JP2008061501A - Method for designing enzyme for catalyzing direct condensation reaction of free carboxylic acid amine, and method for enzymatically producing nylon oligomer - Google Patents

Method for designing enzyme for catalyzing direct condensation reaction of free carboxylic acid amine, and method for enzymatically producing nylon oligomer Download PDF

Info

Publication number
JP2008061501A
JP2008061501A JP2006239119A JP2006239119A JP2008061501A JP 2008061501 A JP2008061501 A JP 2008061501A JP 2006239119 A JP2006239119 A JP 2006239119A JP 2006239119 A JP2006239119 A JP 2006239119A JP 2008061501 A JP2008061501 A JP 2008061501A
Authority
JP
Japan
Prior art keywords
enzyme
hyb
nylon oligomer
oligomer
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006239119A
Other languages
Japanese (ja)
Inventor
Seiji Negoro
誠司 根来
Masahiro Takeo
正弘 武尾
Taichiro Kato
太一郎 加藤
Yoshiki Higuchi
芳樹 樋口
Naoki Shibata
直樹 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
Original Assignee
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government filed Critical Hyogo Prefectural Government
Priority to JP2006239119A priority Critical patent/JP2008061501A/en
Publication of JP2008061501A publication Critical patent/JP2008061501A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enzyme for catalyzing a direct condensation between a free carboxyl group and a free amino group, and to provide a method for enzymatically synthesizing a non-natural amide that uses such an enzyme. <P>SOLUTION: A nylon oligomer is synthesized from 6-aminocaproic acid as the substrate, in the presence of a nylon oligomer-synthesizing enzyme having a specific sequence. This enzyme can catalyze direct condensation between a free carboxyl group and a free amino group under a mild condition of about 30°C, in a very short time and can synthesize nylon oligomer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ナイロンオリゴマーを微水系で合成しうる酵素を用いるナイロンオリゴマーの酵素的製造方法に関する。また、本発明は、タンパク質工学・分子進化工学的な手法に基づく非天然アミド化合物の合成酵素の設計方法に関する。   The present invention relates to a method for enzymatically producing a nylon oligomer using an enzyme capable of synthesizing a nylon oligomer in a fine water system. The present invention also relates to a method for designing a non-natural amide compound synthase based on protein engineering / molecular evolution engineering techniques.

6-ナイロンは6-アミノカプロン酸が100量体以上重合したポリマーであり、カプロラクタムに水、ナイロン塩、アミノカプロン酸、塩基等を少量添加して、220℃〜300℃ で数時間〜数十時間加熱して重合させることにより製造される。また、縮合剤を用いることにより、常温でアミド結合の生成が可能となる。   6-Nylon is a polymer in which 100-mer or more of 6-aminocaproic acid is polymerized. Add a small amount of water, nylon salt, aminocaproic acid, base, etc. to caprolactam and heat at 220 ° C to 300 ° C for several hours to several tens of hours. And then polymerized. In addition, by using a condensing agent, an amide bond can be generated at room temperature.

一般にカルボン酸のカルボニル基自体には求電子性が低いため、反応性の高い活性エステルに誘導するか、N,N -ジシクロヘキシルカルボジイミド(DCC)等の種々の活性化剤を用いて活性中間体を発生させた後、アルコールやアミンと反応させる。この方法では原料と等モルの縮合剤が必要であるが、縮合剤は一般に高価である。また、反応後は副産物の分離精製工程を要し、製造コストがさらに高くなるという欠点がある。   Generally, since the carbonyl group of carboxylic acid itself has low electrophilicity, it can be derived into a highly reactive active ester, or an active intermediate can be prepared using various activators such as N, N-dicyclohexylcarbodiimide (DCC). After generation, it is reacted with alcohol or amine. This method requires equimolar amounts of condensing agent with the raw material, but the condensing agent is generally expensive. In addition, after the reaction, a by-product separation / purification step is required, resulting in a further increase in production cost.

一方、酵素を触媒として基質から目的物を合成する酵素的合成方法は、基質特異性及び立体特異性が高く、常温常圧での実施可能であるという特徴を有している。このような酵素を用いる有機物の合成方法として、Streptomyces属に属する微生物由来の加水分解酵素を用いるアミドの合成方法が、特許文献1に開示されている。   On the other hand, the enzymatic synthesis method of synthesizing a target product from a substrate using an enzyme as a catalyst has the characteristics that it has high substrate specificity and stereospecificity and can be carried out at normal temperature and pressure. As a method for synthesizing an organic substance using such an enzyme, Patent Document 1 discloses a method for synthesizing an amide using a hydrolase derived from a microorganism belonging to the genus Streptomyces.

また、オリゴ糖が化学結合したモノマーをプライマーとし、酵素(マルトペンタオースの場合はホスホリラーゼ)を用いて、オリゴ糖鎖を多糖誘導体モノマーまで合成する方法が、特許文献2に開示されている。   Further, Patent Document 2 discloses a method of synthesizing an oligosaccharide chain up to a polysaccharide derivative monomer using an enzyme (phosphorylase in the case of maltopentaose) using a monomer chemically bonded to an oligosaccharide as a primer.

ここで、本発明者等は、6-ナイロン工業の副産物として合成される非天然アミド化合物(ナイロンオリゴマー)をモデル系とし、非天然物質に対する微生物適応機構に関する研究を行ってきた。Arthrobacter 属細菌 KI72株の6-アミノカプロン酸直鎖状二量体加水分解酵素(EII/EII’)及び変異酵素Hyb-24については、1.4〜1.8Åの高分解能で立体構造解析が完了している(非特許文献1)。
特開2004−81107号公報 特開平6−199883号公報 Negoro et al. J. Biol. Chem. 280, 39644-39652 (2005).
Here, the present inventors have studied non-natural amide compounds (nylon oligomers) synthesized as a by-product of the 6-nylon industry as a model system, and have conducted research on microbial adaptation mechanisms for non-natural substances. 3D structure analysis of 6-aminocaproic acid linear dimer hydrolase (EII / EII ') and mutant enzyme Hyb-24 of Arthrobacter genus KI72 has been completed with a high resolution of 1.4 to 1.8 mm. (Non-Patent Document 1).
JP 2004-81107 A JP-A-6-199883 Negoro et al. J. Biol. Chem. 280, 39644-39652 (2005).

非水系又は微水系(有機溶媒と少量の水との混合溶媒系)で、加水分解の逆反応を利用した例として、これまでリパーゼを用いた脂肪酸エステル類の合成、プロテアーゼを用いたペプチド合成等の報告があるが、副生する水分子が逆反応の加水分解に関わるため、通常、予め、カルボン酸エステルに変換することが必要である。しかし、このような条件においても、順方向の加水分解速度に比べて、微水系におけるペプチド合成は遅く、脱水縮合には数時間〜10日間(通常10〜20時間程度)を要する。   Examples of using non-aqueous or fine water (mixed solvent system of organic solvent and small amount of water) and reverse hydrolysis reaction, synthesis of fatty acid esters using lipase, peptide synthesis using protease, etc. However, since by-product water molecules are involved in the hydrolysis of the reverse reaction, it is usually necessary to convert them into carboxylic acid esters in advance. However, even under such conditions, the peptide synthesis in the fine water system is slower than the forward hydrolysis rate, and dehydration condensation requires several hours to 10 days (usually about 10 to 20 hours).

遊離カルボキシル基とアミノ基からの直接アミド結合が生成できれば、保護プロセスが省略できるため、種々のアミド化合物の合成が容易になるが、上述したとおり、化学的合成法及び酵素的合成法とも、遊離カルボキシル基とアミノ基との間の直接縮合は、非常に起こりにくい。また、リパーゼ・プロテアーゼを用いたエステル・ペプチドは、いずれも生理的基質を対象としたもので、非天然化合物への適用は困難である。   If a direct amide bond can be formed from a free carboxyl group and an amino group, the protection process can be omitted, so that various amide compounds can be easily synthesized. As described above, both chemical and enzymatic synthesis methods are free. Direct condensation between carboxyl and amino groups is very unlikely. In addition, ester peptides using lipase / protease are all directed to physiological substrates and are difficult to apply to non-natural compounds.

本発明は、遊離カルボキシル基と遊離アミノ基との間の直接縮合反応を触媒する酵素を用いる非天然アミドの酵素的合成方法の提供を目的とする。また、本発明は、上記酵素を設計するためのタンパク質工学・分子進化学的手法の提供を目的とする。   An object of the present invention is to provide a method for enzymatic synthesis of an unnatural amide using an enzyme that catalyzes a direct condensation reaction between a free carboxyl group and a free amino group. Another object of the present invention is to provide a protein engineering / molecular evolutionary technique for designing the enzyme.

本発明者等は、ナイロンオリゴマー分解菌であるArthrobacter sp. KI72株の6-aminohexanoate-oligomer hydrolase(アミノカプロン酸直鎖状二量体加水分解酵素)(高活性型EII、低活性型EII’、変異酵素Hyb-24)に着目し、その立体構造を解析した。そして、機能が大きく異なる各種変異酵素を得た。その中に90%tert-ブチルアルコール/10%水混合系の微水系において、6-アミノカプロン酸からナイロンオリゴマーの合成反応を触媒する酵素を見出し、本発明を完成させるに至った。   The present inventors are a nylon oligomer-degrading bacterium, Arthrobacter sp. KI72 strain 6-aminohexanoate-oligomer hydrolase (aminocaproic acid linear dimer hydrolase) (highly active EII, low activity EII ', mutation Focusing on the enzyme Hyb-24), the three-dimensional structure was analyzed. Various mutant enzymes with greatly different functions were obtained. Among them, an enzyme that catalyzes the synthesis reaction of nylon oligomer from 6-aminocaproic acid in a 90% tert-butyl alcohol / 10% water mixed system was found, and the present invention was completed.

具体的に、本発明は、
6-アミノカプロン酸を基質とし、配列番号2に記載のナイロンオリゴマー合成酵素を用いて、有機溶媒/水混合溶媒中でナイロンオリゴマーを合成することを特徴とするナイロンオリゴマーの酵素的製造方法に関する(請求項1)。
Specifically, the present invention
The present invention relates to a method for enzymatically producing a nylon oligomer, comprising synthesizing a nylon oligomer in an organic solvent / water mixed solvent using 6-aminocaproic acid as a substrate and the nylon oligomer synthetase described in SEQ ID NO: 2 (claim) Item 1).

配列番号2に記載のアミノ酸配列を有するナイロンオリゴマー合成酵素は、Hyb-24(配列番号1に記載のアミノ酸配列を有する)の2個のアミノ酸残基を置換した構造を有する変異酵素であり、微水系において6-アミノカプロン酸からナイロンオリゴマー(2〜6量体)を合成することができる。   Nylon oligomer synthase having the amino acid sequence shown in SEQ ID NO: 2 is a mutant enzyme having a structure in which two amino acid residues of Hyb-24 (having the amino acid sequence shown in SEQ ID NO: 1) are substituted. A nylon oligomer (2-6 mer) can be synthesized from 6-aminocaproic acid in an aqueous system.

また、本発明は、
ループの長さとループ内アミノ酸残基の種類、クレフト内の基質結合に関わるアミノ酸の種類を選択することで、基質と酵素との相互作用を変化させることを原理とする、タンパク質工学・分子進化工学的な非天然アミド化合物の合成酵素の設計方法に関する(請求項2)。
The present invention also provides:
Protein engineering and molecular evolution engineering based on the principle of changing the interaction between the substrate and the enzyme by selecting the length of the loop, the type of amino acid residue in the loop, and the type of amino acid involved in substrate binding in the cleft The present invention relates to a method for designing a synthetic enzyme for an unnatural amide compound.

本発明のナイロンオリゴマー合成酵素は、30℃程度の温和な条件で、極めて短時間に遊離カルボキシル基と遊離アミノ基との間の直接縮合を触媒し、ナイロンオリゴマーを合成できる。   The nylon oligomer synthase of the present invention can synthesize a nylon oligomer by catalyzing the direct condensation between a free carboxyl group and a free amino group in a very short time under mild conditions of about 30 ° C.

以下に、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、本発明は、これらに限定されない。   Embodiments of the present invention will be described below with reference to the drawings as appropriate. The present invention is not limited to these.

<ナイロンオリゴマー合成酵素Hyb-24DNの製造>
はじめに、Arthrobacter sp. KI72株の6-aminohexanoate-oligomer hydrolase(アミノカプロン酸直鎖状二量体加水分解酵素)の変異酵素であるHyb-24DNの製造方法について説明する。なお、Hyb-24DNの製造工程の概略を、図1に示す。
<Production of nylon oligomer synthase Hyb-24DN>
First, a method for producing Hyb-24DN, which is a mutant enzyme of 6-aminohexanoate-oligomer hydrolase (aminocaproic acid linear dimer hydrolase) of Arthrobacter sp. KI72 strain, will be described. In addition, the outline of the manufacturing process of Hyb-24DN is shown in FIG.

(粗Hyb-24DN液の調製)
Hyb-24DN(配列番号2)は、Hyb-24(配列番号1)にG181D/H266Nの2置換を含む変異型酵素(配列番号1の181番目をGly→Asp、266番目をHis→Asnにそれぞれ置換)である。このHyb-24DN酵素をコードする遺伝子を大腸菌ベクター(pKP1500)へ組み込んだ組換えプラスミド(pHY3DN1)を、大腸菌KP3998株へ形質転換で導入した。同菌株を300mL のTBA培地 (組成:バクトトリプトン 20 g/L、 酵母エキス 5g/L、NaCl 0.5 g/L、MgCl2 0.19 g/L、グルコース 0.9 g/L、アンピシリン 100 mg/L、pH 7.0)を用いて、37℃で対数増殖期まで培養した(約4時間)。
(Preparation of crude Hyb-24DN solution)
Hyb-24DN (SEQ ID NO: 2) is a mutant enzyme containing 2 substitutions of G181D / H266N in Hyb-24 (SEQ ID NO: 1) (Gly → Asp at position 181 of SEQ ID NO: 1, and His → Asn at position 266, respectively) Replacement). A recombinant plasmid (pHY3DN1) in which the gene encoding the Hyb-24DN enzyme was incorporated into an E. coli vector (pKP1500) was introduced into E. coli KP3998 by transformation. 300 mL of TBA medium (composition: bactotryptone 20 g / L, yeast extract 5 g / L, NaCl 0.5 g / L, MgCl 2 0.19 g / L, glucose 0.9 g / L, ampicillin 100 mg / L, pH 7.0) at 37 ° C. until the logarithmic growth phase (about 4 hours)

次に、IPTG(isopropyl β-D-thiogalactoside)を終濃度1 mMとなるように加え、さらに、20時間培養を継続した。遠心分離(4℃、8000 rpm、5分間)により集菌し、緩衝液A(10%グリセロールを含む20 mMリン酸緩衝液pH 7.3)で2回洗浄した後、20 mLの緩衝液Aに再懸濁させた。この菌体懸濁液を超音波破砕処理(20 kHz、5分間×4回)後、遠心分離(4℃、17000 rpm、30分間)し、その上澄液を細胞抽出液とした。   Next, IPTG (isopropyl β-D-thiogalactoside) was added to a final concentration of 1 mM, and the culture was further continued for 20 hours. Bacteria are collected by centrifugation (4 ° C, 8000 rpm, 5 minutes), washed twice with buffer A (20 mM phosphate buffer pH 7.3 containing 10% glycerol), and then reconstituted in 20 mL of buffer A. Suspended. This cell suspension was subjected to ultrasonic disruption treatment (20 kHz, 5 minutes × 4 times) and then centrifuged (4 ° C., 17000 rpm, 30 minutes), and the supernatant was used as a cell extract.

(イオン交換カラムクロマトグラフィーによる変異酵素の精製)
上で得た細胞抽出液を、予め緩衝液Aで平衡化しておいたHi-Trap Q Sepharose(登録商標)カラム(カラム容量5 mL)にチャージした。15 mLの緩衝液Aで洗浄後、0 Mから0.5 Mまで食塩濃度を直線的に変えて全容300 mLで溶出させた。流速は3 mL/minで行い、6 mLずつ分取した。
(Purification of mutant enzyme by ion exchange column chromatography)
The cell extract obtained above was charged onto a Hi-Trap Q Sepharose (registered trademark) column (column volume 5 mL) that had been equilibrated with buffer A in advance. After washing with 15 mL of buffer A, the sodium chloride concentration was linearly changed from 0 M to 0.5 M and eluted in a total volume of 300 mL. The flow rate was 3 mL / min, and 6 mL each was collected.

その後、各フラクションをSDS-PAGE分析に供し、目的タンパク質が溶出しているフラクションを特定し、遠心型濃縮器(MILLIPORE製、YM-10)で濃縮した。このHyb-24DN溶液(5 mg/mL)を、後述するナイロンオリゴマー合成反応に使用した。   Thereafter, each fraction was subjected to SDS-PAGE analysis, the fraction from which the target protein was eluted was identified, and concentrated with a centrifugal concentrator (MILLIPORE, YM-10). This Hyb-24DN solution (5 mg / mL) was used for the nylon oligomer synthesis reaction described later.

(ナイロン基本ユニットの合成に適した反応条件の選定)
表1に示す有機溶媒各450 μLに、100mMの6-アミノヘキサン酸(Ahx)50 μL及びHyb-24DN溶液(5 mg/mL)10 μLを加え、30℃で24時間反応させた。
(Selection of reaction conditions suitable for synthesis of nylon basic unit)
To 450 μL of each organic solvent shown in Table 1, 50 μL of 100 mM 6-aminohexanoic acid (Ahx) and 10 μL of Hyb-24DN solution (5 mg / mL) were added and reacted at 30 ° C. for 24 hours.

反応溶液1μLを、シリカ薄層プレート(Merck製)に負荷し、展開溶媒(1-プロパノール:水:酢酸エチル:アンモニア水=24:12:4:1.5(容積比))で展開後、0.2%ニンヒドリン溶液を噴霧し、反応生成物を確認した。   1 μL of the reaction solution is loaded onto a silica thin layer plate (Merck) and developed with a developing solvent (1-propanol: water: ethyl acetate: ammonia water = 24: 12: 4: 1.5 (volume ratio)), then 0.2% A ninhydrin solution was sprayed to confirm the reaction product.

その結果、図2に示すように、n-プロピルアルコール(n-Propanol)、n-ブチルアルコール(n-Butanol)及びtert-ブチルアルコール(tert-Butanol)を使用した場合にはAhx二量体の合成が確認された。また、tert-ブチルアルコールを使用した場合には、Ahx三量体及びAhx四量体の合成も確認された。なお、図2中のAl2はAhx二量体、Al3はAhx三量体、Al4はAhx四量体をそれぞれ表している。   As a result, as shown in FIG. 2, when n-propyl alcohol (n-Propanol), n-butyl alcohol (n-Butanol) and tert-butyl alcohol (tert-Butanol) were used, Ahx dimer Synthesis was confirmed. When tert-butyl alcohol was used, the synthesis of Ahx trimer and Ahx tetramer was also confirmed. In FIG. 2, Al2 represents an Ahx dimer, Al3 represents an Ahx trimer, and Al4 represents an Ahx tetramer.

一方、これら3種類以外の有機溶媒を使用した場合には、Ahx二量体の合成は確認されなかった。   On the other hand, when organic solvents other than these three types were used, the synthesis of Ahx dimer was not confirmed.

[実施例1]
Hyb-24DN溶液(5 mg/mL)を希釈して、1.25 mg/mLの酵素濃度とした。tert-ブチルアルコール90容量%及び水10容量%の混合溶媒450 μLに、100 mMの6-アミノヘキサン酸(Ahx)50 μL及びHyb-24DN稀釈溶液(1.25 mg/mL)10 μLを加え、30℃で180分間反応させた。
[Example 1]
Hyb-24DN solution (5 mg / mL) was diluted to an enzyme concentration of 1.25 mg / mL. To 450 μL of a mixed solvent of 90% by volume of tert-butyl alcohol and 10% by volume of water, add 50 μL of 100 mM 6-aminohexanoic acid (Ahx) and 10 μL of Hyb-24DN diluted solution (1.25 mg / mL). The reaction was carried out at 180 ° C. for 180 minutes.

この間、経時的に反応溶液1μLをサンプリングし、上述した0.2%ニンヒドリン溶液を用いる方法で反応生成物を確認した。その結果を、図3に示す。   During this time, 1 μL of the reaction solution was sampled over time, and the reaction product was confirmed by the method using the 0.2% ninhydrin solution described above. The result is shown in FIG.

反応時間5分で基質の約50%がAl2へと変換され、この後、180分まで緩やかに二量体から四量体への合成が進むことが明らかになった。   It was revealed that about 50% of the substrate was converted to Al2 in a reaction time of 5 minutes, and then the synthesis from dimer to tetramer proceeded slowly until 180 minutes.

次に、原料の約60〜70%がAl2へと変換された後、反応が停止する理由が、酵素の不安定性に起因するのか、反応がその時点で平衡になるのかについて検討した。   Next, whether about 60 to 70% of the raw material was converted to Al2 and then the reaction was stopped due to enzyme instability or whether the reaction reached equilibrium at that time.

tert-ブチルアルコール450 μL及びHyb-24DN溶液(1.25 mg/mL)5 μLをマイクロチューブ10本にそれぞれ採取し、0、5、10、15、30、45、60、90、120及び180分後に100 mM Ahxを50 μL加え、30℃で酵素反応を行った。その結果、図4に示すように、180分後においても合成活性に顕著な低下が認められなかったことから、合成反応が停止するのは、合成と分解が平衡になっているためであると考えられた。   Collect 450 μL of tert-butyl alcohol and 5 μL of Hyb-24DN solution (1.25 mg / mL) in 10 microtubes, respectively, after 0, 5, 10, 15, 30, 45, 60, 90, 120 and 180 minutes 50 μL of 100 mM Ahx was added, and the enzyme reaction was performed at 30 ° C. As a result, as shown in FIG. 4, since no significant decrease in synthetic activity was observed after 180 minutes, the synthesis reaction was stopped because synthesis and decomposition were in equilibrium. it was thought.

[実施例2]
tert-ブチルアルコール90容量%及び水10容量%の混合溶媒450 μLに、100 mMの4-アミノブタン酸50 μL及びHyb-24DN稀釈溶液(1.25 mg/mL)10 μLを加え、30℃で180分間反応させた。
[Example 2]
Add 100 μM 4-aminobutanoic acid 50 μL and Hyb-24DN diluted solution (1.25 mg / mL) 10 μL to 450 μL of a mixed solvent of tert-butyl alcohol 90% by volume and water 10% by volume. Reacted.

[実施例3]
tert-ブチルアルコール90容量%及び水10容量%の混合溶媒450 μLに、100 mMの5-アミノヘプタン酸50 μL及びHyb-24DN稀釈溶液(1.25 mg/mL)10 μLを加え、30℃で180分間反応させた。
[Example 3]
To 450 μL of a mixed solvent of 90% by volume of tert-butyl alcohol and 10% by volume of water, add 50 μL of 100 mM 5-aminoheptanoic acid and 10 μL of Hyb-24DN diluted solution (1.25 mg / mL). Reacted for 1 minute.

実施例2及び実施例3について、180分後の反応溶液1μLをサンプリングし、上述した0.2%ニンヒドリン溶液を用いる方法で反応生成物を確認した。その結果、図5に示すように、6-アミノヘキサン酸と同様、5-アミノペンタン酸及び4-アミノ酪酸からもニ量体の合成が認められた。   About Example 2 and Example 3, 1 microliter of reaction solutions 180 minutes after were sampled, and the reaction product was confirmed by the method using the 0.2% ninhydrin solution mentioned above. As a result, as shown in FIG. 5, dimer synthesis was observed from 5-aminopentanoic acid and 4-aminobutyric acid as well as 6-aminohexanoic acid.

<類似酵素との活性比較>
Hyb-24DNの類似酵素として、Hyb-24(配列番号1)にG181E/H266Nの2置換を含む変異型酵素(配列番号1の181番目をGly→Glu、266番目をHis→Asnにそれぞれ置換)であるHyb-24EN(配列番号3)を使用した。Hyb-24ENの製造方法は、Hyb-24DNと同様である。
<Comparison of activity with similar enzymes>
As a similar enzyme to Hyb-24DN, a mutant enzyme containing 2 substitutions of G181E / H266N in Hyb-24 (SEQ ID NO: 1) (Gly → Glu at 181th in SEQ ID NO: 1, and His → Asn at 266th, respectively) Hyb-24EN (SEQ ID NO: 3) was used. The manufacturing method of Hyb-24EN is the same as Hyb-24DN.

Hyb-24DN及びHyb-24ENの分解活性及び合成活性の比較を、図6に示す。まず、Hyb-24ENの分解活性はHyb-24DNと比較して非常に低かった。また、分解反応についても、Hyb-24ENは6-アミノヘキサン二量体の合成反応を触媒するだけであった。   FIG. 6 shows a comparison of the degradation activity and synthesis activity of Hyb-24DN and Hyb-24EN. First, the degradation activity of Hyb-24EN was very low compared to Hyb-24DN. As for the decomposition reaction, Hyb-24EN only catalyzed the synthesis reaction of 6-aminohexane dimer.

(Hyb-24DNの立体構造上の特徴)
Hyb-24DNは、EII(配列番号4)、EII’(配列番号5)及びHyb-24と同じく、β-ラクタマーゼフォールドを有する酵素群に属する。β-ラクタマーゼフォールドを有する酵素群は、β-ラクタム加水分解、カルボン酸エステル加水分解、DD-ペプチド加水分解等多様な機能を有するが、Hyb-24DNの立体構造を解析した結果、N末端から167〜177番目のアミノ酸残基の位置が基質の結合に伴い大きく移動する(ループ移動を伴う誘導適合)というユニークな性質を有することを見出した。
(Hyb-24DN 3D structure features)
Hyb-24DN belongs to the group of enzymes having β-lactamase folds, like EII (SEQ ID NO: 4), EII ′ (SEQ ID NO: 5) and Hyb-24. The enzyme group having β-lactamase fold has various functions such as β-lactam hydrolysis, carboxylic acid ester hydrolysis, DD-peptide hydrolysis and the like. As a result of analyzing the three-dimensional structure of Hyb-24DN, It was found that the position of the ˜177th amino acid residue has a unique property that it moves greatly with the binding of the substrate (inductive fitting with loop movement).

すなわち、Hyb-24DNでは、Hyb-24DNと基質結合との結合段階(図7)から、基質がアシル化する段階(図8)にかけて、触媒クレフト内の水分子の大半(7分子)が排除される。そして、逆反応(Al2合成反応)においては、アミド結合生成のための効率的な反応場となる。このため、30℃程度の温和な条件で、極めて短時間の反応で遊離カルボキシル基と遊離アミノ基からのアミド結合の生成が可能になる。   That is, in Hyb-24DN, most of the water molecules (7 molecules) in the catalyst cleft are eliminated from the binding stage of Hyb-24DN and substrate binding (FIG. 7) to the stage of acylation of the substrate (FIG. 8). The And in reverse reaction (Al2 synthesis reaction), it becomes an efficient reaction field for amide bond production | generation. For this reason, it is possible to generate an amide bond from a free carboxyl group and a free amino group in a very short reaction under a mild condition of about 30 ° C.

このようなクレフト内の非水性環境は、167番目〜177番目のフレキシブルループの移動に起因している。ループの移動を伴う誘導適合は、ヘキソキナーゼ等の糖代謝に関係する酵素群では知られているが、Serを活性中心とする各種プロテアーゼ、β-ラクタマーゼ等の近縁酵素群では報告例がない。   Such a non-aqueous environment in the cleft is due to the movement of the 167th to 177th flexible loops. Inductive adaptation involving loop movement is known for enzyme groups related to sugar metabolism such as hexokinase, but there are no reports of related enzymes such as various proteases having Ser as an active center and β-lactamase.

ループ移動の後、Tyr170側鎖の回転により、同残基が触媒中心に配位される。Tyr170は、基質アミド窒素からの距離が、触媒中心Tyr215とほぼ等価な位置にある。すなわち、アミド加水分解・合成反応に関与する新たな触媒中心が形成される。   After loop movement, the same residue is coordinated to the catalytic center by rotation of the Tyr170 side chain. Tyr170 has a distance from the substrate amide nitrogen at a position approximately equivalent to the catalyst center Tyr215. That is, a new catalyst center involved in the amide hydrolysis / synthesis reaction is formed.

ループの長さとループ内アミノ酸残基の種類、クレフト内の基質結合に関わるアミノ酸の種類を選択することで、基質と酵素との相互作用を変化させることができる。従って、酵素のクレフト内の非水空間を利用することにより、種々のカルボン酸とアミンの直接縮合が可能になる。   The interaction between the substrate and the enzyme can be changed by selecting the length of the loop, the type of amino acid residue in the loop, and the type of amino acid involved in substrate binding in the cleft. Therefore, direct condensation of various carboxylic acids and amines is possible by utilizing the non-aqueous space in the enzyme cleft.

立体構造情報を基盤として、ナイロンオリゴマー分解酵素のクレフト内に変異を導入した遺伝子ライブラリーを構築することにより、これらを利用して種々の有用アミド化合物の生産等を行うことが期待できる。   By constructing a gene library in which mutations are introduced into the cleft of nylon oligomer degrading enzyme based on the three-dimensional structure information, it can be expected to produce various useful amide compounds using these.

Hyb-24DNの製造工程の概略を示す図である。It is a figure which shows the outline of the manufacturing process of Hyb-24DN. 6種類の有機溶媒を使用した場合における薄層クロマトグラフィーの写真である。It is the photograph of the thin layer chromatography at the time of using 6 types of organic solvents. 実施例1における反応時間と反応生成物の変化を示す薄層クロマトグラフィーの写真である。2 is a photograph of thin layer chromatography showing the reaction time and the change of the reaction product in Example 1. FIG. 実施例1におけるHyb-24DN/tert-ブチルアルコールの接触時間と、反応生成物の変化を示す薄層クロマトグラフィーの写真である。2 is a photograph of a thin layer chromatography showing the contact time of Hyb-24DN / tert-butyl alcohol and the change of the reaction product in Example 1. FIG. 実施例1〜実施例3における反応生成物を示す薄層クロマトグラフィーの写真である。It is a photograph of the thin layer chromatography which shows the reaction product in Example 1- Example 3. Hyb-24DN及びHyb-24ENの分解活性及び合成活性の比較を表す図である。It is a figure showing the comparison of the decomposition activity and synthetic | combination activity of Hyb-24DN and Hyb-24EN. Hyb-24DNのクレフト内の構造を表す図である。It is a figure showing the structure in the cleft of Hyb-24DN. Hyb-24DNと基質結合との結合段階におけるクレフト内の構造を表す図である。It is a figure showing the structure in the cleft in the coupling | bonding step of Hyb-24DN and a substrate coupling | bonding.

Claims (2)

6-アミノカプロン酸を基質とし、配列番号2に記載のナイロンオリゴマー合成酵素を用いて、有機溶媒/水混合溶媒中でナイロンオリゴマーを合成することを特徴とするナイロンオリゴマーの酵素的製造方法。   A method for producing a nylon oligomer, comprising synthesizing a nylon oligomer in an organic solvent / water mixed solvent using 6-aminocaproic acid as a substrate and the nylon oligomer synthetase described in SEQ ID NO: 2. ナイロンオリゴマー分解酵素内のフレキシブルループの長さとループ内アミノ酸残基の種類、クレフト内の基質結合に関わるアミノ酸の種類を、タンパク質工学・分子進化工学的手法で改変することで、基質と酵素との相互作用を変化させることを原理とする非天然アミド化合物の合成酵素の設計方法。   By modifying the length of the flexible loop in the nylon oligomer degrading enzyme, the type of amino acid residue in the loop, and the type of amino acid involved in substrate binding in the cleft using protein engineering / molecular evolution engineering techniques, A method for designing a synthetic enzyme for a non-natural amide compound based on the principle of changing the interaction.
JP2006239119A 2006-09-04 2006-09-04 Method for designing enzyme for catalyzing direct condensation reaction of free carboxylic acid amine, and method for enzymatically producing nylon oligomer Pending JP2008061501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239119A JP2008061501A (en) 2006-09-04 2006-09-04 Method for designing enzyme for catalyzing direct condensation reaction of free carboxylic acid amine, and method for enzymatically producing nylon oligomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239119A JP2008061501A (en) 2006-09-04 2006-09-04 Method for designing enzyme for catalyzing direct condensation reaction of free carboxylic acid amine, and method for enzymatically producing nylon oligomer

Publications (1)

Publication Number Publication Date
JP2008061501A true JP2008061501A (en) 2008-03-21

Family

ID=39284753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239119A Pending JP2008061501A (en) 2006-09-04 2006-09-04 Method for designing enzyme for catalyzing direct condensation reaction of free carboxylic acid amine, and method for enzymatically producing nylon oligomer

Country Status (1)

Country Link
JP (1) JP2008061501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525856A (en) * 2009-05-07 2012-10-25 ゲノマチカ, インク. Microorganisms and methods for biosynthesis of adipate, hexamethylenediamine, and 6-aminocaproic acid
KR101318104B1 (en) * 2011-07-14 2013-10-16 공주대학교 산학협력단 Manufacturing method of polyamide oligomer by using dispersion medium and oligomeric polyamides manufactured thereby

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525856A (en) * 2009-05-07 2012-10-25 ゲノマチカ, インク. Microorganisms and methods for biosynthesis of adipate, hexamethylenediamine, and 6-aminocaproic acid
US9458480B2 (en) 2009-05-07 2016-10-04 Genomatica, Inc. Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
US10150977B2 (en) 2009-05-07 2018-12-11 Genomatica, Inc. Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
US11208673B2 (en) 2009-05-07 2021-12-28 Genomatica, Inc. Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
JP2022031675A (en) * 2009-05-07 2022-02-22 ゲノマチカ, インク. Microorganisms and methods for biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
JP7370366B2 (en) 2009-05-07 2023-10-27 ゲノマチカ, インク. Microorganisms and methods for the biosynthesis of adipate, hexamethylene diamine, and 6-aminocaproic acid
US11834690B2 (en) 2009-05-07 2023-12-05 Genomatica, Inc. Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid
KR101318104B1 (en) * 2011-07-14 2013-10-16 공주대학교 산학협력단 Manufacturing method of polyamide oligomer by using dispersion medium and oligomeric polyamides manufactured thereby

Similar Documents

Publication Publication Date Title
US11525131B2 (en) Recombinant vector constructed from an encoding gene of a nitrilase mutant, a recombinant genetic engineered strain and application thereof
Pollegioni et al. L-amino acid oxidase as biocatalyst: a dream too far?
US11987826B2 (en) Nitrilase mutant and application thereof in the synthesis of an anti-epileptic drug intermediate
TWI773716B (en) Mutant nitrile hydratase, nucleic acid encoding the mutant nitrile hydratase, expression vector and transformant containing the nucleic acid, production method for muntant nitrile hydratase, and production method for amide compound
CN103865911B (en) Penicillin G acylase mutant and the application in synthesis cephalosporin analog antibiotic thereof
CN111471668B (en) Nitrilase mutant and application thereof in preparation of 1-cyanocyclohexylacetic acid
Zhang et al. Overexpression of secreted sucrose isomerase in Yarrowia lipolytica and its application in isomaltulose production after immobilization
AU2003289338A1 (en) Novel nitrile hydratase
JP2020505915A (en) Gene encoding L-alanyl-L-glutamine biosynthetic enzyme and use thereof
Gao et al. Directional immobilization of D-allulose 3-epimerase using SpyTag/SpyCatcher strategy as a robust biocatalyst for synthesizing D-allulose
Kim et al. Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5
CN106893699B (en) Crude enzyme preparation, preparation method and application thereof
CN110184288A (en) The preparation method of the preparation method and its catalysts of gallic acid and protocatechuic acid
JP2008061501A (en) Method for designing enzyme for catalyzing direct condensation reaction of free carboxylic acid amine, and method for enzymatically producing nylon oligomer
CN105505904A (en) Nitrilase mutant, gene, carrier, engineering bacteria and application
Lin et al. A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223
CN108048423B (en) Kidney bean epoxide hydrolase mutant with improved catalytic activity and application thereof
CN112831532B (en) Method for enzymatic synthesis of D-leucine
US20210238576A1 (en) L-aspartate alpha-decarboxylase Mutant and Application thereof
CN101603044B (en) Alcohol dehydrogenase and gene and recombinase thereof
CN113699131A (en) Alpha-cyclodextrin glucosyltransferase mutant and application thereof
Engel et al. Novel amidases of two Aminobacter sp. strains: Biotransformation experiments and elucidation of gene sequences
Ma et al. Expression of Bacillus amyloliquefaciens γ-Glutamyltransferase in Lactococcus lactis and Immobilization on Magnetic Nanoparticles
KR100589121B1 (en) Preparation Method of L-ornithine Using Enzymatic Reaction
CN114934037B (en) Asparaase mutant for producing 3-aminopropionitrile