JP2008038658A - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
JP2008038658A
JP2008038658A JP2006211029A JP2006211029A JP2008038658A JP 2008038658 A JP2008038658 A JP 2008038658A JP 2006211029 A JP2006211029 A JP 2006211029A JP 2006211029 A JP2006211029 A JP 2006211029A JP 2008038658 A JP2008038658 A JP 2008038658A
Authority
JP
Japan
Prior art keywords
compression chamber
compression
water
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006211029A
Other languages
Japanese (ja)
Inventor
Hisanao Maruyama
久直 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2006211029A priority Critical patent/JP2008038658A/en
Publication of JP2008038658A publication Critical patent/JP2008038658A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas compressor capable of miniaturization and energy saving. <P>SOLUTION: The gas compressor 1 compressing gas sucked into a compression chamber 2 by reducing volume of the compression chamber 2 is provided with a spray means spraying water into the compression chamber 2 and a control means 7 controlling spray timing and spray quantity of the spray means 6 to inhibit temperature rise of gas compressed in the compression chamber 2 by evaporation heat of water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気などの気体を圧縮する気体圧縮機に関するものである。   The present invention relates to a gas compressor that compresses a gas such as air.

従来、空気などの気体を圧縮する圧縮機として、シリンダ内のピストンを往復動させるレシプロ式空気圧縮機が知られている。   Conventionally, a reciprocating air compressor that reciprocates a piston in a cylinder is known as a compressor that compresses a gas such as air.

そのレシプロ式空気圧縮機では、圧縮機本体内で断熱圧縮された空気の発熱を、圧縮後に、圧縮機本体の後段に設けられた冷却器で冷却する構造となっている(例えば、特許文献1参照)。   The reciprocating air compressor has a structure in which heat generated by adiabatic compression in the compressor main body is cooled by a cooler provided at the rear stage of the compressor main body after compression (for example, Patent Document 1). reference).

特開2000−234587号公報Japanese Patent Application Laid-Open No. 2000-234587

しかしながら、上述したレシプロ式空気圧縮機では、高温の空気を冷却するため、冷却器は大型となり、場合によっては圧縮機本体よりも大きな面積が必要となる場合がある。   However, in the above-described reciprocating air compressor, since the high-temperature air is cooled, the cooler becomes large, and in some cases, a larger area than the main body of the compressor may be required.

また、この冷却熱を再利用したとしても、その一部またはほとんどが排熱として無駄になりエネルギー浪費の原因となる。   Further, even if this cooling heat is reused, part or most of it is wasted as waste heat, causing energy waste.

そこで、本発明の目的は、上記課題を解決し、小型化と省エネルギー化とを図ることができる気体圧縮機を提供することにある。   Then, the objective of this invention is providing the gas compressor which can achieve the size reduction and energy saving which solve the said subject.

上記目的を達成するために本発明は、圧縮室内に吸入された気体を、その圧縮室の容積を減少させて圧縮するようにした気体圧縮機において、上記圧縮室内に水を噴霧するための噴霧手段と、上記圧縮室内で圧縮される気体の温度上昇を、水の気化熱にて抑制すべく、上記噴霧手段の噴霧時期および噴霧量を制御する制御手段とを備えたものである。   In order to achieve the above object, the present invention provides a spray for spraying water into the compression chamber in a gas compressor that compresses the gas sucked into the compression chamber by reducing the volume of the compression chamber. And a control means for controlling the spray timing and the spray amount of the spray means so as to suppress the temperature rise of the gas compressed in the compression chamber by the heat of vaporization of water.

好ましくは、上記圧縮室が、シリンダと、そのシリンダ内に往復動可能に収容されたピストンとで形成されたものである。   Preferably, the compression chamber is formed of a cylinder and a piston accommodated in the cylinder so as to be able to reciprocate.

上記圧縮室が、ケーシングと、そのケーシング内に回転可能に収容されたロータとで形成されたものでもよい。   The compression chamber may be formed of a casing and a rotor that is rotatably accommodated in the casing.

好ましくは、上記制御手段は、圧縮工程中、上記ピストンの圧縮ストロークが、全ストロークに対して30%以上70%未満のときに、上記噴霧手段による水の噴霧を開始するものである。   Preferably, the control means starts spraying of water by the spraying means when the compression stroke of the piston is 30% or more and less than 70% of the entire stroke during the compression step.

好ましくは、上記制御手段は、一圧縮工程当たりに上記噴霧手段から噴霧される水のモル数を、圧縮すべき気体のモル数の10分の1以下に設定するものである。   Preferably, the control means sets the number of moles of water sprayed from the spraying means per compression step to 1/10 or less of the number of moles of gas to be compressed.

本発明によれば、気体圧縮機の小型化と省エネルギー化とを図ることができるという優れた効果を発揮するものである。   According to the present invention, the excellent effect that the gas compressor can be reduced in size and energy can be achieved.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本実施形態の気体圧縮機は、例えば、工場などに圧縮空気を供給するために用いられる。   The gas compressor of this embodiment is used for supplying compressed air to a factory etc., for example.

図1に基づき本実施形態の気体圧縮機(以下、空気圧縮機という)の概略構造を説明する。   A schematic structure of a gas compressor (hereinafter referred to as an air compressor) of the present embodiment will be described with reference to FIG.

図1に示すように、本実施形態の空気圧縮機1は、圧縮室2内に吸入された気体を、その圧縮室2の容積を減少させて圧縮するものである。   As shown in FIG. 1, the air compressor 1 of the present embodiment compresses the gas sucked into the compression chamber 2 by reducing the volume of the compression chamber 2.

より具体的には、空気圧縮機1は、レシプロ形空気圧縮機1であり、圧縮室2を形成するシリンダ3、シリンダヘッド34およびピストン4と、そのピストン4を上下に往復動させるためのピストン駆動手段5と、圧縮室2内に水を噴霧するための噴霧手段6と、上記圧縮室2内で圧縮される空気の温度上昇を、水の気化熱にて抑制すべく、上記噴霧手段6の噴霧時期と噴霧量とを制御する制御手段7とを備える。   More specifically, the air compressor 1 is a reciprocating type air compressor 1, and includes a cylinder 3, a cylinder head 34 and a piston 4 forming the compression chamber 2, and a piston for reciprocating the piston 4 up and down. The driving means 5, the spraying means 6 for spraying water into the compression chamber 2, and the spraying means 6 to suppress the temperature rise of the air compressed in the compression chamber 2 by the heat of vaporization of water. Control means 7 for controlling the spraying timing and the spraying amount.

シリンダ3には、上下に延出する円筒形状のシリンダボア31が形成され、そのシリンダボア31内にピストン4が摺動可能に収容される。また、シリンダ3の頂部には、シリンダヘッド34が取り付けられ、そのシリンダヘッド34によりシリンダボア31が上方から閉塞される。そのシリンダボア31上部の壁面と、ピストン4の上面と、シリンダヘッド34の下面とで圧縮室2が区画形成される。   The cylinder 3 is formed with a cylindrical cylinder bore 31 extending vertically, and the piston 4 is slidably accommodated in the cylinder bore 31. A cylinder head 34 is attached to the top of the cylinder 3, and the cylinder bore 31 is closed from above by the cylinder head 34. The compression chamber 2 is defined by the wall surface of the upper portion of the cylinder bore 31, the upper surface of the piston 4, and the lower surface of the cylinder head 34.

その圧縮室2には、圧縮室2内に空気を吸入するための吸気ポート32と、圧縮室2内で圧縮された空気を吐出するための排気ポート33とが接続される。   An intake port 32 for sucking air into the compression chamber 2 and an exhaust port 33 for discharging air compressed in the compression chamber 2 are connected to the compression chamber 2.

具体的には、シリンダヘッド34にシリンダボア31に各々連通する吸気ポート32および排気ポート33と、吸気ポート32を開閉するための吸気バルブ35と、排気ポート33を開閉するための排気バルブ36とが各々設けられる。吸気バルブ35としては、圧縮室2内の圧力が所定の吸入圧以下のときに開弁するリリーフ弁など考えられ、排気バルブ36としては、圧縮室2内の圧力が、上記吸入圧よりも大きい所定の吐出圧以上のときに開弁するリリーフ弁などが考えられる。   Specifically, an intake port 32 and an exhaust port 33 respectively communicating with the cylinder bore 31 to the cylinder head 34, an intake valve 35 for opening and closing the intake port 32, and an exhaust valve 36 for opening and closing the exhaust port 33 are provided. Each is provided. The intake valve 35 may be a relief valve that opens when the pressure in the compression chamber 2 is equal to or lower than a predetermined suction pressure, and the exhaust valve 36 has a pressure in the compression chamber 2 greater than the suction pressure. A relief valve that opens when the pressure is higher than a predetermined discharge pressure is conceivable.

ピストン駆動手段5は、ピストン4に連結されたクランク機構51と、そのクランク機構51を作動させるための電動モータなどの駆動装置(図示せず)とを備え、駆動装置によりクランク機構51を作動させることでピストン4が上下に往復動する。   The piston drive means 5 includes a crank mechanism 51 connected to the piston 4 and a drive device (not shown) such as an electric motor for operating the crank mechanism 51, and the crank mechanism 51 is operated by the drive device. As a result, the piston 4 reciprocates up and down.

噴霧手段6は、圧縮室2内に臨んで設けられた噴霧ノズル(高圧水ノズル)61と、その噴霧ノズル61に高圧水を供給する高圧ポンプ62と、その高圧ポンプ62および噴霧ノズル61を連通する供給路63を開閉するためのバルブ64とを備える。   The spray means 6 communicates with a spray nozzle (high pressure water nozzle) 61 provided facing the compression chamber 2, a high pressure pump 62 for supplying high pressure water to the spray nozzle 61, and the high pressure pump 62 and the spray nozzle 61. And a valve 64 for opening and closing the supply path 63.

本実施形態の高圧ポンプ62は、数10MPa程度の高圧水を噴霧ノズル61に供給し、その噴霧ノズル61は高圧水を圧縮室2内に噴霧する。また、その噴霧ノズル61の噴霧時期と噴霧量とは、バルブ64の開閉時期や開度などで調整され、そのバルブ64は、制御手段7に接続される。   The high-pressure pump 62 of this embodiment supplies high-pressure water of about several tens of MPa to the spray nozzle 61, and the spray nozzle 61 sprays high-pressure water into the compression chamber 2. Further, the spray timing and the spray amount of the spray nozzle 61 are adjusted by the opening / closing timing and opening degree of the valve 64, and the valve 64 is connected to the control means 7.

制御手段7は、ピストン4のストロークを検出すべく、ピストン駆動手段5のクランク機構51などに設けられたクランク角センサ(図示せず)などに接続される。   The control means 7 is connected to a crank angle sensor (not shown) provided in the crank mechanism 51 of the piston drive means 5 or the like in order to detect the stroke of the piston 4.

制御手段7は、噴霧手段6のバルブ64に、開閉制御信号を送信すべく接続される。   The control means 7 is connected to the valve 64 of the spray means 6 to transmit an open / close control signal.

次に、本実施形態の空気圧縮機1の作用を説明する。   Next, the operation of the air compressor 1 of the present embodiment will be described.

まず、空気圧縮機1の膨張行程では、ピストン駆動手段5によりピストン4が下降される。そのピストン4の下降に伴い、圧縮室2の容積が増加して圧縮室2内の圧力が低下する。   First, in the expansion stroke of the air compressor 1, the piston 4 is lowered by the piston driving means 5. As the piston 4 descends, the volume of the compression chamber 2 increases and the pressure in the compression chamber 2 decreases.

このとき、圧縮室2内の圧力が所定の吸入圧以下になると吸気バルブ35が開弁されて、圧縮室2内に空気が吸入される。   At this time, when the pressure in the compression chamber 2 becomes equal to or lower than a predetermined suction pressure, the intake valve 35 is opened and air is sucked into the compression chamber 2.

次に、圧縮工程では、ピストン駆動手段5によりピストン4が上昇されて圧縮室2内の容積が減少し、それにより圧縮室2内の圧力が上昇して空気が圧縮される。   Next, in the compression step, the piston 4 is raised by the piston driving means 5 to reduce the volume in the compression chamber 2, thereby increasing the pressure in the compression chamber 2 and compressing the air.

このとき、圧縮室2内の圧力が所定の排気圧力(吐出圧)以上になると排気バルブ36が開弁されて、圧縮室2内から圧縮空気が吐出される。   At this time, when the pressure in the compression chamber 2 becomes equal to or higher than a predetermined exhaust pressure (discharge pressure), the exhaust valve 36 is opened, and the compressed air is discharged from the compression chamber 2.

本実施形態では、その圧縮行程中に、圧縮室2内で圧縮(断熱圧縮)される空気の温度上昇を抑制すべく、噴霧ノズル61から水を噴霧する。   In the present embodiment, water is sprayed from the spray nozzle 61 in order to suppress the temperature rise of the air compressed (adiabatic compression) in the compression chamber 2 during the compression stroke.

これにより、噴霧された水が気化し、その気化熱により圧縮空気が冷却される。その結果、空気が略等温圧縮されることになり、圧縮に必要なエネルギーの省エネルギー化が図れる。   Thereby, the sprayed water is vaporized and the compressed air is cooled by the heat of vaporization. As a result, the air is compressed approximately isothermally, and the energy required for compression can be saved.

以下、この点について表1、図2および図3に基づき詳細に説明する。表1は、体積と、定温圧縮および断熱圧縮における絶対圧およびエネルギーとの関係を示したものである。また、図2および図3では、点線により断熱圧縮を、実線により定温圧縮を各々示した。   Hereinafter, this point will be described in detail with reference to Table 1, FIG. 2, and FIG. Table 1 shows the relationship between volume and absolute pressure and energy in constant temperature compression and adiabatic compression. 2 and 3, adiabatic compression is indicated by a dotted line, and constant temperature compression is indicated by a solid line.

Figure 2008038658
Figure 2008038658

本実施形態では、図1に示すように空気圧縮機1のシリンダヘッド部34に水の噴霧ノズル61を設け、空気圧縮工程の略中間ストロークにおいて、数10MPa程度の高圧水を噴霧するようにしている。   In this embodiment, as shown in FIG. 1, a water spray nozzle 61 is provided in the cylinder head portion 34 of the air compressor 1, and high pressure water of about several tens of MPa is sprayed in a substantially intermediate stroke of the air compression process. Yes.

表1に示すように、一例として30℃の空気を、体積が70%、50%、30%となるまで断熱圧縮すると、温度はそれぞれ約80℃、130℃、220℃に加熱される。   As shown in Table 1, for example, when air at 30 ° C. is adiabatically compressed until the volume becomes 70%, 50%, and 30%, the temperatures are heated to about 80 ° C., 130 ° C., and 220 ° C., respectively.

したがって、図2および図3に示すように、定温圧縮の場合にはそれぞれ絶対圧が0.14MPa(点T1参照)、0.20MPa(点T2参照)、0.33MPa(点T3参照)となるべきところが、断熱圧縮では0.17MPa(点A1参照)、0.26MPa(点A2参照)、0.54MPa(点A3参照)と増加し、より大きな圧縮力と圧縮エネルギーが必要になる。   Therefore, as shown in FIGS. 2 and 3, in the case of constant temperature compression, the absolute pressures are 0.14 MPa (see point T1), 0.20 MPa (see point T2), and 0.33 MPa (see point T3), respectively. However, in adiabatic compression, the pressure increases to 0.17 MPa (see point A1), 0.26 MPa (see point A2), and 0.54 MPa (see point A3), and a larger compressive force and compression energy are required.

そこで、本実施形態では、断熱圧縮された空気の温度が80℃に、かつ圧力が排気圧力(例えば、0.8MPa)に達する前に、圧縮途中のシリンダ3内の空気中に高圧水を噴霧する。これにより、噴霧された水が蒸発することにより圧縮空気から気化熱を奪い、圧縮空気の温度と圧力を、定温圧縮に近づける効果をもたらす。   Therefore, in this embodiment, before the temperature of the adiabatic compressed air reaches 80 ° C. and the pressure reaches the exhaust pressure (for example, 0.8 MPa), high-pressure water is sprayed into the air in the cylinder 3 being compressed. To do. As a result, the sprayed water evaporates to remove the heat of vaporization from the compressed air, thereby bringing the effect of bringing the temperature and pressure of the compressed air closer to constant temperature compression.

次に、噴霧手段6の噴霧時期について説明する。   Next, the spraying time of the spraying means 6 will be described.

本実施形態の制御手段7は、圧縮工程中、上記ピストン4の圧縮ストロークが、全ストロークに対して30%以上70%未満のときに、上記噴霧手段6による水の噴霧を開始する。   The control means 7 of this embodiment starts spraying of water by the spraying means 6 when the compression stroke of the piston 4 is 30% or more and less than 70% of the total stroke during the compression process.

これは、30%以下の早期に高圧水を噴霧してしまうと、シリンダ3内の温度が低いため、噴霧水が蒸発せずにシリンダ3の内壁などに付着し、圧縮空気の冷却ができなくなるためである。   This is because if the high-pressure water is sprayed at an early stage of 30% or less, the temperature in the cylinder 3 is low, so the sprayed water does not evaporate and adheres to the inner wall of the cylinder 3 and the compressed air cannot be cooled. Because.

一方、高圧水の噴霧が70%以上に遅くなると、圧縮途中の空気の圧縮力や圧縮エネルギーの低減ができないだけではなく、排気圧に達して空気の排気が開始してしまうと、既にシリンダ3内の圧力は一定であるから、水による温度低減の効果はあっても、圧縮力や圧縮エネルギーの低減効果はないためである。   On the other hand, if the spraying of high-pressure water is delayed to 70% or more, not only the compression force and compression energy of the air in the middle of compression cannot be reduced, but also when the exhaust pressure is reached and the exhaust of the air starts, the cylinder 3 This is because the internal pressure is constant, so that there is no effect of reducing the compression force or compression energy even though there is an effect of temperature reduction by water.

次に、噴霧手段6の噴霧量について説明する。   Next, the spray amount of the spray means 6 will be described.

本実施形態の制御手段7は、一圧縮工程当たりに上記噴霧手段6から噴霧される水のモル数を、圧縮すべき気体のモル数の10分の1以下に設定する。   The control means 7 of the present embodiment sets the number of moles of water sprayed from the spraying means 6 per compression step to 1/10 or less of the number of moles of gas to be compressed.

まず、コンプレッサーを定温圧縮に近づけるため、圧縮空気に水を注入した場合の効果を以下に検討する。   First, the effect of injecting water into compressed air in order to bring the compressor closer to constant temperature compression will be discussed below.

その前提条件を表2および表3に示す。表2は、水および空気の比熱を比較したものであり、表3は100℃における水の気化熱を示したものである。   The prerequisites are shown in Tables 2 and 3. Table 2 compares the specific heats of water and air, and Table 3 shows the heat of vaporization of water at 100 ° C.

Figure 2008038658
Figure 2008038658

Figure 2008038658
Figure 2008038658

例えば、30℃の空気を絶対圧0.8MPaまで断熱圧縮すると276℃まで昇温し、圧力上昇ストロークも早いため定温圧縮に比べて40%の追加エネルギーが必要となる。   For example, when air at 30 ° C. is adiabatically compressed to an absolute pressure of 0.8 MPa, the temperature rises to 276 ° C., and the pressure rise stroke is fast, so 40% additional energy is required compared to constant temperature compression.

そこで、圧縮中に水の気化熱で空気を冷却した場合の効果を検討する。   Then, the effect at the time of cooling air with the heat of vaporization of water during compression is examined.

空気1モルに対し、30℃の水をmモル注入した場合の温度をt℃とすると、空気の冷却熱量と水の蒸発・加熱熱量が等しいことからtは、次式(1)   Assuming that the temperature when injecting 30 moles of water at 30 ° C. into 1 mole of air is t ° C., t is the following equation (1) because the cooling heat amount of air is equal to the evaporation / heating heat amount of water.

Figure 2008038658
Figure 2008038658

となる。 It becomes.

その計算結果を表4に示す。   The calculation results are shown in Table 4.

Figure 2008038658
Figure 2008038658

以上をまとめると、以下の(1)から(3)のようになる。   In summary, the following (1) to (3) are obtained.

(1)空気1モルに対し水を0.12モル注入すると、ほぼ定温圧縮に近い冷却が可能であるが、未蒸発水の悪影響が考えられるため、半分程度0.06モル(つまり、空気のモル数1に対して10%以下)の水を注入すればよい。   (1) When 0.12 mol of water is injected with respect to 1 mol of air, cooling close to constant temperature compression is possible, but the adverse effect of unevaporated water is considered, so about half of 0.06 mol (that is, air What is necessary is just to inject | pour 10% or less of water with respect to 1 mol number.

(2)この場合、定温圧縮に対し20%程度の増加エネルギーで済むため、空気の圧縮エネルギーは15%程度減り、蒸気の圧縮分を差し引いて10%の省エネとなる。   (2) In this case, since about 20% of the increased energy is required for the constant temperature compression, the compression energy of the air is reduced by about 15%, and the energy saving of 10% is obtained by subtracting the compression of the steam.

(3)必要注入水量は2000Nm3/Hのコンプレッサーの場合、毎分3L程度となる。 (3) In the case of a 2000 Nm 3 / H compressor, the required amount of injected water is about 3 L / min.

以上のように噴霧手段6の噴霧量が決定される。   As described above, the spray amount of the spray means 6 is determined.

このように、本実施形態の空気圧縮機1は、圧縮空気の圧縮工程における圧力を低減できるので、空気の圧縮エネルギーを低減でき、空気圧縮機1の省エネルギー化を図ることができる。   Thus, since the air compressor 1 of this embodiment can reduce the pressure in the compression process of compressed air, the compression energy of air can be reduced and the energy saving of the air compressor 1 can be achieved.

また、本実施形態では、排気(吐出)される圧縮空気の温度を低減できるので、圧縮空気の冷却装置を小型化、または省略でき、空気圧縮機1の小型化を図ることができる。   Further, in the present embodiment, the temperature of the compressed air that is exhausted (discharged) can be reduced, so that the compressed air cooling device can be downsized or omitted, and the air compressor 1 can be downsized.

ところで、比較的高圧の圧縮空気が必要な場合に、単段の圧縮機のみで空気を圧縮しようとすると圧縮空気の温度が過度に高くなり、圧縮機のピストンのシール材などが熱で破損してしまうという問題がある。そこで、従来は、圧縮機を多段で構成すると共に、圧縮機間に圧縮空気を冷却する冷却器を設けた多段圧縮機が用いられていた。そのため、圧縮機の大型化などを招いていた。これに対して、本実施形態では、圧縮空気の温度上昇を抑制することができるので、単段の空気圧縮機1のみで高圧空気を供することができ、多段圧縮機に比べて、空気圧縮機1を小型化でき、また省エネルギー化を図ることができる。   By the way, when relatively high pressure compressed air is required, if the air is compressed only with a single-stage compressor, the temperature of the compressed air becomes excessively high and the piston seal material of the compressor is damaged by heat. There is a problem that it ends up. Therefore, conventionally, a multi-stage compressor having a multi-stage compressor and a cooler for cooling compressed air between the compressors has been used. Therefore, the size of the compressor has been increased. On the other hand, in this embodiment, since the temperature rise of compressed air can be suppressed, high-pressure air can be provided only by the single stage air compressor 1, and compared with a multistage compressor, an air compressor 1 can be reduced in size and energy can be saved.

なお、本発明は、上述の実施形態に限定されず、様々な変形例や応用例が考えられる。   In addition, this invention is not limited to the above-mentioned embodiment, Various modifications and application examples can be considered.

例えば、空気圧縮機は、レシプロ式圧縮機に限定されず、圧縮室が、ケーシングと、そのケーシング内に回転可能に収容されたロータとで形成されたスクリュー式空気圧縮機や、他の空気圧縮機などでもよい。   For example, the air compressor is not limited to a reciprocating compressor, and a compression chamber is a screw-type air compressor formed by a casing and a rotor rotatably accommodated in the casing, or other air compressors. A machine may be used.

また、上述した実施形態では、噴霧ノズル61を圧縮室2に設けたが、これに限らず、例えば、噴霧ノズル61を吸気ポート32に臨んで設けるようにしてもよい。   In the above-described embodiment, the spray nozzle 61 is provided in the compression chamber 2. However, the present invention is not limited to this. For example, the spray nozzle 61 may be provided facing the intake port 32.

図1は、本発明に係る一実施形態による気体圧縮機の概略構造図である。FIG. 1 is a schematic structural diagram of a gas compressor according to an embodiment of the present invention. 図2は、本実施形態の気体圧縮機のPV線図である。FIG. 2 is a PV diagram of the gas compressor of the present embodiment. 図3は、本実施形態の気体圧縮機の圧縮エネルギーと圧力との関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between the compression energy and the pressure of the gas compressor of the present embodiment.

符号の説明Explanation of symbols

1 気体圧縮機
2 圧縮室
3 シリンダ
4 ピストン
6 噴霧手段
7 制御手段
DESCRIPTION OF SYMBOLS 1 Gas compressor 2 Compression chamber 3 Cylinder 4 Piston 6 Spraying means 7 Control means

Claims (5)

圧縮室内に吸入された気体を、その圧縮室の容積を減少させて圧縮するようにした気体圧縮機において、
上記圧縮室内に水を噴霧するための噴霧手段と、上記圧縮室内で圧縮される気体の温度上昇を、水の気化熱にて抑制すべく、上記噴霧手段の噴霧時期および噴霧量を制御する制御手段とを備えたことを特徴とする気体圧縮機。
In the gas compressor that compresses the gas sucked into the compression chamber by reducing the volume of the compression chamber,
Spray means for spraying water into the compression chamber, and control for controlling the spray timing and the spray amount of the spray means so as to suppress the temperature rise of the gas compressed in the compression chamber by the heat of vaporization of water. And a gas compressor.
上記圧縮室が、シリンダと、そのシリンダ内に往復動可能に収容されたピストンとで形成された請求項1記載の気体圧縮機。   The gas compressor according to claim 1, wherein the compression chamber is formed of a cylinder and a piston accommodated in the cylinder so as to be reciprocally movable. 上記圧縮室が、ケーシングと、そのケーシング内に回転可能に収容されたロータとで形成された請求項1記載の気体圧縮機。   The gas compressor according to claim 1, wherein the compression chamber is formed by a casing and a rotor rotatably accommodated in the casing. 上記制御手段は、圧縮工程中、上記ピストンの圧縮ストロークが、全ストロークに対して30%以上70%未満のときに、上記噴霧手段による水の噴霧を開始する請求項2記載の気体圧縮機。   3. The gas compressor according to claim 2, wherein the control means starts spraying of water by the spray means when the compression stroke of the piston is 30% or more and less than 70% of the total stroke during the compression step. 上記制御手段は、一圧縮工程当たりに上記噴霧手段から噴霧される水のモル数を、圧縮すべき気体のモル数の10分の1以下に設定する請求項1から4いずれかに記載の気体圧縮機。
The gas according to any one of claims 1 to 4, wherein the control means sets the number of moles of water sprayed from the spray means per compression step to one tenth or less of the number of moles of gas to be compressed. Compressor.
JP2006211029A 2006-08-02 2006-08-02 Gas compressor Pending JP2008038658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211029A JP2008038658A (en) 2006-08-02 2006-08-02 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211029A JP2008038658A (en) 2006-08-02 2006-08-02 Gas compressor

Publications (1)

Publication Number Publication Date
JP2008038658A true JP2008038658A (en) 2008-02-21

Family

ID=39173991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211029A Pending JP2008038658A (en) 2006-08-02 2006-08-02 Gas compressor

Country Status (1)

Country Link
JP (1) JP2008038658A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7802426B2 (en) 2008-06-09 2010-09-28 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US7832207B2 (en) 2008-04-09 2010-11-16 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US7832207B2 (en) 2008-04-09 2010-11-16 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US7802426B2 (en) 2008-06-09 2010-09-28 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems

Similar Documents

Publication Publication Date Title
JP2008038658A (en) Gas compressor
WO2017076099A1 (en) Refrigerator control method and control system using linear compressor
JP2009509098A (en) System and method for operating a compressor
KR20070085071A (en) Hermetic compressor
JP2006070892A (en) Intake muffler for compressor
CN104066985A (en) Reciprocating compressors having timing valves and related methods
KR20120017068A (en) Compressor comprising a piston dummy
US11525605B2 (en) Cooling circuit having a gas discharge unit removing gaseous refrigerant from a compressor feed line
EP2494206B1 (en) A cooling system for reciprocating compressors and a reciprocating compressor
WO2012079269A1 (en) High-efficiency exhaust type gas compressor
JP2004100685A (en) Reciprocating compressor
RU2003113561A (en) FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINE
CN209195664U (en) A kind of compressor, refrigerator and refrigeration system
JP2011185104A (en) Compressor
CN106194696B (en) A kind of automobile air compressor of release No Load Start
RU2293213C1 (en) Method of compression of gas in multistage piston compressor
RU2529620C2 (en) Piston compressor
CN106555742B (en) A kind of valve for refrigerating compressor group structure
US694299A (en) Air compressor and cooler.
KR100565520B1 (en) Refrigeration cycle device with linear compressor and control method thereof
EP2013481B1 (en) A compressor
JP6763684B2 (en) Booster compressor
JPH0763167A (en) Multiple stage compressor
JPS6349573Y2 (en)
CN109763955A (en) It is a kind of from air-cooled piston compressor