% aluminum hydrous oxide in terms of Al 2 O 3 are deposited.

比較例2
実施例1と同様の平均粒子径が30nmの微粒子二酸化チタンの粒子表面を実施例1と同様にケイ素の含水酸化物で被覆した後、ジルコニウムの含水酸化物を沈着させなかった以外は、実施例1と同様にアルミニウムの含水酸化物を沈着させて、微粒子二酸化チタン組成物とした。
Comparative Example 2
Example 1 Except that the surface of fine titanium dioxide particles having an average particle diameter of 30 nm as in Example 1 was coated with a hydrous oxide of silicon in the same manner as in Example 1, and then the hydrous oxide of zirconium was not deposited. In the same manner as in No. 1, a hydrous oxide of aluminum was deposited to obtain a fine particle titanium dioxide composition.

つまり、この比較例2の微粒子二酸化チタン組成物では、中核となる微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対しSiOに換算して1.5%のケイ素の含水酸化物で被覆しているものの、そのケイ素の含水酸化物上にジルコニウムの含水酸化物を沈着させることなく、微粒子二酸化チタンの質量に対しAlに換算してアルミニウムの含水酸化物を沈着させている。 That is, in the fine particle titanium dioxide composition of Comparative Example 2, the particle surface of fine particle titanium dioxide serving as the core is coated with 1.5% silicon hydrous oxide in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide. However, the hydrous oxide of aluminum is deposited in terms of Al 2 O 3 with respect to the mass of the fine titanium dioxide without depositing the hydrous zirconium oxide on the hydrous oxide of silicon.

比較例3
実施例1と同様の平均粒子径が30nmの微粒子二酸化チタンの粒子表面を実施例1と同様にケイ素の含水酸化物で被覆した後、そのケイ素の含水酸化物上に実施例1と同様にジルコニウムの含水酸化物を沈着させて、微粒子二酸化チタン組成物とした。
Comparative Example 3
The surface of fine titanium dioxide particles having an average particle diameter of 30 nm as in Example 1 was coated with a hydrous oxide of silicon in the same manner as in Example 1. Then, zirconium was coated on the hydrous oxide of silicon in the same manner as in Example 1. A hydrous oxide was deposited to obtain a fine particle titanium dioxide composition.

つまり、この比較例の微粒子二酸化チタン組成物では、中核となる微粒子二酸化チタンの粒子表面を上記微粒子二酸化チタンの質量に対しSiOに換算して1.5%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に微粒子二酸化チタンの質量に対しZrOに換算して3%のジルコニウムの含水酸化物を沈着させているものの、アルミニウムの含水酸化物は沈着させていない。 That is, in the fine particle titanium dioxide composition of this comparative example, the particle surface of fine particle titanium dioxide serving as the core was coated with 1.5% silicon hydrous oxide in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide. On the silicon hydrated oxide, although 3% zirconium hydrated oxide was deposited in terms of ZrO 2 with respect to the mass of fine particle titanium dioxide, aluminum hydrated oxide was not deposited.

つぎに、上記実施例1〜7で得られた微粒子二酸化チタン組成物および比較例1〜3で得られた微粒子二酸化チタン組成物の水分散性、光透過性、耐候性および耐光変色性を調べた。その結果をそれらの試験方法と共に以下に示す。   Next, the water dispersibility, light transmittance, weather resistance and light discoloration resistance of the fine particle titanium dioxide compositions obtained in Examples 1 to 7 and the fine particle titanium dioxide compositions obtained in Comparative Examples 1 to 3 were examined. It was. The results are shown below together with those test methods.

(1)水分散性
次段落に詳細を示す水性アクリル樹脂30.8g(ただし、固形分としては、18.48g)にジメチルアミノエタノール0.85gを添加して中和し、脱イオン水36.15gを投入し、かきまぜて、あらかじめ水性アクリル樹脂溶液を調製し、この水性アクリル樹脂溶液に、上記実施例1〜7および比較例1〜3で得られた微粒子二酸化チタン組成物をそれぞれ別々に20gずつ投入し、0.8mmジルコンビーズとともにペイントコンディショナーで2時間分散した。そのときの分散液の組成(ただし、ジルコンビーズを除く)は、次段落に示すとおりである。上記分散後のミルベース(分散液)を水で1000倍に希釈した後、厚さ1cmの石英セルに入れ、液の透明性を直読ヘーズコンピューター(スガ試験機社製HDM−2DP型)でHaze(%)として測定し、それを各微粒子二酸化チタンの組成物における水分散性の指標とした。その結果を後記の光透過率の測定結果と共に表1に示す。なお、次段落に示す水性アクリル樹脂の説明中のNVは不揮発成分であり、上記ヘーズコンピューターによる測定は、JIS K 7105に記載の方法に基づいて行われ、そのHaze(%)は拡散光透過率(Td)/全光線透過率(Tt)×100で求められたものである。
(1) Water dispersibility Neutralized by adding 0.85 g of dimethylaminoethanol to 30.8 g of water-based acrylic resin (however, solid content is 18.48 g) shown in the next paragraph. An aqueous acrylic resin solution was prepared in advance by stirring 15 g, and 20 g of the fine particle titanium dioxide compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 3 were separately added to the aqueous acrylic resin solution. Each was added and dispersed with a 0.8 mm zircon bead in a paint conditioner for 2 hours. The composition of the dispersion at that time (excluding zircon beads) is as shown in the next paragraph. The mill base (dispersion) after the dispersion was diluted 1000 times with water, and then placed in a 1 cm thick quartz cell, and the transparency of the solution was measured using a direct reading haze computer (HDM-2DP manufactured by Suga Test Instruments Co., Ltd.). %) And used as an index of water dispersibility in the composition of each fine particle titanium dioxide. The results are shown in Table 1 together with the light transmittance measurement results described later. In addition, NV in description of the water-based acrylic resin shown to the next paragraph is a non-volatile component, The measurement by the said haze computer is performed based on the method as described in JISK7105, The haze (%) is diffuse light transmittance. (Td) / total light transmittance (Tt) × 100.

微粒子二酸化チタン組成物 20 g
水性アクリル樹脂 30.8 g
(三井化成社製アルマテックスWA911 NV60%)
ジメチルアミノエタノール 0.85g
脱イオン水 36.15g
Fine particle titanium dioxide composition 20 g
Aqueous acrylic resin 30.8 g
(Almatex WA911 NV 60%, Mitsui Chemicals)
Dimethylaminoethanol 0.85g
36.15 g of deionized water

(2)光透過性
光透過率の測定にあたっての塗料調製条件、塗膜作製条件、光透過率の測定条件および測定結果を以下に示す。
(2) Light transmittance Paint preparation conditions, coating film preparation conditions, light transmittance measurement conditions and measurement results for measuring light transmittance are shown below.

(2)−1 塗料調製条件
下記の配合割合で各材料を内容積225mlの瓶中に仕込み、ペイントシェーカーで2時間分散して、塗料を調製した。なお、この塗料の調製にあたって用いるジルコンビーズの後の括弧内の数値はジルコンビーズの直径を示している。
(2) -1 Paint preparation conditions Each material was charged into a bottle with an internal volume of 225 ml at the following blending ratio, and dispersed for 2 hours with a paint shaker to prepare a paint. In addition, the numerical value in the parenthesis after the zircon beads used in preparing the paint indicates the diameter of the zircon beads.

微粒子二酸化チタン組成物 20.0g
水性アクリル樹脂 18.5g
(三井化成社製アルマテックスWA911 NV60%)
中和剤 0.4g
(シグマアルドリッチ社製 ジメチルアミノエタノール)
純水 36.6g
ジルコンビーズ(0.8mm) 250.0g
Fine particle titanium dioxide composition 20.0g
Aqueous acrylic resin 18.5g
(Almatex WA911 NV 60%, Mitsui Chemicals)
Neutralizer 0.4g
(Dimethylaminoethanol manufactured by Sigma-Aldrich)
Pure water 36.6g
Zircon beads (0.8mm) 250.0g

(2)−2 塗膜作製条件
上記塗料をPET(ポリエチレンテレフタレート)フィルム〔東レ社製ルミラー(商品名)〕にバーコータ#22で乾燥後の塗膜厚みが15μmになるように塗布した後、10分間室温でセッティングし、その後、140℃で30分間焼き付けして、塗膜を硬化させた。
(2) -2 Coating Film Preparation Conditions After coating the coating material on a PET (polyethylene terephthalate) film [Lumirror (trade name) manufactured by Toray Industries Inc.] with a bar coater # 22, the coating film thickness after drying is 15 μm. The coating was cured by setting at room temperature for minutes and then baking at 140 ° C. for 30 minutes.

(2)−3 光透過率の測定条件
上記塗膜を分光光度計(日立計測器社製UV−3300)を用い、350〜750nmの波長における光透過率を測定し、400〜700nmの波長の光透過面積を求め、その光透過面積で光透過性の良否の判定を行った。その結果を水分散性の測定結果と共に表1に示す。
(2) -3 Measurement conditions of light transmittance Using the spectrophotometer (UV-3300 manufactured by Hitachi Instruments Co., Ltd.), the coating film was measured for light transmittance at a wavelength of 350 to 750 nm. The light transmission area was determined, and the light transmission quality was determined based on the light transmission area. The results are shown in Table 1 together with the measurement results of water dispersibility.

Figure 2008069193
Figure 2008069193

上記表1中の水分散性を示す「Haze(%)」は数値の小さい方が水分散性が優れていることを示すが、表1に示すように、実施例1〜7は、比較例1〜3に比べて、水分散性を示す「Haze(%)」値が小さく、水分散性が優れていた。また、上記表1中の光透過面積は数値が大きいほど光透過性が優れていることを示すが、表1に示すように、実施例1〜7は、比較例1〜3に比べて、光透過面積が大きく、光透過性が優れていた。特に、比較例3は、後述の屋外暴露時の耐候性試験では実施例のものより良好な耐候性を示す場合があるが、この水分散性や光透過性を示す試験での成績は悪く、水分散性や光透過性が実施例のものに比べて大幅に劣っていた。   “Haze (%)” indicating water dispersibility in Table 1 indicates that the smaller the value, the better the water dispersibility. As shown in Table 1, Examples 1 to 7 are comparative examples. Compared to 1 to 3, the “Haze (%)” value indicating water dispersibility was small, and the water dispersibility was excellent. Moreover, although the light transmission area in the said Table 1 shows that light transmittance is so excellent that a numerical value is large, as shown in Table 1, Examples 1-7 are compared with Comparative Examples 1-3, The light transmission area was large and the light transmission was excellent. In particular, Comparative Example 3 may show better weather resistance than the examples in the weather resistance test at the time of outdoor exposure described below, but the results in the test showing water dispersibility and light transmittance are poor, Water dispersibility and light transmittance were significantly inferior to those of the examples.

(3)耐候性および耐光変色性試験
耐候性および耐光変色性を調べるにあたっての塗料調製条件、塗膜作製条件、塗膜の暴露条件、塗膜の光沢測定条件、塗膜の色差測定条件、耐候性および耐光変色性試験の結果を以下に示す。なお、この耐候性および耐光変色性試験では、本発明の微粒子二酸化チタン組成物が顔料級二酸化チタンに対してどの程度の耐候性および耐光変色性を有するかを明らかにするために、対照例1として平均粒子径0.27μmの顔料級二酸化チタン〔テイカ社製JR−701(商品名)〕の耐候性および耐光変色性について試験した結果についても併せて示す。
(3) Weather resistance and light discoloration resistance test Paint preparation conditions, paint film preparation conditions, paint film exposure conditions, paint gloss measurement conditions, paint color difference measurement conditions, weather resistance in examining weather resistance and light discoloration resistance The results of the property and light discoloration resistance test are shown below. In this weather resistance and light discoloration resistance test, in order to clarify how much weather resistance and light discoloration resistance of the fine particle titanium dioxide composition of the present invention has to pigment grade titanium dioxide, Control Example 1 The results of testing the weather resistance and light discoloration resistance of pigment grade titanium dioxide (JR-701 (trade name) manufactured by Taika Co., Ltd.) having an average particle diameter of 0.27 μm are also shown.

(3)−1 塗料調製条件
(a)下記配合割合で各材料を内容積225mlの瓶中に仕込み、ペイントシェーカーで2時間分散して、ミルベースを調製した。なお、このミルベースや後記の塗料の調製に用いる樹脂はいずれも水性樹脂である。
(3) -1 Paint preparation conditions (a) Each material was charged into a bottle with an internal volume of 225 ml at the following blending ratio and dispersed for 2 hours with a paint shaker to prepare a mill base. The resin used for preparing the mill base and the paint described later is an aqueous resin.

微粒子二酸化チタン組成物 8.0g
アクリル樹脂 16.0g
(大日本インキ化学工業社製 47−712 NV50%)
混合溶剤 24.0g
(トルエン/キシレン/酢酸エチル/ブチセロソルブ=5/2/2/1
各溶剤共 シグマアルドリッチ社製)
ジルコンビーズ(0.8mm) 250.0g
Fine particle titanium dioxide composition 8.0g
Acrylic resin 16.0g
(Dainippon Ink and Chemicals 47-712 NV50%)
Mixed solvent 24.0g
(Toluene / xylene / ethyl acetate / butycellosolve = 5/2/2/1
Each solvent is made by Sigma-Aldrich)
Zircon beads (0.8mm) 250.0g

(b)上記(a)で得られたミルベースに、さらに下記の割合で樹脂、溶剤、添加剤を加え、混合して塗料を調製した。 (B) A resin, a solvent and an additive were further added to the mill base obtained in the above (a) in the following proportions and mixed to prepare a paint.

アクリル樹脂 9.6g
(大日本インキ化学工業社製 47−712 NV50%)
メラミン樹脂 5.3g
(大日本インキ化学工業社製 L−117 NV60%)
混合溶剤 5.1g
(トルエン/キシレン/酢酸エチル/ブチセロソルブ=5/2/2/1
各溶剤共 シグマアルドリッチ社製)
1%シリコン 0.3g
(KP322 信越シリコーン社製トルエンにて1%に希釈)
Acrylic resin 9.6g
(Dainippon Ink and Chemicals 47-712 NV50%)
Melamine resin 5.3g
(L-117 NV 60%, manufactured by Dainippon Ink & Chemicals, Inc.)
5.1g of mixed solvent
(Toluene / xylene / ethyl acetate / butycellosolve = 5/2/2/1
Each solvent is made by Sigma-Aldrich)
1% silicon 0.3g
(KP322 diluted to 1% with toluene manufactured by Shin-Etsu Silicone)

(3)−2 塗膜作製条件
上記(3)−1で調製した水性塗料に純水を加え、フォードカップNo.4で20秒に調整し、それを処理鋼板上に乾燥時の塗膜の厚みが40μmになるようにスプレー塗装し、30分間室温でセッティングした後、140℃で30分間焼き付けして、塗膜を硬化させた。
(3) -2 Coating Film Preparation Conditions Pure water was added to the water-based paint prepared in (3) -1 above, and Ford Cup No. 4 is adjusted to 20 seconds, and it is spray-coated on the treated steel plate so that the thickness of the coating when dried is 40 μm, set at room temperature for 30 minutes, and baked at 140 ° C. for 30 minutes. Was cured.

(3)−3 暴露条件
上記のように処理鋼板上に塗膜を形成した試験板を下記の条件で促進暴露および屋外暴露した。
(3) -3 Exposure conditions A test plate having a coating film formed on the treated steel plate as described above was subjected to accelerated exposure and outdoor exposure under the following conditions.

(a)促進暴露条件
イ.試験機
サンシャイン・スーパーロングライフ・ウエザオメータWEL−SUN−HCH型(スガ試験機社製、商品名)
(A) Accelerated exposure conditions a. Testing machine Sunshine super long life weatherometer WEL-SUN-HCH type (product name)

ロ.運転条件
試験槽温度 40℃
ブラックパネル温度 63±3℃
降雨時間 18分
周期 120分
1サイクル 60時間
シャワー水 イオン交換水
B. Operating conditions Test tank temperature 40 ℃
Black panel temperature 63 ± 3 ℃
Rainfall time 18 minutes Period 120 minutes 1 cycle 60 hours Shower water Ion exchange water

(b)屋外暴露条件
暴露地 岡山市
暴露条件 南面30度
パネル洗浄 1カ月毎
(B) Outdoor exposure conditions Exposure area Okayama City Exposure conditions South surface 30 degrees Panel cleaning Every month

(3)−4 光沢測定条件
グロスメーター〔スガ試験機社製UGV−4D(商品名)〕により、暴露前後の塗膜の20°−20°の鏡面反射光沢値(促進暴露時)および60°−60°鏡面反射光沢値(屋外暴露時)を測定し、下記の式により光沢保持率を求めた。
(3) -4 Gloss Measurement Condition Using a gloss meter [UGV-4D (trade name) manufactured by Suga Test Instruments Co., Ltd.], the specular reflection gloss value of 20 ° -20 ° of the coating film before and after exposure (during accelerated exposure) and 60 ° The -60 ° specular reflection gloss value (at the time of outdoor exposure) was measured, and the gloss retention was determined by the following formula.

Figure 2008069193
Figure 2008069193

この光沢保持率が大きいほど、耐候性が優れていることを示す。 The larger the gloss retention, the better the weather resistance.

(3)−5 色差測定条件
色差計〔スガ試験機社製SM−5(商品名)〕により、暴露前後の塗膜のL、a、b値を測定して、△Eを算出し、耐光変色性の評価をする。 なお、△E値は下記の式によって算出されるものであり、式中のL、a、b値は暴露前の測定値で、L、a、b値は暴露後の測定値である。この△E値が小さいほど、耐光変色性が良好であることを示す。
(3) -5 Color difference measurement conditions The L, a, and b values of the coating film before and after exposure were measured with a color difference meter [SM-5 (trade name) manufactured by Suga Test Instruments Co., Ltd.], ΔE was calculated, and light resistance Evaluate discoloration. The ΔE value is calculated by the following formula. The L 1 , a 1 , and b 1 values in the formula are measured values before exposure, and the L 2 , a 2 , and b 2 values are values after exposure. It is a measured value. A smaller ΔE value indicates better light discoloration resistance.

Figure 2008069193
Figure 2008069193

(3)−6 耐候性および耐光変色性試験結果
促進暴露時の耐候性および耐光変色性の試験結果を表2に示し、屋外暴露時の耐候性試験結果を表3に示す。
(3) -6 Weather resistance and light discoloration resistance test results Table 2 shows the weather resistance and light discoloration resistance test results during accelerated exposure, and Table 3 shows the weather resistance test results during outdoor exposure.

Figure 2008069193
Figure 2008069193

Figure 2008069193
Figure 2008069193

比較例1〜3も、微粒子二酸化チタンの粒子表面にジルコニウムの含水酸化物やアルミニウムの含水酸化物を沈着させたり、微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆した後、そのケイ素の含水酸化物上に、アルミニウムの含水酸化物またはジルコニウムの含水酸化物のいずれか一方を沈着させていることから、本来、微粒子二酸化チタン組成物としての優れた耐候性、耐光変色性を有するものであるが、表2に示すように、促進暴露時の耐候性試験では、実施例1〜7は、比較例1〜3より、光沢保持率が高く、対照例1の顔料級二酸化チタンに比べても、高い光沢保持率を有していた。つまり、実施例1〜7の微粒子二酸化チタン組成物は、比較例1〜3の微粒子二酸化チタン組成物や対照例1の顔料級二酸化チタンよりも、促進暴露時の耐候性が優れていた。なお、比較例2は、耐光変色性こそ実施例のものに比べてそれほど劣っていないものの、600時間暴露後の光沢保持率が低く、耐候性が実施例のものに比べて大きく劣っていた。   In Comparative Examples 1 to 3, zirconium hydrous oxide or aluminum hydrous oxide was deposited on the surface of fine titanium dioxide particles, or the surface of fine titanium dioxide particles was coated with silicon hydrous oxide. Since either one of aluminum hydrated oxide or zirconium hydrated oxide is deposited on the hydrated oxide, it originally has excellent weather resistance and light discoloration resistance as a fine particle titanium dioxide composition. However, as shown in Table 2, in the weather resistance test during accelerated exposure, Examples 1-7 had a higher gloss retention than Comparative Examples 1-3, compared to the pigment grade titanium dioxide of Control Example 1. Also had a high gloss retention. That is, the fine particle titanium dioxide compositions of Examples 1 to 7 were superior in weather resistance during accelerated exposure to the fine particle titanium dioxide compositions of Comparative Examples 1 to 3 and the pigment grade titanium dioxide of Comparative Example 1. In Comparative Example 2, although the light discoloration resistance was not so inferior to that of the Example, the gloss retention after exposure for 600 hours was low, and the weather resistance was greatly inferior to that of the Example.

また、耐光変色性試験においても、実施例1〜7は、比較例1〜3や対照例1より、△E値が小さく、実施例1〜7の微粒子二酸化チタン組成物は、比較例1〜3の微粒子二酸化チタン組成物や対照例1の顔料級二酸化チタンよりも、耐光変色性が優れていた。   Also in the light discoloration resistance test, Examples 1 to 7 have smaller ΔE values than Comparative Examples 1 to 3 and Control Example 1, and the fine particle titanium dioxide compositions of Examples 1 to 7 are comparative examples 1 to 1. 3 was superior to the fine particle titanium dioxide composition of No. 3 and the pigment grade titanium dioxide of Control Example 1 in terms of light discoloration resistance.

さらに、表3に示すように、屋外暴露時の耐候性試験においても、実施例1〜4と、実施例6〜7は、暴露期間が長くなると、比較例1〜3より光沢保持率が高く、これら比較例1〜3に比べても、耐候性が優れていた。ただ、実施例5は、比較例2に比べると光沢保持率が高いものの、比較例1や比較例3とでは、同等ないし若干低い光沢保持率しか持ち得なかったが、これら比較例1や比較例3も、元々、耐候性が優れていることを考えあわせると、優れた耐候性を保持していると言える。   Furthermore, as shown in Table 3, also in the weather resistance test during outdoor exposure, Examples 1 to 4 and Examples 6 to 7 have a higher gloss retention than Comparative Examples 1 to 3 when the exposure period becomes longer. Even compared with these Comparative Examples 1 to 3, the weather resistance was excellent. However, although Example 5 had a higher gloss retention than that of Comparative Example 2, Comparative Example 1 and Comparative Example 3 could only have an equivalent or slightly lower gloss retention, but these Comparative Examples 1 and 3 It can be said that Example 3 also has excellent weather resistance, considering that the weather resistance is originally excellent.

つぎに、上記実施例1〜3の微粒子二酸化チタン組成物の分光曲線を、その中核となる平均粒子径が30nmの微粒子二酸化チタンの分光曲線と対比しつつ示し、実施例1〜3の紫外線吸収性や透明性について言及する。   Next, the spectral curves of the fine particle titanium dioxide compositions of Examples 1 to 3 are shown in comparison with the spectral curve of fine particle titanium dioxide having an average particle diameter of 30 nm as the core, and UV absorption of Examples 1 to 3 is shown. Mention the sex and transparency.

比較例4
上記平均粒子径が30nmの微粒子二酸化チタンを比較例4とし、その分光曲線を実施例1〜3の微粒子二酸化チタン組成物の分光曲線と共に図1に示す。なお、実施例1〜3の微粒子二酸化チタン組成物の透過率はほとんど差がなく、それぞれの分光曲線を図示しても、重なってしまうので、図1では、実施例1〜3の微粒子二酸化チタン組成物の分光曲線を同一の曲線で示し、それに実施例1〜3と付記している。
Comparative Example 4
The fine particle titanium dioxide having an average particle diameter of 30 nm is referred to as Comparative Example 4, and the spectral curve thereof is shown in FIG. 1 together with the spectral curves of the fine particle titanium dioxide compositions of Examples 1 to 3. In addition, since the transmittance | permeability of the fine particle titanium dioxide composition of Examples 1-3 hardly changes, even if each spectral curve is illustrated, since it will overlap, in FIG. 1, the fine particle titanium dioxide of Examples 1-3 The spectral curve of the composition is shown by the same curve, and examples 1 to 3 are appended thereto.

図1に示すように、実施例1〜3の微粒子二酸化チタン組成物は、比較例4の微粒子二酸化チタンと同様に、400nmより小さい波長領域(つまり、紫外部)では、きわめて小さい透過率しか示さず、微粒子二酸化チタン固有の優れた紫外線吸収性を有していた。ただし、可視部(波長が約400nm以上の部分)では、実施例1〜3の微粒子二酸化チタン組成物は、比較例4の微粒子二酸化チタンより、透過率が大きく、透明性が高かった。   As shown in FIG. 1, the fine particle titanium dioxide compositions of Examples 1 to 3 show only a very low transmittance in the wavelength region smaller than 400 nm (that is, the ultraviolet region), like the fine particle titanium dioxide of Comparative Example 4. In other words, it had excellent ultraviolet absorptivity inherent to fine particle titanium dioxide. However, in the visible portion (portion having a wavelength of about 400 nm or more), the fine particle titanium dioxide compositions of Examples 1 to 3 had higher transmittance and higher transparency than the fine particle titanium dioxide of Comparative Example 4.

実施例1〜3の微粒子二酸化チタン組成物と比較例4の微粒子二酸化チタンの分光曲線を示す図である。It is a figure which shows the spectral curve of the fine particle titanium dioxide composition of Examples 1-3 and the fine particle titanium dioxide of the comparative example 4.

Claims (6)

平均粒子径が5〜70nmの微粒子二酸化チタンの粒子表面を、上記微粒子二酸化チタンの質量に対しSiOに換算して0.1〜20%のケイ素の含水酸化物で被覆し、そのケイ素の含水酸化物上に上記微粒子二酸化チタンの質量に対しZrOに換算して0.1〜10%のジルコニウムの含水酸化物およびAlに換算して0.1〜40%のアルミニウムの含水酸化物を沈着させたことを特徴とする微粒子二酸化チタン組成物。 The particle surface of fine particle titanium dioxide having an average particle size of 5 to 70 nm is coated with 0.1 to 20% of a hydrous oxide of silicon in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide. 0.1 to 10% zirconium hydrous oxide in terms of ZrO 2 and 0.1 to 40% aluminum hydrous oxide in terms of Al 2 O 3 with respect to the mass of the fine particle titanium dioxide on the oxide A particulate titanium dioxide composition characterized by depositing an object. ケイ素の含水酸化物の被覆量が、微粒子二酸化チタンの質量に対しSiOに換算して1〜8%である請求項1記載の微粒子二酸化チタン組成物。 The coverage of the hydrous oxide of silicon, particulate titanium dioxide composition of claim 1, wherein relative to the weight of particulate titanium dioxide is from 1 to 8% as calculated on SiO 2. ジルコニウムの含水酸化物の沈着量が、微粒子二酸化チタンの質量に対しZrOに換算して0.5〜5%であり、アルミニウムの含水酸化物の沈着量が、微粒子二酸化チタンの質量に対しAlに換算して1〜10%である請求項1または2記載の微粒子二酸化チタン組成物。 The amount of zirconium hydrous oxide deposited is 0.5 to 5% in terms of ZrO 2 with respect to the mass of fine particle titanium dioxide, and the amount of aluminum hydrous oxide deposited is Al relative to the mass of fine particle titanium dioxide. in terms of 2 O 3 is 1-10% claim 1 or 2 fine titanium dioxide composition. 下記の工程I−IIIを経由して製造することを特徴とする微粒子二酸化チタン組成物の製造方法。
I 下記の(a)または(b)の工程を経て、中核となる平均粒子径が5〜70nmの微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆する工程:
(a)上記平均粒子径が5〜70nmの微粒子二酸化チタンの懸濁液に、上記微粒子二酸化チタンの質量に対しSiOに換算して0.1〜20%の水溶性ケイ素化合物と、中和剤とをpH6〜8に保って同時に添加する
(b)上記平均粒子径が5〜70nmの微粒子二酸化チタンの懸濁液に、上記微粒子二酸化チタンの質量に対しSiOに換算して0.1〜20%の水溶性ケイ素化合物を添加した後、中和剤を0.5〜3時間のうちに滴下し、最終的にpH6〜8にする
II 上記工程Iを経て得られた中核となる微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆してなる微粒子二酸化チタン組成物の懸濁液に、上記中核となる微粒子二酸化チタンの質量に対しZrOに換算して0.1〜10%の水溶性ジルコニウム化合物を酸性条件下で添加し、次いで塩基性の中和剤を添加して中和することにより、ジルコニウムの含水酸化物を上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に沈着させる工程
III 上記工程IIを経た微粒子二酸化チタン組成物の懸濁液に、中核となる微粒子二酸化チタンの質量に対しAlに換算して0.1〜40%の水溶性アルミニウム化合物と酸性の中和剤とをpH6〜8に保って同時に添加することにより、アルミニウムの含水酸化物を上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に沈着させる工程
The manufacturing method of the fine-particle titanium dioxide composition characterized by manufacturing via the following process I-III.
I Step of coating the surface of fine titanium dioxide particles having an average particle size of 5 to 70 nm as a core with a silicon hydrous oxide through the following steps (a) or (b):
(A) In a suspension of fine particle titanium dioxide having an average particle size of 5 to 70 nm, 0.1 to 20% of a water-soluble silicon compound in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide, and neutralization (B) In the suspension of fine particle titanium dioxide having an average particle size of 5 to 70 nm, 0.12 in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide. After adding ~ 20% water-soluble silicon compound, a neutralizing agent is dropped in 0.5 to 3 hours to finally adjust the pH to 6 to 8. II Fine particles as cores obtained through the above step I In a suspension of a fine particle titanium dioxide composition obtained by coating the surface of titanium dioxide particles with a hydrous oxide of silicon, 0.1 to 10% in terms of ZrO 2 with respect to the mass of the fine particle titanium dioxide serving as the core. Water-soluble zirconium compound Is added under acidic conditions, and then neutralized by adding a basic neutralizing agent to deposit zirconium hydrous oxide on the silicon hydrous oxide of the fine particle titanium dioxide composition III In the suspension of the fine particle titanium dioxide composition that has undergone Step II, 0.1 to 40% of a water-soluble aluminum compound and an acidic neutralizing agent in terms of Al 2 O 3 with respect to the mass of fine particle titanium dioxide as the core Is added to the silicon hydrated oxide of the above-mentioned fine particle titanium dioxide composition by simultaneously adding and maintaining the pH at 6-8.
下記の工程IV〜VIを経由して製造することを特徴とする微粒子二酸化チタン組成物の製造方法。
IV 下記の(a)または(b)の工程を経て、中核となる平均粒子径が5〜70nmの微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆する工程:
(a)上記平均粒子径が5〜70nmの微粒子二酸化チタンの懸濁液に、上記微粒子二酸化チタンの質量に対しSiOに換算して0.1〜20%の水溶性ケイ素化合物と中和剤とをpH6〜8に保って同時に添加する
(b)上記平均粒子径が5〜70nmの微粒子二酸化チタンの懸濁液に、上記微粒子二酸化チタンの質量に対しSiOに換算して0.1〜20%の水溶性ケイ素化合物を添加した後、中和剤を0.5〜3時間のうちに滴下し、最終的にpH6〜8にする
V 上記工程IVを経て得られた中核となる微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆してなる微粒子二酸化チタン組成物の懸濁液に、上記中核となる微粒子二酸化チタンの質量に対しAlに換算して0.1〜40%の水溶性アルミニウム化合物と酸性の中和剤とをpH6〜8に保って同時に添加することにより、アルミニウムの含水酸化物を上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に沈着させる工程
VI 上記工程Vを経た微粒子二酸化チタン組成物の懸濁液に、中核となる微粒子二酸化チタンの質量に対しZrOに換算して0.1〜10%の水溶性ジルコニウム化合物を酸性条件下で添加し、次いでこの懸濁液に塩基性の中和剤を添加して中和することにより、ジルコニウムの含水酸化物を上記微粒子二酸化チタン組成物のケイ素の含水酸化物に沈着させる工程
The manufacturing method of the fine-particle titanium dioxide composition characterized by manufacturing via following process IV-VI.
IV The step of coating the surface of fine titanium dioxide particles having an average particle size of 5 to 70 nm as a core with a hydrous oxide of silicon through the following step (a) or (b):
(A) 0.1 to 20% of a water-soluble silicon compound and a neutralizing agent in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide in a suspension of fine particle titanium dioxide having an average particle size of 5 to 70 nm (B) In the suspension of fine particle titanium dioxide having an average particle diameter of 5 to 70 nm, 0.1-2 in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide. After adding 20% of a water-soluble silicon compound, a neutralizing agent is dropped in 0.5 to 3 hours to finally adjust the pH to 6 to 8. V Fine particle dioxide as a core obtained through the above step IV In a suspension of a fine particle titanium dioxide composition obtained by coating the surface of titanium particles with a hydrous oxide of silicon, 0.1 to 40 in terms of Al 2 O 3 with respect to the mass of the fine particle titanium dioxide serving as the core. % Water-soluble aluminum The step of depositing the hydrous oxide of aluminum on the hydrous oxide of silicon of the fine particle titanium dioxide composition by simultaneously adding the product and the acidic neutralizing agent while maintaining the pH at 6 to 8 To the suspension of the fine particle titanium dioxide composition, 0.1 to 10% of a water-soluble zirconium compound converted to ZrO 2 with respect to the mass of the fine particle titanium dioxide as the core is added under acidic conditions, and then the suspension A step of depositing zirconium hydrous oxide on silicon hydrous oxide of the fine particle titanium dioxide composition by adding a basic neutralizing agent to the liquid and neutralizing
下記の工程VII〜VIIIを経由して製造することを特徴とする微粒子二酸化チタン組成物の製造方法。
VII 下記の(a)または(b)の工程を経て、中核となる平均粒子径が5〜70nmの微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆する工程:
(a)上記平均粒子径が5〜70nmの微粒子二酸化チタンの懸濁液に、上記微粒子二酸化チタンの質量に対しSiOに換算して0.1〜20%の水溶性ケイ素化合物と、中和剤とをpH6〜8に保って同時に添加する
(b)上記平均粒子径が5〜70nmの懸濁液に、上記微粒子二酸化チタンの質量に対しSiOに換算して0.1〜20%の水溶性ケイ素化合物を添加した後、中和剤を0.5〜3時間のうちに滴下し、最終的にpH6〜8にする
VIII 上記工程VIIを経て得られた中核となる微粒子二酸化チタンの粒子表面をケイ素の含水酸化物で被覆してなる微粒子二酸化チタン組成物の懸濁液に、上記中核となる微粒子二酸化チタンの質量に対しZrOに換算して0.1〜10%の水溶性ジルコニウム化合物と、上記中核となる微粒子二酸化チタンの質量に対しAlに換算して0.1〜40%の水溶性アルミニウム化合物と、中和剤とをpH6〜8に保って添加することにより、ジルコニウムの含水酸化物およびアルミニウムの含水酸化物を上記微粒子二酸化チタン組成物のケイ素の含水酸化物上に沈着させる工程
The manufacturing method of the fine-particle titanium dioxide composition characterized by manufacturing via the following processes VII-VIII.
VII Step of coating the surface of fine titanium dioxide particles having an average particle diameter of 5 to 70 nm as a core with a hydrous oxide of silicon after the following step (a) or (b):
(A) In a suspension of fine particle titanium dioxide having an average particle size of 5 to 70 nm, 0.1 to 20% of a water-soluble silicon compound in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide, and neutralization (B) To the suspension having an average particle diameter of 5 to 70 nm, 0.1 to 20% in terms of SiO 2 with respect to the mass of the fine particle titanium dioxide. After adding the water-soluble silicon compound, the neutralizing agent is added dropwise within 0.5 to 3 hours, and finally the pH is adjusted to 6 to 8. VIII Fine particles of titanium dioxide as the core obtained through the above step VII In a suspension of a fine particle titanium dioxide composition whose surface is coated with a silicon hydrous oxide, 0.1 to 10% of water-soluble zirconium in terms of ZrO 2 with respect to the mass of the fine particle titanium dioxide serving as the core. Compound and above In terms of Al 2 O 3 with respect to the mass of the fine particulate titanium dioxide to be a 0.1 to 40% of a water-soluble aluminum compound, by adding keeping a neutralizing agent pH 6-8, hydrous oxide of zirconium Depositing aluminum oxide and aluminum hydrated oxide on silicon hydrated oxide of the fine particle titanium dioxide composition
JP2006246576A 2006-09-12 2006-09-12 Particulate titanium dioxide composition and method for producing the same Pending JP2008069193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246576A JP2008069193A (en) 2006-09-12 2006-09-12 Particulate titanium dioxide composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246576A JP2008069193A (en) 2006-09-12 2006-09-12 Particulate titanium dioxide composition and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008069193A true JP2008069193A (en) 2008-03-27

Family

ID=39291074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246576A Pending JP2008069193A (en) 2006-09-12 2006-09-12 Particulate titanium dioxide composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008069193A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010042947A (en) * 2008-08-11 2010-02-25 Jgc Catalysts & Chemicals Ltd Dispersion of titanium oxide complex particle and method of manufacturing the dispersion
JP2010526015A (en) * 2007-05-03 2010-07-29 トロノックス エルエルシー Preparation of titanium dioxide pigments treated with coprecipitated mixed oxides
CN102205306A (en) * 2011-04-07 2011-10-05 福州大学 Method for improving surface weather fastness of organic material
JPWO2011102214A1 (en) * 2010-02-22 2013-06-17 堺化学工業株式会社 Composite particles and method for producing the same
RU2620054C2 (en) * 2014-11-19 2017-05-22 Михаил Михайлович Михайлов Method of producing light-fast pigments
JP2018510257A (en) * 2015-02-11 2018-04-12 ハンツマン ピーアンドエー ユーケー リミテッド Coated products
WO2019176409A1 (en) 2018-03-13 2019-09-19 富士フイルム株式会社 Method for manufacturing cured film, and method for manufacturing solid-state imaging element
CN115124784A (en) * 2022-08-04 2022-09-30 浙江朗曼通信技术有限公司 High-voltage direct-current-resistant cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319320B2 (en) * 1972-03-23 1978-06-20
JPS5884863A (en) * 1981-10-30 1983-05-21 タイオキサイド・グル−プ・ピ−エルシ− Titanium dioxide pigment and manufacture
JPH06192593A (en) * 1992-10-24 1994-07-12 Tioxide Group Services Ltd Method of coating inorganic particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319320B2 (en) * 1972-03-23 1978-06-20
JPS5884863A (en) * 1981-10-30 1983-05-21 タイオキサイド・グル−プ・ピ−エルシ− Titanium dioxide pigment and manufacture
JPH06192593A (en) * 1992-10-24 1994-07-12 Tioxide Group Services Ltd Method of coating inorganic particle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526015A (en) * 2007-05-03 2010-07-29 トロノックス エルエルシー Preparation of titanium dioxide pigments treated with coprecipitated mixed oxides
JP2010042947A (en) * 2008-08-11 2010-02-25 Jgc Catalysts & Chemicals Ltd Dispersion of titanium oxide complex particle and method of manufacturing the dispersion
JPWO2011102214A1 (en) * 2010-02-22 2013-06-17 堺化学工業株式会社 Composite particles and method for producing the same
US9193871B2 (en) 2010-02-22 2015-11-24 Sakai Chemical Industry Co., Ltd. Composite particles and method for production thereof
JP5849944B2 (en) * 2010-02-22 2016-02-03 堺化学工業株式会社 Composite particles and method for producing the same
CN102205306A (en) * 2011-04-07 2011-10-05 福州大学 Method for improving surface weather fastness of organic material
RU2620054C2 (en) * 2014-11-19 2017-05-22 Михаил Михайлович Михайлов Method of producing light-fast pigments
JP2018510257A (en) * 2015-02-11 2018-04-12 ハンツマン ピーアンドエー ユーケー リミテッド Coated products
JP2021001340A (en) * 2015-02-11 2021-01-07 ベネター マテリアルズ ユーケー リミテッド Coated product
JP7159252B2 (en) 2015-02-11 2022-10-24 ベネター マテリアルズ ユーケー リミテッド coated product
WO2019176409A1 (en) 2018-03-13 2019-09-19 富士フイルム株式会社 Method for manufacturing cured film, and method for manufacturing solid-state imaging element
CN115124784A (en) * 2022-08-04 2022-09-30 浙江朗曼通信技术有限公司 High-voltage direct-current-resistant cable

Similar Documents

Publication Publication Date Title
JP2008069193A (en) Particulate titanium dioxide composition and method for producing the same
US4494993A (en) Nacreous pigments, their preparation and use
JP4018770B2 (en) Fan-shaped titanium oxide, method for producing fan-shaped or plate-shaped titanium oxide, and use thereof
TWI695814B (en) α-ALUMINA FLAKES
CN101184695B (en) Process for producing dispersion of hollow fine SiO2 particles, coating composition, and substrate with antireflection coating film
AU2005269044B2 (en) Weather-stable titanium dioxide pigment and method for the production thereof
TWI405823B (en) Making co-precipitated mixed oxide-treated titanium dioxide pigments
ES2357990T3 (en) IMPROVED PROCESS FOR THE MANUFACTURE OF TITANIUM DIOXIDE PIGMENTS TREATED WITH CIRCONIA.
KR100618750B1 (en) Ultraviolet Absorbent
JPH0977512A (en) Flaky aluminum oxide, pearl luster pigment and its production
TW201505853A (en) [alpha]-alumina flakes
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
CN101815675A (en) Metal oxide composite sol, coating composition, and optical member
JP2008081578A (en) Titanium dioxide pigment and method for producing the same
JP2003147226A (en) Aluminum pigment, method for producing the same and resin composition
JP2021105183A (en) Coated pigment
TW201833246A (en) Composite pigment, method for producing same, coating composition including same, and coating film including same
JPH10508889A (en) Improved titanium dioxide pigment coated with boria modified silica and alumina
CN103635542A (en) Treated inorganic particle
JP5205204B2 (en) Monoclinic fine particle bismuth oxide production method, ultraviolet shielding dispersion and production method thereof, and ultraviolet shielding coating composition
JPH07751B2 (en) Fine particle titanium dioxide powder
JP4562492B2 (en) Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent
TW201805370A (en) A method for treating titanium dioxide particles, a titanium dioxide particle and uses of the same
JP2018515632A (en) Aluminum hydroxide-containing composite pigment and method for producing the same
ES2553662T3 (en) Inorganic treated pigments having reduced photoactivity and improved antimicrobial properties, and their use in coating compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120620