JP2008049932A - Contact evasion support device of vehicle - Google Patents

Contact evasion support device of vehicle Download PDF

Info

Publication number
JP2008049932A
JP2008049932A JP2006230168A JP2006230168A JP2008049932A JP 2008049932 A JP2008049932 A JP 2008049932A JP 2006230168 A JP2006230168 A JP 2006230168A JP 2006230168 A JP2006230168 A JP 2006230168A JP 2008049932 A JP2008049932 A JP 2008049932A
Authority
JP
Japan
Prior art keywords
vehicle
obstacle
target speed
driver
hydraulic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006230168A
Other languages
Japanese (ja)
Other versions
JP4757148B2 (en
Inventor
Yasushi Teruda
八州志 照田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006230168A priority Critical patent/JP4757148B2/en
Publication of JP2008049932A publication Critical patent/JP2008049932A/en
Application granted granted Critical
Publication of JP4757148B2 publication Critical patent/JP4757148B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely evade contact, without imparting a sense of incongruity to a driver, when supporting contact evasion with an obstacle by automatic braking. <P>SOLUTION: When an ultrasonic sensor Sa detects a distance of the obstacle in front of a vehicle, a target speed calculating means M1 calculates a target speed of the vehicle in response to the distance of its obstacle. Since a braking force control means M6 controls braking force based on its target speed, the contact with the obstacle can be surely evaded by supporting spontaneous contact evading operation of the driver by reducing a vehicle speed by the automatic braking. At this time, since the target speed calculated by the target speed calculating means M1 is corrected in response to any of a steering angle δ, a steering angle speed dδ/dt and accelerator opening θAP of a steering wheel by operation of the driver, interference with the spontaneous contact evading operation of the driver when performing excessive automatic braking, is prevented, and the sense of incongruity of the driver can be eliminated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、車両前方の障害物の状況に応じて該障害物との接触回避を支援する制動力を発生させる車両の接触回避支援装置に関する。   The present invention relates to a vehicle contact avoidance assist device that generates a braking force that assists in avoiding contact with an obstacle according to the state of the obstacle ahead of the vehicle.

車両の周囲に複数の遠距離検知センサおよび複数の近距離検知センサを配置し、予め設定した危険検知エリアに他車両のような障害物が入ったことを前記各センサが検知すると、運転者に警告を与えて自発的な接触回避操作を促すものが、下記特許文献1により公知である。   When a plurality of long-distance detection sensors and a plurality of short-distance detection sensors are arranged around the vehicle and each of the sensors detects that an obstacle such as another vehicle has entered a preset danger detection area, A device that gives a warning and prompts a spontaneous contact avoidance operation is known from Patent Document 1 below.

また周辺監視手段により自車周辺の障害物の距離を検知し、この距離に応じて算出した制動要求値に基づいて車両を自動制動することで、障害物との距離がどのような場合であっても、運転者にとって良好なフィーリングで車両を自動的に停止させるものが、下記特許文献2により公知である。
特開2003−329773号公報 特開2004−50925号公報
In addition, by detecting the distance of obstacles around the vehicle with the surrounding monitoring means and automatically braking the vehicle based on the braking request value calculated according to this distance, the distance to the obstacle can be any. However, it is known from Patent Document 2 below that the vehicle is automatically stopped with a good feeling for the driver.
JP 2003-329773 A JP 2004-50925 A

ところで、上記特許文献1に記載されたものは、自車が障害物と接触する可能性があるときに、運転者に警告を発するだけで自動制動を行わないので、運転者による接触回避操作を充分に支援できないという問題があった。   By the way, what is described in Patent Document 1 does not perform automatic braking only by issuing a warning to the driver when there is a possibility that the vehicle is in contact with an obstacle. There was a problem of not being able to support enough.

また上記特許文献2に記載されたものは、運転者が自発的にステアリング操作を行って接触回避を行う場合や、運転者が自発的に加速を行う場合について考慮していないため、過剰な自動制動が行われて運転者に違和感を与える可能性があった。   In addition, the above-described patent document 2 does not consider the case where the driver voluntarily performs steering operation to avoid contact or the case where the driver voluntarily accelerates. There was a possibility that the driver would feel uncomfortable by braking.

本発明は前述の事情に鑑みてなされたもので、自動制動による障害物との接触回避支援を行う場合に、運転者に違和感を与えることなく確実な接触回避を可能にすることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to enable reliable contact avoidance without giving a driver a sense of incongruity when assisting contact avoidance with an obstacle by automatic braking. .

上記目的を達成するために、請求項1に記載された発明によれば、車両前方の障害物の状況に応じて該障害物との接触回避を支援する制動力を発生させる車両の接触回避支援装置であって、車両前方の障害物の距離を検知する前方障害物センサと、前方障害物センサで検知した障害物の距離に応じて車両の目標速度を算出する目標速度算出手段と、運転者による車両の操作状態に応じて前記目標速度を補正する目標速度補正手段と、目標速度補正手段で補正された目標速度に基づいて制動力を制御する制動力制御手段とを備えたことを特徴とする車両の接触回避支援装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, a vehicle contact avoidance support that generates a braking force that supports contact avoidance with an obstacle according to the state of the obstacle ahead of the vehicle. A front obstacle sensor for detecting a distance of an obstacle ahead of the vehicle, a target speed calculating means for calculating a target speed of the vehicle according to the distance of the obstacle detected by the front obstacle sensor, and a driver A target speed correcting means for correcting the target speed in accordance with the operation state of the vehicle, and a braking force control means for controlling the braking force based on the target speed corrected by the target speed correcting means. A vehicle contact avoidance support device is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記運転者による車両の操作状態は、操舵角、操舵角速度およびアクセル開度の何れかであることを特徴とする車両の接触回避支援装置が提案される。   According to the invention described in claim 2, in addition to the configuration of claim 1, the operation state of the vehicle by the driver is any one of a steering angle, a steering angular velocity, and an accelerator opening. A vehicle contact avoidance support device is proposed.

また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記目標速度と実車速との偏差をブレーキ液圧に換算する液圧換算手段と、運転者のブレーキ操作に応じて前記ブレーキ液圧の変化量を制限する液圧変化量制限手段とを備えたことを特徴とする車両の接触回避支援装置が提案される。   According to the invention described in claim 3, in addition to the configuration of claim 1 or claim 2, hydraulic pressure conversion means for converting the deviation between the target speed and the actual vehicle speed into brake hydraulic pressure, and the driver There is proposed a vehicle contact avoidance assisting device comprising hydraulic pressure change amount limiting means for limiting the change amount of the brake hydraulic pressure in accordance with the brake operation.

また請求項4に記載された発明によれば、請求項3の構成に加えて、前記液圧変化量制限手段は、運転者がブレーキ操作をしているときはブレーキ液圧の立ち上がりを遅くして立ち下がりを早くし、運転者がブレーキ操作をしていないときはブレーキ液圧の立ち上がりを早くして立ち下がりを遅くすることを特徴とする車両の接触回避支援装置が提案される。   According to a fourth aspect of the invention, in addition to the configuration of the third aspect, the hydraulic pressure change amount limiting means delays the rise of the brake hydraulic pressure when the driver is operating the brake. Thus, a vehicle contact avoidance assisting device is proposed, characterized in that the vehicle speeds up when the driver does not perform a brake operation, and the brake fluid pressure rises faster and falls later.

また請求項5に記載された発明によれば、請求項1〜請求項4の何れか1項の構成に加えて、車両側方の障害物を検知する側方障害物センサと、側方障害物センサの検知領域を設定する検知領域設定手段と、側方障害物センサで検知した車両側方の障害物の距離に応じて制動力制御手段に出力する目標ブレーキ液圧を算出する目標液圧算出手段とを備え、前記検知領域設定手段は操舵角が小さいときほど前記検知領域の後端を車両前方側に移動させることを特徴とする車両の接触回避支援装置が提案される。   According to the invention described in claim 5, in addition to the configuration of any one of claims 1 to 4, a side obstacle sensor for detecting an obstacle on the side of the vehicle, and a side obstacle A target fluid pressure for calculating a target brake fluid pressure to be output to the braking force control device according to the distance between the obstacles detected by the side obstacle sensor and the side obstacles detected by the side obstacle sensor; A vehicle contact avoidance assisting device is proposed in which the detection region setting unit moves the rear end of the detection region to the front side of the vehicle as the steering angle becomes smaller.

尚、実施の形態の超音波センサSaは本発明の前方障害物センサに対応し、実施の形態のテレビカメラSbは本発明の側方障害物センサに対応し、実施の形態の第1目標速度加算量算出手段21、第2目標速度加算量算出手段24および第3目標速度加算量算出手段25は本発明の目標速度補正手段に対応する。   The ultrasonic sensor Sa of the embodiment corresponds to the forward obstacle sensor of the present invention, the television camera Sb of the embodiment corresponds to the side obstacle sensor of the present invention, and the first target speed of the embodiment. The addition amount calculation means 21, the second target speed addition amount calculation means 24, and the third target speed addition amount calculation means 25 correspond to the target speed correction means of the present invention.

請求項1の構成によれば、前方障害物センサが車両前方の障害物の距離を検知すると、その障害物の距離に応じて目標速度算出手段が車両の目標速度を算出し、その目標速度に基づいて制動力制御手段が制動力を制御するので、車速を自動制動により減速することで運転者の自発的な接触回避操作を支援して障害物との接触を確実に回避することができる。このとき運転者による車両の操作状態に応じて目標速度補正手段が目標速度を補正するので、過剰な自動制動が実行されて運転者の自発的な接触回避操作と干渉するのを防止し、運転者の違和感を解消することができる。   According to the configuration of the first aspect, when the front obstacle sensor detects the distance of the obstacle ahead of the vehicle, the target speed calculation means calculates the target speed of the vehicle according to the distance of the obstacle, and sets the target speed to the target speed. Based on this, the braking force control means controls the braking force, so that the driver's spontaneous contact avoidance operation can be supported by decelerating the vehicle speed by automatic braking, so that contact with an obstacle can be reliably avoided. At this time, since the target speed correction means corrects the target speed according to the operation state of the vehicle by the driver, it is possible to prevent excessive automatic braking from being performed and interfere with the driver's spontaneous contact avoidance operation. The discomfort of the person can be eliminated.

また請求項2の構成によれば、操舵角、操舵角速度およびアクセル開度の何れかに応じて目標速度を補正するので、運転者による車両の操作状態を的確に反映した目標速度を得ることができる。   According to the second aspect of the present invention, the target speed is corrected according to any one of the steering angle, the steering angular speed, and the accelerator opening, so that the target speed that accurately reflects the operation state of the vehicle by the driver can be obtained. it can.

また請求項3の構成によれば、液圧換算手段が目標速度と実車速との偏差をブレーキ液圧に換算し、運転者のブレーキ操作に応じて液圧変化量制限手段が前記ブレーキ液圧の変化量を制限するので、運転者のブレーキ操作と自動制動との干渉を最小限に抑えて運転者の違和感を解消することができる。   According to the third aspect of the present invention, the hydraulic pressure conversion means converts the deviation between the target speed and the actual vehicle speed into the brake hydraulic pressure, and the hydraulic pressure change amount limiting means responds to the driver's brake operation. Therefore, the driver's uncomfortable feeling can be eliminated by minimizing the interference between the driver's braking operation and automatic braking.

また請求項4の構成によれば、運転者がブレーキ操作をしているときは、液圧変化量制限手段がブレーキ液圧の立ち上がりを遅くして立ち下がりを早くするので自動制動の利きが鈍くなり、運転者の自発的なブレーキ操作を優先することで運転者の違和感を解消することができる。また運転者がブレーキ操作をしていないときは、液圧変化量制限手段がブレーキ液圧の立ち上がりを早くして立ち下がりを遅くするので自動制動の利きが鋭くなり、車両を素早く減速して障害物との接触を確実に回避することができる。   According to the fourth aspect of the present invention, when the driver is operating the brake, the fluid pressure change amount limiting means delays the rise of the brake fluid pressure and accelerates the fall, so that the automatic braking is less effective. Therefore, the driver's uncomfortable feeling can be eliminated by giving priority to the driver's spontaneous braking operation. Also, when the driver is not operating the brakes, the hydraulic pressure change limiting means speeds up the brake fluid pressure and slows it down, making the automatic braking sharper and slowing down the vehicle quickly. Contact with an object can be reliably avoided.

また請求項5の構成によれば、側方障害物センサが車両側方の障害物を検知する検知領域を検知領域設定手段により設定し、目標液圧算出手段が制動力制御手段に出力する目標ブレーキ液圧を車両側方の障害物の距離に応じて算出するので、自動制動により車両側方の障害物との接触を一層確実に回避することができる。このとき操舵角が小さいときほど検知領域設定手段が検知領域の後端を車両前方側に移動させるので、操舵角が小さくて車両の旋回半径が大きいために内輪差が小さく、車両の後方寄りの障害物と接触する可能性が低い場合には検知領域の後端を車両前方側に移動させ、逆に操舵角が大きくて車両の旋回半径が小さいために内輪差が大きく、車両の後方寄りの障害物と接触する可能性が高い場合には検知領域の後端を車両後方側に移動させることで、障害物との接触を回避するための自動制動を的確に行うことができる。   According to the fifth aspect of the present invention, the detection area setting means sets the detection area where the side obstacle sensor detects the obstacle on the side of the vehicle, and the target hydraulic pressure calculation means outputs the target to the braking force control means. Since the brake fluid pressure is calculated according to the distance of the obstacle on the side of the vehicle, contact with the obstacle on the side of the vehicle can be more reliably avoided by automatic braking. At this time, as the steering angle is smaller, the detection area setting means moves the rear end of the detection area to the front side of the vehicle. Therefore, the steering angle is small and the turning radius of the vehicle is large. When the possibility of contact with an obstacle is low, the rear end of the detection area is moved to the front side of the vehicle. Conversely, the steering angle is large and the turning radius of the vehicle is small. When the possibility of contact with an obstacle is high, the automatic braking for avoiding contact with the obstacle can be accurately performed by moving the rear end of the detection region to the rear side of the vehicle.

以下、本発明の実施の形態を添付の図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図6は本発明の実施の形態を示すもので、図1は接触回避支援装置を搭載した車両を示す図、図2は電子制御ユニットのブロック図、図3は目標速度算出手段のブロック図、図4は液圧変化量制限手段のブロック図、図5は側方検知目標液圧算出手段のブロック図、図6は車両がクランク状の路地を通過するときの作用説明図である。   1 to 6 show an embodiment of the present invention. FIG. 1 is a view showing a vehicle equipped with a contact avoidance support device, FIG. 2 is a block diagram of an electronic control unit, and FIG. FIG. 4 is a block diagram of the hydraulic pressure change amount limiting means, FIG. 5 is a block diagram of the side detection target hydraulic pressure calculating means, and FIG. 6 is an operation explanatory diagram when the vehicle passes through the crank-shaped alley. .

図1に示すように、四輪の自動車は、フロントバンパーに車体前方の障害物を検知する複数(実施の形態では6個)の超音波センサSa…を備えるとともに、左右の車体側部に車体側方の障害物を検知する複数(実施の形態では2個)のテレビカメラSb,Sbを備える。またステアリングホイール11には操舵角δを検知する操舵角センサScが設けられ、左右の前輪WFL,WFRおよび左右の後輪WRL,WRRには車速Vを検知する車速センサSd…が設けられ、ブレーキペダル12にはブレーキ液圧Pを検知するブレーキ液圧センサSeが設けられ、アクセルペダル13にはアクセル開度θAPを検知するアクセル開度センサSfが設けられる。これらの超音波センサSa…、テレビカメラSb,Sb、操舵角センサSc、車速センサSd…、ブレーキ液圧センサSeおよびアクセル開度センサSfは、車輪の制動力を制御する電子制御ユニットUに接続される。   As shown in FIG. 1, a four-wheeled vehicle includes a plurality of (six in the embodiment) ultrasonic sensors Sa for detecting an obstacle in front of the vehicle body on a front bumper, and the vehicle body side on the left and right vehicle body sides. A plurality of (two in the embodiment) television cameras Sb and Sb that detect the obstacle. The steering wheel 11 is provided with a steering angle sensor Sc for detecting the steering angle δ, and the left and right front wheels WFL, WFR and the left and right rear wheels WRL, WRR are provided with a vehicle speed sensor Sd. The pedal 12 is provided with a brake fluid pressure sensor Se for detecting the brake fluid pressure P, and the accelerator pedal 13 is provided with an accelerator opening sensor Sf for detecting the accelerator opening θAP. These ultrasonic sensors Sa..., Television cameras Sb and Sb, steering angle sensor Sc, vehicle speed sensor Sd..., Brake hydraulic pressure sensor Se, and accelerator opening sensor Sf are connected to an electronic control unit U that controls the braking force of the wheels. Is done.

図2に示すように、電子制御ユニットUはブレーキキャリパ14を介して車速Vを制御するもので、目標速度算出手段M1と、リミット手段M2と、液圧換算手段M3と、液圧変化量制限手段M4と、側方検知目標液圧算出手段M5と、制動力制御手段M6と、減算回路15と、加算回路16,17とを備える。   As shown in FIG. 2, the electronic control unit U controls the vehicle speed V via the brake caliper 14, and the target speed calculation means M1, the limit means M2, the hydraulic pressure conversion means M3, and the hydraulic pressure change amount limit. Means M4, side detection target hydraulic pressure calculation means M5, braking force control means M6, subtraction circuit 15, and addition circuits 16, 17 are provided.

図3は電子制御ユニットUの目標速度算出手段M1の詳細を示すものである。6個の超音波センサSa…の検知データと、操舵角センサScで検知した操舵角δとが入力される超音波センサ出力選択手段18は、操舵角δに応じて、つまり車両の進行方向に応じて6個の超音波センサSa…の出力の何れかを選択する。即ち、6個の超音波センサSa…の検知領域をそれぞれ右側から左側にA1〜A6とすると、例えば、操舵角δが右操舵方向の限界角であれば、最も右側の検知領域A1に対応する超音波センサSaの出力が選択され、操舵角δが左操舵方向の限界角であれば、最も左側の検知領域A6に対応する超音波センサSaの出力が選択され、操舵角δが中立(ゼロ)であれば、中央の二つの検知領域A3,A4に対応する二つの超音波センサSa,Saの出力の平均値が選択される。このように、車両の進行方向に応じて、一つの超音波センサSaの出力、あるいは隣接する二つの超音波センサSa,Saの出力の平均値を採用することで、車両の進行方向に存在する障害物の距離を精度良く検知することができる。   FIG. 3 shows details of the target speed calculation means M1 of the electronic control unit U. The ultrasonic sensor output selection means 18 to which the detection data of the six ultrasonic sensors Sa ... and the steering angle δ detected by the steering angle sensor Sc are input corresponds to the steering angle δ, that is, in the traveling direction of the vehicle. Accordingly, one of the outputs of the six ultrasonic sensors Sa ... is selected. That is, assuming that the detection areas of the six ultrasonic sensors Sa ... are A1 to A6 from the right side to the left side, for example, if the steering angle δ is the limit angle in the right steering direction, it corresponds to the rightmost detection area A1. If the output of the ultrasonic sensor Sa is selected and the steering angle δ is the limit angle in the left steering direction, the output of the ultrasonic sensor Sa corresponding to the leftmost detection area A6 is selected and the steering angle δ is neutral (zero) ), The average value of the outputs of the two ultrasonic sensors Sa and Sa corresponding to the two central detection areas A3 and A4 is selected. Thus, depending on the traveling direction of the vehicle, the average value of the output of one ultrasonic sensor Sa or the output of two adjacent ultrasonic sensors Sa and Sa is used, so that it exists in the traveling direction of the vehicle. The distance of the obstacle can be detected with high accuracy.

目標速度算出手段19は、超音波センサ出力選択手段18が出力する障害物の距離をパラメータとして、障害物との接触を回避するための目標速度をマップ検索する。障害物の距離が小さい場合には衝突を回避するのが困難なために目標速度は小さくなり、逆に障害物の距離が大きい場合には衝突を回避するのが容易なために目標速度は大きくなる。   The target speed calculation means 19 searches the map for a target speed for avoiding contact with the obstacle, using the distance of the obstacle output by the ultrasonic sensor output selection means 18 as a parameter. When the obstacle distance is small, it is difficult to avoid the collision, so the target speed is small. Conversely, when the obstacle distance is large, the collision is easy to avoid, so the target speed is large. Become.

操舵角センサScで検知した操舵角δは絶対値算出回路20で絶対値に変換され、その絶対値をパラメータとして第1目標速度加算量算出手段21が第1目標速度加算量算をマップ検索する。また操舵角センサScで検知した操舵角δは微分回路22で微分されて操舵角速度dδ/dtとされた後に、絶対値算出回路23で絶対値に変換され、その絶対値をパラメータとして第2目標速度加算量算出手段24が第2目標速度加算量算をマップ検索する。アクセル開度センサSfで検知したアクセル開度θAPをパラメータとして、第3目標速度加算量算出手段25が第3目標速度加算量算をマップ検索する。   The steering angle δ detected by the steering angle sensor Sc is converted into an absolute value by the absolute value calculation circuit 20, and the first target speed addition amount calculation means 21 searches the map for the first target speed addition amount calculation using the absolute value as a parameter. . Further, the steering angle δ detected by the steering angle sensor Sc is differentiated by the differentiation circuit 22 to obtain the steering angular velocity dδ / dt, and then converted into an absolute value by the absolute value calculation circuit 23. The absolute value is used as a parameter for the second target. The speed addition amount calculation means 24 searches the map for the second target speed addition amount calculation. The third target speed addition amount calculation means 25 searches the map for the third target speed addition amount calculation using the accelerator opening degree θAP detected by the accelerator opening degree sensor Sf as a parameter.

これらの第1〜第3目標速度加算量算は加算回路26において相互に加算され、その加算値が加算回路27において目標速度算出手段19でマップ検索した目標速度に加算されることで、その目標速度が操舵角δ、操舵角速度dδ/dtおよびアクセル開度θAPに応じた値に補正される。   These first to third target speed addition amount calculations are added to each other in the addition circuit 26, and the addition value is added to the target speed searched for by the target speed calculation means 19 in the addition circuit 27, so that the target is obtained. The speed is corrected to a value corresponding to the steering angle δ, the steering angular speed dδ / dt, and the accelerator opening θAP.

第1目標速度加算量算出手段21においてマップ検索される第1目標速度加算量は、操舵角δが大きいときほど大きくなっており、これにより運転者が操舵の意思を持っているときは、自動制動により運転者の意思に反して目標速度が低下するのを最小限に抑えることができる。   The first target speed addition amount searched for in the map by the first target speed addition amount calculating means 21 is larger as the steering angle δ is larger, so that when the driver is willing to steer, the first target speed addition amount is automatically It is possible to minimize a decrease in the target speed against the intention of the driver due to braking.

また第2目標速度加算量算出手段24においてマップ検索される第2目標速度加算量算は、操舵角速度dδ/dtが大きいときほど大きくなっており、これにより運転者が操舵の意思を持っているときは、自動制動により運転者の意思に反して目標速度が低下するのを最小限に抑えることができる。   Further, the second target speed addition amount calculation searched for in the map by the second target speed addition amount calculation means 24 becomes larger as the steering angular speed dδ / dt is larger, and the driver has an intention to steer. Sometimes, the automatic braking can minimize the decrease in the target speed against the driver's intention.

また第3目標速度加算量算出手段25においてマップ検索される第3目標速度加算量算は、アクセル開度θAPが大きいときほど大きくなっており、これにより運転者が加速の意思を持っているときは、自動制動により運転者の意思に反して目標速度が低下するのを最小限に抑えることができる。   Further, the third target speed addition amount map searched for by the third target speed addition amount calculation means 25 becomes larger as the accelerator opening degree θAP is larger, and thus when the driver has an intention to accelerate. Can minimize the reduction in the target speed against the driver's intention due to automatic braking.

このように、目標速度算出手段19が算出した目標速度を、運転者の自発的な接触回避操作を示すパラメータである操舵角δ、操舵角速度dδ/dtおよびアクセル開度θAPにより増加方向に補正するので、運転者の自発的な接触回避操作が自動制動と干渉するのを最小限に抑えて運転者の違和感を解消することができる。   Thus, the target speed calculated by the target speed calculation means 19 is corrected in the increasing direction by the steering angle δ, the steering angular speed dδ / dt, and the accelerator opening θAP that are parameters indicating the driver's spontaneous contact avoidance operation. Therefore, it is possible to eliminate the driver's uncomfortable feeling by minimizing that the driver's spontaneous contact avoidance operation interferes with the automatic braking.

図2に戻り、目標速度算出手段M1が算出した目標速度は、車速センサSd…で検知した車速Vから減算回路15で減算される。この減算値(偏差)はリミット手段M2で所定範囲(例えば、0km/h〜20km/h)にリミット処理された後に、液圧換算手段M3でブレーキ液圧に換算される。そして液圧換算手段M3が出力するブレーキ液圧と、ブレーキ液圧センサSeで検知したブレーキ液圧Pとが、液圧変化量制限手段M4に入力される。ここでは、ブレーキ液圧センサSeはブレーキペダル12が踏まれているか否かを検知するセンサ、つまりブレーキスイッチとして機能する。   2, the target speed calculated by the target speed calculation means M1 is subtracted by the subtraction circuit 15 from the vehicle speed V detected by the vehicle speed sensor Sd. This subtraction value (deviation) is subjected to limit processing within a predetermined range (for example, 0 km / h to 20 km / h) by the limit means M2, and then converted to brake hydraulic pressure by the hydraulic pressure conversion means M3. The brake hydraulic pressure output by the hydraulic pressure conversion means M3 and the brake hydraulic pressure P detected by the brake hydraulic pressure sensor Se are input to the hydraulic pressure change amount limiting means M4. Here, the brake fluid pressure sensor Se functions as a sensor that detects whether or not the brake pedal 12 is depressed, that is, a brake switch.

図4は電子制御ユニットUの液圧変化量制限手段M4の詳細を示すものである。液圧変化量制限手段M4は、液圧換算手段M3が出力するブレーキ液圧をパラメータとして目標ブレーキ液圧をリミット処理する第1目標ブレーキ液圧制限値算出手段28および第2目標ブレーキ液圧制限値算出手段29を備えており、選択手段30は、ブレーキペダル12が踏まれているとき、つまりブレーキ液圧Pが所定値以上のときは第1目標ブレーキ液圧制限値算出手段28の制限値を出力し、ブレーキペダル12が踏まれていないとき、つまりブレーキ液圧Pが所定値未満のときは第2目標ブレーキ液圧制限値算出手段29の制限値を出力する。   FIG. 4 shows details of the hydraulic pressure change limiting means M4 of the electronic control unit U. The hydraulic pressure change amount limiting means M4 includes a first target brake hydraulic pressure limit value calculating means 28 and a second target brake hydraulic pressure limit for limiting the target brake hydraulic pressure with the brake hydraulic pressure output from the hydraulic pressure conversion means M3 as a parameter. The value calculating means 29 is provided, and the selecting means 30 is a limit value of the first target brake fluid pressure limit value calculating means 28 when the brake pedal 12 is depressed, that is, when the brake fluid pressure P is not less than a predetermined value. When the brake pedal 12 is not depressed, that is, when the brake fluid pressure P is less than a predetermined value, the limit value of the second target brake fluid pressure limit value calculating means 29 is output.

ブレーキペダル12が踏まれているときに選択される第1目標ブレーキ液圧制限値算出手段28の制限値は、ブレーキ液圧の立ち上がり時には緩やかに増加し、ブレーキ液圧の立ち下がり時には急激に減少するように設定されている。その理由は、運転者が障害物との接触を回避すべく自発的にブレーキ操作を行っているときには、自動制動による制動力の介入を最小限に抑えて運転者のブレーキ操作を優先するためである。   The limit value of the first target brake fluid pressure limit value calculation means 28 selected when the brake pedal 12 is depressed increases gently when the brake fluid pressure rises, and decreases rapidly when the brake fluid pressure falls. It is set to be. The reason is that when the driver is voluntarily operating the brake to avoid contact with an obstacle, the driver's braking operation is given priority by minimizing the braking force intervention by automatic braking. is there.

一方、ブレーキペダル12が踏まれていないときに選択される第2目標ブレーキ液圧制限値算出手段29の制限値は、ブレーキ液圧の立ち上がり時には急激に増加し、ブレーキ液圧の立ち下がり時には中程度の速度で減少するように設定されている。その理由は、運転者が障害物との接触を回避するためのブレーキ操作を行っていないときには、自動制動による制動力を効果的に発生させるためである。   On the other hand, the limit value of the second target brake fluid pressure limit value calculation means 29 selected when the brake pedal 12 is not depressed increases rapidly when the brake fluid pressure rises and becomes medium when the brake fluid pressure falls. It is set to decrease at a moderate speed. The reason is that when the driver is not performing a brake operation to avoid contact with an obstacle, a braking force by automatic braking is effectively generated.

図5は電子制御ユニットUの側方検知目標液圧算出手段M5の詳細を示すものである。検知領域設定手段31は、操舵角センサScで検知した操舵角δの方向が右側であれば、テレビカメラSb,Sbによる検知領域を車体の右側に設定し、操舵角δの方向が左側であれば、テレビカメラSb,Sbによる検知領域を車体の左側に設定する。絶対値算出回路32で算出した操舵角δの絶対値に基づいて、検知許可x座標算出手段33が検知領域の前端のx座標を設定する。   FIG. 5 shows details of the side detection target hydraulic pressure calculation means M5 of the electronic control unit U. If the direction of the steering angle δ detected by the steering angle sensor Sc is on the right side, the detection area setting means 31 sets the detection area by the television cameras Sb and Sb to the right side of the vehicle body, and the direction of the steering angle δ is on the left side. For example, the detection area by the television cameras Sb and Sb is set on the left side of the vehicle body. Based on the absolute value of the steering angle δ calculated by the absolute value calculation circuit 32, the detection permission x-coordinate calculation means 33 sets the x-coordinate of the front end of the detection area.

そして検知領域設定手段31は前記x座標に応じて検知領域の後端を設定する。即ち、車体前後方向に沿うx軸および車体左右方向に沿うy軸を有する直交座標系において、操舵角δの絶対値が小さいほど、つまりステアリングホイール11を小さく操作したときほど、検知領域の後端のx座標を小さく設定することで、検知領域の後端を車体前方側に移動させる。逆に、操舵角δの絶対値が大きいほど、つまりステアリングホイール11を大きく操作したときほど、検知領域の後端のx座標を大きく設定することで、検知領域の後端を車体後方側に移動させる。   The detection area setting unit 31 sets the rear end of the detection area according to the x coordinate. That is, in the Cartesian coordinate system having the x axis along the longitudinal direction of the vehicle body and the y axis along the lateral direction of the vehicle body, the smaller the absolute value of the steering angle δ, that is, the smaller the steering wheel 11 is operated, Is set to be small, the rear end of the detection area is moved to the front side of the vehicle body. Conversely, the larger the absolute value of the steering angle δ, that is, the greater the steering wheel 11 is operated, the larger the x coordinate of the rear end of the detection area is set, and the rear end of the detection area is moved to the rear side of the vehicle body. Let

その理由は、操舵角δが小さいときには車両の旋回半径が大きくなるため、内輪差が小さくなって車両の後方寄りの障害物と接触する可能性が低くなり、この場合には検知領域の後端を車両前方側に移動させても支障はないからである。逆に、操舵角δが大きいときには車両の旋回半径が小さくなるため、内輪差が大きくなって車両の後方寄りの障害物と接触する可能性が高くなり、この場合には検知領域の後端を車両後方側に移動させて障害物との接触を回避する必要があるからである。   The reason for this is that when the steering angle δ is small, the turning radius of the vehicle becomes large, so that the difference between the inner wheels becomes small and the possibility of coming into contact with an obstacle near the rear of the vehicle becomes low. This is because there is no problem even if the vehicle is moved to the front side of the vehicle. Conversely, when the steering angle δ is large, the turning radius of the vehicle is small, so the difference between the inner wheels is large, and there is a high possibility that the vehicle will come into contact with an obstacle near the rear of the vehicle. This is because it is necessary to move to the vehicle rear side to avoid contact with an obstacle.

目標液圧算出手段34は、検知領域設定手段31が設定した前記検知領域においてテレビカメラSbが検知した障害物のy座標をパラメータとして、自動制動の目標液圧をマップ検索する。前記自動制動の目標液圧は、障害物のy軸方向の検知距離が小さいほど大きく設定される。その理由は、障害物のy軸方向の検知距離が小さいほど、その障害物に接触し易いために自動制動で車速を低下させる必要があるからである。   The target hydraulic pressure calculation means 34 searches the map for the target hydraulic pressure for automatic braking using the y coordinate of the obstacle detected by the television camera Sb in the detection area set by the detection area setting means 31 as a parameter. The target hydraulic pressure for the automatic braking is set to be larger as the detection distance of the obstacle in the y-axis direction is smaller. The reason is that the smaller the detection distance in the y-axis direction of an obstacle, the easier it is to touch the obstacle, and therefore it is necessary to reduce the vehicle speed by automatic braking.

また前記自動制動の目標液圧にはヒステリシスがあり、障害物に次第に接近して自動制動が開始される場合には、目標液圧の立ち上がりを鋭くして障害物との接触を確実に防止し、障害物から次第に離反して自動制動が終了する場合には、目標液圧の立ち下がりを緩やかにして車両の急加速を防止し、運転者の違和感を解消するようになっている。   In addition, there is a hysteresis in the target hydraulic pressure of the automatic braking, and when automatic braking is started by gradually approaching an obstacle, the target hydraulic pressure rises sharply to prevent contact with the obstacle. When the automatic braking is finished gradually away from the obstacle, the falling of the target hydraulic pressure is moderated to prevent the vehicle from suddenly accelerating and the driver's uncomfortable feeling is eliminated.

補正係数算出手段35は車速センサSd…で検知した車速Vをパラメータとして補正係数をマップ検索する。補正係数は車速Vが小さいときに1に設定され、車速Vが大きくなると1よりも大きくなる。乗算回路36は、目標液圧算出手段34が出力する目標液圧に前記補正係数を乗算して目標液圧を補正する。従って、車速Vが大きくて障害物との接触可能性が高いときに、目標液圧を増加させて自動制動の制動力が高め、障害物との接触を回避することができる。   The correction coefficient calculating means 35 searches the map for the correction coefficient using the vehicle speed V detected by the vehicle speed sensor Sd as a parameter. The correction coefficient is set to 1 when the vehicle speed V is low, and becomes larger than 1 when the vehicle speed V increases. The multiplier circuit 36 corrects the target hydraulic pressure by multiplying the target hydraulic pressure output by the target hydraulic pressure calculating means 34 by the correction coefficient. Therefore, when the vehicle speed V is high and the possibility of contact with an obstacle is high, the target hydraulic pressure is increased to increase the braking force of automatic braking, thereby avoiding contact with the obstacle.

図2に戻り、液圧変化量制限手段M4が出力する補正目標液圧と、側方検知目標液圧算出手段M5が出力する目標液圧とが加算回路16で加算される。更にブレーキ液圧センサSeで検知したブレーキ液圧、つまり運転者のブレーキ操作により発生したブレーキ液圧と、前記加算回路16が出力するブレーキ液圧とが加算回路17で加算され、その最終的なブレーキ液圧を指令値として制動力制御手段M6がブレーキキャリパ14を作動させて車輪を制動することで、障害物との接触回避の支援が行われる。   Returning to FIG. 2, the correction target hydraulic pressure output by the hydraulic pressure change amount limiting means M4 and the target hydraulic pressure output by the side detection target hydraulic pressure calculating means M5 are added by the adding circuit 16. Further, the brake fluid pressure detected by the brake fluid pressure sensor Se, that is, the brake fluid pressure generated by the driver's brake operation, and the brake fluid pressure output from the adder circuit 16 are added by the adder circuit 17, and the final result is obtained. The braking force control means M6 operates the brake caliper 14 to brake the wheel using the brake fluid pressure as a command value, thereby assisting in avoiding contact with an obstacle.

図6は本実施の形態の接触回避支援装置を搭載した車両がクランク状の狭い路地を通過する場合の作用を説明するものである。   FIG. 6 illustrates the operation when a vehicle equipped with the contact avoidance assistance device of the present embodiment passes through a narrow crank-shaped alley.

車両がクランク状路地の入口のA位置に差しかかると、超音波センサSa…が前方の障害物aを検知することで、自動制動による減速が行われる。ステアリングホイール11を右に切った後に左に切り返すB位置では、操舵角速度dδ/dtが大きくなるため、図3の第2目標速度加算量算出手段24が算出する第2目標速度加算量が大きくなり、その第2目標速度加算量の分だけ目標速度が増加することで、不要な自動制動を最小限に抑えながらB位置を通過することができる。車両がクランク状路地の出口のC位置に差しかかると、ステアリングホイール11の左への操舵角δが大きくなるため、図3の第1目標速度加算量算出手段21が算出する第1目標速度加算量が大きくなり、その第1目標速度加算量の分だけ目標速度が増加することで、不要な自動制動を最小限に抑えながらC位置を通過することができる。   When the vehicle reaches the position A at the entrance to the crank-shaped alley, the ultrasonic sensor Sa detects the obstacle a in front, whereby deceleration by automatic braking is performed. At the position B where the steering wheel 11 is turned to the right and then turned back to the left, the steering angular speed dδ / dt is increased, so that the second target speed addition amount calculated by the second target speed addition amount calculation means 24 in FIG. 3 is increased. By increasing the target speed by the second target speed addition amount, it is possible to pass the B position while minimizing unnecessary automatic braking. When the vehicle approaches the C position at the exit of the crank-shaped alley, the steering angle δ to the left of the steering wheel 11 increases, so the first target speed addition calculated by the first target speed addition amount calculation means 21 in FIG. By increasing the amount and increasing the target speed by the amount of the first target speed addition amount, it is possible to pass the C position while minimizing unnecessary automatic braking.

その間、テレビカメラSb,Sbが検知する路地の右角部の障害物bや左角部の障害物cの距離が小さくなると、図5の目標液圧算出手段34が算出する目標液圧が大きくなることで、自動制動の制動力が高まって車両を減速し、前記障害物b,cとの接触を未然に回避することができる。   Meanwhile, when the distance between the obstacle b at the right corner and the obstacle c at the left corner of the alley detected by the television cameras Sb and Sb is reduced, the target hydraulic pressure calculated by the target hydraulic pressure calculation unit 34 in FIG. 5 is increased. As a result, the braking force of automatic braking is increased, the vehicle is decelerated, and contact with the obstacles b and c can be avoided in advance.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態では前方障害物センサとして超音波センサSa…を採用し、側方障害物センサとしてテレビカメラSb,Sbを採用しているが、それ以外の任意の構造のセンサを採用することができる。   For example, in the embodiment, the ultrasonic sensor Sa ... is used as the front obstacle sensor and the television cameras Sb, Sb are used as the side obstacle sensor, but a sensor having any other structure is adopted. Can do.

接触回避支援装置を搭載した車両を示す図A diagram showing a vehicle equipped with a contact avoidance support device 電子制御ユニットのブロック図Block diagram of electronic control unit 目標速度算出手段のブロック図Block diagram of target speed calculation means 液圧変化量制限手段のブロック図Block diagram of hydraulic pressure change limiting means 側方検知目標液圧算出手段のブロック図Block diagram of side detection target hydraulic pressure calculation means 車両がクランク状の路地を通過するときの作用説明図Action diagram when the vehicle passes through a crank-shaped alley

符号の説明Explanation of symbols

M1 目標速度算出手段
M3 液圧換算手段
M4 液圧変化量制限手段
M6 制動力制御手段
Sa 超音波センサ(前方障害物センサ)
Sb テレビカメラ(側方障害物センサ)
21 第1目標速度加算量算出手段(目標速度補正手段)
24 第2目標速度加算量算出手段(目標速度補正手段)
25 第3目標速度加算量算出手段(目標速度補正手段)
31 検知領域設定手段
34 目標液圧算出手段
δ 操舵角
dδ/dt 操舵角速度
θAP アクセル開度
M1 target speed calculation means M3 hydraulic pressure conversion means M4 hydraulic pressure change amount limiting means M6 braking force control means Sa ultrasonic sensor (front obstacle sensor)
Sb TV camera (side obstacle sensor)
21. First target speed addition amount calculation means (target speed correction means)
24 Second target speed addition amount calculation means (target speed correction means)
25 Third target speed addition amount calculation means (target speed correction means)
31 Detection area setting means 34 Target hydraulic pressure calculation means δ Steering angle dδ / dt Steering angular velocity θAP Accelerator opening

Claims (5)

車両前方の障害物の状況に応じて該障害物との接触回避を支援する制動力を発生させる車両の接触回避支援装置であって、
車両前方の障害物の距離を検知する前方障害物センサ(Sa)と、
前方障害物センサ(Sa)で検知した障害物の距離に応じて車両の目標速度を算出する目標速度算出手段(M1)と、
運転者による車両の操作状態に応じて前記目標速度を補正する目標速度補正手段(21,24,25)と、
目標速度補正手段(21,24,25)で補正された目標速度に基づいて制動力を制御する制動力制御手段(M6)と、
を備えたことを特徴とする車両の接触回避支援装置。
A vehicle contact avoidance assistance device that generates a braking force that assists in avoiding contact with an obstacle according to the state of the obstacle ahead of the vehicle,
A front obstacle sensor (Sa) for detecting the distance of an obstacle in front of the vehicle;
Target speed calculation means (M1) for calculating a target speed of the vehicle according to the distance of the obstacle detected by the front obstacle sensor (Sa);
Target speed correction means (21, 24, 25) for correcting the target speed according to the operating state of the vehicle by the driver;
Braking force control means (M6) for controlling the braking force based on the target speed corrected by the target speed correction means (21, 24, 25);
A vehicle contact avoidance assistance device comprising:
前記運転者による車両の操作状態は、操舵角(δ)、操舵角速度(dδ/dt)およびアクセル開度(θAP)の何れかであることを特徴とする、請求項1に記載の車両の接触回避支援装置。   2. The vehicle contact according to claim 1, wherein an operation state of the vehicle by the driver is any one of a steering angle (δ), a steering angular velocity (dδ / dt), and an accelerator opening (θAP). Avoidance support device. 前記目標速度と実車速との偏差をブレーキ液圧に換算する液圧換算手段(M3)と、運転者のブレーキ操作に応じて前記ブレーキ液圧の変化量を制限する液圧変化量制限手段(M4)とを備えたことを特徴とする、請求項1または請求項2に記載の車両の接触回避支援装置。   Fluid pressure conversion means (M3) for converting the deviation between the target speed and the actual vehicle speed into brake fluid pressure, and fluid pressure change amount limiting means for limiting the amount of change in the brake fluid pressure according to the driver's brake operation ( The vehicle contact avoidance assistance device according to claim 1 or 2, characterized by comprising M4). 前記液圧変化量制限手段(M4)は、運転者がブレーキ操作をしているときはブレーキ液圧の立ち上がりを遅くして立ち下がりを早くし、運転者がブレーキ操作をしていないときはブレーキ液圧の立ち上がりを早くして立ち下がりを遅くすることを特徴とする、請求項3に記載の車両の接触回避支援装置。   The hydraulic pressure change limiting means (M4) slows down the rise of the brake fluid pressure when the driver is operating the brake, and accelerates the fall when the driver is not operating the brake. 4. The contact avoidance assistance device for a vehicle according to claim 3, wherein the rising of the hydraulic pressure is accelerated and the falling is delayed. 車両側方の障害物を検知する側方障害物センサ(Sb)と、側方障害物センサ(Sb)の検知領域を設定する検知領域設定手段(31)と、側方障害物センサ(Sb)で検知した車両側方の障害物の距離に応じて制動力制御手段(M6)に出力する目標ブレーキ液圧を算出する目標液圧算出手段(34)とを備え、前記検知領域設定手段(31)は操舵角(δ)が小さいときほど前記検知領域の後端を車両前方側に移動させることを特徴とする、請求項1〜請求項4の何れか1項に記載の車両の接触回避支援装置。
A side obstacle sensor (Sb) for detecting an obstacle on the side of the vehicle, a detection area setting means (31) for setting a detection area of the side obstacle sensor (Sb), and a side obstacle sensor (Sb) And a target hydraulic pressure calculating means (34) for calculating a target brake hydraulic pressure to be output to the braking force control means (M6) according to the distance of the obstacle on the side of the vehicle detected in step (a). 5. The vehicle contact avoidance support according to claim 1, wherein the rear end of the detection area is moved to the front side of the vehicle as the steering angle (δ) is smaller. apparatus.
JP2006230168A 2006-08-28 2006-08-28 Vehicle contact avoidance support device Expired - Fee Related JP4757148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230168A JP4757148B2 (en) 2006-08-28 2006-08-28 Vehicle contact avoidance support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230168A JP4757148B2 (en) 2006-08-28 2006-08-28 Vehicle contact avoidance support device

Publications (2)

Publication Number Publication Date
JP2008049932A true JP2008049932A (en) 2008-03-06
JP4757148B2 JP4757148B2 (en) 2011-08-24

Family

ID=39234363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230168A Expired - Fee Related JP4757148B2 (en) 2006-08-28 2006-08-28 Vehicle contact avoidance support device

Country Status (1)

Country Link
JP (1) JP4757148B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100191433A1 (en) * 2009-01-29 2010-07-29 Valeo Vision Method for monitoring the environment of an automatic vehicle
JP2012014639A (en) * 2010-07-05 2012-01-19 Denso Corp Obstacle search system
JP2012025274A (en) * 2010-07-23 2012-02-09 Nissan Motor Co Ltd Braking assist device for vehicle, and braking assist method for vehicle
US20120095633A1 (en) * 2010-10-19 2012-04-19 Yohei Kume Electric vehicle and method for controlling the same
JP2012190189A (en) * 2011-03-09 2012-10-04 Toyota Motor Corp Driving support device and driving support method
CN103010140A (en) * 2012-12-29 2013-04-03 苏州市职业大学 Ultrasonic vehicle induction safety deceleration system
JP2013082376A (en) * 2011-10-12 2013-05-09 Denso Corp Parking assist device
WO2015107808A1 (en) 2014-01-20 2015-07-23 Toyota Jidosha Kabushiki Kaisha Vehicle braking control device
JP2016078665A (en) * 2014-10-17 2016-05-16 シャープ株式会社 Moving body
US10921429B2 (en) 2015-01-28 2021-02-16 Sharp Kabushiki Kaisha Obstacle detection device, moving body, and obstacle detection method
US20220176922A1 (en) * 2020-12-09 2022-06-09 Toyota Jidosha Kabushiki Kaisha Driving assistance system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562242A (en) * 1979-04-24 1981-01-10 Haruaki Kato Etector for obstacle in slantly frontal direction or vehicle
JPH0558257A (en) * 1991-09-06 1993-03-09 Mazda Motor Corp Automatic controller for vehicle
JPH07257334A (en) * 1994-03-17 1995-10-09 Mitsubishi Electric Corp Automatic braking control device
JPH10211886A (en) * 1997-01-29 1998-08-11 Honda Motor Co Ltd Steering device for vehicle
JPH10318009A (en) * 1997-05-16 1998-12-02 Mitsubishi Electric Corp Follow-up traveling controller for vehicle
JP2004161173A (en) * 2002-11-14 2004-06-10 Nissan Motor Co Ltd Brake control device
JP2005216056A (en) * 2004-01-30 2005-08-11 Denso Corp Vehicle-mounted risk avoidance controller
JP2006027573A (en) * 2004-07-21 2006-02-02 Toyota Motor Corp Braking/driving force control device
JP2006188129A (en) * 2005-01-05 2006-07-20 Hitachi Ltd Collision load reducing vehicle system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562242A (en) * 1979-04-24 1981-01-10 Haruaki Kato Etector for obstacle in slantly frontal direction or vehicle
JPH0558257A (en) * 1991-09-06 1993-03-09 Mazda Motor Corp Automatic controller for vehicle
JPH07257334A (en) * 1994-03-17 1995-10-09 Mitsubishi Electric Corp Automatic braking control device
JPH10211886A (en) * 1997-01-29 1998-08-11 Honda Motor Co Ltd Steering device for vehicle
JPH10318009A (en) * 1997-05-16 1998-12-02 Mitsubishi Electric Corp Follow-up traveling controller for vehicle
JP2004161173A (en) * 2002-11-14 2004-06-10 Nissan Motor Co Ltd Brake control device
JP2005216056A (en) * 2004-01-30 2005-08-11 Denso Corp Vehicle-mounted risk avoidance controller
JP2006027573A (en) * 2004-07-21 2006-02-02 Toyota Motor Corp Braking/driving force control device
JP2006188129A (en) * 2005-01-05 2006-07-20 Hitachi Ltd Collision load reducing vehicle system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8452506B2 (en) * 2009-01-29 2013-05-28 Valeo Vision Method for monitoring the environment of an automatic vehicle
JP2010202180A (en) * 2009-01-29 2010-09-16 Valeo Vision Method of monitoring surrounding environment of automobile
US20100191433A1 (en) * 2009-01-29 2010-07-29 Valeo Vision Method for monitoring the environment of an automatic vehicle
JP2012014639A (en) * 2010-07-05 2012-01-19 Denso Corp Obstacle search system
JP2012025274A (en) * 2010-07-23 2012-02-09 Nissan Motor Co Ltd Braking assist device for vehicle, and braking assist method for vehicle
US9020727B2 (en) 2010-07-23 2015-04-28 Nissan Motor Co., Ltd. Vehicle braking assist device and vehicle braking assist method
US20120095633A1 (en) * 2010-10-19 2012-04-19 Yohei Kume Electric vehicle and method for controlling the same
US8676420B2 (en) * 2010-10-19 2014-03-18 Panasonic Corporation Electric vehicle and method for controlling the same
JP2012190189A (en) * 2011-03-09 2012-10-04 Toyota Motor Corp Driving support device and driving support method
JP2013082376A (en) * 2011-10-12 2013-05-09 Denso Corp Parking assist device
CN103010140A (en) * 2012-12-29 2013-04-03 苏州市职业大学 Ultrasonic vehicle induction safety deceleration system
WO2015107808A1 (en) 2014-01-20 2015-07-23 Toyota Jidosha Kabushiki Kaisha Vehicle braking control device
JP2015136957A (en) * 2014-01-20 2015-07-30 トヨタ自動車株式会社 Brake control device of vehicle
US10118598B2 (en) 2014-01-20 2018-11-06 Toyota Jidosha Kabushiki Kaisha Vehicle braking control device
JP2016078665A (en) * 2014-10-17 2016-05-16 シャープ株式会社 Moving body
US10549750B2 (en) 2014-10-17 2020-02-04 Sharp Kabushiki Kaisha Moving body
US10921429B2 (en) 2015-01-28 2021-02-16 Sharp Kabushiki Kaisha Obstacle detection device, moving body, and obstacle detection method
US20220176922A1 (en) * 2020-12-09 2022-06-09 Toyota Jidosha Kabushiki Kaisha Driving assistance system

Also Published As

Publication number Publication date
JP4757148B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4757148B2 (en) Vehicle contact avoidance support device
JP6530705B2 (en) Driving support device and driving support method
US9174641B2 (en) Safety device for a motor vehicle and method for operating a motor vehicle
JP3642308B2 (en) Brake control device for vehicle
JP5915152B2 (en) Driving support device and driving support method
US8321117B2 (en) Vehicle control system
US20090143951A1 (en) Forward Collision Avoidance Assistance System
US11407427B2 (en) Driving control apparatus for vehicle
JPH11255089A (en) Vehicular automatic brake control system
JP2014193691A (en) Vehicle motion controller
JPWO2013046299A1 (en) Vehicle driving support system
JP7443177B2 (en) Collision avoidance support device
JP6853068B2 (en) Deflection control device
JP2010137803A (en) Vehicular drive assistance system
JP5565136B2 (en) Driving operation support device and driving operation support method
JP4628848B2 (en) Vehicle travel control device
JP2008296886A (en) Vehicular brake assist device
JP4850963B1 (en) Vehicle driving support device
JP6372663B2 (en) Vehicle control device
JP2022108109A (en) Vehicle control device
JP6241673B2 (en) Vehicle control device
JPWO2019031106A1 (en) Braking control device
JP2006044445A (en) Vehicle operation supporting device
JP2022053297A (en) Vehicle travelling control device
JP2011195082A (en) Vehicle controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Ref document number: 4757148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees