JP2008051676A - Earthquake damage measurement system using maximum response member angle measurement device for elevated bridge column - Google Patents

Earthquake damage measurement system using maximum response member angle measurement device for elevated bridge column Download PDF

Info

Publication number
JP2008051676A
JP2008051676A JP2006228683A JP2006228683A JP2008051676A JP 2008051676 A JP2008051676 A JP 2008051676A JP 2006228683 A JP2006228683 A JP 2006228683A JP 2006228683 A JP2006228683 A JP 2006228683A JP 2008051676 A JP2008051676 A JP 2008051676A
Authority
JP
Japan
Prior art keywords
viaduct
maximum response
member angle
response member
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006228683A
Other languages
Japanese (ja)
Other versions
JP4908109B2 (en
Inventor
Tatsuya Nihei
達也 仁平
Masamichi Sogabe
正道 曽我部
Yukihiro Tanimura
幸裕 谷村
Takuji Okamoto
卓慈 岡本
Noriyuki Miyamoto
則幸 宮本
Hiroshi Hamada
弘志 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Keisoku Research Consultant Co Ltd
Original Assignee
Railway Technical Research Institute
Keisoku Research Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Keisoku Research Consultant Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2006228683A priority Critical patent/JP4908109B2/en
Publication of JP2008051676A publication Critical patent/JP2008051676A/en
Application granted granted Critical
Publication of JP4908109B2 publication Critical patent/JP4908109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and high precision earthquake damage measurement system using a system measurement device for measuring a maximum response member angle of an elevated bridge column. <P>SOLUTION: The earthquake damage measurement system using the maximum response member angle measurement device for the elevated bridge column includes a sensor system measuring the maximum response member angle in two directions of the elevated bridge column, a transmission system of a radio LAN system or an RF-ID tag system transmitting measurement data from the sensor system, and an evaluation system taking the measurement data transmitted from the transmission system and evaluating the degree of damage of the elevated bridge column. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムに係り、特に、高架橋柱の最大応答部材角と損傷レベルを計測するシステムに関するものである。   The present invention relates to an earthquake disaster measurement system using a maximum response member angle measuring device for a viaduct column, and more particularly to a system for measuring a maximum response member angle and a damage level of a viaduct column.

現在、地震そのものを検知するシステムとして加速度センサーを用いて得られたデータより柱の損傷状況を推定し、列車運行等の可否を判断するシステムは存在しているが、部材の損傷を直接的に把握するシステムは存在していない。   Currently, there is a system for estimating the damage status of a column from data obtained by using an acceleration sensor as a system to detect the earthquake itself, and judging whether or not train operation is possible. There is no system to grasp.

また、最大ひずみ記憶センサーを用いた橋梁の診断技術(下記非特許文献1)が提案されている。
下見成明,松井義昌、新川秀一、中泉義政:「最大ひずみ記憶センサーを用いた橋梁の診断技術」,「耐震補強・補修技術,耐震診断技術に関するシンポジウム」講演論文集,Vol.3,pp.143−150,1999
Further, a bridge diagnosis technique using the maximum strain memory sensor (the following Non-Patent Document 1) has been proposed.
Shimoaki Shimoaki, Yoshimasa Matsui, Shuichi Shinkawa, Yoshimasa Nakaizumi: “Symposium on Bridge Diagnosis Technology Using Maximum Strain Memory Sensor”, “Symposium on Seismic Reinforcement / Repair Technology, Seismic Diagnosis Technology”, Vol. 3, pp. 143-150, 1999

加速度データでは、実際の損傷状態を把握するには精度が落ちるため、柱の損傷を直接的に把握するシステムが求められている。その指標として最大応答部材角があり、高架橋柱の最大応答部材角を安価で、かつ高精度に測定し、広域の地震災害を計測できるシステムが望まれている。   Acceleration data is inaccurate in grasping the actual damage state, so a system for directly grasping column damage is required. There is a maximum response member angle as an index, and a system that can measure the earthquake response in a wide area by measuring the maximum response member angle of a viaduct column with low cost and high accuracy is desired.

本発明は、上記状況に鑑みて、安価で、かつ高精度の高架橋柱の最大応答部材角を測定するシステム測定装置を用いた地震災害計測システムを提供することを目的とする。   In view of the above situation, an object of the present invention is to provide an earthquake disaster measurement system using a system measurement device that measures the maximum response member angle of a viaduct pillar that is inexpensive and highly accurate.

本発明は、上記目的を達成するために、
〔1〕高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、高架橋柱の2方向の最大応答部材角を測定するセンサーシステムと、このセンサーシステムからの計測データを伝送する無線LAN方式もしくはRF−IDタグ方式の伝送システムと、この伝送システムから伝送される計測データを取込み、前記高架橋柱の損傷度評価を行う評価システムとを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In an earthquake disaster measurement system using a maximum response member angle measuring device for a viaduct column, a sensor system for measuring the maximum response member angle in two directions of the viaduct column and a wireless LAN for transmitting measurement data from the sensor system Or an RF-ID tag type transmission system, and an evaluation system that takes measurement data transmitted from the transmission system and evaluates the damage level of the viaduct pillar.

〔2〕上記〔1〕記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムは、前記高架橋柱のブロック毎に1個程度配置することを特徴とする。   [2] In the earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct column described in [1] above, about one sensor system is arranged for each block of the viaduct column.

〔3〕上記〔2〕記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムから、測定データを短距離の無線LAN送信部へ送り、次いで、短距離無線LAN受信部へ送り、さらに、長距離の無線LANの送受信によりリレー形式で指令所へと伝送することを特徴とする。   [3] In the earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct pillar described in [2] above, the measurement data is sent from the sensor system to a short-range wireless LAN transmitter, and then the short-range wireless The data is sent to the LAN receiver, and further transmitted to the command station in a relay form by transmission / reception of a long-distance wireless LAN.

〔4〕上記〔2〕記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムから、測定データをRF−IDタグ方式を用いて指令所へ伝送することを特徴とする。   [4] In the earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct column described in [2] above, transmitting measurement data from the sensor system to a command center using an RF-ID tag method. Features.

〔5〕上記〔1〕記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記評価システムは、高架橋柱の最大応答部材角と高架橋柱の損傷レベルとの関係を把握することを特徴とする。   [5] In the earthquake disaster measurement system using the apparatus for measuring the maximum response member angle of a viaduct column described in [1] above, the evaluation system grasps the relationship between the maximum response member angle of the viaduct column and the damage level of the viaduct column. It is characterized by doing.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(1)機械式ピークセンサーにより簡便に高架橋柱の最大応答部材角を測定し、広範な地域の高架橋柱の地震災害の計測を実施することができる。   (1) The maximum response member angle of a viaduct column can be easily measured by a mechanical peak sensor, and the earthquake disaster of a viaduct column in a wide area can be measured.

(2)1つの装置で、2方向の高架橋柱の最大応答部材角の測定を高精度に行うとともに、各高架橋柱の損傷レベルを把握することができる。   (2) It is possible to measure the maximum response member angle of the viaduct pillars in two directions with high accuracy and to grasp the damage level of each viaduct pillar with one apparatus.

(3)センサーシステムは、高架橋柱のブロック毎に1個配置することにより、高架橋全体の損傷レベルを計測することができる。   (3) By disposing one sensor system for each block of the viaduct pillar, it is possible to measure the damage level of the entire viaduct.

本発明の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムは、広範な地域の高架橋柱の地震災害の計測に利用可能である。   The earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct of the present invention can be used for measuring earthquake disasters of a viaduct in a wide area.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例を示す高架橋柱の最大応答部材角を測定するシステム測定装置を用いた地震災害計測システムの模式図である。   FIG. 1 is a schematic diagram of an earthquake disaster measuring system using a system measuring apparatus for measuring the maximum response member angle of a viaduct column showing an embodiment of the present invention.

この図において、1は高架橋柱、2はその高架橋柱1の天端部に設置される高架橋のX方向(線路方向)とY方向(線路直角方向)の2方向の最大応答部材角θを測定可能なセンサーシステム、3はセンサーシステム2からの計測データを伝送する伝送システム、4はその伝送システム3を介して伝送された計測データを取込み、評価する評価システムからなる。   In this figure, 1 is a viaduct pillar, and 2 is a maximum response member angle θ measured in two directions of the viaduct in the X direction (line direction) and the Y direction (line direction perpendicular to the line) installed at the top end of the viaduct pillar 1. A possible sensor system 3 includes a transmission system for transmitting measurement data from the sensor system 2, and 4 includes an evaluation system for taking in and measuring the measurement data transmitted via the transmission system 3.

評価システム4には設置位置データAと応答最大部材角Bと損傷レベルCとを取得できるようにしている。その高架橋柱1の場合、1ブロックに1個のセンサーシステムを配置することにより、高架橋の損傷レベルを正確に把握することができる。   The evaluation system 4 can acquire the installation position data A, the response maximum member angle B, and the damage level C. In the case of the viaduct pillar 1, it is possible to accurately grasp the damage level of the viaduct by arranging one sensor system in one block.

まず、本発明にかかる地震災害計測システムのセンサーシステムについて説明する。   First, the sensor system of the earthquake disaster measurement system according to the present invention will be described.

図2は本発明の実施例を示すセンサーシステムの模式図、図3は図2における機械式センサーとしてのピークセンサーの模式図、図4はその最大応答部材角測定装置の外観を示す代用図面としての写真である。   2 is a schematic diagram of a sensor system showing an embodiment of the present invention, FIG. 3 is a schematic diagram of a peak sensor as a mechanical sensor in FIG. 2, and FIG. 4 is a substitute drawing showing an appearance of the maximum response member angle measuring device. It is a photograph of.

この図において、11は高架橋柱、11Aはその高架橋柱における塑性ヒンジ区間(RC柱部材の基部付近の損傷が集中する箇所)、12はその高架橋柱11に支持される上層梁、13AはX方向に配置される第1のピークセンサー、13BはそのX方向に直交するY方向に配置される第2のピークセンサー〔この第2のピークセンサー13Bは、Y方向に第1の治具(図示なし)が設けられており、Y方向に第1のピークセンサー13Bと同様の構造のピークセンサーが配置されている〕。14はピークセンサーを取りつけた第1の治具、15は第1の治具14と上層梁12との接続箇所、16はアーム、17はそのアーム16の先端と高架橋柱11との間に設けられる第2の治具、18はアーム揺動部、19はアーム揺動部18を構成する2層のボールベアリング、20は第2の治具17と高架橋柱11との接続箇所である。   In this figure, 11 is a viaduct column, 11A is a plastic hinge section in the viaduct column (where damage is concentrated near the base of the RC column member), 12 is an upper beam supported by the viaduct column 11, and 13A is the X direction. A first peak sensor 13B is arranged in the Y direction perpendicular to the X direction. The second peak sensor 13B is a first jig (not shown) in the Y direction. ) And a peak sensor having the same structure as the first peak sensor 13B is arranged in the Y direction. 14 is a first jig to which a peak sensor is attached, 15 is a connection portion between the first jig 14 and the upper beam 12, 16 is an arm, and 17 is provided between the tip of the arm 16 and the viaduct pillar 11. The second jig 18, 18 is an arm swinging part, 19 is a two-layer ball bearing constituting the arm swinging part 18, and 20 is a connection point between the second jig 17 and the viaduct pillar 11.

なお、第2の治具17の先端には、穴(図示なし)が形成されており、その穴にアーム16の先端が貫通し係合するようにしている。また、アーム16とピークセンサー13A,13Bとは、例えば、ピークセンサー13A,13Bの先端部に固定された2個の円筒状体の間に係合するようにしている(図4参照)。   A hole (not shown) is formed at the tip of the second jig 17 so that the tip of the arm 16 penetrates and engages with the hole. Further, the arm 16 and the peak sensors 13A and 13B are engaged, for example, between two cylindrical bodies fixed to the tip portions of the peak sensors 13A and 13B (see FIG. 4).

表1にはピークセンサーの仕様が示されており、ピークセンサーの寸法は、例えば、127×18×32mm、重量は155g、検出範囲±10mm、分解能は2μmである。   Table 1 shows the specifications of the peak sensor. The dimensions of the peak sensor are, for example, 127 × 18 × 32 mm, the weight is 155 g, the detection range is ± 10 mm, and the resolution is 2 μm.

図3において、21はケース部分、22は第1の可動部分、23は第2の可動部分、24は正側、25は負側、26は第1の可動部分22に接続される正側最大値検出機構、27は正側最大値検出機構26にかかるポテンショメータ、28は第2の可動部分23に接続される負側最大値検出機構、29は負側最大値検出機構28にかかるポテンショメータである。 In FIG. 3, 21 is a case part, 22 is a first movable part, 23 is a second movable part, 24 is a positive side, 25 is a negative side, and 26 is a positive side maximum connected to the first movable part 22. A value detecting mechanism 27 is a potentiometer applied to the positive maximum value detecting mechanism 26, 28 is a negative maximum value detecting mechanism connected to the second movable part 23, and 29 is a potentiometer applied to the negative maximum value detecting mechanism 28. .

このように、ピークセンサー13A,13Bは正側24と負側25の両方の最大変位量を検知し、記憶することが可能である。ここで、ピークセンサー13の検出範囲は±10mmであるため、図2に示すように、幾何学的な相似の関係を利用して部材角θを測定できる第1の治具14を用いた。ただし、高架橋柱11の柱端部では、地震により全方位に振動することが予測される。そこで、図4に示すように、アーム16とピークセンサー13A(X方向に配置),ピークセンサー13B(Y方向に配置)とは、例えば、ピークセンサーの先端部に固定された2個の円筒状体の間に係合するように構成されているので、任意方向の変位量をX方向(路線方向)とY方向(路線直角方向)成分に分解し、1つの装置で2方向の最大応答部材角を測定する機構を提供することができる。   Thus, the peak sensors 13A and 13B can detect and store the maximum displacement amounts of both the positive side 24 and the negative side 25. Here, since the detection range of the peak sensor 13 is ± 10 mm, as shown in FIG. 2, the first jig 14 capable of measuring the member angle θ using the geometrical similarity relationship was used. However, it is predicted that the column end portion of the viaduct pillar 11 vibrates in all directions due to an earthquake. Therefore, as shown in FIG. 4, the arm 16, the peak sensor 13A (arranged in the X direction), and the peak sensor 13B (arranged in the Y direction) are, for example, two cylindrical shapes fixed to the tip of the peak sensor. Since it is configured to engage between the bodies, the displacement in any direction is decomposed into X direction (route direction) and Y direction (direction perpendicular to the route) components, and a maximum response member in two directions with one device A mechanism for measuring corners can be provided.

この最大応答部材角測定装置を実構造物に設置する場合、第1の治具14と上層梁12の接続箇所15は、第2の治具17と高架橋柱11の接続箇所20は、塑性ヒンジ区間(RC柱部材の基部付近の損傷が集中する箇所)11Aを避ける位置となるようにした。   When this maximum response member angle measuring device is installed in an actual structure, the connecting portion 15 between the first jig 14 and the upper beam 12 is connected to the second jig 17 and the viaduct pillar 11 at the plastic hinge. The section (location where damage near the base of the RC column member is concentrated) 11A was avoided.

最大応答部材角測定装置に生じるガタつきおよび機械的な歪みは、測定精度に大きく影響する可能性がある。そのため、正弦波加振や円加振による予備実験結果をもとに、アーム揺動部18のボールベアリング19を2層に設置したり、ピークセンサー13を取りつけた第1の治具14の剛性を高める等、最大応答部材角測定装置の改善を図っている。   The backlash and mechanical distortion that occur in the maximum response member angle measurement device can greatly affect the measurement accuracy. Therefore, the rigidity of the first jig 14 to which the ball bearing 19 of the arm swinging portion 18 is installed in two layers or the peak sensor 13 is attached based on the preliminary experiment result by sine wave vibration or circular vibration. For example, the maximum response member angle measuring device is improved.

次に、本発明の地震災害計測システムの伝送システムについて説明する。   Next, the transmission system of the earthquake disaster measurement system of the present invention will be described.

図5は本発明にかかる無線LANの伝送システム例を示す代用図面としての写真である。   FIG. 5 is a photograph as a substitute drawing showing an example of a wireless LAN transmission system according to the present invention.

データの即効性を求められる伝送システム(無線LAN)を構築し、被災直後、測定データを指令所(例えば、土木技術センター等)に伝送する。   A transmission system (wireless LAN) that requires immediate data is constructed, and immediately after the disaster, measurement data is transmitted to a command center (for example, civil engineering center).

なお、無線LAN方式のデータ転送システムの試作を実施し(図5参照)、センサーシステム2より得られたデータについて、送信機と受信機の距離が100m程度、障害物が少ない箇所では最大300m程度転送可能であることを確認した。   In addition, a wireless LAN data transfer system was prototyped (see FIG. 5), and the data obtained from the sensor system 2 was about 100 m at a distance between the transmitter and the receiver of about 100 m and a small number of obstacles. Confirmed that transfer is possible.

図6は本発明にかかる無線LANの伝送システム例を示す図である。   FIG. 6 is a diagram showing an example of a wireless LAN transmission system according to the present invention.

この図において、31はセンサーシステム、32はセンサーシステム31からの測定データを短距離(数10m程度)送信する無線LAN送信部、33は無線LAN送信部32から送信された測定データを受信する短距離無線LAN受信部、34は指令所、35はセンサーシステム31と指令所34に接続される電源である。   In this figure, 31 is a sensor system, 32 is a wireless LAN transmission unit that transmits measurement data from the sensor system 31 over a short distance (several tens of meters), and 33 is a short circuit that receives measurement data transmitted from the wireless LAN transmission unit 32. The distance wireless LAN receiving unit 34 is a command station, and 35 is a power source connected to the sensor system 31 and the command station 34.

ここでは、センサーシステム31から、測定データを短距離(数10m程度)無線LAN送信部32へ送り、次いで、短距離無線LAN受信部33へ送る。さらに、長距離(数100m程度)無線LANの送受信によりリレー形式で指令所34まで伝送する。   Here, the measurement data is sent from the sensor system 31 to the short distance (about several tens of meters) wireless LAN transmitter 32 and then to the short distance wireless LAN receiver 33. Further, it is transmitted to the command station 34 in a relay form by transmission / reception of a long distance (about several hundreds of meters) wireless LAN.

また、無線LAN方式に代えて、RF−IDタグ方式を用いた伝送システムを用いるようにしてもよい。   Further, a transmission system using an RF-ID tag method may be used instead of the wireless LAN method.

図7は本発明にかかるRF−IDタグの伝送システム例を示す図である。   FIG. 7 is a diagram showing an example of a transmission system for an RF-ID tag according to the present invention.

この図において、41はセンサーシステムであり、ここでは、センサーはそれぞれIDタグを備えている。42はセンサーシステム41からそのセンサーのID情報とともに、測定データを送信するRF−IDタグ送信部、43はRF−IDタグ送信部42から送信されたID情報と測定データを受信する携帯用RF−IDタグ受信部である。   In this figure, reference numeral 41 denotes a sensor system. Here, each sensor has an ID tag. 42 is an RF-ID tag transmitter that transmits measurement data together with ID information of the sensor from the sensor system 41, and 43 is a portable RF-receiver that receives ID information and measurement data transmitted from the RF-ID tag transmitter 42. An ID tag receiving unit.

ここでは、それぞれのセンサーシステム41からのID情報と測定データをRF−IDタグ送信部42を介してRF−IDタグ受信部43で収集するようにしている。   Here, ID information and measurement data from each sensor system 41 are collected by the RF-ID tag receiver 43 via the RF-ID tag transmitter 42.

次に、本発明にかかる評価システムについて説明する。   Next, the evaluation system according to the present invention will be described.

評価システムでは損傷度評価手法の構築を行う。具体的には、最大応答部材角と損傷レベルとの関係をパラメータより把握し、簡易な標準値の数表として表す。この標準値を用いて、各柱の損傷レベルの閾値とする。   In the evaluation system, a damage evaluation method is constructed. Specifically, the relationship between the maximum response member angle and the damage level is ascertained from parameters and represented as a simple standard number table. This standard value is used as a threshold for the damage level of each column.

表2に入力パラメータの種類を示す。   Table 2 shows the types of input parameters.

このようにして、損傷レベル閾値の設定から評価システムのアウトプットの概念(表3)〜(表5)が示される。 In this way, the concept of the output of the evaluation system (Table 3) to (Table 5) is shown from the setting of the damage level threshold.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。 In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムは、高架橋柱の損傷度合を広範囲に精確に測定することができる。   The earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct of the present invention can accurately measure the degree of damage of the viaduct in a wide range.

本発明の実施例を示す高架橋柱の最大応答部材角を測定するシステム測定装置を用いた地震災害計測システムの模式図である。It is a schematic diagram of the earthquake disaster measurement system using the system measuring apparatus which measures the maximum response member angle of the viaduct pillar which shows the Example of this invention. 本発明の実施例を示すセンサーシステムの模式図である。It is a schematic diagram of a sensor system showing an embodiment of the present invention. 図2における機械式センサーとしてのピークセンサーの模式図である。It is a schematic diagram of the peak sensor as a mechanical sensor in FIG. 本発明の実施例を示す最大応答部材角測定装置の外観を示す代用図面としての写真である。It is the photograph as a substitute drawing which shows the external appearance of the maximum response member angle measuring apparatus which shows the Example of this invention. 本発明にかかる無線LANの伝送システム例を示す代用図面としての写真である。It is the photograph as a substitute drawing which shows the example of the transmission system of the wireless LAN concerning this invention. 本発明にかかる無線LANの伝送システム例を示す図である。It is a figure which shows the example of the transmission system of the wireless LAN concerning this invention. 本発明にかかるRF−IDタグの伝送システム例を示す図である。It is a figure which shows the transmission system example of the RF-ID tag concerning this invention.

符号の説明Explanation of symbols

1 高架橋柱
2,31,41 センサーシステム
3 伝送システム
4 評価システム
11 高架橋柱
11A 塑性ヒンジ区間
12 上層梁
13A 第1のピークセンサー(X方向に配置)
13B 第2のピークセンサー(Y方向に配置)
14 第1の治具
15 センサー部と上層梁との接続箇所
16 アーム
17 第2の治具
18 アーム揺動部
19 2層のボールベアリング
20 第2の治具と高架橋柱との接続箇所
21 ケース部分
22 第1の可動部分
23 第2の可動部分
24 正側
25 負側
26 正側最大値検出機構
27,29 ポテンショメータ
28 負側最大値検出機構
32 無線LAN送信部
33 短距離無線LAN受信部
34 指令所
35 電源
42 RF−IDタグ送信部
43 携帯用RF−IDタグ受信部
DESCRIPTION OF SYMBOLS 1 Viaduct pillar 2,31,41 Sensor system 3 Transmission system 4 Evaluation system 11 Viaduct pillar 11A Plastic hinge area 12 Upper beam 13A 1st peak sensor (arranged in X direction)
13B Second peak sensor (arranged in the Y direction)
DESCRIPTION OF SYMBOLS 14 1st jig | tool 15 Connection location of sensor part and upper layer beam 16 Arm 17 2nd jig | tool 18 Arm rocking | fluctuation part 19 2 layer ball bearing 20 Connection location of 2nd jig | tool and viaduct pillar 21 Case Portion 22 First movable portion 23 Second movable portion 24 Positive side 25 Negative side 26 Positive maximum value detection mechanism 27, 29 Potentiometer 28 Negative maximum value detection mechanism 32 Wireless LAN transmission unit 33 Short range wireless LAN reception unit 34 Command station 35 Power source 42 RF-ID tag transmitter 43 Portable RF-ID tag receiver

Claims (5)

(a)高架橋柱の2方向の最大応答部材角を測定するセンサーシステムと、
(b)該センサーシステムからの計測データを伝送する無線LAN方式もしくはRF−IDタグ方式の伝送システムと、
(c)該伝送システムから伝送される計測データを取込み、前記高架橋柱の損傷度評価を行う評価システムとを具備することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。
(A) a sensor system for measuring a maximum response member angle in two directions of a viaduct pillar;
(B) a wireless LAN transmission system or an RF-ID tag transmission system for transmitting measurement data from the sensor system;
(C) Seismic disaster measurement using a maximum response member angle measuring device for a viaduct, which includes an evaluation system that takes measurement data transmitted from the transmission system and evaluates the degree of damage of the viaduct system.
請求項1記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムは、前記高架橋柱のブロック毎に1個程度配置することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。   2. The maximum response of a viaduct column according to claim 1, wherein the sensor system is arranged about one for each block of the viaduct column. Earthquake disaster measurement system using a member angle measuring device. 請求項2記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムから、測定データを短距離の無線LAN送信部へ送り、次いで、短距離無線LAN受信部へ送り、さらに、長距離の無線LANの送受信によりリレー形式で指令所へと伝送することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。   The earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct according to claim 2, wherein measurement data is sent from the sensor system to a short-range wireless LAN transmitter, and then to a short-range wireless LAN receiver. An earthquake disaster measurement system using a maximum response member angle measuring device of a viaduct pillar, which is further transmitted to a command station in a relay form by transmission / reception of a long-distance wireless LAN. 請求項2記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムから、測定データをRF−IDタグ方式を用いて指令所へ伝送することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。   The earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct according to claim 2, wherein measurement data is transmitted from the sensor system to a command center using an RF-ID tag system. Earthquake disaster measurement system using the column maximum response member angle measurement device. 請求項1記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記評価システムは、高架橋柱の最大応答部材角と高架橋柱の損傷レベルとの関係を把握することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。   2. The earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct according to claim 1, wherein the evaluation system grasps a relationship between a maximum response member angle of the viaduct column and a damage level of the viaduct column. Seismic disaster measurement system using the maximum response member angle measurement device for viaduct columns.
JP2006228683A 2006-08-25 2006-08-25 Seismic disaster measurement system using maximum response member angle measuring device of viaduct column Active JP4908109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228683A JP4908109B2 (en) 2006-08-25 2006-08-25 Seismic disaster measurement system using maximum response member angle measuring device of viaduct column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228683A JP4908109B2 (en) 2006-08-25 2006-08-25 Seismic disaster measurement system using maximum response member angle measuring device of viaduct column

Publications (2)

Publication Number Publication Date
JP2008051676A true JP2008051676A (en) 2008-03-06
JP4908109B2 JP4908109B2 (en) 2012-04-04

Family

ID=39235866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228683A Active JP4908109B2 (en) 2006-08-25 2006-08-25 Seismic disaster measurement system using maximum response member angle measuring device of viaduct column

Country Status (1)

Country Link
JP (1) JP4908109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156672A (en) * 2008-12-05 2010-07-15 Sumitomo Osaka Cement Co Ltd Detection method of water in structure, member for the structure, and detection device of water in the structure
JP2011191155A (en) * 2010-03-15 2011-09-29 Railway Technical Research Institute Displacement sensor of structure and displacement measuring system of structure using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769157A (en) * 2017-02-23 2017-05-31 上海喆之信息科技有限公司 A kind of bridge structure reliability assessment system based on wireless network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09212784A (en) * 1996-01-31 1997-08-15 Matsushita Electric Ind Co Ltd Beam deviation information gathering system for high-level road and information transmitter therefor
JP2000337803A (en) * 1999-05-31 2000-12-08 Sumitomo Forestry Co Ltd Auxiliary tool for measuring interlayer displacement
JP2000346633A (en) * 1999-06-03 2000-12-15 Koden Electronics Co Ltd Distance variation sensor
JP2001338382A (en) * 2000-05-29 2001-12-07 Takenaka Komuten Co Ltd Measuring instrument and monitoring system
JP2005207867A (en) * 2004-01-22 2005-08-04 Shimizu Corp Status checking system for structure
JP2005316633A (en) * 2004-04-28 2005-11-10 Hitachi Ltd Inspection and monitoring method for building, structure or equipment accompanying them
JP2006098128A (en) * 2004-09-28 2006-04-13 Mitsui Eng & Shipbuild Co Ltd Collapse detector and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09212784A (en) * 1996-01-31 1997-08-15 Matsushita Electric Ind Co Ltd Beam deviation information gathering system for high-level road and information transmitter therefor
JP2000337803A (en) * 1999-05-31 2000-12-08 Sumitomo Forestry Co Ltd Auxiliary tool for measuring interlayer displacement
JP2000346633A (en) * 1999-06-03 2000-12-15 Koden Electronics Co Ltd Distance variation sensor
JP2001338382A (en) * 2000-05-29 2001-12-07 Takenaka Komuten Co Ltd Measuring instrument and monitoring system
JP2005207867A (en) * 2004-01-22 2005-08-04 Shimizu Corp Status checking system for structure
JP2005316633A (en) * 2004-04-28 2005-11-10 Hitachi Ltd Inspection and monitoring method for building, structure or equipment accompanying them
JP2006098128A (en) * 2004-09-28 2006-04-13 Mitsui Eng & Shipbuild Co Ltd Collapse detector and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156672A (en) * 2008-12-05 2010-07-15 Sumitomo Osaka Cement Co Ltd Detection method of water in structure, member for the structure, and detection device of water in the structure
JP2011191155A (en) * 2010-03-15 2011-09-29 Railway Technical Research Institute Displacement sensor of structure and displacement measuring system of structure using the same

Also Published As

Publication number Publication date
JP4908109B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
US8069579B2 (en) Train rail alignment and distance system
CN105043278B (en) A kind of method of contactless multimetering bore inner diameter
JP4825064B2 (en) Position measuring system and position measuring method
US10762619B2 (en) Imaging support device and imaging support method
CN102712091A (en) Embedded arm strain sensors
TR201816240T4 (en) Measuring system and method for measuring an angle.
CN103017672A (en) Non-contact nondestructive testing method for bridge structure
CN109282785A (en) A kind of deformation monitoring method of the elastically supported plate based on strain monitoring
KR101672777B1 (en) Apparatus and system for inspecting concrete electric pole using vision
Zarate Garnica et al. Monitoring structural responses during load testing of reinforced concrete bridges: A review
JP4908109B2 (en) Seismic disaster measurement system using maximum response member angle measuring device of viaduct column
CN101813499A (en) Method and device for calibrating three-dimensional micro tactile sensor
CN102818547B (en) Tool for measuring travel of vehicular clutch pedal
JP5064740B2 (en) Maximum response member angle measuring device for viaduct columns
CN102706310A (en) Cantilever crane angle detecting method, device and pump truck with device
JP5556018B2 (en) Standard black position accuracy monitoring system, reference black position accuracy monitoring method
JP2005207867A (en) Status checking system for structure
EP2244053A1 (en) Coordinate Measuring Machine
CN101487211B (en) Existing line three-dimensional restriction measuring method
CN103968787A (en) Measuring method and system for measuring positions of elements of a structure
CN113376665A (en) Reliability verification method for GNSS accurate positioning of position of cross arm of building tower crane
CN207248466U (en) A kind of industrial robot vibrates path analysis system data acquisition device
JP2013015385A (en) Three-dimensional digital recording system
CN101556150A (en) Method for correcting installation position of angular position sensor
CN203228792U (en) Detection device for vehicle gauges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350