JP2008039690A - Carrier-wave phase type position measuring instrument - Google Patents

Carrier-wave phase type position measuring instrument Download PDF

Info

Publication number
JP2008039690A
JP2008039690A JP2006217314A JP2006217314A JP2008039690A JP 2008039690 A JP2008039690 A JP 2008039690A JP 2006217314 A JP2006217314 A JP 2006217314A JP 2006217314 A JP2006217314 A JP 2006217314A JP 2008039690 A JP2008039690 A JP 2008039690A
Authority
JP
Japan
Prior art keywords
mobile station
carrier phase
carrier
satellite
state variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006217314A
Other languages
Japanese (ja)
Inventor
Sueo Sugimoto
末雄 杉本
Yasuhiro Tajima
靖裕 田島
Kazunori Kagawa
和則 香川
Mitsuru Nakamura
満 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Toyota Motor Corp
Original Assignee
Ritsumeikan Trust
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust, Toyota Motor Corp filed Critical Ritsumeikan Trust
Priority to JP2006217314A priority Critical patent/JP2008039690A/en
Publication of JP2008039690A publication Critical patent/JP2008039690A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier-wave phase type position measuring instrument for providing high-accuracy position measurement even in the case where a position measurement side is moving. <P>SOLUTION: The carrier-wave phase type position measuring instrument 34 measures the position of a mobile station, based on satellite data acquired by receiving a satellite signal in the mobile station and at a known point. A movable body model for forecasting the state of the mobile station at the present time from the movement history of the mobile station is adopted as a system model wherein a single or double phase difference is taken as an observation amount of an integration value of the carrier wave phase of the satellite signal received in the mobile station 30 and the known point 20, and the position of the mobile station and a single or double phase difference of integer bias included in the integration value of the wave phase are taken as state variables. Position measurement is performed, by estimating the state variables, based on satellite data at a plurality of epochs. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、衛星信号の搬送波位相の積算値を測定して移動局の測位を行う搬送波位相式測位装置に関する。   The present invention relates to a carrier phase type positioning apparatus that measures a mobile station by measuring an integrated value of a carrier phase of a satellite signal.

近年、測量の分野では、搬送波位相によるGPS測量が広く利用されている。この搬送波位相によるGPS測量では、基準側の受信機と測位側の受信機とが、複数の衛星から送られる衛星信号を同時に受信し、基準側と測位側とで各衛星信号の搬送波位相の積算値をそれぞれ独立に算出する。この搬送波位相の積算値(以下、単に「位相積算値」という)には、搬送波の波長の整数倍に相当する不確定な要素(以下、「整数値バイアス」という)が含まれているが、この整数値バイアスは、時計誤差等とは異なり、位相積算値の一重位相差や二重位相差を取ることによっても消去することができない。このため、GPS測量の分野において、位相積算値の三重位相差を取ることで不確定要素である整数値バイアスを消去することや、整数値バイアスそのものを求める技術が提案されている。   In recent years, GPS surveying using a carrier phase has been widely used in the field of surveying. In this GPS survey using the carrier phase, the reference side receiver and the positioning side receiver simultaneously receive satellite signals sent from a plurality of satellites, and the reference side and the positioning side integrate the carrier phase of each satellite signal. Each value is calculated independently. The integrated value of the carrier phase (hereinafter simply referred to as “phase integrated value”) includes an indeterminate element (hereinafter referred to as “integer value bias”) corresponding to an integral multiple of the wavelength of the carrier. Unlike the clock error or the like, this integer value bias cannot be eliminated by taking a single phase difference or a double phase difference of the phase integration value. For this reason, in the field of GPS surveying, a technique has been proposed in which the integral value bias, which is an uncertain factor, is eliminated by taking the triple phase difference of the phase integration value, or the integer value bias itself is obtained.

ここで、整数値バイアスを確定する技術として、カルマンフィルタを用いる技術が知られている(例えば、特許文献1参照)。この技術では、測位側の位置と整数値バイアスを状態変数とし、基準側に対する測位側の位相積算値の一重位相差を観測量として、観測を重ねる毎に前記状態変数を更新する追尾フィルタが構成される。また、整数値バイアスを確定するその他の技術として、整数値バイアスを含んだ搬送波の二重位相差を用いて、最小二乗法により所定の条件で二重位相差の整数値バイアスを求める技術が知られている(例えば、特許文献2参照)。
特開2004−77228号公報 特開2003−98245号公報
Here, as a technique for determining an integer value bias, a technique using a Kalman filter is known (see, for example, Patent Document 1). In this technology, a tracking filter that updates the state variable each time observations are made using the position on the positioning side and the integer bias as the state variables, and the single phase difference on the positioning side relative to the reference side as the observation amount is configured. Is done. As another technique for determining the integer value bias, a technique for obtaining an integer value bias of a double phase difference under a predetermined condition by a least square method using a double phase difference of a carrier wave including the integer value bias is known. (For example, refer to Patent Document 2).
JP 2004-77228 A JP 2003-98245 A

ところで、上述の各従来技術は、測位側が長時間固定されていることを前提とした測量の分野での技術であるため、測位側が移動し得る技術分野(例えば、移動局の位置を測位する分野)では適用できない(即ち、整数値バイアスを高精度に確定できない)という、問題点がある。   By the way, each of the above-described conventional techniques is a technique in the field of surveying on the assumption that the positioning side is fixed for a long time. Therefore, a technical field in which the positioning side can move (for example, a field in which the position of a mobile station is measured). ) Cannot be applied (that is, the integer value bias cannot be determined with high accuracy).

そこで、本発明は、測位側が移動している場合であっても高精度な測位を実現できる搬送波位相式測位装置の提供を目的とする。   Therefore, an object of the present invention is to provide a carrier phase type positioning device that can realize highly accurate positioning even when the positioning side is moving.

上記課題を解決するため、本発明の一局面によれば、移動局及び既知点で衛星信号を受信して取得する衛星データに基づいて移動局の測位を行う搬送波位相式測位装置であって、
移動局及び既知点で受信した衛星信号の搬送波位相の積算値の1重又は2重位相差を観測量とし、移動局の位置と搬送波位相の積算値に含まれる整数値バイアスの1重又は2重位相差とを状態変数とするシステムモデルに、移動局の移動履歴から該移動局の現時刻の状態を推定する移動体モデルを導入して、複数エポックでの衛星データに基づいて前記状態変数を推定して測位を行うこと特徴とする、搬送波位相式測位装置が提供される。
In order to solve the above problems, according to one aspect of the present invention, there is provided a carrier phase type positioning device that performs positioning of a mobile station based on satellite data acquired by receiving a satellite signal at a mobile station and a known point,
Single or double phase difference of integrated value of carrier phase of mobile station and satellite signal received at known point is observed amount, and single or two of integer bias included in integrated value of position of mobile station and carrier phase Introducing a mobile body model that estimates the current time state of a mobile station from a mobile station's movement history to a system model having a multiple phase difference as a state variable, the state variable based on satellite data at multiple epochs A carrier wave phase type positioning device is provided, which performs positioning by estimating.

本局面において、前記移動局の移動履歴は、移動局の位置、速度、加速度及び加加速度の少なくとも何れかに関わるものであってよい。前記移動体モデルは、移動局の速度及び加速度の少なくとも何れかを1次のマルコフ過程と仮定して構築されるものであってよい。前記状態変数の推定は、カルマンフィルタ又は最小二乗法若しくはその類の最小二乗原理の適用により実行されるものであってよい。   In this aspect, the movement history of the mobile station may relate to at least one of the position, speed, acceleration, and jerk of the mobile station. The mobile body model may be constructed on the assumption that at least one of speed and acceleration of the mobile station is a first-order Markov process. The estimation of the state variable may be performed by applying a Kalman filter, a least square method or the like least square principle.

また、本発明の一局面によれば、移動局の位置を状態変数とすると共に、移動局の速度、加速度及び加加速度の少なくとも何れか1つを状態変数とし、移動局と既知点で観測される衛星信号の搬送波位相の積算値を観測データとするシステムモデルを用いて、搬送波位相の積算値に含まれる整数値バイアスを推定し、該推定した整数値バイアスを用いて移動局の位置を測位することを特徴とする、搬送波位相式測位装置が提供される。   Further, according to one aspect of the present invention, the position of the mobile station is set as a state variable, and at least one of the mobile station's speed, acceleration, and jerk is set as a state variable, and the mobile station is observed at a known point. Using the system model that uses the integrated value of the carrier phase of the satellite signal as observation data, the integer bias included in the integrated value of the carrier phase is estimated, and the position of the mobile station is determined using the estimated integer value bias. A carrier wave phase type positioning device is provided.

本発明によれば、測位側が移動している場合であっても高精度な測位を実現できる搬送波位相式測位装置を得ることができる。   According to the present invention, it is possible to obtain a carrier phase type positioning device that can realize highly accurate positioning even when the positioning side is moving.

以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明に係る搬送波位相式測位システムの構成図である。図1に示すように、GPS測位システムは、地球周りを周回するGPS衛星10と、地球上の所定位置(既知点)に設置される固定型の基準局20と、地球上に位置し地球上を移動しうる移動局30とから構成される。   FIG. 1 is a block diagram of a carrier phase type positioning system according to the present invention. As shown in FIG. 1, the GPS positioning system includes a GPS satellite 10 that orbits the earth, a fixed reference station 20 that is installed at a predetermined position (known point) on the earth, and is positioned on the earth. And a mobile station 30 that can move.

GPS衛星10は、航法メッセージを地球に向けて常時放送する。航法メッセージには、対応するGPS衛星10に関する軌道情報、時計の補正値、電離層の補正係数が含まれている。航法メッセージは、C/Aコードにより拡散されL1搬送波(周波数:1575.42MHz)に乗せられて、地球に向けて常時放送されている。   The GPS satellite 10 always broadcasts navigation messages toward the earth. The navigation message includes orbit information about the corresponding GPS satellite 10, a clock correction value, and an ionospheric correction coefficient. The navigation message is spread by the C / A code, is carried on the L1 carrier (frequency: 1575.42 MHz), and is constantly broadcast toward the earth.

尚、現在、24個のGPS衛星10が高度約20,000kmの上空で地球を一周しており、各4個のGPS衛星10が55度ずつ傾いた6つの地球周回軌道面に均等に配置されている。従って、天空が開けている場所であれば、地球上のどの場所にいても、常時、少なくとも5個以上のGPS衛星10が観測可能である。   Currently, 24 GPS satellites 10 orbit the earth at an altitude of about 20,000 km, and each of the four GPS satellites 10 is evenly arranged on six earth-orbiting orbits inclined by 55 degrees. ing. Therefore, as long as the sky is open, at least five GPS satellites 10 can be observed at any time on the earth.

図2は、図1の搬送波位相式GPS測位システムのより詳細な構成図である。移動局30は、GPS受信機32を備える。GPS受信機32内には、その周波数がGPS衛星10の搬送周波数と一致する発振器(図示せず)が内蔵されている。GPS受信機32は、GPSアンテナ32aを介してGPS衛星10から受信した電波(衛星信号)を中間周波数に変換後、GPS受信機32内で発生させたC/Aコードを用いてC/Aコード同期を行い、航法メッセージを取り出す。   FIG. 2 is a more detailed configuration diagram of the carrier phase GPS positioning system of FIG. The mobile station 30 includes a GPS receiver 32. In the GPS receiver 32, an oscillator (not shown) whose frequency matches the carrier frequency of the GPS satellite 10 is incorporated. The GPS receiver 32 converts the radio wave (satellite signal) received from the GPS satellite 10 via the GPS antenna 32a into an intermediate frequency, and then uses the C / A code generated in the GPS receiver 32. Synchronize and retrieve navigation messages.

また、GPS受信機32は、各GPS衛星10iからの搬送波に基づいて、搬送波位相の位相積算値Φiuを計測する。尚、位相積算値Φiuについて、添え字i(=1,2,・・・)は、各GPS衛星10iに割り当てられた番号を示し、添え字uは移動局30側での積算値であることを示す。位相積算値Φiuは、次式に示すように、搬送波受信時刻tでの発振器の位相Θiu(t)と、GPS衛星10iでの衛星信号発生時の搬送波位相Θiu(t−τ)との差として得られる。
Φiu(t)=Θiu(t)−Θiu(t−τu)+Niu+εiu(t) 式(1)
ここで、τuは、GPS衛星10からGPS受信機32までのトラベル時間を示し、εiuは、ノイズ(誤差)を表わす。尚、位相差の観測開始時点では、GPS受信機32は、搬送波位相の1波長以内の位相を正確に測定できるが、それが何波長目に相当するかを確定できない。このため、位相積算値Φiu(t)には、上式に示すように、不確定な要素として整数値バイアスNiuが導入される。
Further, the GPS receiver 32 measures the phase integration value Φ iu of the carrier phase based on the carrier from each GPS satellite 10 i . For the phase integrated value Φ iu , the subscript i (= 1, 2,...) Indicates the number assigned to each GPS satellite 10 i , and the subscript u is the integrated value on the mobile station 30 side. It shows that there is. As shown in the following equation, the phase integrated value Φ iu includes the phase Θ iu (t) of the oscillator at the carrier reception time t and the carrier phase Θ iu (t−τ) when the satellite signal is generated in the GPS satellite 10 i. It is obtained as a difference.
Φ iu (t) = Θ iu (t) −Θ iu (t−τ u ) + N iu + ε iu (t) Equation (1)
Here, τ u represents the travel time from the GPS satellite 10 to the GPS receiver 32, and ε iu represents noise (error). Note that at the start of observation of the phase difference, the GPS receiver 32 can accurately measure the phase within one wavelength of the carrier wave phase, but cannot determine what wavelength it corresponds to. For this reason, an integer value bias N iu is introduced to the phase integrated value Φ iu (t) as an uncertain element as shown in the above equation.

移動局30は、また、携帯電話等の通信機33を備える。通信機33は、後述する如く、基準局20側の携帯電話基地局等のような通信施設23と双方向通信を行うように構成されている。   The mobile station 30 also includes a communication device 33 such as a mobile phone. As will be described later, the communication device 33 is configured to perform bidirectional communication with a communication facility 23 such as a mobile phone base station on the reference station 20 side.

基準局20は、GPSアンテナ22aを備えるGPS受信機22を有する。GPS受信機22は、移動局30のGPS受信機32と同様に、各GPS衛星10iからの搬送波に基づいて、次式に示すように、搬送波受信時刻tにおける搬送波位相の積算値Φik(t)を計測する。
Φik(t)=Θik(t)−Θik(t−τk)+Nik+εik(t) 式(2)
尚、Nikは、整数値バイアスを示し、εikは、ノイズ(誤差)を表わす。尚、位相積算値Φikについて、添え字kは基準局20側での積算値であることを示す。基準局20は、計測した位相積算値Φikを通信施設23を介して移動局30に送信する。尚、基準局20は、所定領域に複数設置されている。各基準局20と通信施設23(複数も可)とは、図2に示すように、インターネット等のネットワークを介して接続されてよく、若しくは、各基準局20毎に通信施設23が設けられてもよい。前者の構成では、移動局30は、通信施設23との間で通信可能な状態である限り、各基準局20が受信した情報を得ることができる。
The reference station 20 has a GPS receiver 22 including a GPS antenna 22a. As with the GPS receiver 32 of the mobile station 30, the GPS receiver 22 is based on the carrier wave from each GPS satellite 10 i and, as shown in the following equation, the integrated value Φ ik ( t) is measured.
Φ ik (t) = Θ ik (t) −Θ ik (t−τ k ) + N ik + ε ik (t) Equation (2)
N ik represents an integer value bias, and ε ik represents noise (error). For the phase integrated value Φ ik , the subscript k indicates an integrated value on the reference station 20 side. The reference station 20 transmits the measured phase integrated value Φ ik to the mobile station 30 via the communication facility 23. A plurality of reference stations 20 are installed in a predetermined area. As shown in FIG. 2, each reference station 20 and communication facility 23 (or a plurality of communication facilities) may be connected via a network such as the Internet, or a communication facility 23 may be provided for each reference station 20. . In the former configuration, the mobile station 30 can obtain the information received by each reference station 20 as long as it can communicate with the communication facility 23.

図3は、移動局30に搭載される本発明による搬送波位相式測位装置34(以下、「測位装置34」という)の一実施例を示す機能ブロック図である。本実施例の測位装置34は、演算器40を中心に構成され、演算器40には、上述のGPS受信機32及び通信機33に接続されている。演算器40には、更に、移動局30に搭載される各種センサ50が接続される。尚、演算器40は、GPS受信機32に内蔵されるものであってもよい。また、移動局30が車両の場合、GPS受信機32及び演算器40及び/又は通信機33は、ナビゲーション装置内に実装されてよい。   FIG. 3 is a functional block diagram showing an embodiment of a carrier phase positioning device 34 (hereinafter referred to as “positioning device 34”) according to the present invention mounted on the mobile station 30. As shown in FIG. The positioning device 34 according to the present embodiment is configured with a calculator 40 as the center, and the calculator 40 is connected to the GPS receiver 32 and the communication device 33 described above. Further, various sensors 50 mounted on the mobile station 30 are connected to the computing unit 40. Note that the computing unit 40 may be incorporated in the GPS receiver 32. When the mobile station 30 is a vehicle, the GPS receiver 32, the computing unit 40, and / or the communication device 33 may be mounted in the navigation device.

演算器40は、マイクロコンピューターから構成されてよく、図3に示すように、衛星位置算出部42と、整数値バイアス推定部48とを含む。   The computing unit 40 may be composed of a microcomputer, and includes a satellite position calculation unit 42 and an integer value bias estimation unit 48 as shown in FIG.

衛星位置算出部42は、GPS受信機32が受信した航法メッセージの軌道情報に基づいて、観測可能な各GPS衛星10iの、時刻tにおけるワールド座標系での位置(Xi(t)、Yi(t)、Zi(t))を計算する。尚、GPS衛星10は、人工衛星の1つであるので、その運動は、地球重心を含む一定面内(軌道面)に限定される。また、GPS衛星10の軌道は地球重心を1つの焦点とする楕円運動であり、ケプラーの方程式を逐次数値計算することで、軌道面上でのGPS衛星10の位置が計算できる。また、搬送波受信時刻tでの各GPS衛星10iの位置(Xi(t)、Yi(t)、Zi(t))は、GPS衛星10の軌道面とワールド座標系の赤道面が回転関係にあることを考慮して、軌道面上でのGPS衛星10の位置を3次元的な回転座標変換することで得られる。尚、ワールド座標系とは、図4に示すように、地球重心を原点として、赤道面内で互いに直交するX軸及びY軸、並びに、この両軸に直交するZ軸により定義される。 Based on the orbit information of the navigation message received by the GPS receiver 32, the satellite position calculator 42 determines the position (X i (t), Y) of each observable GPS satellite 10 i in the world coordinate system at time t. i (t), Z i (t)) is calculated. Since the GPS satellite 10 is one of artificial satellites, its movement is limited to a certain plane (orbital plane) including the center of gravity of the earth. The orbit of the GPS satellite 10 is an elliptical motion with the earth's center of gravity as one focal point, and the position of the GPS satellite 10 on the orbital plane can be calculated by sequentially calculating the Kepler equation. Further, the position (X i (t), Y i (t), Z i (t)) of each GPS satellite 10 i at the carrier wave reception time t is determined by the orbital plane of the GPS satellite 10 and the equatorial plane of the world coordinate system. In consideration of the rotational relationship, the position of the GPS satellite 10 on the orbital plane is obtained by three-dimensional rotational coordinate conversion. As shown in FIG. 4, the world coordinate system is defined by an X axis and a Y axis that are orthogonal to each other within the equator plane, and a Z axis that is orthogonal to both axes, with the center of gravity as the origin.

整数値バイアス推定部48では、各GPS衛星10iに係る観測データ(特に、移動局30が通信機33を介して受信する基準局20側の位相積算値Φik、及び、移動局30側の位相積算値Φiu)に基づいて整数値バイアスが推定される。以下、その手順を説明する。 In the integer value bias estimation unit 48, observation data relating to each GPS satellite 10 i (particularly, the phase integrated value Φ ik on the reference station 20 side received by the mobile station 30 via the communication device 33 and the phase on the mobile station 30 side). The integer value bias is estimated based on the integrated value Φ iu ). The procedure will be described below.

時刻tにおける2つのGPS衛星10j、10h(i=j、h、但し、j≠h)に関する位相積算値の2重位相差は、次式となる。
Φjh ku=(Φjk(t)−Φju(t))−(Φhk(t)−Φhu(t)) 式(7)
一方、位相積算値の2重位相差Φjh kuは、(GPS衛星10iとGPS受信機22若しくは32との距離)=(搬送波の波長L)×(位相積算値)という物理的な意味合いから、次のようになる。
The double phase difference between the phase integration values for the two GPS satellites 10 j , 10 h (i = j, h, where j ≠ h) at time t is expressed by the following equation.
Φ jh ku = (Φ jk (t) −Φ ju (t)) − (Φ hk (t) −Φ hu (t)) Equation (7)
On the other hand, the double phase difference Φ jh ku of the phase integration value is based on the physical meaning of (distance between GPS satellite 10 i and GPS receiver 22 or 32) = (wavelength L of carrier wave) × (phase integration value). It becomes as follows.

Figure 2008039690
ここで、式(8)における[Xk(t)、Yk(t)、Zk(t)]は、時刻tにおける基準局20のワールド座標系における座標値(既知)であり、[Xu(t)、Yu(t)、Zu(t)]は、時刻tにおける移動局30の座標値(未知)であり、[Xj(t)、Yj(t)、Zj(t)]及び[Xh(t)、Yh(t)、Zh(t)]は、時刻tにおける各GPS衛星10j、10hの座標値(衛星位置算出部42により算出)である。Njh kuは、整数値バイアスの2重位相差である(即ち、Njh ku=(Njk−Nju)−(Nhk−Nhu))。尚、時刻tは、例えばGPS時刻で同期が取られているものとする。
Figure 2008039690
Here, [X k (t), Y k (t), Z k (t)] in equation (8) is a coordinate value (known) in the world coordinate system of the reference station 20 at time t, and [X u (T), Y u (t), Z u (t)] are coordinate values (unknown) of the mobile station 30 at time t, and [X j (t), Y j (t), Z j (t) ]] And [X h (t), Y h (t), Z h (t)] are the coordinate values (calculated by the satellite position calculation unit 42) of the GPS satellites 10 j and 10 h at time t. N jh ku is a double phase difference of an integer value bias (that is, N jh ku = (N jk −N ju ) − (N hk −N hu )). The time t is assumed to be synchronized with, for example, GPS time.

整数値バイアス推定部48では、次の状態方程式が設定される。
η(i+1)=F・η(i)+u(i) 式(9)
ここで、η(i)は、観測周期i(=1,2...)での状態変数を表わし、移動局30の位置[Xu(i)、Yu(i)、Zu(i)]、移動局30の速度[Vx(i)、Vy(i)、Vz(i)]及び、nz個のGPS衛星101〜nzが観測可能な場合の整数値バイアスの2重位相差であり、η=[Xu、Yu、Zu、Vx、Vy、Vz、N11 ku、N12 ku、...、N1nz kuである(は転置を表す)。また、uは、外乱(システム雑音:正規性白色雑音)である。
In the integer value bias estimation unit 48, the following state equation is set.
η (i + 1) = F · η (i) + u (i) Equation (9)
Here, eta (i) represents the state variables of the observation period i (= 1,2 ...), the position of the mobile station 30 [X u (i), Y u (i), Z u (i )], the speed of the mobile station 30 [Vx (i), Vy (i), Vz (i)] and, the double difference of the integer bias when n z number of GPS satellites 10 1~Nz is observable in and, η = [X u, Y u, Z u, Vx, Vy, Vz, N 11 ku, N 12 ku,. . . , N 1nz ku ] T ( T represents transposition). U is a disturbance (system noise: normal white noise).

この状態方程式には、移動局30の移動履歴から該移動局30の現時刻の状態を予測する移動体モデルに基づくものとなっている。ここでは、移動局30の速度vを一次のマルコフ過程と仮定すると、速度に関する状態方程式を、次のように表すことができる。   This state equation is based on a mobile object model that predicts the current time state of the mobile station 30 from the movement history of the mobile station 30. Here, assuming that the speed v of the mobile station 30 is a first-order Markov process, the state equation regarding the speed can be expressed as follows.

Figure 2008039690
但し、αは時定数の逆数である。この仮定より、移動局30の状態方程式は、
Figure 2008039690
Where α is the reciprocal of the time constant. From this assumption, the state equation of the mobile station 30 is

Figure 2008039690
と表現でき、これを離散化すると上記の式(9)を得る。
Figure 2008039690
When this is discretized, the above equation (9) is obtained.

式(9)において、   In equation (9),

Figure 2008039690
である。
Figure 2008039690
It is.

また、システム雑音u(i)の共分散行列は、   The covariance matrix of system noise u (i) is

Figure 2008039690
となる。但し、
Figure 2008039690
It becomes. However,

Figure 2008039690
であり、σ は、移動局30の速度の分散であり、例えばSingerモデルにおける確率分布により導出してもよい。
Figure 2008039690
Σ 2 v is a variance of the speed of the mobile station 30 and may be derived, for example, by a probability distribution in the Singer model.

整数値バイアス推定部48では、次の観測方程式が採用される。
Z(i)=H(i)・η(i)+V(i) 式(10)
を用いて、ここで、Z及びVは、それぞれ、観測量及び観測ノイズ(正規性白色雑音)を示す。式(10)の観測量Zは、位相積算値の2重位相差(上記式(7)参照)である。上記式(9)の状態方程式は線形であるが、観測量Zは、状態変数Xu、Yu及びZuに関して非線形であるため、式(8)の各項が状態変数Xu、Yu及びZuのそれぞれで偏微分され、式(10)の観測行列Hが求められる。
The integer value bias estimation unit 48 employs the following observation equation.
Z (i) = H (i) · η (i) + V (i) Equation (10)
Here, Z and V indicate an observation amount and an observation noise (normal white noise), respectively. The observation amount Z in the equation (10) is a double phase difference (see the above equation (7)) of the phase integration value. State equation of the equation (9) is a linear, observation quantity Z is the state variable X u, Y since it is non-linear with respect to u and Z u, each term state variable X u of the formula (8), Y u And Z u are partially differentiated to obtain the observation matrix H of Equation (10).

Figure 2008039690
但し、状態変数η=[Xu、Yu、Zu、N11 ku、N12 ku、...、N1nz ku、Vx、Vy、Vz]とし、数8のHは、状態変数η=[Xu、Yu、Zu、N11 ku、N12 ku、...、N1nz kuとした場合の観測行列である。従って、数8のHは、観測行列Hに、状態変数η=[Vx、Vy、Vz]に対応するゼロ行列を横長に加えたものとなっている。
Figure 2008039690
However, the state variable η = [X u, Y u , Z u, N 11 ku, N 12 ku,. . . , N 1nz ku, Vx, Vy , and Vz] T, H 1 number 8, the state variable η = [X u, Y u , Z u, N 11 ku, N 12 ku,. . . , N 1nz ku ] T. Accordingly, H in Equation 8 is obtained by adding the zero matrix corresponding to the state variable η = [Vx, Vy, Vz] T to the observation matrix H 1 in the horizontal direction.

上記式(9)の状態方程式及び上記式(10)の観測方程式にカルマンフィルタを適用すると、以下の式が得られる。
時間更新として、
η(i)(−)=η(i−1)(+) 式(11)
P(i)(−)=P(i−1)(+)+Q(i−1) 式(12)
また、観測更新として、
K(i)=P(i)(−)・H(i)・(H(i)・P(i)(−)・H(i)+R(i))−1 式(13)
η(i)(+)=η(i)(−)+K(i)・(Z(i)−H(i)・η(i)(−)) 式(14)
P(i)(+)=P(i)(−)−K(i)・H(i)・P(i)(−) 式(15)
ここで、Q,Rは、外乱uの共分散行列及び観測ノイズVの共分散行列をそれぞれ表わす。尚、上記式(11)及び式(14)がフィルタ方程式、上記式(13)がフィルタゲイン、上記式(12)及び式(15)が共分散方程式となる。また、上付き文字で示す(−)及び(+)は、更新前後を示す。
When the Kalman filter is applied to the state equation of the above equation (9) and the observation equation of the above equation (10), the following equation is obtained.
As time update,
η (i) (−) = η (i−1) (+) Equation (11)
P (i) (−) = P (i−1) (+) + Q (i−1) Formula (12)
As an observation update,
K (i) = P (i) (−) · H T (i) · (H (i) · P (i) (−) · H T (i) + R (i)) −1 Formula (13)
η (i) (+) = η (i) (−) + K (i) · (Z (i) −H (i) · η (i) (−) ) Equation (14)
P (i) (+) = P (i) (−) −K (i) · H (i) · P (i) (−) Equation (15)
Here, Q and R represent the covariance matrix of the disturbance u and the covariance matrix of the observation noise V, respectively. The above equations (11) and (14) are filter equations, the above equation (13) is a filter gain, and the above equations (12) and (15) are covariance equations. In addition, (-) and (+) indicated by superscript indicate before and after updating.

図5は、本実施例の測位装置34により実行される主要処理を示すフローチャートである。図5に示す処理ルーチンは、GPS受信機22,32による位相積算値の演算周期毎(観測周期毎)に実行される。   FIG. 5 is a flowchart showing main processing executed by the positioning device 34 of the present embodiment. The processing routine shown in FIG. 5 is executed every calculation period (each observation period) of the phase integration value by the GPS receivers 22 and 32.

先ずステップ100において、衛星情報(各GPS衛星10の位置情報、各GPS衛星10に対する基準局20側の位相積算値、及び、各GPS衛星10に対する移動局30側の位相積算値)が観測周期毎に取得される。 First, at step 100, the satellite information (position information of each GPS satellite 10 i, the phase integrated value of the reference station 20 side for each GPS satellite 10 i, and the phase accumulation value of the mobile station 30 side with respect to each GPS satellite 10 i) is observed Acquired every cycle.

初回の観測周期i(=1)に対しては、ステップ110及び120の処理が実行される。即ち、ステップ110では、コード2重位相差による初期位置算出処理が実行される。具体的には、衛星信号に含まれるC/AコードやPコードのようなPRNコード(擬似雑音符号)に基づいて基準局20側及び移動局30側の双方で計測される擬似距離ρk、ρuの2重位相差を観測量として、最小二乗法若しくはカルマンフィルタを用いて、移動局30の位置[Xu(i)、Yu(i)、Zu(i)]を推定する。また、ステップ120では、この推定値[Xu(i)、Yu(i)、Zu(i)]に基づいて初期バイアス値(=整数値バイアスの2重位相差の初期値)が推定される。これら推定値は、比較的大きな誤差を含みうるので、専ら状態変数の初期値ηとして、解の収束を早めるために利用されるものであってよい。 For the first observation period i (= 1), the processing of steps 110 and 120 is executed. That is, in step 110, an initial position calculation process using a code double phase difference is executed. Specifically, pseudo distances ρ k and ρ measured on both the reference station 20 side and the mobile station 30 side based on a PRN code (pseudo noise code) such as a C / A code or a P code included in the satellite signal. as observed amount of double difference of u, by using the least squares method or Kalman filter, the position of the mobile station 30 estimates a [X u (i), Y u (i), Z u (i)]. In step 120, the estimated value initial bias value based on [X u (i), Y u (i), Z u (i)] (= initial value of the double difference of the integer bias) is estimated Is done. Since these estimated values may include a relatively large error, they may be used exclusively as the initial value η 0 of the state variable to speed up the convergence of the solution.

初回より後の観測周期i(>1)に対しては、ステップ130の処理が観測周期毎に繰り返し実行され、複数の観測周期で得た衛星情報に基づいて、上述の移動体モデルを導入したカルマンフィルタにより状態変数が導出(推定)されていく。即ち、ステップ130では、観測周期毎に上記式(11)乃至式(15)により時間・観測更新が行われ、前回周期の各共分散及び状態変数の推定値を引き継ぎながら測位算出が実行される。   For the observation period i (> 1) after the first time, the process of step 130 is repeatedly executed for each observation period, and the above-described moving body model is introduced based on satellite information obtained in a plurality of observation periods. State variables are derived (estimated) by the Kalman filter. That is, in step 130, time and observation are updated by the above formulas (11) to (15) for each observation period, and positioning calculation is performed while taking over the covariance and state variable estimates of the previous period. .

ステップ140では、測位解を算出・出力する処理が実行される。上記ステップ130から得られる整数値バイアスの推定値は、実数解として求められる。しかし、整数値バイアスは、実際には整数値であるので、求めた実数解に対して最も近い整数解(即ち、波数)を求める。この手法としては、整数値バイアスの無相関化をはかり、整数解の探索空間を狭めて解を特定するLA
MBDA法等が使用されてよい。また、GPS受信機22、32が、GPS衛星10から発射されるL1波及びL2波の双方を受信可能な2周波受信機である場合には、L1波及びL2波のそれぞれに対して上述と同様の推定を同時・並列的に実行し、双方の周期の和(ワイドレーン)を作成して整数値バイアスの整数解の候補を絞り込んでもよい。また、衛星信号に乗せられるC/AコードやPコード若しくはその類のPRNコード(擬似雑音符号)を用いて導出される擬似距離の1重又は2重位相差を上述の状態変数に組み込んでもよい。
In step 140, processing for calculating and outputting a positioning solution is executed. The estimated value of the integer bias obtained from step 130 is obtained as a real number solution. However, since the integer value bias is actually an integer value, the closest integer solution (that is, wave number) is obtained with respect to the obtained real number solution. As this method, the integer value bias is decorrelated, and the search space for the integer solution is narrowed to specify the solution.
An MBDA method or the like may be used. In addition, when the GPS receivers 22 and 32 are two-frequency receivers that can receive both the L1 wave and the L2 wave emitted from the GPS satellite 10, the above-described operation is performed for each of the L1 wave and the L2 wave. Similar estimation may be performed simultaneously and in parallel to create a sum of both periods (wide lane) to narrow down integer solution candidates with integer bias. In addition, a single or double phase difference of a pseudorange derived using a C / A code or P code or a PRN code (pseudo noise code) carried on a satellite signal may be incorporated into the above state variable. .

このようにして整数値バイアスの整数解が確定されると、以後、サイクルスリップが生じない限り、移動局30の位置は、当該整数値バイアスの整数解を用いた測位により高精度に算出できる。   When the integer solution of the integer value bias is thus determined, the position of the mobile station 30 can be calculated with high accuracy by positioning using the integer solution of the integer value bias unless a cycle slip occurs thereafter.

以上のとおり、本実施例によれば、移動局30が移動しながらでも状態変数(測位、整数値バイアス)の算出が可能であり、また、移動局30の過去の移動状態から現在時刻の移動状態を予測する移動体モデルをカルマンフィルタに導入することで、移動局30の移動に起因したモデル推定誤差が減少し(推定誤差のバイアスを取り除くことができ)、状態変数の算出精度が向上する。また、フィードフォワード的にモデル誤差を消去できるので状態変数(測位、整数値バイアス)の算出精度が向上すると共に、測位開始までの時間を短縮できる。   As described above, according to the present embodiment, it is possible to calculate a state variable (positioning, integer value bias) while the mobile station 30 is moving, and it is possible to move the current time from the past movement state of the mobile station 30. By introducing a mobile model that predicts the state into the Kalman filter, the model estimation error due to the movement of the mobile station 30 is reduced (the bias of the estimation error can be removed), and the calculation accuracy of the state variable is improved. Further, since the model error can be eliminated in a feedforward manner, the calculation accuracy of the state variables (positioning, integer value bias) is improved, and the time until the positioning is started can be shortened.

尚、上述の本実施例では、移動局30の速度vを一次のマルコフ過程と仮定して移動体モデルを構成しているが、例えば、移動局30の加速度を一次のマルコフ過程と仮定して移動体モデルを構成してもよい。即ち、移動体モデルは、位置、速度、加速度、加加速度(加速度の微分値)のような移動局30の移動状態を表すことができる任意のパラメータを用いて構成されてよい。   In the above-described embodiment, the mobile body model is constructed assuming that the velocity v of the mobile station 30 is a primary Markov process. For example, the acceleration of the mobile station 30 is assumed to be a primary Markov process. You may comprise a mobile body model. That is, the mobile object model may be configured using arbitrary parameters that can represent the movement state of the mobile station 30 such as position, velocity, acceleration, and jerk (differential value of acceleration).

図6は、本実施例による測位装置34により実現される高い測位精度を実証する試験データである。図6(A)は、本実施例のアルゴリズムが適用された構成(移動体モデルをカルマンフィルタに導入する構成)による測位結果を緯度・経度で示している。図6(B)は、対照として、移動体モデルをカルマンフィルタに導入しない構成による測位結果を示している。   FIG. 6 is test data demonstrating high positioning accuracy realized by the positioning device 34 according to the present embodiment. FIG. 6A shows the positioning result by latitude / longitude according to the configuration to which the algorithm of the present embodiment is applied (the configuration in which the moving body model is introduced into the Kalman filter). FIG. 6B shows a positioning result by a configuration in which the moving body model is not introduced into the Kalman filter as a control.

移動体モデルをカルマンフィルタに導入しない場合には、図6(B)に示すように、移動体30(車両)がカーブ等を走行する際に、当該移動の大きな変化に追従できず、解の誤差が大きいのに対して、本実施例のアルゴリズムが適用された場合、図6(A)に示すように、良好な精度の解が求めることが可能となっている。   When the moving body model is not introduced into the Kalman filter, as shown in FIG. 6B, when the moving body 30 (vehicle) travels on a curve or the like, it cannot follow a large change in the movement, resulting in an error in the solution. On the other hand, when the algorithm of this embodiment is applied, a solution with good accuracy can be obtained as shown in FIG.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、上述した実施例では、上記式(9)の状態方程式及び上記式(10)の観測方程式にカルマンフィルタを適用するものであったが、本発明は、最小二乗法やベイズ法等の他の推定手法を適用する構成に対しても適用可能である。   For example, in the above-described embodiment, the Kalman filter is applied to the state equation of the above equation (9) and the observation equation of the above equation (10). However, the present invention is not limited to other methods such as the least square method or the Bayes method. The present invention can also be applied to a configuration to which the estimation method is applied.

また、上述した実施例において、上記式(10)の観測方程式に、移動局30の速度vに関する観測量が導入されてもよい。この場合、例えば、衛星信号(電波)のドップラシフトの計算結果に基づいて、移動局30の速度vが観測されてもよく、また、擬似距離の距離変化(擬似距離変化率)の観測結果に基づいて、移動局30の速度vが観測されてもよい。また、移動局30が車両の場合、車速センサ、ヨーレートセンサなどの車載センサの検出値が協働的に用いられてもよい。   In the embodiment described above, an observation amount related to the speed v of the mobile station 30 may be introduced into the observation equation of the above equation (10). In this case, for example, the speed v of the mobile station 30 may be observed based on the calculation result of the Doppler shift of the satellite signal (radio wave), and the observation result of the pseudo distance change (pseudo distance change rate) Based on this, the speed v of the mobile station 30 may be observed. In addition, when the mobile station 30 is a vehicle, detection values of in-vehicle sensors such as a vehicle speed sensor and a yaw rate sensor may be used cooperatively.

また、上述した実施例において、上記式(9)の状態方程式に状態変数として移動局30の速度vを入れず、上記式(11)の状態変数[Xu(i)、Yu(i)、Zu(i)]の時間更新する際に、上述のような移動体モデルに基づく動的状態量が考慮されてもよい。 Further, in the embodiments described above, without a velocity v of the mobile station 30 as the state variables of the state equation of the equation (9), the state variables of the above formula (11) [X u (i ), Y u (i) , Z u (i)], the dynamic state quantity based on the moving body model as described above may be considered.

また、上述した実施例では、上述の如く2重位相差を取ることでGPS受信機22,32内での発振器の初期位相、及び、時計誤差等の影響を消去しているが、GPS衛星10の初期位相及びGPS時計誤差のみを消去できる一重位相差を取る構成や、位相差を一切取らない構成であってもよい。また、本実施例では、電離層屈折効果、対流圏屈折効果及びマルチパスの影響を無視しているが、これらを考慮するものであってもよい。   In the above-described embodiment, the influence of the initial phase of the oscillator and the clock error in the GPS receivers 22 and 32 is eliminated by taking the double phase difference as described above. The configuration may be a single phase difference that can eliminate only the initial phase and the GPS clock error, or a configuration that does not take any phase difference. Further, in this embodiment, the ionospheric refraction effect, the tropospheric refraction effect, and the influence of multipath are ignored, but these may be taken into consideration.

また、上述の説明では、便宜上、GPS衛星10を参照衛星としている場合があるが、移動局30と基準局20の位置等に依存して、他のGPS衛星10(=2,3・・・)が参照衛星となりえる。 In the above description, for convenience, there is a case that a reference satellite to a GPS satellite 10 1, depending on the position of the mobile station 30 and the reference station 20, the other GPS satellites 10 i (= 2,3 · ·・) Can be a reference satellite.

また、上述の説明では、移動局30の例として車両を挙げたが、移動局30は、受信機32及び/又は演算器40が実装されたホークリフト、ロボットや、受信機32及び/又は演算器40を内蔵する携帯電話等の情報端末を含む。   In the above description, a vehicle is given as an example of the mobile station 30, but the mobile station 30 may be a hawk lift, robot, receiver 32, and / or arithmetic unit in which the receiver 32 and / or the arithmetic unit 40 is mounted. An information terminal such as a mobile phone incorporating the device 40 is included.

本発明に係る搬送波位相式GPS測位システムの構成図である。1 is a configuration diagram of a carrier phase GPS positioning system according to the present invention. 図1の搬送波位相式GPS測位システムのより詳細な構成図である。It is a more detailed block diagram of the carrier wave phase type GPS positioning system of FIG. 移動局30に搭載される本発明による測位装置34の一実施例を示す機能ブロック図である。2 is a functional block diagram showing an embodiment of a positioning device 34 according to the present invention mounted on a mobile station 30. FIG. ワールド座標系とローカル座標系との関係、及び、ローカル座標系とボディ座標との関係を示す図である。It is a figure which shows the relationship between a world coordinate system and a local coordinate system, and the relationship between a local coordinate system and a body coordinate. 本実施例の測位装置34により実現される処理のフローチャートである。It is a flowchart of the process implement | achieved by the positioning apparatus 34 of a present Example. 本実施例による測位装置34により実現される高い測位精度を実証する試験データである。It is test data which demonstrates the high positioning accuracy implement | achieved by the positioning apparatus 34 by a present Example.

符号の説明Explanation of symbols

10 GPS衛星
20 基準局
22 基準局側GPS受信機
30 移動局
32 移動局側GPS受信機
34 搬送波位相式測位装置
40 演算器
42 衛星位置算出部
48 整数値バイアス推定部
DESCRIPTION OF SYMBOLS 10 GPS satellite 20 Reference station 22 Reference station side GPS receiver 30 Mobile station 32 Mobile station side GPS receiver 34 Carrier phase type positioning device 40 Calculator 42 Satellite position calculation part 48 Integer value bias estimation part

Claims (5)

移動局及び既知点で衛星信号を受信して取得する衛星データに基づいて移動局の測位を行う搬送波位相式測位装置であって、
移動局及び既知点で受信した衛星信号の搬送波位相の積算値の1重又は2重位相差を観測量とし、移動局の位置と搬送波位相の積算値に含まれる整数値バイアスの1重又は2重位相差とを状態変数とするシステムモデルに、移動局の移動履歴から該移動局の現時刻の状態を予測する移動体モデルを導入して、複数エポックでの衛星データに基づいて前記状態変数を推定して測位を行うこと特徴とする、搬送波位相式測位装置。
A carrier phase type positioning device that performs positioning of a mobile station based on satellite data acquired by receiving satellite signals at a mobile station and known points,
Single or double phase difference of integrated value of carrier phase of mobile station and satellite signal received at known point is observed amount, and single or two of integer bias included in integrated value of position of mobile station and carrier phase Introducing a mobile model that predicts the current time state of the mobile station from the movement history of the mobile station to a system model having a multiple phase difference as a state variable, the state variable based on satellite data in a plurality of epochs A carrier phase type positioning device characterized in that positioning is performed by estimating.
前記移動局の移動履歴は、移動局の位置、速度、加速度及び加加速度の少なくとも何れかに関わる、請求項1に記載の搬送波位相式測位装置。   The carrier phase type positioning device according to claim 1, wherein the movement history of the mobile station relates to at least one of a position, velocity, acceleration, and jerk of the mobile station. 前記移動体モデルは、移動局の速度及び加速度の少なくとも何れかを1次のマルコフ過程と仮定して構築される、請求項1に記載の搬送波位相式測位装置。   The carrier phase type positioning device according to claim 1, wherein the mobile body model is constructed on the assumption that at least one of a velocity and acceleration of a mobile station is a first-order Markov process. 前記状態変数の推定は、カルマンフィルタ又は最小二乗法若しくはその類の最小二乗原理の適用により実行される、請求項1に記載の搬送波位相式測位装置。   The carrier phase type positioning device according to claim 1, wherein the estimation of the state variable is performed by applying a Kalman filter, a least square method or the like least square principle. 移動局の位置を状態変数とすると共に、移動局の速度、加速度及び加加速度の少なくとも何れか1つを状態変数とし、移動局と既知点で観測される衛星信号の搬送波位相の積算値を観測データとするシステムモデルを用いて、搬送波位相の積算値に含まれる整数値バイアスを推定し、該推定した整数値バイアスを用いて移動局の位置を測位することを特徴とする、搬送波位相式測位装置。   Using the position of the mobile station as a state variable and at least one of the mobile station's speed, acceleration and jerk as the state variable, observe the integrated value of the carrier phase of the satellite signal observed at the mobile station and a known point Using a system model as data, an integer bias included in an integrated value of the carrier phase is estimated, and the position of the mobile station is measured using the estimated integer bias. apparatus.
JP2006217314A 2006-08-09 2006-08-09 Carrier-wave phase type position measuring instrument Pending JP2008039690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217314A JP2008039690A (en) 2006-08-09 2006-08-09 Carrier-wave phase type position measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217314A JP2008039690A (en) 2006-08-09 2006-08-09 Carrier-wave phase type position measuring instrument

Publications (1)

Publication Number Publication Date
JP2008039690A true JP2008039690A (en) 2008-02-21

Family

ID=39174852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217314A Pending JP2008039690A (en) 2006-08-09 2006-08-09 Carrier-wave phase type position measuring instrument

Country Status (1)

Country Link
JP (1) JP2008039690A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058164A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Positioning method and device therefor
WO2009136254A1 (en) * 2008-05-07 2009-11-12 Toyota Jidosha Kabushiki Kaisha Inter-mobile body carrier phase positioning device and method
JP2010002258A (en) * 2008-06-19 2010-01-07 Japan Radio Co Ltd Velocity measuring device and displacement measuring device
JP2010066106A (en) * 2008-09-10 2010-03-25 Japan Radio Co Ltd Acceleration measuring device
JP2013108960A (en) * 2011-11-24 2013-06-06 Toyota Central R&D Labs Inc Positioning device and program
CN104459744A (en) * 2014-12-15 2015-03-25 湖南航天电子科技有限公司 Virtual stable baseline satellite orientation method and device
JP2017535762A (en) * 2014-10-06 2017-11-30 シエラ・ネバダ・コーポレイション Monitor-based ambiguity verification to enhance the quality of guidance
KR101843004B1 (en) 2017-11-15 2018-03-29 한국 천문 연구원 Global precise point positioning apparatus using inter systm bias of multi global satellite positioning systems and the method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253734A (en) * 1997-03-12 1998-09-25 Japan Radio Co Ltd Positioning device
JP2001174275A (en) * 1999-12-17 2001-06-29 Furuno Electric Co Ltd Hybrid navigation and its apparatus
JP2001201553A (en) * 1999-11-22 2001-07-27 Nokia Mobile Phones Ltd General positioning system, and multiple model navigation filter having hybrid positioning function
JP2005147952A (en) * 2003-11-18 2005-06-09 Toyota Motor Corp Device for detecting position, and method therefor
WO2006022318A1 (en) * 2004-08-25 2006-03-02 The Ritsumeikan Trust Independent positioning device and independent positioning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10253734A (en) * 1997-03-12 1998-09-25 Japan Radio Co Ltd Positioning device
JP2001201553A (en) * 1999-11-22 2001-07-27 Nokia Mobile Phones Ltd General positioning system, and multiple model navigation filter having hybrid positioning function
JP2001174275A (en) * 1999-12-17 2001-06-29 Furuno Electric Co Ltd Hybrid navigation and its apparatus
JP2005147952A (en) * 2003-11-18 2005-06-09 Toyota Motor Corp Device for detecting position, and method therefor
WO2006022318A1 (en) * 2004-08-25 2006-03-02 The Ritsumeikan Trust Independent positioning device and independent positioning method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058164A (en) * 2006-08-31 2008-03-13 Hitachi Ltd Positioning method and device therefor
WO2009136254A1 (en) * 2008-05-07 2009-11-12 Toyota Jidosha Kabushiki Kaisha Inter-mobile body carrier phase positioning device and method
US8593340B2 (en) 2008-05-07 2013-11-26 Toyota Jidosha Kabushiki Kaisha Inter-mobile body carrier phase positioning device and method
JP2010002258A (en) * 2008-06-19 2010-01-07 Japan Radio Co Ltd Velocity measuring device and displacement measuring device
JP2010066106A (en) * 2008-09-10 2010-03-25 Japan Radio Co Ltd Acceleration measuring device
JP2013108960A (en) * 2011-11-24 2013-06-06 Toyota Central R&D Labs Inc Positioning device and program
JP2017535762A (en) * 2014-10-06 2017-11-30 シエラ・ネバダ・コーポレイション Monitor-based ambiguity verification to enhance the quality of guidance
CN104459744A (en) * 2014-12-15 2015-03-25 湖南航天电子科技有限公司 Virtual stable baseline satellite orientation method and device
KR101843004B1 (en) 2017-11-15 2018-03-29 한국 천문 연구원 Global precise point positioning apparatus using inter systm bias of multi global satellite positioning systems and the method thereof

Similar Documents

Publication Publication Date Title
JP7267460B2 (en) System and method for high integrity satellite positioning
JP4807376B2 (en) Inter-mobile interference positioning apparatus and method
US10976444B2 (en) System and method for GNSS ambiguity resolution
CN101743453B (en) Post-mission high accuracy position and orientation system
US6496778B1 (en) Real-time integrated vehicle positioning method and system with differential GPS
JP4561732B2 (en) Mobile positioning device
JP5642919B2 (en) Carrier phase type mobile positioning device
JP4103926B1 (en) Positioning device for moving objects
JP2005164395A (en) Carrier wave phase type gps positioning apparatus and method
JP2008039690A (en) Carrier-wave phase type position measuring instrument
JP2000502802A (en) Improved vehicle navigation system and method utilizing GPS speed
US10871579B2 (en) System and method for satellite positioning
JP2009025233A (en) Carrier phase positioning system
CN113063425B (en) Vehicle positioning method and device, electronic equipment and storage medium
CN108873029A (en) A method of realizing the modeling of navigation neceiver clock deviation
JP2008039691A (en) Carrier-wave phase type position measuring instrument
KR102172145B1 (en) Tightly-coupled localization method and apparatus in dead-reckoning system
JP5077054B2 (en) Mobile positioning system
Iiyama et al. Terrestrial GPS time-differenced carrier-phase positioning of lunar surface users
WO2023107742A1 (en) System and method for correcting satellite observations
JP4400330B2 (en) Position detection apparatus and position detection method
JPH07209406A (en) Method and equipment to determine specific position on earth
JP2010060421A (en) Positioning system for moving body and gnss receiving apparatus
JP2008232761A (en) Positioning device for mobile
JP2005147952A (en) Device for detecting position, and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090211

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090330

A977 Report on retrieval

Effective date: 20110427

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206