JP2008053135A - Thin film battery - Google Patents

Thin film battery Download PDF

Info

Publication number
JP2008053135A
JP2008053135A JP2006230148A JP2006230148A JP2008053135A JP 2008053135 A JP2008053135 A JP 2008053135A JP 2006230148 A JP2006230148 A JP 2006230148A JP 2006230148 A JP2006230148 A JP 2006230148A JP 2008053135 A JP2008053135 A JP 2008053135A
Authority
JP
Japan
Prior art keywords
electrode layer
layer
positive electrode
solid electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006230148A
Other languages
Japanese (ja)
Inventor
Rikizo Ikuta
力三 生田
Mitsuyasu Ogawa
光靖 小川
Taku Kamimura
卓 上村
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006230148A priority Critical patent/JP2008053135A/en
Publication of JP2008053135A publication Critical patent/JP2008053135A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film battery such that the battery capacity is not limited by internal resistance by suppressing an interface resistance between electrode and solid electrolyte. <P>SOLUTION: This battery comprises a positive electrode layer 3, a negative electrode layer 5 and a solid electrolyte layer 4 interposed between the positive electrode layer and the negative electrode layer. At least cavity parts of the positive electrode layer 3 and the negative electrode layer 4 are filled with an ionic liquid 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄膜電池に関し、より具体的には、固体電解質と電極との接触抵抗を低くした薄膜電池に関するものである。   The present invention relates to a thin film battery, and more specifically to a thin film battery having a low contact resistance between a solid electrolyte and an electrode.

薄膜電池の構成は、たとえば集電体となる金属箔、またはアルミナ等のセラミックス基材に形成した金属膜上に、正極層、固体電解質層および負極層を順次重ねた積層構造となっている。固体電解質層を用いる場合、従来の電池のように有機電解液を用いないため、液洩れや発火などを起す危険性がなく、安全性の高い電池を提供することができる。しかし、固体電解質は電解液の場合と比較して、正極又は負極と固体電荷質との界面が固体同士の接触のため、部分的な点や限定的な面の接触となり、界面でのイオン伝導物質の移動が十分確保されないという問題がある。   The structure of the thin film battery has a laminated structure in which, for example, a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially stacked on a metal foil serving as a current collector or a metal film formed on a ceramic substrate such as alumina. When the solid electrolyte layer is used, an organic electrolyte solution is not used unlike a conventional battery, so that there is no risk of liquid leakage or ignition, and a highly safe battery can be provided. However, compared to the case of the electrolyte, the solid electrolyte has a partial point or limited surface contact because the interface between the positive electrode or the negative electrode and the solid charge is a solid-to-solid contact. There is a problem that the movement of the substance is not sufficiently secured.

上記の問題を克服するために、櫛歯型形状の集電体を平滑な平面上に形成し、その集電体上に正極および負極を形成し、さらに正極と負極との間の溝を固体電解質で充填することにより、上記の界面を増大させる提案がなされた(特許文献1)。上記の櫛歯型形状の正負電極、および正負電極間の溝への固体電解質の配置により、界面の物理的性状は変わらないものの、正負電極の線幅と高さの比を調整することで界面を増大することが可能なため、イオン伝導物質の移動を増やすことができる。また正負電極を積み重ねず、同一平面上に配置されることから、固体電解質層のピンホールなどの欠陥部で正負極が接触し、短絡することを防止する効果もある。
特開2006−147210号公報
In order to overcome the above problems, a comb-shaped current collector is formed on a smooth plane, a positive electrode and a negative electrode are formed on the current collector, and a groove between the positive electrode and the negative electrode is solid. A proposal has been made to increase the above-mentioned interface by filling with an electrolyte (Patent Document 1). Although the physical properties of the interface do not change due to the arrangement of the solid electrolyte in the comb-shaped positive and negative electrodes and the groove between the positive and negative electrodes, the interface can be adjusted by adjusting the ratio between the line width and height of the positive and negative electrodes. Therefore, the movement of the ion conductive material can be increased. Further, since the positive and negative electrodes are not stacked, they are arranged on the same plane, so that there is an effect of preventing the positive and negative electrodes from coming into contact with each other at a defective portion such as a pinhole of the solid electrolyte layer and short-circuiting.
JP 2006-147210 A

上記の平面的な櫛歯型形状の正負電極と、その正負電極間への固体電解質の配置とによれば、固体電解質と電極との界面面積は増大することで、界面抵抗を減少させることができるが、電極と固体電解質との界面の物理的性状は従来と同じなので、界面面積あたりの電気抵抗が高いという問題は何ら解決されていない。先行技術における界面面積の増大はせいぜい10倍が限界と考えられ、特に正極と固体電解質層との界面の電気抵抗が大きく電池容量が制限を受けるという大きな問題の抜本的解決にはなっていない。   According to the above-described planar comb-shaped positive and negative electrodes and the arrangement of the solid electrolyte between the positive and negative electrodes, the interface area between the solid electrolyte and the electrode can be increased, thereby reducing the interface resistance. Although the physical properties of the interface between the electrode and the solid electrolyte are the same as before, the problem of high electrical resistance per interface area has not been solved. The increase in the interfacial area in the prior art is considered to be limited to 10 times at most, and in particular, it has not been a radical solution to the large problem that the electric resistance at the interface between the positive electrode and the solid electrolyte layer is large and the battery capacity is limited.

本発明は、電極と固体電解質との界面抵抗を低く抑えて、電池容量が内部抵抗によって限定されないような薄膜電池を提供することを目的とする。   An object of the present invention is to provide a thin film battery in which the interfacial resistance between the electrode and the solid electrolyte is kept low and the battery capacity is not limited by the internal resistance.

本発明の薄膜電池は、正極層、負極層および該正極層と該負極層との間に介在する固体電解質層を備える薄膜電池である。この薄膜電池では、少なくとも、正極層と固体電解質層の空隙部がイオン導電性物質で充填されていることを特徴とする。   The thin film battery of the present invention is a thin film battery including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer. This thin film battery is characterized in that at least a gap between the positive electrode layer and the solid electrolyte layer is filled with an ion conductive substance.

上記の構成により、少なくとも、正極層と固体電解質層の欠陥部などの空隙にイオン導電性物質が充填されるので、正極層と固体電解質層との界面での界面抵抗が低減し、その結果、電池容量を高めることができる。ここで、イオン導電性物質が充填するとは、正極層と固体電解質層との固体同士の接触は確保した上で、両者の空隙部に含浸して正極層と固体電解質層とのイオン導電性を向上するように位置することをいう。イオン導電性物質は、イオン導電性が高く、液相の方が含浸の容易さの点で好ましいが、両者の間隙に含浸した液相を物理的または化学的に処理して固体状にしたものであってもよい。   With the above configuration, at least the voids such as the defective portions of the positive electrode layer and the solid electrolyte layer are filled with the ion conductive material, so that the interface resistance at the interface between the positive electrode layer and the solid electrolyte layer is reduced. Battery capacity can be increased. Here, filling the ion conductive material means that the solid contact between the positive electrode layer and the solid electrolyte layer is ensured, and the gap between the two is impregnated so that the ion conductivity between the positive electrode layer and the solid electrolyte layer is improved. It means being positioned to improve. The ion conductive material has a high ion conductivity, and the liquid phase is preferable from the viewpoint of easy impregnation. However, the liquid phase impregnated in the gap between both is physically or chemically processed to form a solid. It may be.

また、上記の正極層および負極層は、平面的に見て、重ならないように位置することができる。この構成により、たとえば固体電解質が欠陥を含む場合でも、正極層と負極層とが短絡することがなくなり、製造時の歩留り向上に有効である。   Further, the positive electrode layer and the negative electrode layer can be positioned so as not to overlap each other when seen in a plan view. With this configuration, for example, even when the solid electrolyte includes a defect, the positive electrode layer and the negative electrode layer are not short-circuited, which is effective in improving the yield during manufacturing.

上記の正極層および負極層は、固体電解質層を該固体電解質層の上面と下面とで挟むように位置する構成にできる。この構成により、正極層および負極層は、同一の平面上に形成されることがなくなり、その平面上に導電性不純物が付着している場合でも、正極層と負極層とが短絡するおそれはなくなる。同一平面上に正極層と負極層とが配置される場合、上記の不純物により正極層と負極層とが短絡を生じ易くなり、不純物を抑制するためクリーンルーム等での薄膜電池作製作業が必要となり、製造コストの上昇が避けられない。   The positive electrode layer and the negative electrode layer may be positioned so as to sandwich the solid electrolyte layer between the upper surface and the lower surface of the solid electrolyte layer. With this configuration, the positive electrode layer and the negative electrode layer are not formed on the same plane, and there is no possibility that the positive electrode layer and the negative electrode layer are short-circuited even when conductive impurities are attached on the plane. . When the positive electrode layer and the negative electrode layer are arranged on the same plane, the positive electrode layer and the negative electrode layer are likely to be short-circuited by the above impurities, and a thin-film battery manufacturing operation in a clean room or the like is necessary to suppress the impurities, An increase in manufacturing cost is inevitable.

また、正極層および負極層は、互いの側面を対向させるようにスペースをあけて同じ層に位置し、固体電解質層はスペースを充填するように位置し、イオン導電性層は、正極層と固体電解質層との界面および負極層と固体電解質層との界面に位置するように構成することができる。この構成により、共通の同一平面(たとえば集電層)上に櫛歯型形状の正負極層を形成した場合、同じ層範囲なので、イオン導電性層、とくにイオン導電性液体を、上記両方の界面に配置することが容易にできる。このため、正負の電極層で、固体電解質層との界面の電気抵抗を下げることができ、その結果、電池容量を高めることができる。なお、櫛歯型形状は、上記スペースをあけて同じ層に位置する正負極層によって形成されるだけでなく、正負極層と該正負局層間に介在する固体電解質とで形成される本発明の最も一般的な薄膜電池においても、電池容量を大きくするために、当然、用いることができる。   In addition, the positive electrode layer and the negative electrode layer are located in the same layer with a space so that the side surfaces face each other, the solid electrolyte layer is located so as to fill the space, and the ion conductive layer is formed of the positive electrode layer and the solid layer. It can be configured to be located at the interface with the electrolyte layer and at the interface between the negative electrode layer and the solid electrolyte layer. With this configuration, when comb-shaped positive and negative electrode layers are formed on the same common plane (for example, a current collecting layer), since the same layer range, an ion conductive layer, particularly an ion conductive liquid, Can be easily arranged. For this reason, the positive and negative electrode layers can reduce the electrical resistance at the interface with the solid electrolyte layer, and as a result, the battery capacity can be increased. The comb-teeth shape is not only formed by the positive and negative electrode layers positioned in the same layer with the space therebetween, but also formed by a positive and negative electrode layer and a solid electrolyte interposed between the positive and negative local layers. Of course, even the most common thin film batteries can be used to increase the battery capacity.

また、上記のイオン導電性物質を、有機溶媒および支持塩、イオン性液体および支持塩、または有機溶媒および支持塩もしくはイオン性液体および支持塩が固体状とされたもの、のいずれかとすることできる。とくにイオン導電性物質を固体状にした場合、流動性がなく液漏れの心配を無くすことができる。またイオン性液体は、常温溶融塩と呼ぶ場合もあり、不揮発性、難燃性のためイオン性液体を用いた電池は安全性に優れる。なお上記の有機溶媒および支持塩、すなわち有機溶媒に支持塩を溶解させた液体を電解液と呼ぶこととする。   The ionic conductive material may be any one of an organic solvent and a supporting salt, an ionic liquid and a supporting salt, or an organic solvent and a supporting salt or an ionic liquid and a supporting salt that are solid. . In particular, when the ion conductive material is made solid, there is no fluidity and the risk of liquid leakage can be eliminated. In addition, the ionic liquid may be referred to as a room temperature molten salt, and a battery using the ionic liquid is excellent in safety because it is nonvolatile and flame retardant. The organic solvent and the supporting salt, that is, a liquid in which the supporting salt is dissolved in the organic solvent is referred to as an electrolytic solution.

本発明の薄膜電池によれば、電極と固体電解質との界面抵抗を低く抑えて、電池容量が内部抵抗によって限定されないような薄膜電池を提供することができる。   According to the thin film battery of the present invention, it is possible to provide a thin film battery in which the interface resistance between the electrode and the solid electrolyte is kept low and the battery capacity is not limited by the internal resistance.

(実施の形態1)
次に図面を用いて本発明の実施の形態について説明する。図1は、本発明の実施の形態1における薄膜電池10の主要部を示す断面図である。平板状基材1の上に正極集電層2が2箇所で形成され、その正極集電層2を覆うように正極層3が設けられ、その正極層3にイオン性液体7が含浸されている。ここで、イオン性液体7は、LiClO、LiPF、LiBF、Li{(CFSON}などを主成分とする支持塩を含んでおり、この後の説明でも、イオン性液体というとき、とくに断らない限り支持塩を含んでいるものとする。正極層3と、負極層5とにより、その上面、下面で挟まれるようにして固体電解質層4が配置されている。イオン性液体7が正極層3に含浸されることにより、正極層3と固体電解質層4との界面にイオン性液体7が位置するようにされ、正極層3と固体電解質層4との界面での電気抵抗が減るため、この界面での電気抵抗の増大が原因で、電池容量が低下することは防止される。図1において、正極層3と負極層5とは、たとえば櫛歯型状に形成されており、櫛歯の一部と見ることができる。
(Embodiment 1)
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a main part of thin film battery 10 according to Embodiment 1 of the present invention. A positive electrode current collecting layer 2 is formed in two places on a flat substrate 1, a positive electrode layer 3 is provided so as to cover the positive electrode current collecting layer 2, and the positive electrode layer 3 is impregnated with an ionic liquid 7. Yes. Here, the ionic liquid 7 contains a supporting salt mainly composed of LiClO 4 , LiPF 6 , LiBF 4 , Li {(CF 3 SO 2 ) 2 N}, etc. When it is referred to as a liquid, it contains supporting salt unless otherwise specified. The solid electrolyte layer 4 is disposed between the upper surface and the lower surface of the positive electrode layer 3 and the negative electrode layer 5. By impregnating the ionic liquid 7 in the positive electrode layer 3, the ionic liquid 7 is positioned at the interface between the positive electrode layer 3 and the solid electrolyte layer 4, and at the interface between the positive electrode layer 3 and the solid electrolyte layer 4. Therefore, the battery capacity is prevented from decreasing due to the increase in the electrical resistance at this interface. In FIG. 1, the positive electrode layer 3 and the negative electrode layer 5 are formed in a comb-tooth shape, for example, and can be regarded as a part of a comb tooth.

イオン性液体7には、イオン導電性があり電子導電性がない(または小さい)各種の常温溶融塩を用いることができるが、なかでも脂肪族系イオン性液体の、N,N,N-Trimethyl-N-propylammonium bis(trifluoromethanesulfonyl)imide(略称TMPA TFSI:C16)、N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide(略称PP13 TFSI:C1120)、N-Methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide(略称P13 TFSI:C1018)、N-Buthyl-N-methlpyrrolidinium bis(trifluoromethanesulfonyl)imide(略称P13 TFSI:C1120)を用いるのがよく、その中でも上記PP13 TFSIを用いることが望ましい。これらの脂肪族系イオン性液体は、イオン導電性が高く、電子導電性に乏しく、また不揮発性であり、安全性は確保される。 As the ionic liquid 7, various room temperature molten salts having ionic conductivity and no (or small) electron conductivity can be used. Among them, N, N, N-Trimethyl, an aliphatic ionic liquid, can be used. -N-propylammonium bis (trifluoromethanesulfonyl) imide ( abbreviated TMPA TFSI: C 8 H 16 F 6 N 2 O 4 S 2), N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide ( abbreviated PP13 TFSI: C 11 H 20 F 6 N 2 O 4 S 2 ), N-Methyl-N-propylpyrrolidinium bis (trifluoromethanesulfonyl) imide (abbreviation P13 TFSI: C 10 H 18 F 6 N 2 O 4 S 2 ), N-Buthyl-N-methlpyrrolidinium bis (trifluoromethanesulfonyl) ) imide (abbreviated P13 TFSI: C 11 H 20 F 6 N 2 O 4 S 2) good to use, it is desirable to use the PP 13 TFSI among them. These aliphatic ionic liquids have high ionic conductivity, poor electronic conductivity, and non-volatility, thus ensuring safety.

正極層3は、リチウムイオンの吸蔵および放出を行う活物質を含む層で構成する。とくに酸化物、たとえばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、オリビン型鉄リン酸リチウム(LiFePO)等を、単体または混合物で用いることができる。これら正極活物質は、平均径1μm〜数10μmの粉末状で用いるのがよい。導電粉末としては、平均径0.1μm〜1μmのグラファイト粉末が好ましい。結着剤(バインダー)には、ポリフッ化ビニリデンやテフロンを用いる。そのほか、正極層は、硫化物、たとえば硫黄(S)、硫化リチウム、硫化チタニウム(TiS)等を、単体または混合物で用いることができる。正極層3は、湿式法や乾式法を用いて形成するのがよい。湿式法には、ゾルゲル法、コロイド法、キャスティング法等があり、また乾式法には、気相堆積法である蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を挙げることができる。湿式法のいずれかの方法を用い、パターニングにはスクリーン印刷法を用いるとき、上記の正極粉末、導電粉末、バインダー等をN−メチル−2ピロリドン等の溶媒に分散し、所定のパターンに塗布した後、150℃程度に加熱して乾燥する。これにより多孔質の正極層3が形成される。 The positive electrode layer 3 is composed of a layer containing an active material that occludes and releases lithium ions. In particular, oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), olivine-type lithium iron phosphate (LiFePO 4 ), etc. are used alone or in a mixture. Can do. These positive electrode active materials are preferably used in the form of powder having an average diameter of 1 μm to several tens of μm. As the conductive powder, graphite powder having an average diameter of 0.1 μm to 1 μm is preferable. Polyvinylidene fluoride or Teflon is used as the binder (binder). In addition, for the positive electrode layer, sulfides such as sulfur (S), lithium sulfide, titanium sulfide (TiS 2 ), and the like can be used alone or as a mixture. The positive electrode layer 3 is preferably formed using a wet method or a dry method. Examples of the wet method include a sol-gel method, a colloid method, and a casting method. Examples of the dry method include a vapor deposition method that is a vapor deposition method, an ion plating method, a sputtering method, and a laser ablation method. When any one of the wet methods is used and the screen printing method is used for patterning, the above positive electrode powder, conductive powder, binder and the like are dispersed in a solvent such as N-methyl-2-pyrrolidone and applied in a predetermined pattern. Then, it is heated to about 150 ° C. and dried. Thereby, the porous positive electrode layer 3 is formed.

イオン性液体7は、以下に説明する方法で、固体電解質層4、負極層5等を順次、形成した後、イオン性液体7を滴下して、該当箇所の正極層3の下方から真空引きをすることにより、正極層3に浸漬し、正極層3と固体電解質層4の空隙部に含浸させることができる。   The ionic liquid 7 is formed by sequentially forming the solid electrolyte layer 4, the negative electrode layer 5, and the like by the method described below, and then the ionic liquid 7 is dropped, and evacuation is performed from below the positive electrode layer 3 at the corresponding location. By doing so, it can be immersed in the positive electrode layer 3 and impregnated in the gap between the positive electrode layer 3 and the solid electrolyte layer 4.

負極層5も、正極層3と同様に、リチウムイオンの吸蔵および放出を行う活物質を含む層で構成する。たとえば負極層5として、Li金属およびLiと合金を形成することができる金属等を、単体または混合物で形成するのがよい。Liと合金を形成できる金属(合金化金属)としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、インジウム(In)等の単体または混合物を挙げることができる。上記のような元素を含む負極層5は、負極層5自体に集電体としての機能を持つことができ、かつリチウムイオンの吸蔵・放出能力が高く、好ましい。とくにシリコン(Si)はリチウムを吸蔵・放出する能力がグラファイト(黒鉛)よりも大きいためエネルギー密度を高くすることができる。   Similarly to the positive electrode layer 3, the negative electrode layer 5 is also composed of a layer containing an active material that occludes and releases lithium ions. For example, as the negative electrode layer 5, it is preferable to form a single metal or a mixture of Li metal and a metal capable of forming an alloy with Li. Examples of the metal (alloyed metal) that can form an alloy with Li include simple substances or mixtures of aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), indium (In), and the like. The negative electrode layer 5 containing the above elements is preferable because the negative electrode layer 5 itself can have a function as a current collector and has a high ability to occlude and release lithium ions. In particular, since silicon (Si) has a higher ability to occlude and release lithium than graphite, the energy density can be increased.

また、負極層にLi金属との合金相を用いることで、Li金属と合金化した負極層5と、Liイオンの固体電解質層6との界面におけるLiイオンの移動抵抗が抑制される効果を得ることができ、第1サイクル目の充電初期における合金化金属の高抵抗化が緩和される。さらに、合金化金属の金属単体を負極層とした場合には、第1サイクル目の充放電サイクルにおいて、充電容量に対して放電容量が大幅に小さくなる問題があるが、予めLi金属と合金化金属とを合金化したものを負極層5に用いることにより、上記の不可逆容量はほとんどなくなる。これより、正極活物質を不可逆容量分だけ余分に装備する必要がなくなり、薄膜電池の容量密度を向上させることができる。負極層5には集電層を設けずに、負極層(負極活物質)自体に集電層の機能を持たせることもでき、負極層の集電層を省略することができて好ましい。   In addition, by using an alloy phase with Li metal for the negative electrode layer, an effect of suppressing the movement resistance of Li ions at the interface between the negative electrode layer 5 alloyed with Li metal and the solid electrolyte layer 6 of Li ions is obtained. This can alleviate the increase in resistance of the alloyed metal at the initial stage of charge in the first cycle. Furthermore, in the case where the alloyed metal simple substance is used as the negative electrode layer, there is a problem that the discharge capacity becomes significantly smaller than the charge capacity in the charge / discharge cycle of the first cycle. By using the alloyed metal as the negative electrode layer 5, the above irreversible capacity is almost eliminated. As a result, it is not necessary to equip the cathode active material with an irreversible capacity, and the capacity density of the thin film battery can be improved. The negative electrode layer 5 is preferably provided with no current collecting layer, and the negative electrode layer (negative electrode active material) itself can have the function of the current collecting layer, and the current collecting layer of the negative electrode layer can be omitted.

固体電解質層4はLiイオン導電体であり、固体電解質層4のLiイオン伝導度(20℃)が10−5S/cm以上あり、かつLiイオン輸率が0.999以上であることが望ましい。とくにLiイオン伝導度が10−4S/cm以上あり、かつLiイオン輸率が0.9999以上であればより好ましい。固体電解質層4の材料は硫化物系がよく、Li、P、Sを含む固体電解質層が好ましく、さらに酸素を含有していてもよい。 The solid electrolyte layer 4 is a Li ion conductor, the Li ion conductivity (20 ° C.) of the solid electrolyte layer 4 is preferably 10 −5 S / cm or more, and the Li ion transport number is preferably 0.999 or more. . In particular, it is more preferable that the Li ion conductivity is 10 −4 S / cm or more and the Li ion transport number is 0.9999 or more. The material of the solid electrolyte layer 4 is preferably a sulfide-based material, preferably a solid electrolyte layer containing Li, P, and S, and may further contain oxygen.

負極層および固体電解質層は、気相堆積法で形成されるのがよい。気相堆積法としては、PVD(物理的気相合成法:Physical Vapor Deposition)、CVD(化学気相合成法:Chemical
Vapor Deposition)を挙げることができる。具体的には、PVD法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、レーザーアブレーション法を、またCVD法としては、熱CVD法、プラズマCVD法を挙げることができる。
The negative electrode layer and the solid electrolyte layer are preferably formed by a vapor deposition method. As vapor deposition methods, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition: Chemical)
Vapor Deposition). Specifically, examples of the PVD method include a vacuum deposition method, a sputtering method, an ion plating method, and a laser ablation method, and examples of the CVD method include a thermal CVD method and a plasma CVD method.

集電層2には金属箔を用いるのがよい。正極集電層2の具体例としては、アルミニウム(Al)、ニッケル(Ni)、これらの合金、ステンレス等を挙げることができる。また、図1には示していないが負極集電層には、たとえば銅(Cu)、ニッケル(Ni)、鉄(Fe)、クロム(Cr)の単体またはこれら合金を用いるのがよい。上記の金属は、リチウム(Li)と金属間化合物を形成しないため、リチウムとの金属間化合物による不具合、具体的には、充放電による膨張・収縮によって、負極層が構造破壊を起こし、集電性能が低下したり、負極層の接合性が低下して負極層が集電層から脱落し易くなるという不具合を防止できる。上記の正極集電層および負極集電層は、PVD法やCVD法で形成することができる。とくに所定のパターンに集電層を形成する場合、適宜なマスクを用いることで、容易に所定のパターンのマスクを形成することができる。   A metal foil is preferably used for the current collecting layer 2. Specific examples of the positive electrode current collecting layer 2 include aluminum (Al), nickel (Ni), alloys thereof, and stainless steel. Further, although not shown in FIG. 1, it is preferable to use, for example, a simple substance of copper (Cu), nickel (Ni), iron (Fe), or chromium (Cr) or an alloy thereof for the negative electrode current collecting layer. Since the above metal does not form an intermetallic compound with lithium (Li), the negative electrode layer undergoes structural destruction due to defects due to the intermetallic compound with lithium, specifically, expansion / contraction due to charge / discharge, and current collection It is possible to prevent a problem that the performance is deteriorated or the bondability of the negative electrode layer is lowered and the negative electrode layer is easily dropped from the current collecting layer. Said positive electrode current collection layer and negative electrode current collection layer can be formed by PVD method or CVD method. In particular, when the current collecting layer is formed in a predetermined pattern, a mask having a predetermined pattern can be easily formed by using an appropriate mask.

本実施の形態の薄膜電池によれば、正極層3と固体電解質層4との界面に、イオン導電性物質であるイオン性液体7が位置して両者の接触抵抗を低くするので、電池容量の減少を防止することができ、かつ固体電解質を用いた安全性に関する利点を確保することができる。   According to the thin film battery of the present embodiment, the ionic liquid 7 that is an ionic conductive material is located at the interface between the positive electrode layer 3 and the solid electrolyte layer 4 to reduce the contact resistance between them. Reduction can be prevented, and the advantage regarding the safety | security using a solid electrolyte can be ensured.

(実施の形態2)
図2は、本発明の実施の形態2の薄膜電池10の主要部を示す断面図である。本実施の形態では、イオン導電性物質に電解液17を用いており、正極層3、固体電解質層4および負極層5が、電解液17によって覆われている。薄膜電池10は、図示しない蓋等を含む容器内に収納されており、電解液17はその容器内に注入され、図2に示す態様をとることができる。図2において、正極層3と負極層5とは、たとえば櫛歯型状に形成されており、櫛歯の一部と見ることができる。
(Embodiment 2)
FIG. 2 is a cross-sectional view showing a main part of the thin film battery 10 according to the second embodiment of the present invention. In the present embodiment, the electrolytic solution 17 is used as the ion conductive material, and the positive electrode layer 3, the solid electrolyte layer 4, and the negative electrode layer 5 are covered with the electrolytic solution 17. The thin film battery 10 is housed in a container including a lid (not shown), and the electrolytic solution 17 is injected into the container, and can take the form shown in FIG. In FIG. 2, the positive electrode layer 3 and the negative electrode layer 5 are formed in a comb-tooth shape, for example, and can be regarded as a part of the comb teeth.

実施の形態1におけるイオン性液体と同様に、電解液17には、LiClO、LiPF、LiBF、Li{(CFSON}などを主成分とする支持塩が含まれている。電解液17は、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ガンマブチルラクトン(γBL)より選ばれた1つまたはこれらの混合物とすることができる。電解液は揮発性なので、図2に示すように、図示しない容器内に注入され、多孔質の固体電解質層4等に浸透して、負極層5と固体電解質層4との界面および正極層3と固体電解質層4との界面に位置するようにされる。図2の構造においても、正極層3と固体電解質層4との界面に電解液17が確実に位置するように、正極層3の中から真空引きして電解液17を正極層3の側に誘導するのがよい。 Similar to the ionic liquid in the first embodiment, the electrolytic solution 17 includes a supporting salt mainly composed of LiClO 4 , LiPF 6 , LiBF 4 , Li {(CF 3 SO 2 ) 2 N}, or the like. Yes. The electrolytic solution 17 may be one selected from ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and gamma butyl lactone (γBL), or a mixture thereof. Since the electrolytic solution is volatile, as shown in FIG. 2, it is injected into a container (not shown) and penetrates into the porous solid electrolyte layer 4 and the like, and the interface between the negative electrode layer 5 and the solid electrolyte layer 4 and the positive electrode layer 3. And the solid electrolyte layer 4. Also in the structure of FIG. 2, vacuuming is performed from the positive electrode layer 3 so that the electrolytic solution 17 is positioned on the positive electrode layer 3 side so that the electrolytic solution 17 is surely located at the interface between the positive electrode layer 3 and the solid electrolyte layer 4. It is good to guide.

電解液の注入当初は、図2のように位置していた電解液が揮発して量が少なくなり、ある場合には固体状になって正極層3と固体電荷質層4との界面に位置する段階にいたるが、そのような段階になっても正極層3と固体電解質層4との界面抵抗を低下させることができる。このため、電解液の揮発状態が継続する段階を無くすために、人為的に電解液の固体状化を促進することもできる。人為的に電解液を固体状化するためには、電解液にポリメチルメタクリル酸アミド(PMMA)を添加して加熱する処理を施すのがよい。また、電解液だけでなくイオン性液体に対しても固体状化処理を施してもよい。   At the beginning of injection of the electrolytic solution, the electrolytic solution located as shown in FIG. 2 is volatilized to reduce the amount, and in some cases, it becomes solid and is located at the interface between the positive electrode layer 3 and the solid charge layer 4. However, even at such a stage, the interface resistance between the positive electrode layer 3 and the solid electrolyte layer 4 can be reduced. For this reason, in order to eliminate the step where the volatile state of the electrolytic solution continues, it is possible to artificially promote the solidification of the electrolytic solution. In order to artificially solidify the electrolytic solution, it is preferable to add a polymethylmethacrylamide (PMMA) to the electrolytic solution and heat it. Further, not only the electrolytic solution but also the ionic liquid may be subjected to solidification treatment.

上記の構成により、正負電極層3,5と固体電解質層4との界面の接触抵抗を低くすることができ、電池容量の低下を回避することができる。とくに電解液を固体状にした場合には、揮発性という電解液の短所を克服した上で、上記界面の接触抵抗の低減を安定に永続化することができる。   With the configuration described above, the contact resistance at the interface between the positive and negative electrode layers 3 and 5 and the solid electrolyte layer 4 can be lowered, and a reduction in battery capacity can be avoided. In particular, when the electrolytic solution is made solid, the reduction of the contact resistance at the interface can be stably perpetuated while overcoming the disadvantage of the volatile electrolytic solution.

(実施の形態3)
図3は、本発明の実施の形態3における薄膜電池の主要部を示す断面図である。図3において、正極層3と負極層5とは、たとえば櫛歯型状に形成されており、櫛歯の一部と見ることができる。平板状基材1の上に、正極用集電層2と負極用集電層12が離れて形成され、正極用集電層2の上には正極層3が、また負極用集電層12の上には負極層5が、互いに側面を対向させるように位置している。そして、正極層3と負極層5との間に固体電解質層4が介在して、両方の電極層に個別に接触している。
(Embodiment 3)
FIG. 3 is a cross-sectional view showing a main part of the thin film battery according to Embodiment 3 of the present invention. In FIG. 3, the positive electrode layer 3 and the negative electrode layer 5 are formed in a comb-tooth shape, for example, and can be regarded as a part of the comb teeth. A positive electrode current collector layer 2 and a negative electrode current collector layer 12 are formed on the flat substrate 1 so as to be separated from each other. The positive electrode current collector layer 2 is formed on the positive electrode current collector layer 2. On the top, the negative electrode layer 5 is positioned so that the side surfaces face each other. The solid electrolyte layer 4 is interposed between the positive electrode layer 3 and the negative electrode layer 5 and is in contact with both electrode layers individually.

このような形態の薄膜電池10において、固体電解質層4または正負極層3,5にイオン性液体7または電解液17を浸漬することにより、固体電解質層4と正負電極層3,5との界面での接触抵抗を下げることができ、内部抵抗の減少により電池容量を確保することができる。上記の場合、固体電解質4または正負電極層3,5の厚み方向(平板状基材1の表面に直交する方向)とイオン性液体7または電解液17の深さ方向とが同じになるように、すなわち櫛歯形状の櫛の厚みがイオン性液体7または電解液17に浸るように、薄膜電池10の容器または筐体を形成するのがよい。   In the thin film battery 10 having such a configuration, the interface between the solid electrolyte layer 4 and the positive and negative electrode layers 3 and 5 is obtained by immersing the ionic liquid 7 or the electrolytic solution 17 in the solid electrolyte layer 4 or the positive and negative electrode layers 3 and 5. The contact resistance can be lowered, and the battery capacity can be secured by reducing the internal resistance. In the above case, the thickness direction of the solid electrolyte 4 or the positive and negative electrode layers 3 and 5 (the direction orthogonal to the surface of the flat substrate 1) and the depth direction of the ionic liquid 7 or the electrolytic solution 17 are the same. In other words, the container or casing of the thin film battery 10 is preferably formed so that the thickness of the comb-shaped comb is immersed in the ionic liquid 7 or the electrolytic solution 17.

(実施の形態4)
図4は、本発明の実施の形態4における薄膜電池10の主要部を示す断面図である。正極用集電層2と負極用集電層12との間に挟まれるように、順次、正極層3と、固体電解質層4と、負極層5とが配置されている。固体電解質層4と、その固体電解質層4を上下から挟む正極層3および負極層5とのそれぞれの界面に、イオン性液体7または電解液17を配置するには、図4に示す構造の全体にわたって、イオン液液体7または電解液17を浸漬するのがよい。
(Embodiment 4)
FIG. 4 is a cross-sectional view showing a main part of thin film battery 10 according to Embodiment 4 of the present invention. The positive electrode layer 3, the solid electrolyte layer 4, and the negative electrode layer 5 are sequentially disposed so as to be sandwiched between the positive electrode current collector layer 2 and the negative electrode current collector layer 12. In order to dispose the ionic liquid 7 or the electrolytic solution 17 at each interface between the solid electrolyte layer 4 and the positive electrode layer 3 and the negative electrode layer 5 sandwiching the solid electrolyte layer 4 from above and below, the entire structure shown in FIG. It is preferable to immerse the ionic liquid 7 or the electrolytic solution 17.

上記の構成において、正極と負極とのイオン導電の主経路はあくまで固体電解質層4が担当する。注入されるイオン性液体7および電解液17の量は少なく、イオン導電が可能な支持塩を含むといっても、あくまで界面の接触抵抗を下げるために補助的に用いられるにすぎない。このため、本実施の形態の薄膜電池10は、固体電解質を用いる長所を確保しながら、上記の界面における接触抵抗を下げて、十分な電池容量を確保することができる。   In the above configuration, the solid electrolyte layer 4 is in charge of the main path of ionic conduction between the positive electrode and the negative electrode. The amount of the ionic liquid 7 and the electrolytic solution 17 to be injected is small, and even if it contains a supporting salt capable of ionic conduction, it is only used as an auxiliary to lower the contact resistance of the interface. For this reason, the thin film battery 10 of this Embodiment can ensure sufficient battery capacity by reducing the contact resistance in said interface, ensuring the advantage which uses a solid electrolyte.

次に、実施例により本発明の効果を確認した結果について説明する。まず、本発明の実施の形態1における図1に示す構造を持つ本発明例AおよびBの製造方法について説明する。図5は、本発明例AおよびBの薄膜電池の製造方法の手順を示す図であり、図6は、その本発明例Aの薄膜電池の寸法付き主要部を示す断面図である。まず、厚み10μmの樹脂基材1を準備し、その樹脂基材1の上に正極用集電層2を、マスク蒸着により厚み0.1μmの白金(Pt)により形成する。次いで、正極層3をスクリーン印刷により厚み40μmのLiCoOにより形成する。スクリーン印刷の原料には、上記の活物質LiCoO:25g、導電助剤:2.5g、バインダ(PVdF:ポリフッ化ビニリデン):0.3g、溶剤(NMP:N-メチル-2-ピロリドン):10ccを配合した。印刷後に乾燥して、上記NMPを蒸発させ、上記の正極層3とした。その正極層3の上に固体電解質層4を、パルスレーザ蒸着により厚み5μmのLiS−P(Li:P=75:25)により形成する。最後に、固体電解質層4の上に負極層5を、マスク蒸着により厚み2μmのLiにより形成した。 Next, the results of confirming the effects of the present invention by examples will be described. First, a manufacturing method of Invention Examples A and B having the structure shown in FIG. 1 in Embodiment 1 of the present invention will be described. FIG. 5 is a view showing the procedure of the method for manufacturing the thin film battery of Examples A and B of the present invention, and FIG. 6 is a cross-sectional view showing the main part with dimensions of the thin film battery of Example A of the present invention. First, a resin substrate 1 having a thickness of 10 μm is prepared, and a positive electrode current collecting layer 2 is formed on the resin substrate 1 by platinum (Pt) having a thickness of 0.1 μm by mask vapor deposition. Next, the positive electrode layer 3 is formed of LiCoO 2 having a thickness of 40 μm by screen printing. As raw materials for screen printing, the above active material LiCoO 2 : 25 g, conductive auxiliary agent: 2.5 g, binder (PVdF: polyvinylidene fluoride): 0.3 g, solvent (NMP: N-methyl-2-pyrrolidone): 10 cc was blended. It dried after printing, the said NMP was evaporated, and it was set as said positive electrode layer 3. FIG. A solid electrolyte layer 4 is formed on the positive electrode layer 3 by pulse laser deposition with Li 2 S—P 2 O 5 (Li: P = 75: 25) having a thickness of 5 μm. Finally, the negative electrode layer 5 was formed on the solid electrolyte layer 4 with Li having a thickness of 2 μm by mask vapor deposition.

上記の手順で作製し、イオン性液体または電解液のいずれも用いない体薄膜電池を比較例とした。そして、イオン性液体7としてN-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide(C1120)を含浸させたものを本発明例Aとした(図1参照)。支持塩には、Lithiumu(trifluoromethanesulfonyl)imideを用いた。また、電解液17として、エチレンカーボネート(EC)3に対してジエチルカーボネート(DEC)7を配合したものを、図2に示すように配置した構造の薄膜電池を本発明例Bとした。支持塩には、LiPFを用いた。上記の本発明例A、本発明例Bおよび比較例について、電池の内部抵抗を測定した結果を表1に示す。 A body thin film battery produced by the above procedure and using neither an ionic liquid nor an electrolyte was used as a comparative example. Then, a N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (C 11 H 20 F 6 N 2 O 4 S 2) Inventive Example A and those impregnated with a ionic liquid 7 (see FIG. 1) . Lithiumu (trifluoromethanesulfonyl) imide was used as the supporting salt. In addition, a thin film battery having a structure in which diethyl carbonate (DEC) 7 was blended with ethylene carbonate (EC) 3 as the electrolytic solution 17 as shown in FIG. LiPF 6 was used as the supporting salt. Table 1 shows the results of measuring the internal resistance of the battery for the above-described Invention Example A, Invention Example B and Comparative Example.

Figure 2008053135
Figure 2008053135

表1によれば、比較例で内部抵抗が260kΩあったのが、本発明例Aでは40kΩに、また本発明例Bでは41.5kΩに減少した。この内部抵抗の減少は非常に大きく、本発明例A、Bは、電池容量の確保に有益な構成を有している。   According to Table 1, the internal resistance in the comparative example was 260 kΩ, which was reduced to 40 kΩ in Invention Example A and 41.5 kΩ in Invention Example B. This decrease in internal resistance is very large, and Examples A and B of the present invention have a configuration that is useful for securing battery capacity.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の薄膜電池を用いることにより、薄膜電池の内部抵抗を減らすことができ、電池容量の確保に貢献することができる。   By using the thin film battery of this invention, the internal resistance of a thin film battery can be reduced and it can contribute to ensuring battery capacity.

本発明の実施の形態1における薄膜電池を示す断面図である。It is sectional drawing which shows the thin film battery in Embodiment 1 of this invention. 本発明の実施の形態2における薄膜電池を示す断面図である。It is sectional drawing which shows the thin film battery in Embodiment 2 of this invention. 本発明の実施の形態3における薄膜電池を示す断面図である。It is sectional drawing which shows the thin film battery in Embodiment 3 of this invention. 本発明の実施の形態3における薄膜電池を示す断面図である。It is sectional drawing which shows the thin film battery in Embodiment 3 of this invention. 本発明の実施例に用いた薄膜電池の製作手順を示す図である。It is a figure which shows the manufacture procedure of the thin film battery used for the Example of this invention. 本発明の実施例に用いた薄膜電池の構造を示す図である。It is a figure which shows the structure of the thin film battery used for the Example of this invention.

符号の説明Explanation of symbols

1 基材、2 集電層(正極用)、3 正極層、4 固体電解質層、5 負極層、7 イオン性液体(含支持塩)、10 薄膜電池、12 負極用集電層、17 電解液。

DESCRIPTION OF SYMBOLS 1 Base material, 2 Current collection layer (for positive electrodes), 3 Positive electrode layer, 4 Solid electrolyte layer, 5 Negative electrode layer, 7 Ionic liquid (supporting salt), 10 Thin film battery, 12 Current collection layer for negative electrodes, 17 Electrolyte .

Claims (5)

正極層、負極層および該正極層と該負極層との間に介在する固体電解質層を備える薄膜電池であって、
少なくとも、前記正極層と前記固体電解質層の空隙部がイオン導電性物質で充填されていることを特徴とする、薄膜電池。
A thin film battery comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer,
A thin film battery characterized in that at least a gap between the positive electrode layer and the solid electrolyte layer is filled with an ion conductive material.
前記正極層および負極層は、平面的に見て、重ならないように位置することを特徴とする、請求項1に記載の薄膜電池。   The thin film battery according to claim 1, wherein the positive electrode layer and the negative electrode layer are positioned so as not to overlap each other when viewed in a plan view. 前記正極層および負極層は、前記固体電解質層を該固体電解質層の上面と下面とで挟むように位置していることを特徴とする、請求項1または2に記載の薄膜電池。   The thin film battery according to claim 1, wherein the positive electrode layer and the negative electrode layer are positioned so as to sandwich the solid electrolyte layer between an upper surface and a lower surface of the solid electrolyte layer. 前記正極層および前記負極層は、互いの側面を対向させるようにスペースをあけて同じ層に位置し、前記固体電解質層は前記スペースを充填するように位置し、前記イオン導電性物質は、前記正極層、前記負極層および前記固体電解質層の空隙部に充填されていることを特徴とする、請求項1または2に記載の薄膜電池。   The positive electrode layer and the negative electrode layer are located in the same layer with a space so as to face each other, the solid electrolyte layer is located so as to fill the space, and the ion conductive material includes 3. The thin film battery according to claim 1, wherein voids of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer are filled. 前記イオン導電性物質が、有機溶媒および支持塩、イオン性液体および支持塩、または前記有機溶媒および支持塩もしくはイオン性液体および支持塩が固体状とされたもの、いずれかであることを特徴とする、請求項1〜4のいずれかに記載の薄膜電池。


The ionic conductive substance is any one of an organic solvent and a supporting salt, an ionic liquid and a supporting salt, or the organic solvent and a supporting salt or an ionic liquid and a supporting salt in a solid state. The thin film battery according to claim 1.


JP2006230148A 2006-08-28 2006-08-28 Thin film battery Pending JP2008053135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230148A JP2008053135A (en) 2006-08-28 2006-08-28 Thin film battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230148A JP2008053135A (en) 2006-08-28 2006-08-28 Thin film battery

Publications (1)

Publication Number Publication Date
JP2008053135A true JP2008053135A (en) 2008-03-06

Family

ID=39236968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230148A Pending JP2008053135A (en) 2006-08-28 2006-08-28 Thin film battery

Country Status (1)

Country Link
JP (1) JP2008053135A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063747A1 (en) * 2007-11-13 2009-05-22 Sumitomo Electric Industries, Ltd. Lithium battery and method for manufacturing the same
JP2009218005A (en) * 2008-03-07 2009-09-24 Sumitomo Electric Ind Ltd All solid lithium secondary battery
JP2010225356A (en) * 2009-03-23 2010-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and using method for the same
JP2010277935A (en) * 2009-05-29 2010-12-09 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2010287414A (en) * 2009-06-11 2010-12-24 Toyota Motor Corp Metal secondary battery
KR101011551B1 (en) 2007-07-12 2011-01-27 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device
WO2015030407A1 (en) * 2013-08-28 2015-03-05 한국전기연구원 Secondary battery comprising solid-state electrolyte and wetted ionic liquid
JP2017054792A (en) * 2015-09-11 2017-03-16 日本碍子株式会社 Lithium battery
JP2017168435A (en) * 2016-03-11 2017-09-21 東京電力ホールディングス株式会社 Positive electrode material for solid battery, manufacturing method thereof, all-solid lithium sulfur battery arranged by use of positive electrode material for solid battery, and manufacturing method thereof
CN108735972A (en) * 2017-04-21 2018-11-02 日立化成株式会社 The manufacturing method of secondary cell battery components
JP2019145375A (en) * 2018-02-22 2019-08-29 東京電力ホールディングス株式会社 Sulfur cathode and lithium-sulfur solid battery
CN110574196A (en) * 2017-04-24 2019-12-13 日立化成株式会社 Battery member for secondary battery, and methods for producing them
US20200168904A1 (en) * 2018-11-28 2020-05-28 Toyota Jidosha Kabushiki Kaisha Anode
CN111430802A (en) * 2019-01-09 2020-07-17 通用汽车环球科技运作有限责任公司 Ionic liquid electrolytes for high voltage battery applications
US11296356B2 (en) 2017-04-21 2022-04-05 Showa Denko Materials Co., Ltd. Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same
CN114530635A (en) * 2021-06-30 2022-05-24 湘潭大学 Method for treating garnet type solid electrolyte and anode interface by ionic liquid
US11462767B2 (en) 2017-04-21 2022-10-04 Showa Denko Materials Co., Ltd. Electrochemical device electrode. method for producing electrochemical device electrode and electrochemical device
US11777137B2 (en) 2017-04-21 2023-10-03 Lg Energy Solution, Ltd. Member for electrochemical devices, and electrochemical device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101011551B1 (en) 2007-07-12 2011-01-27 가부시키가이샤 히타치세이사쿠쇼 Semiconductor device
WO2009063747A1 (en) * 2007-11-13 2009-05-22 Sumitomo Electric Industries, Ltd. Lithium battery and method for manufacturing the same
JP2009218005A (en) * 2008-03-07 2009-09-24 Sumitomo Electric Ind Ltd All solid lithium secondary battery
JP2010225356A (en) * 2009-03-23 2010-10-07 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and using method for the same
JP2010277935A (en) * 2009-05-29 2010-12-09 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2010287414A (en) * 2009-06-11 2010-12-24 Toyota Motor Corp Metal secondary battery
WO2015030407A1 (en) * 2013-08-28 2015-03-05 한국전기연구원 Secondary battery comprising solid-state electrolyte and wetted ionic liquid
JP2017054792A (en) * 2015-09-11 2017-03-16 日本碍子株式会社 Lithium battery
US10686186B2 (en) 2016-03-11 2020-06-16 Tokyo Electric Power Company Holdings, Incorporated Solid-state battery positive electrode material, production method for solid-state battery positive electrode material, all-solid-state lithium-sulfur battery using solid-state battery positive electrode material, and production method for all-solid-state lithium-sulfur battery using solid-state battery positive electrode material
JP2017168435A (en) * 2016-03-11 2017-09-21 東京電力ホールディングス株式会社 Positive electrode material for solid battery, manufacturing method thereof, all-solid lithium sulfur battery arranged by use of positive electrode material for solid battery, and manufacturing method thereof
US11296356B2 (en) 2017-04-21 2022-04-05 Showa Denko Materials Co., Ltd. Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same
CN108735972A (en) * 2017-04-21 2018-11-02 日立化成株式会社 The manufacturing method of secondary cell battery components
US11462767B2 (en) 2017-04-21 2022-10-04 Showa Denko Materials Co., Ltd. Electrochemical device electrode. method for producing electrochemical device electrode and electrochemical device
US11777137B2 (en) 2017-04-21 2023-10-03 Lg Energy Solution, Ltd. Member for electrochemical devices, and electrochemical device
CN110574196A (en) * 2017-04-24 2019-12-13 日立化成株式会社 Battery member for secondary battery, and methods for producing them
JP2019145375A (en) * 2018-02-22 2019-08-29 東京電力ホールディングス株式会社 Sulfur cathode and lithium-sulfur solid battery
JP7125043B2 (en) 2018-02-22 2022-08-24 東京電力ホールディングス株式会社 Sulfur cathode and lithium sulfur solid state battery
US20200168904A1 (en) * 2018-11-28 2020-05-28 Toyota Jidosha Kabushiki Kaisha Anode
US11552291B2 (en) * 2018-11-28 2023-01-10 Toyota Jidosha Kabushiki Kaisha Anode
CN111430802A (en) * 2019-01-09 2020-07-17 通用汽车环球科技运作有限责任公司 Ionic liquid electrolytes for high voltage battery applications
CN114530635A (en) * 2021-06-30 2022-05-24 湘潭大学 Method for treating garnet type solid electrolyte and anode interface by ionic liquid

Similar Documents

Publication Publication Date Title
JP2008053135A (en) Thin film battery
US11417873B2 (en) Solid-state batteries, separators, electrodes, and methods of fabrication
JP5093449B2 (en) Lithium battery
JP5316809B2 (en) Lithium battery and manufacturing method thereof
JP6069821B2 (en) Lithium ion secondary battery
US7794883B2 (en) Nonaqueous electrolyte secondary battery
US20110014520A1 (en) Bipolar battery
JP5310996B2 (en) Lithium battery
JP2007115661A (en) Thin film lithium cell
BR112015020666B1 (en) MANUFACTURING PROCESS OF A FULLY SOLID MONOLITHIC BATTERY
JP2012014892A (en) Nonaqueous electrolyte battery
US20130065134A1 (en) Nonaqueous-electrolyte battery and method for producing the same
JP2023053124A (en) Manufacturing method of lithium ion battery
JP2009199920A (en) Lithium battery
JP5190762B2 (en) Lithium battery
Jin et al. Scaffold-structured polymer binders for long-term cycle performance of stabilized lithium-powder electrodes
JP2009176644A (en) Lithium cell
JP2012113842A (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP2008282593A (en) Lithium cell and its manufacturing method
JP2009032597A (en) Lithium battery
JP2008171734A (en) Manufacturing method of thin film battery
JP2008171733A (en) Thin battery
JP2010080203A (en) Battery
JP5093666B2 (en) Lithium battery
JP2009037967A (en) Lithium cell