JP2008066295A - Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device - Google Patents

Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device Download PDF

Info

Publication number
JP2008066295A
JP2008066295A JP2007205003A JP2007205003A JP2008066295A JP 2008066295 A JP2008066295 A JP 2008066295A JP 2007205003 A JP2007205003 A JP 2007205003A JP 2007205003 A JP2007205003 A JP 2007205003A JP 2008066295 A JP2008066295 A JP 2008066295A
Authority
JP
Japan
Prior art keywords
heating element
island
circuit pattern
substrate
element circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007205003A
Other languages
Japanese (ja)
Inventor
Masuhiro Natsuhara
益宏 夏原
Tomoyuki Awazu
知之 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007205003A priority Critical patent/JP2008066295A/en
Publication of JP2008066295A publication Critical patent/JP2008066295A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating element circuit pattern capable of uniformalizing a temperature distribution of a susceptor, a hot plate, or the like, not only in a steady status under predetermined temperature, but also in a transitional status with temperature dropping or rising. <P>SOLUTION: The heating element circuit pattern is provided with a plurality of island-shape heating elements 1 distributed on a substrate 2 or inside the substrate 2 in an island-shape distribution pattern, and arranged so that heating densities in the substrate 2 are nearly equal, and all the island-shape heating elements 1 are connected in parallel by a lead circuit 3. Those island-shape heating elements 1 has characteristics of raising a resistance value in accordance with rise of temperature, therefore, the lead circuit 3 is required to have a lower resistance value than the island-shape heating elements 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ウエハなどの被処理物を熱処理する際のヒータなどの加熱体に使用する発熱体回路パターンに関し、特に被処理物の温度分布を均一にすることができる発熱体回路パターンに関するものである。   The present invention relates to a heating element circuit pattern used for a heating element such as a heater when heat-treating an object to be processed such as a wafer, and more particularly to a heating element circuit pattern capable of making the temperature distribution of the object to be processed uniform. is there.

従来から、特に半導体製造装置においては、ウエハなどを熱処理する際に所定の温度を加えて処理している。このときの処理温度は、ウエハの温度分布をできるだけ均一にすることによって、ばらつきのない処理を行うことが必要とされている。例えば、CVDなどの成膜装置においては、ウエハの温度分布、即ちウエハを載置するサセプタの温度分布が成膜膜厚に影響を及ぼし、温度が相対的に高ければ膜厚は相対的に厚くなり、温度が相対的に低ければ膜厚は相対的に薄くなる。このため、サセプタの温度分布を均一にすることが求められ、各種の発熱体回路パターンが提案されている。   2. Description of the Related Art Conventionally, particularly in a semiconductor manufacturing apparatus, a predetermined temperature is applied when a wafer or the like is heat-treated. At this time, it is necessary to perform processing without variation by making the temperature distribution of the wafer as uniform as possible. For example, in a film forming apparatus such as a CVD, the temperature distribution of the wafer, that is, the temperature distribution of the susceptor on which the wafer is placed affects the film thickness, and if the temperature is relatively high, the film thickness is relatively thick. If the temperature is relatively low, the film thickness becomes relatively thin. For this reason, it is required to make the temperature distribution of the susceptor uniform, and various heating element circuit patterns have been proposed.

例えば、特開2003−017224公報には、大型のウエハでも均一な温度分布を達成することができる発熱体回路パターンが提案されている。この発熱体回路パターンは、絶縁体基板の略中心部に入力電極と出力電極とを設け、入力電極を含む部位から基板外周に向けて略螺旋状の発熱体回路を形成し、更に最外周から中心部の出力電極に向けて略螺旋状の発熱体回路を形成したものである。   For example, Japanese Patent Laid-Open No. 2003-018224 proposes a heating element circuit pattern that can achieve a uniform temperature distribution even with a large wafer. In this heating element circuit pattern, an input electrode and an output electrode are provided at a substantially central portion of an insulating substrate, a substantially spiral heating element circuit is formed from a portion including the input electrode toward the outer periphery of the substrate, and further from the outermost periphery. A substantially spiral heating element circuit is formed toward the output electrode in the center.

また、ウエハに回路パターンを形成する工程でのレジストの硬化に用いるホットプレートにおいても、その温度分布がレジストのパターン解像度に影響を及ぼすため、やはり温度分布を均一にする必要がある。しかも、レジストの硬化処理の場合は、ホットプレートにウエハを載置すると、ホットプレートの温度が一旦下がった後、再びホットプレートの温度が上昇し、所定の熱量をウエハに加えた後、ウエハをホットプレートから取り外す。その際、ウエハの温度が降下あるいは上昇していく過渡的な状態においても、温度分布を均一にすることが望まれている。   Further, even in a hot plate used for curing a resist in a process of forming a circuit pattern on a wafer, the temperature distribution affects the pattern resolution of the resist. Therefore, it is necessary to make the temperature distribution uniform. Moreover, in the case of the resist curing process, when the wafer is placed on the hot plate, the temperature of the hot plate once decreases, and then the temperature of the hot plate rises again, and a predetermined amount of heat is applied to the wafer. Remove from hot plate. At that time, it is desired to make the temperature distribution uniform even in a transient state in which the temperature of the wafer drops or rises.

しかしながら、上記した特開2003−017224公報記載の発熱体回路パターンでは、所定温度における定常的な状態での温度分布は優れているが、上記のように温度が降下あるいは上昇していく過渡的な状態での温度分布は必ずしも均一とはいえなかった。
特開2003−017224公報
However, in the heating element circuit pattern described in Japanese Patent Application Laid-Open No. 2003-018224, the temperature distribution in a steady state at a predetermined temperature is excellent, but as described above, the temperature drops or rises transiently. The temperature distribution in the state was not necessarily uniform.
Japanese Patent Laid-Open No. 2003-017224

本発明は、上記した従来の事情に鑑み、所定温度での定常状態は勿論のこと、温度が降下あるいは上昇していく過渡的な状態においても、サセプタやホットプレートなどの温度分布を均一にすることのできる発熱体回路パターンを提供することを目的とする。   In view of the above-described conventional circumstances, the present invention makes the temperature distribution of the susceptor, hot plate, etc. uniform not only in a steady state at a predetermined temperature but also in a transient state where the temperature drops or rises. An object of the present invention is to provide a heating element circuit pattern that can be used.

上記目的を達成するため、本発明が提供する発熱体回路パターンは、複数の島状発熱体が基板上もしくは基板内部に独立した島状に分布し、基板内における発熱密度が略均一になるように配置されると共に、全ての島状発熱体が各島状発熱体に加わる電圧が略一定になるようにリード回路によって並列に接続され、これらの島状発熱体は温度の上昇に伴って抵抗値が上昇する特性を有し、且つリード回路は島状発熱体よりも抵抗値が低いことを特徴とする。   In order to achieve the above object, the heating element circuit pattern provided by the present invention is such that a plurality of island-like heating elements are distributed in an independent island shape on the substrate or inside the substrate, and the heat generation density in the substrate becomes substantially uniform. All the island-shaped heating elements are connected in parallel by a lead circuit so that the voltage applied to each island-shaped heating element becomes substantially constant, and these island-shaped heating elements become resistant as the temperature rises. The lead circuit has a characteristic of increasing the value, and the lead circuit has a lower resistance value than the island-shaped heating element.

本発明によれば、サセプタやホットプレートの定常状態だけでなく、温度が降下あるいは上昇していく過渡的な状態においても、温度分布が均一な、即ち均熱性に優れた発熱体回路パターンを提供することができる。   According to the present invention, not only in a steady state of a susceptor and a hot plate, but also in a transient state in which the temperature drops or rises, a heating element circuit pattern having a uniform temperature distribution, that is, excellent heat uniformity is provided. can do.

本発明の発熱体回路パターンにおいては、基板上又は基板内部に設ける発熱体として、連続した1個の発熱体ではなく、独立した複数の発熱体を用いる。そして、基板内の発熱密度が略均一になるように、例えば図1に示すように、複数の島状発熱体1を基板2に島状に分布させて配置し、これら全ての島状発熱体1をリード回路3によって並列に接続する。尚、島状発熱体1の形状は特に制限されず、例えば図2に示すように金属箔を曲折して成形したもの(単位発熱体1a)でよく、これを1個又は複数個セットにして使用でき、例えば図1では3個の単位発熱体1aを1セットとした島状発熱体1を図示している。   In the heating element circuit pattern of the present invention, a plurality of independent heating elements are used as heating elements provided on or in the substrate, instead of a single continuous heating element. Then, as shown in FIG. 1, for example, a plurality of island-like heating elements 1 are arranged in an island-like manner on the substrate 2 so that the heat generation density in the substrate is substantially uniform, and all these island-like heating elements are arranged. 1 are connected in parallel by a lead circuit 3. The shape of the island-shaped heating element 1 is not particularly limited, and may be, for example, one formed by bending a metal foil (unit heating element 1a) as shown in FIG. For example, FIG. 1 shows an island-shaped heating element 1 having three unit heating elements 1a as one set.

上記島状発熱体については、温度の上昇に伴って抵抗値が上昇する特性を有することが必要である。また、各島状発熱体を接続するリード回路の抵抗値は、島状発熱体の抵抗値よりも低いことが必要である。リード回路の抵抗値が島状発熱体の抵抗値よりも高い場合には、島状発熱体の発熱量よりもリード回路の発熱量が高くなり、均一な温度分布が得られ難くなるからである。また、リード回路の抵抗値を島状発熱体よりも低くすることで、各島状発熱体に加わる電圧を均一にすることができる。   About the said island-shaped heat generating body, it is necessary to have the characteristic that resistance value rises with a rise in temperature. In addition, the resistance value of the lead circuit connecting each island-shaped heating element needs to be lower than the resistance value of the island-shaped heating element. This is because when the resistance value of the lead circuit is higher than the resistance value of the island-shaped heating element, the heating value of the lead circuit is higher than the heating value of the island-shaped heating element, making it difficult to obtain a uniform temperature distribution. . Moreover, the voltage applied to each island-shaped heating element can be made uniform by making the resistance value of the lead circuit lower than that of the island-shaped heating element.

本発明の発熱体回路パターンによれば、基板上の温度分布を均一にすることができる。即ち、並列に接続された島状発熱体に電流が流されると、島状発熱体はそれぞれ温度上昇を始める。このとき、各島状発熱体に加わる電圧は略一定にする必要がある。温度上昇する各島状発熱体の温度は、基板内の位置などの影響により異なる場合が多い。しかし、島状発熱体は温度の上昇と共に抵抗値が上昇する特性を有するので、相対的に温度の高い島状発熱体は相対的に抵抗値が高くなり、逆に相対的に温度の低い島状発熱体は相対的に抵抗値は低くなる。   According to the heating element circuit pattern of the present invention, the temperature distribution on the substrate can be made uniform. That is, when a current is passed through the island-shaped heating elements connected in parallel, the island-shaped heating elements each start to rise in temperature. At this time, the voltage applied to each island-shaped heating element needs to be substantially constant. The temperature of each island-shaped heating element that rises in temperature often varies due to the influence of the position in the substrate. However, since the island-shaped heating element has a characteristic that the resistance value increases as the temperature rises, the island-like heating element having a relatively high temperature has a relatively high resistance value, and conversely, the island-like heating element has a relatively low temperature. The resistance value of the heating element is relatively low.

このとき、各島状発熱体はリード回路で並列に接続されているため、リード回路の抵抗値が島状発熱体の抵抗値に比較して十分に低ければ、各島状発熱体に加わる電圧は同一になる。従って、相対的に温度の高い(抵抗値の高い)島状発熱体では、流れる電流量が相対的に温度の低い(抵抗値の低い)島状発熱体よりも少なくなるため、相対的に温度が低下するか若しくは温度の上昇速度が低下する。逆に、相対的に温度の低い島状発熱体は、相対的に抵抗値も低くなるが、加わる電圧は同一であるため、流れる電流量は増加し、相対的に温度が上昇するか若しくは温度の上昇速度が増加する。   At this time, since each island-shaped heating element is connected in parallel by a lead circuit, if the resistance value of the lead circuit is sufficiently lower than the resistance value of the island-like heating element, the voltage applied to each island-like heating element Are the same. Therefore, an island-like heating element having a relatively high temperature (high resistance value) has a smaller current flow than an island-like heating element having a relatively low temperature (low resistance value). Or the rate of temperature increase decreases. On the contrary, the island-like heating element having a relatively low temperature has a relatively low resistance value, but since the applied voltage is the same, the amount of flowing current increases and the temperature rises or the temperature rises. The speed of ascent increases.

このような仕組みによって、各島状発熱体の温度及び抵抗値は比較的ばらつきの小さなものとなり、基板内の温度分布を均一にすることができるのである。しかも、温度上昇時や温度下降時においても、各島状発熱体の温度差をそれぞれの抵抗値によって検知して、発熱体回路パターンに供給する電流量を調整することによって、温度が変化している過渡的な状態においても各島状発熱体の温度を略均一にし、良好な温度分布を達成することができるのである。   By such a mechanism, the temperature and resistance value of each island-shaped heating element are relatively small in variation, and the temperature distribution in the substrate can be made uniform. Moreover, even when the temperature rises or falls, the temperature changes by detecting the temperature difference between the island-like heating elements by their resistance values and adjusting the amount of current supplied to the heating element circuit pattern. Even in a transient state, the temperature of each island-shaped heating element can be made substantially uniform and a good temperature distribution can be achieved.

また、図3に示したように、島状発熱体1を基板2上に設置し、それを挟み込むようにリード回路3、3を設置することもできる。この場合においては、例えば、島状発熱体を基板上に温度分布が均一になるようにドット状に配置する。配置の形状に関しては特に制約はないが、略等間隔で配置すれば均熱になりやすいため好ましい。特に、この場合に使用する発熱体に関しては、島状発熱体の厚み方向に電圧が印加され、電流が流れるため、島状発熱体の体積抵抗値は上記の形態に比較して高いほうが好ましい。   In addition, as shown in FIG. 3, the island-like heating element 1 can be installed on the substrate 2 and the lead circuits 3 and 3 can be installed so as to sandwich the heating element 1. In this case, for example, the island-shaped heating elements are arranged in a dot shape so that the temperature distribution is uniform on the substrate. Although there is no restriction | limiting in particular regarding the shape of arrangement | positioning, if it arrange | positions at substantially equal intervals, since it becomes easy to become uniform, it is preferable. In particular, regarding the heating element used in this case, a voltage is applied in the thickness direction of the island-shaped heating element, and a current flows. Therefore, the volume resistance value of the island-shaped heating element is preferably higher than that of the above-described embodiment.

尚、上記に述べたメカニズムを達成するためには、独立した各島状発熱体は全て同一であることが好ましく、当然のことではあるが常温(通電初期時)における抵抗値並びに温度−抵抗特性はそれぞれ略同一にしておくことが望ましい。また、各島状発熱体の占有面積も略同一にすることが好ましい。即ち、各島状発熱体の占有面積を略同一にすることで、各島状発熱体が加熱する基板の面積を同一にし、温度に対する応答性を各島状発熱体で同一にすることができ、基板上の温度分布の均一性をより高めることができる。   In order to achieve the mechanism described above, it is preferable that each of the independent island-like heating elements is the same. Naturally, the resistance value and the temperature-resistance characteristics at room temperature (initially energized) Are preferably substantially the same. Moreover, it is preferable that the occupied area of each island-shaped heating element is also made substantially the same. That is, by making the area occupied by each island-shaped heating element substantially the same, the area of the substrate heated by each island-like heating element can be made the same, and the responsiveness to temperature can be made the same for each island-like heating element. The uniformity of temperature distribution on the substrate can be further improved.

各島状発熱体の抵抗値に関しては、最近における均熱性の要求の高まりを考慮すると、平均値の5%以内であることが好ましい。これ以上の抵抗値のばらつきが存在すると、それぞれの島状発熱体の温度を均一にしようとする機能が働きにくいため好ましくない。5%以内の抵抗値のばらつきであれば、概ね±1%程度の温度分布を達成することができる。しかし、0.5%以下の均熱性や、過渡的状態における優れた均熱性を達成するためには、各島状発熱体の抵抗値を更に1%以内のばらつきに抑えることが必要である。   The resistance value of each island-shaped heating element is preferably within 5% of the average value in consideration of the recent increase in demand for heat uniformity. If there is more variation in resistance value than this, it is not preferable because the function of trying to make the temperature of each island-like heating element uniform does not work. If the resistance value varies within 5%, a temperature distribution of about ± 1% can be achieved. However, in order to achieve a soaking property of 0.5% or less and an excellent soaking property in a transient state, it is necessary to further suppress the resistance value of each island-like heating element to within 1%.

また、島状発熱体を形成するパターンの幅及び間隔に関しては、特に制約はない。しかし、均一な発熱を達成するためには、パターンの幅及び間隔は10mm以下が好ましく、1mm以下が更に好ましい。ただし、パターンの幅が例えば50μm以下になると、発熱体を形成する金属箔やスクリーン印刷で形成された膜の幅や間隔のバラツキがパターン幅に対して大きくなり、各島状発熱体の抵抗値バラツキが大きくなるため好ましくない。また、パターン間隔に関しては0.1mm以上が好ましい。これ以下のパターン間隔になると、回路間のショートなどを招きやすくなるためである。   Moreover, there is no restriction | limiting in particular regarding the width | variety and space | interval of the pattern which form an island-like heat generating body. However, in order to achieve uniform heat generation, the width and interval of the pattern is preferably 10 mm or less, and more preferably 1 mm or less. However, when the width of the pattern is 50 μm or less, for example, the variation in the width and interval of the metal foil that forms the heating element and the film formed by screen printing increases with respect to the pattern width, and the resistance value of each island-like heating element This is not preferable because the variation becomes large. The pattern interval is preferably 0.1 mm or more. This is because if the pattern interval is less than this, a short circuit between the circuits is likely to occur.

島状発熱体を、上下のリード回路で挟み込む形態に関しては、リード回路は例えば基板と略同一形状の金属板などを使用することができる。この場合のリード回路に関しては、電気抵抗値が低いことが好ましいが、特にウエハ載置面側のリード回路は、熱伝導率が高い方が好ましい。即ち、島状発熱体で発生した熱はリード回路を通じて基板に伝えられ、ウエハ等の載置物を加熱するため、リード回路の熱伝導率が低いと熱抵抗となり、均熱性が阻害されるため好ましくない。具体的には、銅やアルミニウムなどが好ましい。また、リード回路の耐熱性を向上させるために、表面に耐熱性のコーティング、例えば金や銀、ニッケルなどの膜をメッキや蒸着、スパッタ、溶射等によって形成することも可能である。   With regard to the form in which the island-shaped heating element is sandwiched between the upper and lower lead circuits, the lead circuit can use, for example, a metal plate having substantially the same shape as the substrate. In this case, the lead circuit preferably has a low electrical resistance value, but the lead circuit on the wafer mounting surface side preferably has a high thermal conductivity. That is, the heat generated in the island-shaped heating element is transferred to the substrate through the lead circuit and heats the mounted object such as a wafer. Therefore, if the thermal conductivity of the lead circuit is low, it becomes a thermal resistance, and soaking is disturbed. Absent. Specifically, copper, aluminum and the like are preferable. In order to improve the heat resistance of the lead circuit, it is also possible to form a heat resistant coating such as a film of gold, silver, nickel, etc. on the surface by plating, vapor deposition, sputtering, thermal spraying, or the like.

また、各島状発熱体の抵抗値に関しては、形成する島状発熱体の数、回路全体の抵抗値を考慮して設計すればよく、特に制約はない。例えば、島状発熱体の数を多く配置すれば、その分各島状発熱体の抵抗値を大きくすることで、全体の抵抗値を調整することができる。例えば全体の抵抗値を10Ωにしたい場合、リード回路の抵抗値が十分に小さいものであるならば、島状発熱体を10個形成した場合には各島状発熱体の抵抗値を100Ωにすればよいし、島状発熱体を20個形成すれば、各島状発熱体の抵抗値を20Ωにすることで全体としては10Ωにすることができる。   The resistance value of each island-shaped heating element may be designed in consideration of the number of island-shaped heating elements to be formed and the resistance value of the entire circuit, and is not particularly limited. For example, if a large number of island-shaped heating elements are arranged, the overall resistance value can be adjusted by increasing the resistance value of each island-shaped heating element accordingly. For example, if the overall resistance value is 10Ω, and the resistance value of the lead circuit is sufficiently small, if 10 island heating elements are formed, the resistance value of each island heating element is reduced to 100Ω. In addition, if 20 island-shaped heating elements are formed, the resistance value of each island-shaped heating element can be set to 20Ω as a whole.

また、島状発熱体の数に関しては特に制約はなく、2個以上であれば本発明の機能を発現することができる。しかし、実際には島状発熱体を多く形成することで、温度分布を小さくすることができるため、単位面積当たりの島状発熱体の個数が多いほうが好ましいのは言うまでもない。例えば300mmウエハを載置できる320mm程度の基板の面積であれば、最低でも5個、好ましくは10個以上の島状発熱体を形成することが好ましい。更には、この程度の面積であれば、100個程度の島状発熱体を形成することも可能である。   Moreover, there is no restriction | limiting in particular regarding the number of island-shaped heat generating bodies, and if it is two or more, the function of this invention can be expressed. However, in practice, since the temperature distribution can be reduced by forming a large number of island-shaped heating elements, it is needless to say that a larger number of island-shaped heating elements per unit area is preferable. For example, if the area of the substrate is about 320 mm on which a 300 mm wafer can be placed, it is preferable to form at least five, preferably 10 or more island-shaped heating elements. Furthermore, if the area is about this, it is possible to form about 100 island-shaped heating elements.

また、円形基板に島状発熱体を配置する場合には、図1に示したように、各島状発熱体1を同心円状に配置することが好ましい。図1においては、中心部に3個の島状発熱体を配置し、その外側に8個の島状発熱体、更にその外側に12個の島状発熱体を同心円状に配置することで、基板2上の温度分布を均一にすることができる。勿論このような配置のほかにも、色々な配置をその温度分布や環境に応じて変化させ得ることは言うまでもない。   Further, when the island-like heating elements are arranged on the circular substrate, it is preferable that the island-like heating elements 1 are arranged concentrically as shown in FIG. In FIG. 1, three island-shaped heating elements are arranged at the center, eight island-shaped heating elements are arranged on the outer side, and twelve island-like heating elements are arranged on the outer side in a concentric manner. The temperature distribution on the substrate 2 can be made uniform. Of course, in addition to such an arrangement, it goes without saying that various arrangements can be changed according to the temperature distribution and the environment.

また、図3のように島状発熱体を挟み込む手法においても、上記と同様の配置方法が適用できる。例えば、図4においては、島状発熱体1を13個同心円状に配置している。また図5では、島状発熱体1を等間隔で配置している。このように配置することで、均一な温度分布を達成することができる。   In addition, the same arrangement method as described above can be applied to the method of sandwiching the island-shaped heating element as shown in FIG. For example, in FIG. 4, 13 island-shaped heating elements 1 are arranged concentrically. In FIG. 5, the island-shaped heating elements 1 are arranged at equal intervals. By arranging in this way, a uniform temperature distribution can be achieved.

また、本方法における島状発熱体の形成方法としては、例えば原料となる粉末を、所定の形状にプレス成形し、焼成することで島状発熱体とすることができる。このとき、プレス体の形状、重量を同一にすることで、比較的抵抗値のそろった島状発熱体とすることができる。また、このときリード回路と接触する面に、電極を形成することも可能である。また、島状発熱体の原料となる粉末に溶剤を加えてペースト状にし、リード回路(基板)上にスクリーン印刷などの手法で塗布し、焼き付けることもできる。この場合、パターンの形状や、各島状発熱体の膜厚を均一にすることで、抵抗値の揃った島状発熱体とすることができる。   Moreover, as a formation method of the island-shaped heat generating body in this method, it can be set as an island-shaped heat generating body by press-molding the powder used as a raw material to a predetermined shape, for example, and baking it. At this time, by making the shape and weight of the pressed body the same, it is possible to obtain an island-shaped heating element having a relatively uniform resistance value. At this time, an electrode can be formed on the surface in contact with the lead circuit. Moreover, a solvent can be added to the powder used as the raw material of the island-shaped heating element to form a paste, which can be applied onto a lead circuit (substrate) by a method such as screen printing and baked. In this case, by making the pattern shape and the film thickness of each island-shaped heating element uniform, an island-shaped heating element having a uniform resistance value can be obtained.

上記した島状発熱体及びリード回路は、例えば、金属箔から形成することができる。金属箔の種類については、特に制約はなく、略均一な厚みを有し、温度の上昇とともに抵抗値が上昇する特性を有するものであればよい。また、ヒータとして使用するため、島状発熱体及びリード回路は耐酸化性を有していることが好ましい。好ましい金属箔としては、ステンレス箔やニクロム箔が挙げられる。これらの金属箔からエッチングにより島状発熱体及びリード回路を形成し、基板に装着することによって、発熱体回路パターンを有するサセプタやホットプレートなどを作製することができる。   The island-shaped heating element and the lead circuit described above can be formed from, for example, a metal foil. There is no restriction | limiting in particular about the kind of metal foil, What is necessary is just to have the characteristic that it has a substantially uniform thickness and a resistance value rises with a raise in temperature. Moreover, since it uses as a heater, it is preferable that an island-like heat generating body and a lead circuit have oxidation resistance. Preferred metal foils include stainless steel foil and nichrome foil. An island-like heating element and a lead circuit are formed by etching from these metal foils and mounted on a substrate, whereby a susceptor or a hot plate having a heating element circuit pattern can be manufactured.

使用する金属箔の厚みに関しては、特に制約はないが、0.01mm以上であることが好ましい。これ未満の厚みでは、ハンドリング時に破損することが多くなり、歩留まりが低下するため好ましくない。特に好ましい厚みとしては0.02mm以上であり、この程度の厚みになるとハンドリングで損傷することがない。また、金属箔の厚みの上限についても制約はないが、抵抗値を均一にし、しかもエッチングによるばらつきを最小限に抑えるためには、1mm以下であることが好ましい。1mmを超える厚みになると、エッチング時間が長くなり、島状発熱体やリード回路の線幅にばらつきを発生することが多くなる。特に好ましい厚みの上限は0.3mmである。   Although there is no restriction | limiting in particular regarding the thickness of the metal foil to be used, It is preferable that it is 0.01 mm or more. A thickness less than this is not preferable because it often breaks during handling and the yield decreases. A particularly preferable thickness is 0.02 mm or more, and when this thickness is reached, it is not damaged by handling. Moreover, although there is no restriction | limiting also about the upper limit of the thickness of metal foil, in order to make resistance value uniform and to suppress the dispersion | variation by an etching to the minimum, it is preferable that it is 1 mm or less. When the thickness exceeds 1 mm, the etching time becomes longer, and variations in the line width of the island-shaped heating element and the lead circuit often occur. A particularly preferable upper limit of the thickness is 0.3 mm.

また、基板の表面に島状発熱体を形成する場合には、特に金属箔を使用することが好ましい。金属箔の使用によって、特に上記した0.01〜1mmの範囲の厚みにおいては、厚みやエッチング後の線幅のばらつきも比較的小さいため、安定した発熱体回路パターンを提供することができ、基板の温度分布も均一にすることができるからである。   In addition, when an island-like heating element is formed on the surface of the substrate, it is particularly preferable to use a metal foil. By using the metal foil, in particular, in the thickness range of 0.01 to 1 mm, the variation in thickness and line width after etching is relatively small, so that a stable heating element circuit pattern can be provided. This is because the temperature distribution can be made uniform.

また、図3のように、島状発熱体をリード回路によって上下方向から挟み込む構造においては、島状発熱体の厚み方向の抵抗値をある程度大きくする必要がある。このため、発熱体の材質としては、チタン酸バリウム、あるいはチタン酸バリウムにストロンチウムや鉛をドープしたものを使用することができる。これらの材料は比較的抵抗値が高く、また温度に対する抵抗値変化が非常に大きいため、使用する温度に応じて島状発熱体の組成を制御することで均熱性を達成することができる。例えばチタン酸バリウムにおいては、120℃から170℃の間で体積抵抗率が3桁も変化する。この為、温度が高くなる部分は抵抗値が非常に大きくなり、相対的に島状発熱体を流れる電流が小さくなり、発熱量が低下し、温度も下がる。逆に温度の低い部分は抵抗値が小さくなるため、流れる電流量が大きくなり、発熱量も増大するために、温度も上昇する。また、このチタン酸バリウムにストロンチウムをドープすると、ドープ量に応じて抵抗値が急激に変化する温度が低下する。また逆に鉛をドープすると、抵抗値が急激に変化する温度が上昇するため、使用する温度に応じてドープ量を調整すればよい。   Further, in the structure in which the island-shaped heating element is sandwiched from above and below by the lead circuit as shown in FIG. 3, it is necessary to increase the resistance value in the thickness direction of the island-shaped heating element to some extent. For this reason, as a material of a heat generating body, what doped strontium and lead to barium titanate or barium titanate can be used. Since these materials have a relatively high resistance value and a resistance value change with respect to temperature is very large, it is possible to achieve soaking by controlling the composition of the island heating elements according to the temperature used. For example, in barium titanate, the volume resistivity changes by three orders of magnitude between 120 ° C and 170 ° C. For this reason, the resistance value becomes very large in the portion where the temperature is high, the current flowing through the island-shaped heating element is relatively small, the heat generation amount is lowered, and the temperature is also lowered. On the other hand, since the resistance value is low in the low temperature portion, the amount of flowing current increases and the amount of heat generation also increases, so the temperature also rises. Further, when strontium is doped into this barium titanate, the temperature at which the resistance value changes rapidly according to the amount of doping decreases. On the other hand, when lead is doped, the temperature at which the resistance value changes abruptly increases. Therefore, the doping amount may be adjusted according to the temperature to be used.

また図3の形態における島状発熱体は、例えば上記のようなチタン酸バリウムの場合、金属箔に比較してはるかに高い体積抵抗率を有するため、島状発熱体のリード回路との界面に銀や金、ニッケルなどの電極を形成し、リード回路との接触抵抗を低減することが好ましい。また、窒化アルミニウムなどのセラミックス基板上に、例えばタングステンなどでメタライズしてリード回路を形成した後、島状発熱体の原料となるチタン酸バリウムなどの粉末に溶剤等を加えてペースト状にし、メタライズ上に印刷し、焼成することで島状発熱体を形成することもできる。   In addition, the island-shaped heating element in the form of FIG. 3 has a much higher volume resistivity than the metal foil in the case of barium titanate as described above, for example. It is preferable to form an electrode such as silver, gold, or nickel to reduce the contact resistance with the lead circuit. In addition, a lead circuit is formed on a ceramic substrate such as aluminum nitride by metallizing with tungsten or the like, and then a paste is formed by adding a solvent or the like to a powder of barium titanate or the like which is a raw material of the island-like heating element. It is also possible to form an island-shaped heating element by printing on and firing.

金属箔による島状発熱体を用いた発熱体回路パターンの使用方法としては、例えば、所定形状にエッチングした金属箔を、絶縁性を確保した状態で2枚の基板部材の間に挟み込む方法がある。例えば、窒化アルミニウムなどの絶縁性の基板上に金属箔から形成した島状発熱体を搭載し、ポリイミド樹脂、シリコン樹脂、エポキシ樹脂、フェノール樹脂など、耐熱性を有する樹脂を塗布したステンレス板か、あるいはこれらの樹脂シートを表面に貼り付けたステンレス板を用いて、金島状発熱体を挟むように上記窒化アルミニウム基板上に重ね、窒化アルミニウム基板とステンレス板をネジ止めなどの手法を用いて固定すればよい。   As a method of using a heating element circuit pattern using an island-shaped heating element made of metal foil, for example, there is a method in which a metal foil etched into a predetermined shape is sandwiched between two substrate members while ensuring insulation. . For example, a stainless steel plate on which an island-shaped heating element formed from a metal foil is mounted on an insulating substrate such as aluminum nitride and a resin having heat resistance such as polyimide resin, silicon resin, epoxy resin, phenol resin, etc. is applied, Alternatively, using a stainless steel plate with these resin sheets affixed to the surface, it is stacked on the aluminum nitride substrate so as to sandwich the gold island-like heating element, and the aluminum nitride substrate and the stainless steel plate are fixed using a method such as screwing. do it.

また、島状発熱体と窒化アルミニウムなどの基板との間の密着性を均一にするために、上記した樹脂を金属箔の島状発熱体と窒化アルミニウム基板の間に挿入しても良い。尚、上記した樹脂は比較的熱伝導率が低いため、温度の応答性が遅い場合がある。そのため、樹脂の中に熱伝導性を向上させるためのフィラーを添加しても良い。この場合のフィラーとしては、絶縁性及び耐熱性を有し、上記樹脂よりも熱伝導率が高ければ特に制約はなく、例えばシリカやアルミナ、窒化アルミニウム、窒化ホウ素などを使用することができる。   Further, in order to make the adhesion between the island-shaped heating element and the aluminum nitride substrate uniform, the above resin may be inserted between the metal foil island-shaped heating element and the aluminum nitride substrate. In addition, since the above-mentioned resin has comparatively low thermal conductivity, the temperature responsiveness may be slow. Therefore, you may add the filler for improving thermal conductivity in resin. The filler in this case is not particularly limited as long as it has insulating properties and heat resistance and has higher thermal conductivity than the above resin, and for example, silica, alumina, aluminum nitride, boron nitride, or the like can be used.

本発明の島状発熱体及びリード回路は、上記した金属箔だけでなく、スクリーン印刷によっても形成することができる。例えば、絶縁性のセラミックスのグリーンシートに、タングステン(W)やモリブデン(Mo)などを主成分とするペーストを塗布し、別のグリーンシートを積層した後、脱脂、焼成することにより、セラミックス中に発熱体回路パターンを埋設することができる。   The island-shaped heating element and lead circuit of the present invention can be formed not only by the metal foil described above but also by screen printing. For example, a paste mainly composed of tungsten (W) or molybdenum (Mo) is applied to an insulating ceramic green sheet, another green sheet is laminated, and then degreased and fired. A heating element circuit pattern can be embedded.

また、本発明における基板としては、温度分布の均一性を高めるため、熱伝導率が100W/mK以上であるものが好ましい。例えば、金属あるいは金属とセラミックスの複合体など導電性を有する基板のほか、窒化アルミニウムなどの絶縁性のセラミックス基板を用いることができる。尚、金属あるいは金属とセラミックスの複合体など導電性を有する基板の場合、上記したように島状発熱体と基板との間に絶縁のため樹脂などを介在させる必要があるが、その場合のヒータの使用温度は樹脂の耐熱温度によって決まる。   Moreover, as a board | substrate in this invention, in order to improve the uniformity of temperature distribution, the thing whose heat conductivity is 100 W / mK or more is preferable. For example, in addition to conductive substrates such as metals or metal-ceramic composites, insulating ceramic substrates such as aluminum nitride can be used. In the case of a conductive substrate such as a metal or a composite of metal and ceramics, it is necessary to interpose a resin or the like for insulation between the island-like heating element and the substrate as described above. The use temperature depends on the heat-resistant temperature of the resin.

上記した本発明の発熱体回路パターンは、サセプタやホットプレートなどのヒータ用として好適である。即ち、半導体製造装置用のサセプタやホットプレートは、本発明の発熱体回路パターンを形成した基板を搭載することにより、均一な温度分布を得ることができる。特にウエハの温度が降下あるいは上昇していく過渡的な状態においても均一な温度分布が得られるため、特にコータデベロッパとして極めて優れている。   The heating element circuit pattern of the present invention described above is suitable for heaters such as susceptors and hot plates. That is, a susceptor or a hot plate for a semiconductor manufacturing apparatus can obtain a uniform temperature distribution by mounting the substrate on which the heating element circuit pattern of the present invention is mounted. In particular, since a uniform temperature distribution can be obtained even in a transient state in which the temperature of the wafer drops or rises, it is particularly excellent as a coater developer.

更に、本発明の発熱回路パターンを形成したサセプタやホットプレートには、冷却モジュールを搭載することも可能である。冷却モジュールは、例えばサセプタのウエハ載置面の反対側に、アルミニウムや銅などの金属板を用いて形成する。冷却モジュールは可動式であっても良いし、サセプタにネジ止めなどの機械的な手法で取り付けても良い。特に冷却モジュールを可動式にして、サセプタに当接又は離間させれば、すばやくサセプタを冷却することができるため、スループットを向上させることができる。   Furthermore, it is possible to mount a cooling module on the susceptor or hot plate on which the heat generating circuit pattern of the present invention is formed. The cooling module is formed using a metal plate such as aluminum or copper on the opposite side of the wafer mounting surface of the susceptor, for example. The cooling module may be movable or may be attached to the susceptor by a mechanical method such as screwing. In particular, if the cooling module is made movable and is brought into contact with or separated from the susceptor, the susceptor can be quickly cooled, so that the throughput can be improved.

また、冷却モジュールに流路を設け、冷媒を流すことによって、更に効率的な冷却が可能となる。例えば、アルミニウムや銅などの金属板にステンレスのパイプを取り付けるか、あるいは金属板に座繰り加工を施した後、他の金属板を接合することによって、流路を備えた冷却モジュールとすることができる。流路に流す冷媒としては、冷却モジュールを腐食するものでなければ特に制約はなく、空気や不活性ガスなどの気体、水やガルデン、アルコールなどの有機溶媒のような液体を使用することができる。   Further, more efficient cooling can be achieved by providing a flow path in the cooling module and flowing a refrigerant. For example, a stainless steel pipe is attached to a metal plate such as aluminum or copper, or a countersink process is applied to the metal plate, and then another metal plate is joined to form a cooling module having a flow path. it can. The refrigerant flowing through the flow path is not particularly limited as long as it does not corrode the cooling module, and a gas such as air or inert gas, or a liquid such as water, galden, or an organic solvent such as alcohol can be used. .

[実施例1]
基板として、熱伝導率が100W/mK、150W/mK、200W/mKの3種の窒化アルミニウム(AlN)基板を、直径330mm、厚み5mmに加工して、それぞれ2枚用意した。これら3種のAlN基板を使用し、それぞれ片方の基板上に図1に示す発熱体回路パターンを作製し、他方の基板を重ねて挟み込んだ後、2枚の基板をネジ止めすることで固定し、それぞれウエハ加熱用のサセプタを作製した。
[Example 1]
As substrates, three types of aluminum nitride (AlN) substrates having thermal conductivity of 100 W / mK, 150 W / mK, and 200 W / mK were processed into a diameter of 330 mm and a thickness of 5 mm, and two each were prepared. Using these three types of AlN substrates, the heating element circuit pattern shown in FIG. 1 is formed on one of the substrates, and the other substrate is overlapped and sandwiched, and then the two substrates are fixed by screwing. A susceptor for heating the wafer was prepared.

尚、上記発熱体回路パターンにおける島状発熱体は、厚み50μmのステンレス箔を図2に示すように曲折成形して単位発熱体1aとし、この単位発熱体1aを3個1セットとして図1に示す島状発熱体1とした。また、島状発熱体1のパターン幅は0.2mm、パターン間隔は0.3mmとした。また、各島状発熱体1は、ほぼ同一の形状とし、基板2内における発熱密度が略均一になるように、23個を3つの同心円上に配置した。   The island-like heating element in the heating element circuit pattern is formed by bending a stainless steel foil having a thickness of 50 μm as shown in FIG. 2 to form a unit heating element 1a, and three unit heating elements 1a in one set are shown in FIG. It was set as the island-shaped heat generating body 1 shown. The pattern width of the island-shaped heating element 1 was 0.2 mm, and the pattern interval was 0.3 mm. In addition, each island-shaped heating element 1 has a substantially identical shape, and 23 are arranged on three concentric circles so that the heat generation density in the substrate 2 is substantially uniform.

これらの島状発熱体1は、略同心円状に配置した幅数mmのリード回路3で並列に接続している。また、基板2のウエハ載置面とは反対側の電極位置に相当する部分に貫通孔を設け、電極4(図1の黒丸部分)を取り出し、外部の電源に接続した。尚、各島状発熱体1の抵抗値はそれぞれ40Ωであり、その抵抗値のばらつきは0.5%以内であった。   These island-shaped heating elements 1 are connected in parallel by a lead circuit 3 having a width of several millimeters arranged substantially concentrically. In addition, a through hole was provided in a portion corresponding to the electrode position on the opposite side of the wafer mounting surface of the substrate 2, the electrode 4 (black circle portion in FIG. 1) was taken out, and connected to an external power source. The resistance value of each island-shaped heating element 1 was 40Ω, and the variation of the resistance value was within 0.5%.

比較例として、特開2003−017224公報記載の発熱体回路パターンと同様にして、AlN基板の略中心部に入力電極と出力電極を設け、入力電極を含む部位から基板外周に向けてステンレス箔で略螺旋状の発熱体回路を形成し、更に最外周から中心部の出力電極に向けてステンレス箔で略螺旋状の発熱体回路を形成した。これらAlN基板及びステンレス箔は、上記と同じものを用いた。更に、熱伝導率30W/mKのアルミナ(Al)基板を上記と同様の形状に加工し、その間に図1の発熱体回路パターンを挟み込み、ネジ止めして上記と同様にサセプタを作製した。 As a comparative example, in the same manner as the heating element circuit pattern described in Japanese Patent Application Laid-Open No. 2003-018224, an input electrode and an output electrode are provided at a substantially central portion of the AlN substrate, and a stainless steel foil is provided from the portion including the input electrode toward the outer periphery of the substrate. A substantially spiral heating element circuit was formed, and a substantially spiral heating element circuit was formed of stainless steel foil from the outermost periphery toward the output electrode at the center. The same AlN substrate and stainless steel foil as those described above were used. Further, an alumina (Al 2 O 3 ) substrate having a thermal conductivity of 30 W / mK is processed into the same shape as above, and the heating element circuit pattern of FIG. 1 is sandwiched between them and screwed to produce a susceptor as described above. did.

得られた各試料のサセプタについて、載置面にプロキシミティを配置し、ウエハと載置面の間の距離を0.1mmと均一になるように形成した。これら各試料のサセプタを130℃に加熱し、その温度分布をウエハ温度計で測定した。次に、各サセプタを130℃にキープした状態で、室温のウエハをサセプタに載置し、載置してから30秒後と60秒後におけるウエハの温度分布をウエハ温度計で測定した。得られた結果を下記表1に示す。この結果から、本発明の発熱体回路パターンは、定常状態(130℃)だけでなく、過渡的な状態(載置後30秒及び60秒)においても優れた均熱性を示すことが分る。   About the obtained susceptor of each sample, proximity was arrange | positioned on the mounting surface and it formed so that the distance between a wafer and a mounting surface might become uniform with 0.1 mm. The susceptor of each sample was heated to 130 ° C., and the temperature distribution was measured with a wafer thermometer. Next, with each susceptor kept at 130 ° C., a wafer at room temperature was placed on the susceptor, and the temperature distribution of the wafer 30 seconds and 60 seconds after the placement was measured with a wafer thermometer. The obtained results are shown in Table 1 below. From this result, it can be seen that the heating element circuit pattern of the present invention exhibits excellent temperature uniformity not only in a steady state (130 ° C.) but also in a transient state (30 seconds and 60 seconds after placement).

Figure 2008066295
Figure 2008066295

[実施例2]
図1の発熱体回路パターンを、上記実施例1と同じ3種のAlN基板に、Wペーストをスクリーン印刷することで形成し、それぞれサセプタを作製した。ただし、このときの基板の厚みは10mmであり、ウエハ載置面の反対側に発熱体回路パターンを形成した。尚、各島状発熱体の抵抗値は50Ω、抵抗値のばらつきは±1%以内であった。
[Example 2]
The heating element circuit pattern of FIG. 1 was formed by screen-printing W paste on the same three types of AlN substrates as in Example 1, and susceptors were respectively produced. However, the thickness of the substrate at this time was 10 mm, and a heating element circuit pattern was formed on the opposite side of the wafer placement surface. Each island-shaped heating element had a resistance value of 50Ω and a variation in resistance value was within ± 1%.

得られた各試料のサセプタについて、上記実施例1と同様のテストを行い、定常状態(130℃)と過渡的状態(載置後30秒及び60秒)における均熱性を評価し、その結果を下記表2に示した。この結果からも、本発明の発熱体回路パターンは、定常状態だけでなく、過渡的な状態においても優れた均熱性を示すことが分る。   About the obtained susceptor of each sample, the test similar to the said Example 1 was performed, the thermal uniformity in a steady state (130 degreeC) and a transient state (30 seconds and 60 seconds after mounting) was evaluated, and the result was obtained. The results are shown in Table 2 below. Also from this result, it can be seen that the heating element circuit pattern of the present invention exhibits excellent thermal uniformity not only in a steady state but also in a transient state.

Figure 2008066295
Figure 2008066295

[実施例3]
基板として、熱伝導率が150W/mKであるSi−SiC複合体、熱伝導率が180W/mKであるAl−SiC複合体、及び熱伝導率が400W/mKである銅を、上記実施例1と同様の大きさに加工したものを用意し、上記実施例1と同様にして、図1の発熱体回路パターンを形成し、それぞれサセプタを作製した。ただし、これらの基板材料は導電性があるため、島状発熱体とリード回路を厚み100μmのポリイミド樹脂で挟み込むことで基板との絶縁性を確保した。
[Example 3]
As a substrate, a Si—SiC composite having a thermal conductivity of 150 W / mK, an Al—SiC composite having a thermal conductivity of 180 W / mK, and copper having a thermal conductivity of 400 W / mK are used in the above Example 1. 1 were prepared, and the heating element circuit pattern of FIG. 1 was formed in the same manner as in Example 1 to prepare susceptors. However, since these substrate materials are conductive, insulation with the substrate is secured by sandwiching the island-shaped heating element and the lead circuit with a polyimide resin having a thickness of 100 μm.

得られた各試料のサセプタについて、上記実施例1と同様のテストを行い、定常状態(130℃)と過渡的状態(載置後30秒及び60秒)における均熱性を評価し、その結果を下記表3に示した。この結果からも、本発明の発熱体回路パターンは、定常状態だけでなく、過渡的な状態においても優れた均熱性を示すことが分る。   About the obtained susceptor of each sample, the test similar to the said Example 1 was performed, the thermal uniformity in a steady state (130 degreeC) and a transient state (30 seconds and 60 seconds after mounting) was evaluated, and the result was obtained. The results are shown in Table 3 below. Also from this result, it can be seen that the heating element circuit pattern of the present invention exhibits excellent thermal uniformity not only in a steady state but also in a transient state.

Figure 2008066295
Figure 2008066295

[実施例4]
チタン酸バリウム粉末をプレス成形し、1400℃窒素雰囲気中で焼成して、直径10mm、厚み2mmの島状発熱体を形成した。この島状発熱体の上下面に銀ペーストを塗布し、直径330mm、厚み3mmの銅板上に設置し、850℃窒素雰囲気中で焼成した。その後、島状発熱体を挟み込むように同一形状の銅板を設置し、互いをネジ止めして固定した。なお、島状発熱体は銅板上に50mmピッチで等間隔に配置した。次に、ウエハを載置する直径330mm、厚み5mm、熱伝導率150W/mKのAlN基板を準備し、ウエハ載置面の反対側のAlN基板にネジ穴を形成し、その位置に相当する銅板に、熱膨張によって互いが破損しないように大きめの貫通孔を形成し、ネジ止めして固定した。これを上記実施例1と同様の手法で均熱性の試験を行った。その結果を下記表4に試料12として示す。
[Example 4]
Barium titanate powder was press-molded and fired in a nitrogen atmosphere at 1400 ° C. to form an island-shaped heating element having a diameter of 10 mm and a thickness of 2 mm. Silver paste was applied to the upper and lower surfaces of this island-shaped heating element, placed on a copper plate having a diameter of 330 mm and a thickness of 3 mm, and baked in a nitrogen atmosphere at 850 ° C. Then, the copper plate of the same shape was installed so that an island-shaped heat generating body might be inserted | pinched, and it mutually fixed with the screw. The island-shaped heating elements were arranged on the copper plate at equal intervals with a pitch of 50 mm. Next, an AlN substrate having a diameter of 330 mm, a thickness of 5 mm, and a thermal conductivity of 150 W / mK is prepared for mounting the wafer, a screw hole is formed in the AlN substrate on the opposite side of the wafer mounting surface, and the copper plate corresponding to the position In addition, large through-holes were formed so as not to break each other due to thermal expansion, and were fixed with screws. This was tested for heat uniformity in the same manner as in Example 1 above. The results are shown as sample 12 in Table 4 below.

また、実施例1と同様に直径330mm、厚み5mm、熱伝導率150W/mKのAlN基板2枚を用意した。これらの基板の片面に、W粉末にイットリア1%、有機溶剤、バインダーを加えペーストを作製した。これをスクリーン印刷によりほぼ全面に印刷し、1800℃窒素雰囲気中で焼成し、リード回路を形成した。次に、リード回路を形成した基板の1枚に、チタン酸バリウムに有機溶剤、バインダーを加えてペースト状にし、直径30mmのパターンを60mmピッチで形成し、1500℃窒素雰囲気中で焼成し、島状発熱体を形成した。そして、リード回路のみを形成したもう一枚の基板を、上記と同様にネジ止めし、ウエハ保持体とした。これを上記実施例1と同様の評価を行った。その結果を下記表4に試料13として示す。   Further, as in Example 1, two AlN substrates having a diameter of 330 mm, a thickness of 5 mm, and a thermal conductivity of 150 W / mK were prepared. On one side of these substrates, 1% of yttria, an organic solvent, and a binder were added to W powder to prepare a paste. This was printed on almost the entire surface by screen printing and baked in a nitrogen atmosphere at 1800 ° C. to form a lead circuit. Next, an organic solvent and a binder are added to barium titanate on one of the substrates on which the lead circuit is formed to form a paste, a pattern with a diameter of 30 mm is formed at a pitch of 60 mm, and fired in a nitrogen atmosphere at 1500 ° C. A heating element was formed. Then, another substrate on which only the lead circuit was formed was screwed in the same manner as described above to obtain a wafer holder. This was evaluated in the same manner as in Example 1 above. The results are shown as sample 13 in Table 4 below.

Figure 2008066295
Figure 2008066295

[実施例5]
上記した試料1〜13の各サセプタを、実際にレジストの硬化処理に使用した。その結果、比較例である試料4〜5を除いて、良好なパターン形成を行うことができた。その中でも試料2〜3及び試料7〜13のサセプタは、パターン精度が特に優れていた。
[Example 5]
Each of the above susceptors of Samples 1 to 13 was actually used for the resist curing process. As a result, good patterns could be formed except for Samples 4 to 5, which are comparative examples. Among them, the susceptors of Samples 2 to 3 and Samples 7 to 13 were particularly excellent in pattern accuracy.

本発明による発熱体回路パターンの1具体例を示す概略の平面図である。It is a schematic plan view showing one specific example of the heating element circuit pattern according to the present invention. 本発明における島状発熱体の1具体例を示す概略の平面図である。It is a schematic plan view which shows one specific example of the island-shaped heat generating body in this invention. 本発明における島状発熱体の他の具体例を示す概略の断面図である。It is a schematic sectional drawing which shows the other specific example of the island-shaped heat generating body in this invention. 本発明における島状発熱体の配置例を示す概略の平面図である。It is a schematic top view which shows the example of arrangement | positioning of the island-shaped heat generating body in this invention. 本発明における島状発熱体の他の配置例を示す概略の平面図である。It is a schematic plan view which shows the other example of arrangement | positioning of the island-shaped heat generating body in this invention.

符号の説明Explanation of symbols

1 島状発熱体
1a 単位発熱体
2 基板
3 リード回路
4 電極
1 Island Heating Element 1a Unit Heating Element 2 Substrate 3 Lead Circuit 4 Electrode

Claims (14)

複数の島状発熱体が基板上もしくは基板内部に独立した島状に分布し、基板内における発熱密度が略均一になるように配置されると共に、全ての島状発熱体がリード回路によって各島状発熱体に加わる電圧が略一定になるように並列に接続され、これら島状発熱体は温度の上昇に伴って抵抗値が上昇する特性を有し、且つリード回路は島状発熱体よりも抵抗値が低いことを特徴とする発熱体回路パターン。   A plurality of island-shaped heating elements are distributed in an independent island shape on the substrate or inside the substrate, and are arranged so that the heat generation density in the substrate is substantially uniform. The island heating elements are connected in parallel so that the voltage applied to the island heating elements is substantially constant. These island heating elements have a characteristic that the resistance value increases as the temperature rises, and the lead circuit is more than the island heating elements. A heating element circuit pattern characterized by a low resistance value. 前記リード回路は、前記島状発熱体を上下に挟み込んでいることを特徴とする、請求項1に記載の発熱体回路パターン。   2. The heating element circuit pattern according to claim 1, wherein the lead circuit sandwiches the island-shaped heating element vertically. 3. 前記各島状発熱体の占有面積はそれぞれ略同一であることを特徴とする、請求項1又は2に記載の発熱体回路パターン。   The heating element circuit pattern according to claim 1 or 2, wherein the occupying areas of the island heating elements are substantially the same. 前記各島状発熱体の抵抗値はそれぞれ略同一であることを特徴とする、請求項1〜3のいずれかに記載の発熱体回路パターン。   The heating element circuit pattern according to claim 1, wherein the resistance values of the island-shaped heating elements are substantially the same. 前記島状発熱体及びリード回路が金属箔からなることを特徴とする、請求項1〜4のいずれかに記載の発熱体回路パターン。   The heating element circuit pattern according to claim 1, wherein the island-shaped heating element and the lead circuit are made of metal foil. 前記金属箔がニクロムまたはステンレスからなることを特徴とする、請求項5に記載の発熱体回路パターン。   The heating element circuit pattern according to claim 5, wherein the metal foil is made of nichrome or stainless steel. 前記島状発熱体及びリード回路がタングステンまたはモリブデンからなることを特徴とする、請求項1〜4のいずれかに記載の発熱体回路パターン。   The heating element circuit pattern according to claim 1, wherein the island-shaped heating element and the lead circuit are made of tungsten or molybdenum. 前記島状発熱体がセラミックス発熱体であることを特徴とする、請求項2〜4のいずれかに記載の発熱体回路パターン。   The heating element circuit pattern according to claim 2, wherein the island-shaped heating element is a ceramic heating element. 前記基板の熱伝導率が100W/mK以上であることを特徴とする、請求項1〜8のいずれかに記載の発熱体回路パターン。   The heating element circuit pattern according to any one of claims 1 to 8, wherein the substrate has a thermal conductivity of 100 W / mK or more. 前記基板が窒化アルミニウムであることを特徴とする、請求項9に記載の発熱体回路パターン。   The heating element circuit pattern according to claim 9, wherein the substrate is aluminum nitride. 前記基板が金属−セラミックスの複合体であることを特徴とする、請求項9に記載の発熱体回路パターン。   The heating element circuit pattern according to claim 9, wherein the substrate is a metal-ceramic composite. 請求項1〜11のいずれかに記載の発熱体回路パターンを形成した基板を搭載したことを特徴とする半導体製造装置用サセプタ。   A susceptor for a semiconductor manufacturing apparatus, comprising a substrate on which the heating element circuit pattern according to claim 1 is formed. 請求項12に記載のサセプタを搭載したことを特徴とする半導体製造装置。   A semiconductor manufacturing apparatus comprising the susceptor according to claim 12. 前記半導体製造装置がコータデベロッパであることを特徴とする、請求項12に記載の半導体製造装置。   The semiconductor manufacturing apparatus according to claim 12, wherein the semiconductor manufacturing apparatus is a coater developer.
JP2007205003A 2006-08-08 2007-08-07 Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device Pending JP2008066295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205003A JP2008066295A (en) 2006-08-08 2007-08-07 Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006215208 2006-08-08
JP2007205003A JP2008066295A (en) 2006-08-08 2007-08-07 Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JP2008066295A true JP2008066295A (en) 2008-03-21

Family

ID=39288778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205003A Pending JP2008066295A (en) 2006-08-08 2007-08-07 Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JP2008066295A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018704A (en) * 2013-07-11 2015-01-29 日本碍子株式会社 Ceramic heater
KR20190021267A (en) * 2016-06-27 2019-03-05 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, and storage medium
WO2019073941A1 (en) * 2017-10-10 2019-04-18 住友電気工業株式会社 Wafer-heating heater unit
JP2019071349A (en) * 2017-10-10 2019-05-09 住友電気工業株式会社 Heater unit for wafer heating
JP2019071351A (en) * 2017-10-10 2019-05-09 住友電気工業株式会社 Heater unit for wafer heating
JP2019071350A (en) * 2017-10-10 2019-05-09 住友電気工業株式会社 Heater unit for wafer heating
CN112417806A (en) * 2020-11-11 2021-02-26 无锡优波生命科技有限公司 Design method of TCM component planar circuit diagram
CN113168123A (en) * 2018-12-21 2021-07-23 Asml控股股份有限公司 Reticle sub-field thermal control

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018704A (en) * 2013-07-11 2015-01-29 日本碍子株式会社 Ceramic heater
KR20190021267A (en) * 2016-06-27 2019-03-05 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, and storage medium
KR102304247B1 (en) * 2016-06-27 2021-09-17 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and substrate processing method and storage medium
WO2019073941A1 (en) * 2017-10-10 2019-04-18 住友電気工業株式会社 Wafer-heating heater unit
JP2019071349A (en) * 2017-10-10 2019-05-09 住友電気工業株式会社 Heater unit for wafer heating
JP2019071351A (en) * 2017-10-10 2019-05-09 住友電気工業株式会社 Heater unit for wafer heating
JP2019071350A (en) * 2017-10-10 2019-05-09 住友電気工業株式会社 Heater unit for wafer heating
CN113168123A (en) * 2018-12-21 2021-07-23 Asml控股股份有限公司 Reticle sub-field thermal control
CN112417806A (en) * 2020-11-11 2021-02-26 无锡优波生命科技有限公司 Design method of TCM component planar circuit diagram
CN112417806B (en) * 2020-11-11 2023-12-19 无锡优波生命科技有限公司 TCM element plane circuit diagram design method

Similar Documents

Publication Publication Date Title
US6534751B2 (en) Wafer heating apparatus and ceramic heater, and method for producing the same
JP2008066295A (en) Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device
JP2006127883A (en) Heater and wafer heating device
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP2005340439A (en) Heater, wafer heating device, and manufacturing method thereof
JP4658913B2 (en) Wafer support member
JP4845389B2 (en) Heater and wafer heating device
JP3904986B2 (en) Wafer support member
JP3981300B2 (en) Wafer support member
JP4931360B2 (en) Wafer heating device
JP4025497B2 (en) Wafer heating device
JP3872256B2 (en) Wafer heating device
JP3805318B2 (en) Wafer heating device
JP3771795B2 (en) Wafer heating device
JP4975146B2 (en) Wafer heating device
JP2005019477A (en) Wafer heating equipment
JP4646502B2 (en) Wafer support member
JP3909266B2 (en) Wafer support member
JP4789790B2 (en) Wafer support member
JP2002329566A (en) Wafer heating device
JP3921433B2 (en) Wafer heating device
JP4671592B2 (en) Ceramic heater
JP4189243B2 (en) Wafer support member
JP3894871B2 (en) Wafer support member
JP4344603B2 (en) Wafer heating device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090612