JP2008034167A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2008034167A
JP2008034167A JP2006204361A JP2006204361A JP2008034167A JP 2008034167 A JP2008034167 A JP 2008034167A JP 2006204361 A JP2006204361 A JP 2006204361A JP 2006204361 A JP2006204361 A JP 2006204361A JP 2008034167 A JP2008034167 A JP 2008034167A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
electrode plate
lead
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204361A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
博 安田
Kazunari Ando
和成 安藤
Seiji Anzai
誠二 安齋
Wakichi Yonezu
和吉 米津
Yoshihiro Murata
善博 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006204361A priority Critical patent/JP2008034167A/en
Publication of JP2008034167A publication Critical patent/JP2008034167A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead acid storage battery superior in maintenance-free performance by suppressing reduction of an electrolytic liquid in the lead acid storage battery for automobile. <P>SOLUTION: In the liquid type lead acid storage battery using a Pb-Ca system alloy for a positive electrode grid and a negative electrode grid, a valve 21 is arranged in a liquid plug 10, and a sheet to cover an exhaust port 11 of the liquid plug is pasted on a lid 8 by an adhesive or the like. As a result, a gas exhaust path is formed between the sheet and the lid. With this structure, the lead acid storage battery remarkably suppressed in reduction of liquid of the moisture in the electrolytic liquid and having high maintenance-free performance can be provided. Furthermore, by peeling off the sheet, make-up of water can be made from the liquid plug hole to enable to use the lead acid storage battery for a long period. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

車両のエンジン始動用やバックアップ電源用といった様々な用途に鉛蓄電池が用いられている。その中でも始動用鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給する。エンジン始動後、電池はオルタネータによって充電される。ここで、充電と放電とがバランスし、電池のSOCがほぼ100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for various purposes such as vehicle engine starting and backup power supply. Among them, the start lead-acid battery supplies power to various electric and electronic devices mounted on the vehicle as well as power to the engine start cell motor. After the engine is started, the battery is charged by the alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging are balanced and the SOC of the battery is maintained at approximately 100%.

また、始動用鉛蓄電池はエンジンルーム内に設置されることが殆どである。そのため、鉛蓄電池の使用温度は40℃以上、さらには80℃といった高温になり、過充電状態で使用されることとなる。   In most cases, the starting lead-acid battery is installed in the engine room. Therefore, the operating temperature of the lead storage battery is as high as 40 ° C. or higher, and 80 ° C., and is used in an overcharged state.

鉛蓄電池を過充電した場合、電解液中の水が酸素ガスと水素ガスに分解され電池外に排出されるため、電解液中の水分が減少する。その結果、電解液中の硫酸濃度が上昇し、正極板の腐食劣化などにより容量低下が進行する。また、電解液面が低下し、極板が電解液より露出した場合は、放電容量の急激な低下や、負極板とストラップとの接続部、あるいはストラップ自体が腐食するといった問題が発生する。   When the lead storage battery is overcharged, the water in the electrolytic solution is decomposed into oxygen gas and hydrogen gas and discharged outside the battery, so that the water in the electrolytic solution is reduced. As a result, the sulfuric acid concentration in the electrolytic solution increases, and the capacity decreases due to corrosion deterioration of the positive electrode plate. In addition, when the electrolytic solution surface is lowered and the electrode plate is exposed from the electrolytic solution, there arises a problem that the discharge capacity is drastically reduced and the connecting portion between the negative electrode plate and the strap or the strap itself is corroded.

このように、特に、高温雰囲気で使用される、始動用の鉛蓄電池では、電解液中の水分減少(以下、「減液」という)の抑制は重大な問題である。この鉛蓄電池の減液抑制を目的として、正極格子、負極格子ともにPb−Ca系合金が採用されてきている。Pb−Ca合金は従来用いられていたPb−Sb合金に比較して水素過電圧が高いため、水の電気分解による減液を抑制することができる。   As described above, especially in a lead storage battery for start-up used in a high-temperature atmosphere, suppression of moisture reduction (hereinafter referred to as “liquid reduction”) in the electrolytic solution is a serious problem. For the purpose of suppressing liquid reduction in this lead storage battery, Pb—Ca-based alloys have been adopted for both the positive and negative grids. Since the Pb—Ca alloy has a higher hydrogen overvoltage than the conventionally used Pb—Sb alloys, it is possible to suppress liquid reduction due to water electrolysis.

一方、鉛蓄電池の減液の原因は前記したような、水の電気分解によるガス発生によるものと、単に電解液中の水分蒸発によって生じた水蒸気が、電池外に放出されることによって発生するものがある。Pb−Ca系合金を正極・負極格子に用いることにより、前者の水の電気分解による減液は抑制できるが、水分蒸発抑制については特に有効な手段とはいえない。   On the other hand, the cause of liquid reduction in lead-acid batteries is due to the generation of gas due to the electrolysis of water, as described above, and the fact that water vapor generated by the evaporation of water in the electrolyte is simply released outside the battery. There is. By using a Pb—Ca-based alloy for the positive electrode / negative electrode lattice, the former liquid reduction due to the electrolysis of water can be suppressed, but it cannot be said to be a particularly effective means for suppressing water evaporation.

このような水分蒸発による減液を抑制するために、電池蓋内に迷路状の排気経路を設け、水蒸気が排気経路内を拡散する間に、水蒸気を排気経路内壁で結露させて水とし、この水をセルに還流させることが知られている(例えば特許文献1参照)。   In order to suppress such liquid reduction due to moisture evaporation, a maze-like exhaust path is provided in the battery lid, and water vapor condenses on the inner wall of the exhaust path while water vapor diffuses in the exhaust path. It is known that water is refluxed to a cell (see, for example, Patent Document 1).

また、特許文献2では、電池蓋に装着した液口栓の排気口を覆うシールを、電池蓋に貼り付けることによって、排気口を通した水蒸気の電池外への散逸を抑制することが示されている。   Patent Document 2 shows that by sticking a seal that covers the exhaust port of the liquid plug attached to the battery cover to the battery cover, the dissipation of water vapor through the exhaust port to the outside of the battery is suppressed. ing.

特許文献1で示されたような、電池蓋内に迷路構造を設ける方式は、迷路構造を得るために、電池蓋とは別の樹脂成型部品を要し、また電池組み立て工程において、この樹脂成型部品を熱溶着によって電池蓋と接合する工程が必要となるため、電池の製造価格はより高価なものにならざるを得なかった。   The method of providing the maze structure in the battery lid as shown in Patent Document 1 requires a resin molded part different from the battery lid to obtain the maze structure, and this resin molding in the battery assembly process. Since a process of joining the parts to the battery lid by heat welding is required, the manufacturing cost of the battery has to be higher.

また、このような構造の鉛蓄電池では、電解液面が低下したときの補水が不可能であるため、電解液面が規定位置より低下した場合には、鉛蓄電池を交換せざるを得なかった。この点で特許文献2に示されたような、液口栓の排気口をシールで覆う方式は、シールを一旦剥離し、液口栓を脱着できるため、補水作業が可能となる。しかしながら、電解液の減液抑制効果は、特許文献1のものと比較して劣っており、十分なものとは言えなかった。
特開平8−22815号公報 特開2005−276741号公報
In addition, in the lead storage battery having such a structure, it is impossible to refill water when the electrolytic solution level is lowered. Therefore, when the electrolytic solution surface is lowered from a specified position, the lead storage battery has to be replaced. . In this respect, the method of covering the exhaust port of the liquid spigot with a seal as shown in Patent Document 2 allows the water replenishment work because the seal is once peeled off and the liquid spigot can be detached. However, the liquid reduction suppression effect of the electrolytic solution is inferior to that of Patent Document 1, and cannot be said to be sufficient.
JP-A-8-22815 JP-A-2005-276741

本発明は、電解液の減液がより抑制され、メンテナンスフリー性をより向上させるとともに、減液が進行し、電解液面が低下した際には、液口栓から補水作業が可能であり、より長期間使用可能な鉛蓄電池を提供するものである。   The present invention further suppresses electrolyte reduction and improves maintenance-free properties, and when liquid reduction progresses and the electrolyte level decreases, replenishment work can be performed from the liquid stopper. A lead-acid battery that can be used for a longer period of time is provided.

前記した課題を解決するために、本発明の請求項1に係る発明は、電池内圧の変化に応じて開弁する弁を備えた液口栓を蓋に装着した鉛蓄電池であり、開弁時に電池内のガスを電池外部に排出するよう、前記液口栓に排出口を設け、前記電池内部には、正極板および負極板の各極板面の全面が電解液に浸漬した状態で収納され、前記正極板および前記負極板は、Pb−Ca合金よりなる正極格子体および負極格子体をそれぞれ備え、前記正極板および前記負極板の少なくともいずれか一方の極板が、ポリエチレン等の微多孔膜で形成された袋状セパレータに収納され、前記排出口を覆うシートを前記蓋面に貼り合わせ、前記シートと前記蓋との貼り合わせ面には、前記シートと前記蓋とが接合された接合部と、前記シートと前記蓋とが接合されない非接合部と設け、前記非接合部を前記排出口からの排出ガスを前記排出口から離間した位置で大気中に放出するためのガス排出路として設けた鉛蓄電池を示すものである。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is a lead storage battery in which a lid is provided with a liquid spout provided with a valve that opens according to a change in battery internal pressure. In order to discharge the gas in the battery to the outside of the battery, the liquid plug is provided with a discharge port, and the entire surface of each electrode plate surface of the positive electrode plate and the negative electrode plate is immersed in the electrolyte inside the battery. The positive electrode plate and the negative electrode plate respectively include a positive electrode lattice body and a negative electrode lattice body made of a Pb—Ca alloy, and at least one of the positive electrode plate and the negative electrode plate is a microporous film such as polyethylene. A sheet that is housed in the bag-shaped separator formed by the step of bonding a sheet that covers the discharge port to the cover surface, and a bonding portion in which the sheet and the cover are bonded to a bonding surface of the sheet and the cover And the sheet and the lid are joined together Provided that there is no non-joining portion is the non-joint portion indicates a lead-acid battery is provided as a gas discharge path for discharging to the atmosphere the exhaust gas at a position spaced from the discharge port from the discharge port.

また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、前記正極板および前記負極板の同極性の極板耳同士を集合溶接するストラップとしてSbを実質上含まない鉛もしくは鉛合金を用いた鉛蓄電池を示すものである。   Moreover, the invention according to claim 2 of the present invention is the lead storage battery of claim 1, wherein the lead plate substantially free of Sb is used as a strap for collectively welding the electrode plates of the same polarity of the positive electrode plate and the negative electrode plate. 1 shows a lead storage battery using a lead alloy.

さらに、本発明の請求項3に係る発明は、請求項1もしくは2の鉛蓄電池において、前記正極格子体の活物質と接する表面の少なくとも一部にSnを含む、含Sn層を形成した鉛蓄電池を示すものである。   The lead storage battery according to claim 3 of the present invention is the lead storage battery according to claim 1 or 2, wherein a Sn-containing layer including Sn is formed on at least a part of a surface of the positive electrode lattice body in contact with the active material. Is shown.

また、本発明の請求項4に係る発明は、請求項1、2もしくは3の鉛蓄電池において、前記正極格子体の活物質と接する表面の少なくとも一部にSbを含む、含Sb層を形成したこと鉛蓄電池を示すものである。   According to a fourth aspect of the present invention, in the lead-acid battery according to the first, second, or third aspect, an Sb-containing layer containing Sb is formed on at least a part of a surface of the positive electrode lattice body that contacts the active material. This indicates a lead storage battery.

そして、本発明の請求項5に係る発明は、請求項4の前記含Sb層にさらにAgを含む鉛蓄電池を示すものである。   And the invention which concerns on Claim 5 of this invention shows the lead storage battery which further contains Ag in the said Sb-containing layer of Claim 4.

さらに、本発明の請求項6に係る発明は、請求項1、2、3、4もしくは5の鉛蓄電池において、前記弁の開弁圧を6kPa以下とした鉛蓄電池を示すものである。   Furthermore, the invention according to claim 6 of the present invention is the lead storage battery according to claim 1, 2, 3, 4 or 5, wherein the valve opening pressure of the valve is 6 kPa or less.

前記した本発明の構成によれば、鉛蓄電池の水分蒸発による減液を顕著に抑制することができる。また、鉛蓄電池の長期間の使用により、電解液面が低下した場合においても、さらに補水できるため、補水できない鉛蓄電池に比較して、より長期間、鉛蓄電池を使用することができる。   According to the configuration of the present invention described above, liquid reduction due to moisture evaporation of the lead storage battery can be remarkably suppressed. Further, even when the electrolyte level is lowered due to the long-term use of the lead storage battery, water can be further replenished. Therefore, the lead storage battery can be used for a longer period of time than a lead storage battery that cannot be refilled.

以下、本発明の実施の形態による鉛蓄電池の構成を説明する。   Hereinafter, the structure of the lead acid battery by embodiment of this invention is demonstrated.

本発明による鉛蓄電池1はPb−Ca合金からなる正極格子と負極格子を有している。これら格子体にそれぞれの極性に応じた活物質を充填した正極板2と負極板3とが、セパレータ4を介して積層され、極板群6を構成する。正極板2および負極板3のそれぞれに設けられた集電用の正極耳2aと負極耳3aは、それぞれ同極性の耳部間が正極ストラップ5aおよび負極ストラップ5bにより接続される。   The lead storage battery 1 according to the present invention has a positive electrode lattice and a negative electrode lattice made of a Pb—Ca alloy. A positive electrode plate 2 and a negative electrode plate 3 in which active materials corresponding to the respective polarities are filled in these lattice bodies are laminated via a separator 4 to constitute an electrode plate group 6. The positive electrode ear 2a and the negative electrode ear 3a for current collection provided on each of the positive electrode plate 2 and the negative electrode plate 3 are connected between the ear portions of the same polarity by the positive electrode strap 5a and the negative electrode strap 5b.

極板群6は電槽7に収納され、さらに電槽7は蓋8で閉じられる。なお、電槽7は電池電圧に応じて複数の極板群6が収納できるよう、隔壁7aによってセル室7bに区画されている。例えば、自動車用の鉛蓄電池は、通常12V電池であり、電槽7は5つの隔壁7aによって6つのセル室7bに区画されている。なお、図示しないが、正極板2および負極板3の極板面全面を浸漬する量の、希硫酸を主成分とする電解液がセル室内7bに収納される。   The electrode plate group 6 is housed in a battery case 7, and the battery case 7 is closed with a lid 8. The battery case 7 is divided into cell chambers 7b by partition walls 7a so that a plurality of electrode plate groups 6 can be accommodated according to the battery voltage. For example, a lead storage battery for an automobile is usually a 12V battery, and the battery case 7 is partitioned into six cell chambers 7b by five partition walls 7a. Although not shown, an electrolytic solution containing dilute sulfuric acid as a main component in an amount soaking the entire surface of the positive electrode plate 2 and the negative electrode plate 3 is stored in the cell chamber 7b.

蓋8にはセル室7b毎に電解液あるいは水をセル室7bへ補給するための注液口9が設けられ、注液口9には液口栓10が装着されている。また、液口栓10には電池内部のガスを電池外部に排出するための排出口11が設けられている。   The lid 8 is provided with a liquid injection port 9 for supplying an electrolytic solution or water to the cell chamber 7b for each cell chamber 7b, and a liquid port plug 10 is attached to the liquid injection port 9. Further, the liquid port plug 10 is provided with a discharge port 11 for discharging the gas inside the battery to the outside of the battery.

本発明の鉛蓄電池1は、この液口栓10に設けた排出口11を覆うシート12が蓋8に粘着剤等により貼り合わせられている。なお、粘着剤は、シート12の蓋8との貼り合わせ面の全面に塗布されているのではなく、排出口11からの排出ガスを電池外に誘導するよう、排出口11からシート12の端部12aにわたって粘着剤を塗布しない部分(請求項1における非接合部に対応)を設け、それ以外の部分(図1における斜線部Aであり、請求項1における接合部に対応)には粘着剤を塗布し、斜線部Aで蓋8とシート12とを貼り合わす。排出口11からのガスは、シート12と蓋8の粘着剤により貼り合わせていない部分をガス排出路13として通過し、シート12の端部12aで電池外に放出される。なお、シート12は、ポリエチレン、ポリプロピレン等の耐酸性シートに、アクリルエマルジョン系等の粘着剤を塗布したものを用いることができる。   In the lead storage battery 1 of the present invention, a sheet 12 covering the discharge port 11 provided in the liquid plug 10 is bonded to the lid 8 with an adhesive or the like. Note that the adhesive is not applied to the entire surface of the sheet 12 to which the lid 8 is bonded, but rather from the discharge port 11 to the end of the sheet 12 so as to guide the exhaust gas from the discharge port 11 to the outside of the battery. A portion where the adhesive is not applied over the portion 12a (corresponding to the non-joined portion in claim 1) is provided, and the other portion (the hatched portion A in FIG. 1, corresponding to the joined portion in claim 1) is provided with an adhesive. And the lid 8 and the sheet 12 are bonded together at the shaded area A. The gas from the discharge port 11 passes through the portion of the sheet 12 and the lid 8 that is not bonded to each other as the gas discharge path 13, and is discharged outside the battery at the end 12a of the sheet 12. In addition, the sheet | seat 12 can apply | coat the adhesive agent, such as an acrylic emulsion type | system | group, to acid-resistant sheets, such as polyethylene and a polypropylene.

本発明の鉛蓄電池1において、図2に示したように、液口栓10の内部には、電池内圧に応じて開弁する弁21が設けられている。弁21の構成として様々な構成が適用できるが、図2に示した弁21は、液口栓10の本体筒22の内部に、本体筒22とは別体で構成された例を示している。   In the lead storage battery 1 of the present invention, as shown in FIG. 2, a valve 21 that opens according to the battery internal pressure is provided inside the liquid spout 10. Although various configurations can be applied as the configuration of the valve 21, the valve 21 illustrated in FIG. 2 illustrates an example in which the valve 21 is configured separately from the main body cylinder 22 inside the main body cylinder 22 of the liquid spigot 10. .

図2に示して例で、弁21は排気孔23aを有した底壁23bと、この底壁23bの周囲に設けられた側壁23cとからなる弁収納体23と、この弁収納体23内において、排気孔23aを閉じるよう配置された弁体23dを有している。また、弁体23dで排気孔23aを閉じるよう、押え板23eを弁体23d上に配置し、押え板23eは弁収納体23に固定される。なお、付加的に、押さ板23e−弁体23d間に間隙を設け、この間隙にスポンジ体23fを配置し、弁体23dを底壁23bに圧接してもよい。   In the example shown in FIG. 2, the valve 21 includes a valve housing body 23 including a bottom wall 23 b having an exhaust hole 23 a and a side wall 23 c provided around the bottom wall 23 b, and the valve housing body 23 includes a valve housing body 23. The valve body 23d is disposed so as to close the exhaust hole 23a. Further, the presser plate 23e is disposed on the valve body 23d so that the exhaust hole 23a is closed by the valve body 23d, and the presser plate 23e is fixed to the valve housing body 23. In addition, a gap may be provided between the pressing plate 23e and the valve body 23d, a sponge body 23f may be disposed in the gap, and the valve body 23d may be pressed against the bottom wall 23b.

極板群6からのガス発生により、セル室7bの内圧が上昇した場合には、内圧により弁体23dとスポンジ体23fが圧縮され、底壁23bと弁体23dとの間に隙間が生じ、内圧上昇に応じて隙間が拡大していく。内圧が所定の開弁圧に到達すると、この隙間を通してセル室7b内のガスが液口栓10に設けた排出口11側に排出される。このガス排出によって、セル室7b内圧が低下すると、再び弁体23dで排気孔23aが閉じ、弁は閉弁する。なお、鉛蓄電池に振動が加わった場合、電解液面が揺れ動く。電解液面が激しく揺れ動き、電解液が弁21に多量に付着すると、開弁時に電解液が排出口11に滲出する場合があるため、弁21の下部には、防沫体24を配置して、弁21への電解液の付着を抑制することが好ましい。   When the internal pressure of the cell chamber 7b rises due to gas generation from the electrode plate group 6, the valve body 23d and the sponge body 23f are compressed by the internal pressure, and a gap is generated between the bottom wall 23b and the valve body 23d. The gap expands as the internal pressure rises. When the internal pressure reaches a predetermined valve opening pressure, the gas in the cell chamber 7b is discharged to the discharge port 11 side provided in the liquid port plug 10 through this gap. When the internal pressure of the cell chamber 7b decreases due to this gas discharge, the exhaust hole 23a is closed again by the valve body 23d, and the valve is closed. In addition, when a vibration is applied to the lead storage battery, the electrolyte surface is shaken. If the electrolyte surface shakes vigorously and a large amount of electrolyte adheres to the valve 21, the electrolyte may ooze into the discharge port 11 when the valve is opened. It is preferable to suppress the adhesion of the electrolytic solution to the valve 21.

本発明の鉛蓄電池1は、充電等によって、極板群からガスが発生したとき以外は、弁は閉じている。したがって、従来の開放液式の鉛蓄電池で発生していたような、電解液からの蒸発水分や電解液ミストの電池外への散逸が抑制される。   In the lead storage battery 1 of the present invention, the valve is closed except when gas is generated from the electrode plate group by charging or the like. Therefore, the dissipation of the evaporated water from the electrolytic solution and the electrolytic solution mist to the outside of the battery, which is generated in the conventional open liquid type lead storage battery, is suppressed.

また、本発明の鉛蓄電池1が自動車に搭載され、車両走行時に常時充電されたような場合では、弁は開くものの、排出口を覆うシート12が排気抵抗となって、通常の液式鉛蓄電池に比較してガス排出が長時間にわたって緩やかに行われる。この間、セル室7b内の蒸発水分や電解液ミストがセル室7bの内壁に接触して結露し、電解液内に再び還流するため、ガス排出に伴う、水分減少が抑制される。   When the lead storage battery 1 of the present invention is mounted on an automobile and is always charged when the vehicle is running, the valve opens, but the sheet 12 covering the discharge port becomes an exhaust resistance, so that a normal liquid lead storage battery is used. Compared to the above, gas is discharged slowly over a long period of time. During this time, the evaporated water and the electrolyte mist in the cell chamber 7b come into contact with the inner wall of the cell chamber 7b to condense and recirculate into the electrolyte solution, so that the moisture decrease due to gas discharge is suppressed.

本発明の減液抑制の効果は、上記したような弁を通過した後の排気抵抗の増大が寄与している。したがって、弁の電池外部側に多孔質フィルタを配置することによっても減液が抑制できると考えられるが、多孔質フィルタを用いても顕著な減液抑制の効果は得られない。   The increase in exhaust resistance after passing through the valve as described above contributes to the effect of suppressing liquid reduction according to the present invention. Therefore, it can be considered that liquid reduction can be suppressed by disposing a porous filter on the battery outside of the valve. However, even if a porous filter is used, a remarkable effect of suppressing liquid reduction cannot be obtained.

本発明の減液抑制効果は、前記したような、弁の電池外側での排気抵抗の増大によるものと、液口栓10に設けた排出口11がシート12によって覆われ、排出ガスが排出口よりも離間した位置で電池外に放出されること、およびガス排出路13の形状によって得られる。   The liquid reduction suppressing effect of the present invention is due to the increase in exhaust resistance outside the battery of the valve as described above, and the discharge port 11 provided in the liquid port plug 10 is covered with the sheet 12, and the exhaust gas is discharged to the discharge port. It is obtained by being discharged out of the battery at a position farther away and the shape of the gas exhaust passage 13.

特に自動車用の鉛蓄電池では、車両走行時には絶えず外気がエンジンルームに取り入れられ、車両外に排出されるため、電池周囲には空気流が発生している。従来の鉛蓄電池では、電池内で発生したガスの排出口が蓋に露出しているため、電池外部を流れる空気流によって排出口の電池内部側で負圧となり、電池内部のガス排出が促進される。同時に、電池内部の水蒸気や電解液ミストも電池外に排出されるため、減液が進行しやすくなる。   In particular, in lead-acid batteries for automobiles, outside air is constantly taken into the engine room and discharged out of the vehicle when the vehicle is running, so an air flow is generated around the battery. In conventional lead-acid batteries, the discharge port of the gas generated in the battery is exposed to the lid, so the air flow that flows outside the battery creates a negative pressure on the battery inside of the discharge port, facilitating gas discharge inside the battery. The At the same time, since water vapor and electrolyte mist inside the battery are also discharged out of the battery, the liquid reduction tends to proceed.

また、このような減液は排出口を多孔質フィルタで覆ってもそれほど減少しない。結局は、多孔質フィルタから排出口の間が空気流によって負圧状態となるため、電池内部の水蒸気や電解液ミストの排出が促進されるためと考えられる。   Moreover, such a liquid reduction does not decrease so much even if the discharge port is covered with a porous filter. In the end, it is considered that the discharge of water vapor and electrolyte mist inside the battery is promoted because the air flow causes a negative pressure between the porous filter and the discharge port.

本発明では、液口栓10に排出口11から、最終的なガスの排出口となる端部12a間で設けたガス排出路13が、シート12と蓋8間の間隙として提供されている。ガス排出路13に対応した端部12a周辺の空気流により、ガス排出路13内は負圧状態となるため、シート12が大気圧によって蓋8に押し付けられ、ガス排出路13はより狭窄し、場合によっては一部が閉じる。その結果、ガス排出路13を通した、セル室7b内の水蒸気および電解液ミストの電池外部への散逸が顕著に抑制される。   In the present invention, a gas discharge passage 13 provided between the end 12 a serving as a final gas discharge port from the discharge port 11 in the liquid plug 10 is provided as a gap between the sheet 12 and the lid 8. Due to the air flow around the end 12a corresponding to the gas discharge path 13, the inside of the gas discharge path 13 is in a negative pressure state, so that the sheet 12 is pressed against the lid 8 by the atmospheric pressure, and the gas discharge path 13 is further narrowed, In some cases, some will close. As a result, the dissipation of the water vapor and the electrolyte mist in the cell chamber 7b through the gas discharge path 13 to the outside of the battery is remarkably suppressed.

なお、本発明において、本体筒22とは別体で構成した弁21を本体筒22に装着した構造の例を示したが、本発明はこの構造に限定されるものではなく、本体筒22と一体に弁を設けてもよい。なお、弁21を本体筒22と一体に設ける、設けないに係わらず、弁21は耐酸性および弾性を有した素材、例えばクロロプレンゴム、シリコンゴム、フッ素系ゴムやEPDMゴムといった素材を用いることができる。また、前記したように、弁体23dと押え板23eとの間にスポンジ体23fを配置する場合、このスポンジ体23fとして、発泡ゴムを用いることができる。特に独立発泡ゴムは弾性力の時間による低下が少ないので好ましい。   In the present invention, an example of a structure in which the valve 21 configured separately from the main body cylinder 22 is mounted on the main body cylinder 22 is shown, but the present invention is not limited to this structure, A valve may be provided integrally. Regardless of whether or not the valve 21 is provided integrally with the main body cylinder 22, the valve 21 may be made of a material having acid resistance and elasticity, for example, a material such as chloroprene rubber, silicon rubber, fluorine rubber, or EPDM rubber. it can. As described above, when the sponge body 23f is disposed between the valve body 23d and the pressing plate 23e, foamed rubber can be used as the sponge body 23f. In particular, an independent foam rubber is preferable because the elastic force hardly decreases with time.

また、弁体23dを弾性に富まない、ポリエチレンシートや硬度の高いゴム板とし、その上に弾性に富んだ発泡ゴム等の弾性体を積層した構造としてもよく、またこれら両者を互いに張り合わせたものとしてもよい。   Further, the valve body 23d may be made of a non-elastic polyethylene sheet or a rubber sheet having high hardness, and a structure in which an elastic body such as foam rubber rich in elasticity is laminated thereon, and both of them are bonded to each other. It may be a thing.

また、弁体23d中の可塑剤が底壁23bに移行して、両者が貼り付く場合があるため、特に、スポンジ体23f等によって、両者を互いに圧接する場合には、必要に応じてシリコンオイルやフッ素オイル等の液体潤滑剤をこれらの接触面に塗布することが好ましい。なお、本発明の鉛蓄電池1は、負極板面のすべてが電解液に浸漬された状態で、負極での酸素ガス吸収反応が抑制されるため、開弁圧を通常の制御弁式鉛蓄電池のように、10kPa以上に設定する意義がない。また、このような内圧では電槽が変形して、電解液面が変化するため、これより低く、6.0kPa以下の開弁圧とすればよい。   In addition, since the plasticizer in the valve body 23d may move to the bottom wall 23b and adhere to both, particularly when both are pressed against each other by the sponge body 23f or the like, silicone oil may be used as necessary. It is preferable to apply a liquid lubricant such as fluorinated oil to these contact surfaces. In the lead storage battery 1 of the present invention, since the oxygen gas absorption reaction at the negative electrode is suppressed in a state where all of the negative electrode plate surface is immersed in the electrolytic solution, the valve opening pressure is reduced to that of a normal control valve type lead storage battery. Thus, there is no significance to set it to 10 kPa or more. Moreover, since the battery case is deformed at such an internal pressure and the electrolyte surface changes, the valve opening pressure may be lower than this and 6.0 kPa or less.

本発明の減液抑制をより効果的に得るために、正極ストラップ5aおよび負極ストラップ5bを、Sbを実質上含まない鉛もしくは鉛合金を用いる。通常、自動車用の鉛蓄電池は、ストラップにSbを約2〜4wt%程度含んだ合金を使用することが一般的である。これは、合金の溶接容易性、機械的強度、コストなどの面でSbを含まない合金に比べて格段に優れているためである。また、ストラップは合金の塊であり、活物質に比較して比表面積も小さく、ストラップ中のSbが電池の減液特性に与える影響は軽微だと考えられていたこともPb−Sb合金がストラップ合金として広く使用されていたもう一つの理由と考えられる。   In order to obtain the liquid reduction suppression of the present invention more effectively, the positive electrode strap 5a and the negative electrode strap 5b are made of lead or a lead alloy substantially free of Sb. In general, lead-acid batteries for automobiles generally use an alloy containing about 2 to 4 wt% of Sb in the strap. This is because the alloy is far superior to an alloy not containing Sb in terms of ease of welding, mechanical strength, cost, and the like. In addition, the strap is a lump of alloy, has a smaller specific surface area than the active material, and it was thought that the influence of Sb in the strap on the liquid reduction characteristics of the battery was negligible. This is thought to be another reason why it was widely used as an alloy.

しかしながら、ストラップ中に含まれるSbは、電池が充放電される間に電解液中に溶出し、負極板上で再析出することによって、減液量を増加させることがわかってきた。特に、正極板の耐久性が大幅に改善され、電池の使用可能期間が大幅に伸びた長寿命の電池では、減液量の増加が無視できない程度まで進行する。   However, it has been found that Sb contained in the strap elutes into the electrolytic solution while the battery is charged and discharged and reprecipitates on the negative electrode plate, thereby increasing the amount of liquid reduction. In particular, in the case of a long-life battery in which the durability of the positive electrode plate is significantly improved and the usable period of the battery is greatly extended, the increase in the amount of liquid reduction proceeds to a level that cannot be ignored.

したがって、ストラップは実質的にSbを含まない鉛もしくは鉛合金とすることが、寿命期間中に減液量を増大させないために好ましい。なお、不純物程度(数ppm〜数十ppm程度)であり、減液量を増大させない程度の量のSbは許容しうることは言うまでもない。   Therefore, it is preferable that the strap is made of lead or a lead alloy substantially free of Sb so as not to increase the liquid reduction amount during the lifetime. Needless to say, an amount of Sb that is of the order of impurities (about several ppm to several tens of ppm) and does not increase the liquid reduction amount is acceptable.

Sbを含まない具体的な合金としては、例えば、2〜5wt%のSnを含むPb−Sn合金などが使用できる。   As a specific alloy not containing Sb, for example, a Pb—Sn alloy containing 2 to 5 wt% Sn can be used.

また、前記したように、正極板の耐久性、特に、正極活物質の耐久性を改善するために、正極格子体の活物質と接する面の少なくとも一部にSbを含む含Sb層、例えば、2〜10wt%のSbを含むPb−Sb合金層を付与することが有効である。但し、正極格子体表面のSbは負極に移行して減液量を増大させる場合があるため、減液量の増大が問題にならない程度の量に制限すべきである。   Further, as described above, in order to improve the durability of the positive electrode plate, particularly the durability of the positive electrode active material, the Sb-containing layer containing Sb on at least a part of the surface in contact with the active material of the positive electrode grid, for example, It is effective to provide a Pb—Sb alloy layer containing 2 to 10 wt% Sb. However, since Sb on the surface of the positive electrode lattice body may move to the negative electrode and increase the liquid reduction amount, it should be limited to an amount that does not cause an increase in the liquid reduction amount.

また過放電における、正極板の耐久性を改善するために、正極格子体表面の活物質と接する表面に、含Sn層、例えば2〜10wt%のSnを含むPb−Sn合金層を形成してもよい。また、この含Sn層中に前記したような濃度のSbを添加してもよい。   Further, in order to improve the durability of the positive electrode plate in overdischarge, an Sn-containing layer, for example, a Pb—Sn alloy layer containing 2 to 10 wt% Sn is formed on the surface of the positive electrode lattice body in contact with the active material. Also good. Further, Sb having a concentration as described above may be added to the Sn-containing layer.

さらに、正極格子表面に含Sb層を形成した電池を長期間保管した際、減液特性が低下するため、このような放置後の減液特性の低下を抑制する目的で、この含Sb層中に0.025〜0.5wt%程度のAgを含ませることが好ましい。なお、このAgを含む含Sb層に前記したような濃度のSnを添加してもよい。   Further, when a battery having an Sb layer formed on the surface of the positive electrode lattice is stored for a long period of time, the liquid reducing property is deteriorated. Therefore, in order to suppress such deterioration of the liquid reducing property after being left in the Sb layer, It is preferable to contain about 0.025 to 0.5 wt% of Ag. In addition, you may add Sn of the above density | concentration to this Sb containing layer containing Ag.

さらに、減液を加速する一要因として、電池の使用過程で起こる電池内の微小短絡現象が挙げられる。これは使用中に脱落した活物質による短絡によって、セル電圧が低下し、充電時のセルに加わる過電圧が相対的に上昇し、水の電気分解がより促進することが主な原因であると考えられる。   Furthermore, one factor for accelerating the liquid reduction is a micro short-circuit phenomenon in the battery that occurs in the battery use process. This is thought to be mainly due to the fact that the cell voltage drops due to a short circuit caused by the active material dropped during use, the overvoltage applied to the cell during charging rises relatively, and water electrolysis is further promoted. It is done.

したがって、セパレータを袋状とし、少なくともいずれか一方の極性の極板を収納して、脱落活物質による微小短絡を防ぐこと、好ましくは、セパレータ材として、セパレータ中への活物質浸透の極めて少ないポリエチレン樹脂・無機粉体・鉱物油を主原料とした微多孔膜製のものを用いることは、本発明による優れた減液特性を寿命末期まで維持する上で極めて好ましい。   Therefore, the separator is made into a bag shape, and at least one of the polar plates is accommodated to prevent a micro short circuit due to the falling active material. Preferably, as the separator material, polyethylene having very little active material penetration into the separator. The use of a microporous membrane made mainly of resin, inorganic powder, or mineral oil is extremely preferable in order to maintain the excellent liquid reducing properties according to the present invention until the end of its life.

以下実施例により、本発明における効果を説明する。   The effects of the present invention will be described below with reference to examples.

(実施例1)
比較例および本発明例の鉛蓄電池(JIS D5301における80D26形始動用鉛蓄電池)を作製し、鉛蓄電池に振動を加えながら電池を充電したときの減液量を評価した。
(Example 1)
The lead acid battery (80D26 type lead acid battery for start in JIS D5301) of the comparative example and the example of the present invention was manufactured, and the amount of liquid reduction when the battery was charged while applying vibration to the lead acid battery was evaluated.

本発明例および比較例の電池ともに、Pb−0.07wt%Ca−1.0wt%Sn合金製のエキスパンド格子体に正極活物質を充填した正極板、Pb−0.07wt%Ca−0.3wt%Sn合金製のエキスパンド格子体に負極活物質を充填した負極板を使用した。   In both the batteries of the present invention and the comparative example, a positive electrode plate in which a Pb-0.07 wt% Ca-1.0 wt% Sn alloy expanded lattice body is filled with a positive electrode active material, Pb-0.07 wt% Ca-0.3 wt A negative electrode plate in which an expanded lattice body made of% Sn alloy was filled with a negative electrode active material was used.

セパレータとしてポリエチレン樹脂およびシリカを主成分とし、添加剤として鉱物油10wt%含む1μmあるいはそれ以下の微孔を多数有した微多孔膜を、左右両側部および底部が閉じられた袋状に加工した袋状セパレータと、合成パルプ紙にガラスマットを貼り合わせた平板状セパレータのいずれか一方を使用した。なお、袋状セパレータを使用する場合、負極板を袋状セパレータに収納し、平板状セパレータを使用する場合、ガラスマットが正極板面に対向するように使用した。   A bag obtained by processing a microporous membrane having a large number of micropores of 1 μm or less containing polyethylene resin and silica as main components and 10 wt% of mineral oil as an additive into a bag shape in which the left and right sides and the bottom are closed Any one of a sheet-like separator and a flat plate-like separator obtained by bonding a glass mat to synthetic pulp paper was used. In addition, when using a bag-shaped separator, the negative electrode plate was accommodated in the bag-shaped separator, and when using a flat plate-shaped separator, the glass mat was used so as to face the positive electrode plate surface.

本発明例の電池Aは、前記した実施形態で示したとおりの電池である。なお、弁21の開弁圧は6kPaである。電池Aでは、正極板を収納する袋状セパレータが用いられている。なお、正極ストラップおよび負極ストラップともに、2.5wt%のSbを含む、Pb−Sb合金を用いた。   The battery A of the present invention example is the battery as shown in the above-described embodiment. The valve opening pressure of the valve 21 is 6 kPa. In the battery A, a bag-like separator that houses the positive electrode plate is used. Note that a Pb—Sb alloy containing 2.5 wt% Sb was used for both the positive strap and the negative strap.

なお、シート12としは、0.2mm厚のポリプロピレンシートを用い、アクリルエマルジョン系粘着剤で蓋に貼り合わせた。   In addition, as the sheet | seat 12, the 0.2 mm-thick polypropylene sheet was used, and it affixed on the lid | cover with the acrylic emulsion adhesive.

本発明例の電池Bは、本発明例の電池Aで用いた正極および負極のストラップ合金をSbを含まず、2.5wt%のSnを含むPb−2.5wt%Sn合金とした電池である。その他の構成は、電池Aと変わらない。   The battery B of the present invention is a battery in which the positive and negative strap alloys used in the battery A of the present invention were made of Pb-2.5 wt% Sn alloy containing 2.5 wt% Sn without containing Sb. . Other configurations are the same as those of the battery A.

本発明例の電池Cは、本発明例の電池Aで用いた負極のストラップ合金を、電池Bと同様のPb−2.5wt%Sn合金とした電池である。その他の構成は、電池Aと変わらない。   The battery C of the present invention example is a battery in which the negative electrode strap alloy used in the battery A of the present invention example is a Pb-2.5 wt% Sn alloy similar to the battery B. Other configurations are the same as those of the battery A.

比較例の電池Dは、本発明例の電池Aで用いた袋状セパレータに換えて、合成パルプ紙とガラスマットとを貼り合わせた、平板状セパレータを用いた電池である。その他の構成は電池Aと変わらない。   The battery D of the comparative example is a battery using a flat plate separator in which synthetic pulp paper and a glass mat are bonded together instead of the bag separator used in the battery A of the present invention. Other configurations are the same as the battery A.

比較例の電池Eは、電池Aで用いた弁21を本体筒22から脱着し、その位置にポリプロピレン樹脂粒を焼結した多孔質フィルタを配置した電池である。その他は、電池Aと変わらない。   The battery E of the comparative example is a battery in which the valve 21 used in the battery A is detached from the main body cylinder 22 and a porous filter in which polypropylene resin particles are sintered is disposed at that position. Others are the same as the battery A.

比較例の電池Fは、電池Eから蓋8に貼り合わせたシート12を除去した電池であり、その他は電池Eと変わらない。   The battery F of the comparative example is a battery obtained by removing the sheet 12 bonded to the lid 8 from the battery E, and the other is the same as the battery E.

比較例の電池Gは、本発明例の電池Aから蓋8に貼り合わせたシート12を除去した電池であり、その他は電池Aと変わらない。   The battery G of the comparative example is a battery obtained by removing the sheet 12 bonded to the lid 8 from the battery A of the present invention example, and the other is the same as the battery A.

比較例の電池Hは、比較例の電池Fの正極ストラップおよび負極ストラップをともにPb−Sb合金から、2.5wt%のSnを含むPb−Sn合金とした電池であり、その他は電池Fと変わらない。   The battery H of the comparative example is a battery in which the positive electrode strap and the negative electrode strap of the battery F of the comparative example are both changed from Pb—Sb alloy to Pb—Sn alloy containing 2.5 wt% Sn. Absent.

前記した本発明例の電池A〜Cおよび比較例の電池D〜Hの各電池について、環境温度60℃中で14.0Vの定電圧充電を連続2000時間行った。なお、充電中は、加速度1G、周波数30Hzで電池を上下方向に加振した。また、電池蓋上面に沿って50Wブロワーで送風した。   About each battery of above-mentioned battery AC of the example of this invention, and batteries D-H of a comparative example, constant voltage charge of 14.0V was performed for 2000 hours at environmental temperature 60 degreeC. During charging, the battery was vibrated in the vertical direction at an acceleration of 1 G and a frequency of 30 Hz. Moreover, it ventilated with the 50W blower along the battery cover upper surface.

前記した各電池の充電前後の質量減少を減液量として算出し、比較例の電池Fの減液量を100としたときの、各電池の相対的な減液量を求めた。これらの結果を表1に示す。   The above-described decrease in mass before and after charging of each battery was calculated as the liquid reduction amount, and the relative liquid reduction amount of each battery was calculated when the liquid reduction amount of the battery F of Comparative Example was set to 100. These results are shown in Table 1.

Figure 2008034167
Figure 2008034167

表1に示した結果から、本発明の電池A〜Cの減液量は、比較例の電池Fの減液量の8〜15%であり、顕著に減液が抑制されている。特に、正極および負極の両極ストラップにSbを含まない、Pb−Sn合金を用いた電池Bはその中でも最も減液量が少なく、最も好ましい。   From the results shown in Table 1, the liquid reduction amount of the batteries A to C of the present invention is 8 to 15% of the liquid reduction amount of the battery F of the comparative example, and the liquid reduction is remarkably suppressed. In particular, the battery B using a Pb—Sn alloy that does not contain Sb in both the positive and negative electrode straps has the smallest liquid reduction amount and is most preferable.

比較例の電池Eおよび電池Gについては、同じく比較例の電池Fの62〜65%の減液量であり、蓋8に貼り合わせたシート12単独では、減液量は62%まで減少し、液口栓中に弁21を単独で用いた場合、減液量は65%まで減少することがわかる。   About the battery E and the battery G of a comparative example, it is the liquid reduction amount of 62-65% similarly of the battery F of a comparative example, and the liquid reduction amount reduces to 62% in the sheet | seat 12 stuck together on the lid | cover 8, It can be seen that when the valve 21 is used alone in the liquid stopper, the liquid reduction amount is reduced to 65%.

一方、これらの構成を同時に備えた本発明例A〜Cの電池では、前記したように、減液量は比較例の電池Fの8〜15%である。一方、弁およびシートをそれぞれ単独で使用した場合は、減液量は62%および65%であるので、これらの結果から、弁およびシートを同時に用いた場合に想定される減液量は40.3%(=62%×65%)であるが、本発明例では、この想定される減液量を顕著に下回り、相乗的な効果が得られていることがわかる。   On the other hand, in the batteries of Invention Examples A to C provided with these configurations at the same time, as described above, the liquid reduction amount is 8 to 15% of the battery F of the comparative example. On the other hand, when the valve and the seat are each used alone, the amount of liquid reduction is 62% and 65%. From these results, the amount of liquid reduction expected when the valve and the seat are used simultaneously is 40. Although it is 3% (= 62% × 65%), in the example of the present invention, it can be seen that a synergistic effect is obtained, which is significantly lower than the assumed liquid reduction amount.

セパレータに平板状のセパレータを用いた、電池Dについては、減液量は110であり、シート12および弁21を併用したとしても、内部短絡によって減液が進行することがわかる。したがって、袋状セパレータで正極板あるいは負極板の少なくともいずれか一方を収納した構成が減液を抑制する上で、必須であることがわかる。   For battery D using a flat separator as the separator, the amount of liquid reduction was 110, and even when the seat 12 and the valve 21 were used in combination, the liquid reduction progressed due to an internal short circuit. Therefore, it can be seen that a configuration in which at least one of the positive electrode plate and the negative electrode plate is accommodated by the bag-like separator is essential for suppressing liquid reduction.

(実施例2)
実施例1における本発明例の電池Bのように、電池内にSbが全くない状態であると、電池の充電受入性が低下する。その結果、充電不足状態で使用すると寿命が急激に低下することがある。
(Example 2)
Like the battery B of the example of the present invention in Example 1, when the battery has no Sb at all, the charge acceptability of the battery is lowered. As a result, the service life may be drastically reduced when used in an insufficiently charged state.

このような充電不足による寿命低下を改善する方法として正極格子体の活物質と接する表面の全面あるいは一部分に鉛−Sb合金層を形成することが有効である。この鉛−Sb合金層中のSb濃度としては2〜10wt%の間が好ましい。Sb濃度2wt%未満では寿命改善の効果が少なく、10wt%を超えると減液が多くなる。   It is effective to form a lead-Sb alloy layer on the entire surface or a part of the surface in contact with the active material of the positive electrode grid body as a method for improving the life reduction due to such insufficient charging. The Sb concentration in the lead-Sb alloy layer is preferably between 2 and 10 wt%. If the Sb concentration is less than 2 wt%, the effect of improving the life is small, and if it exceeds 10 wt%, the liquid reduction increases.

実施例1における比較例の電池Fおよび電池Hと、本発明例の電池B、および本発明例の電池Bにおいて、正極格子表面に表2に示す濃度のSbを含むPb−Sb合金層を10μm厚で形成した電池B1〜B5を作成した。これらの電池について、JIS D5301で規定する軽負荷寿命試験を行った。なお、本実施例では、充電不足状態をより加速させるために、充電電圧を規格の14.8Vから14.0Vに低下させて行った。この寿命試験における寿命回数の結果を表2に示す。なお、表2における寿命回数は、比較例の電池Fの寿命回数を100とした相対的な値で示している。   In the battery F and the battery H of the comparative example in Example 1, the battery B of the example of the present invention, and the battery B of the example of the present invention, a Pb—Sb alloy layer containing Sb having a concentration shown in Table 2 on the surface of the positive electrode lattice is 10 μm. Batteries B1 to B5 formed with a thickness were prepared. About these batteries, the light load life test prescribed | regulated by JISD5301 was done. In this example, the charging voltage was lowered from the standard 14.8V to 14.0V in order to further accelerate the insufficient charging state. Table 2 shows the results of the number of times of life in this life test. In addition, the lifetime number in Table 2 is shown by the relative value which set the lifetime number of the battery F of the comparative example to 100.

Figure 2008034167
Figure 2008034167

なお、表2に示した結果から、正極ストラップおよび負極ストラップにSbを含まない本発明例の電池Bにおいても、正極格子体表面にPb−Sb合金層を形成することにより、充電不足が抑制され、寿命特性の低下が抑制される。なお、表2における電池B1〜B5について、実施例1と同様の減液試験を行ったところ、それらの減液量は、比較例の電池Fの減液量を100としたときの11〜16%であり、寿命特性が維持されつつ、減液特性が飛躍的に改善できることがわかった。   In addition, from the results shown in Table 2, even in the battery B of the present invention example in which the positive electrode strap and the negative electrode strap do not contain Sb, the shortage of charging is suppressed by forming the Pb—Sb alloy layer on the surface of the positive electrode lattice. , The deterioration of the life characteristics is suppressed. In addition, about the batteries B1-B5 in Table 2, when the liquid reduction test similar to Example 1 was done, those liquid reduction amounts are 11-16 when the liquid reduction amount of the battery F of a comparative example is set to 100. It was found that the liquid reduction characteristics can be drastically improved while maintaining the life characteristics.

(実施例3)
実施例1で示したような、減液抑制効果が最も得られた本発明例の電池Bのように、正極および負極のストラップにSbを含まない電池は、過放電によって正極板が劣化し、充電不能となる場合がある。したがって、正極格子体の活物質と接する表面の全てあるいは一部にSnを含む層、例えば、Pb−Sn合金層を形成することが好ましい。
(Example 3)
As shown in Example 1, like the battery B of the example of the present invention in which the liquid reduction suppressing effect was most obtained, the positive electrode plate deteriorates due to overdischarge in the battery that does not contain Sb in the positive electrode and negative electrode straps, Charging may become impossible. Therefore, it is preferable to form a layer containing Sn, for example, a Pb—Sn alloy layer, on all or part of the surface in contact with the active material of the positive electrode lattice.

実施例3においては、実施例1における電池B、およびこの電池Bについて、正極格子体の活物質と接する面に表3で示す濃度のSnおよび/もしくはSbを有するPb合金層を10μm厚で形成した電池を作成した。各電池の端子間に10Wランプを接続し、6ヶ月放電後、15.0Vで定電圧充電(最大電流25A)し、30分後の充電電流を計測することにより、耐過放電性能を評価した。この結果を表3に示す。   In Example 3, a battery B in Example 1 and a Pb alloy layer having a Sn and / or Sb concentration shown in Table 3 on the surface in contact with the active material of the positive electrode grid body with a thickness of 10 μm were formed. Made a battery. Overdischarge resistance was evaluated by connecting a 10 W lamp between the terminals of each battery, charging at a constant voltage of 15.0 V (maximum current 25 A) after discharging for 6 months, and measuring the charging current after 30 minutes. . The results are shown in Table 3.

Figure 2008034167
Figure 2008034167

表3に示した結果から、正極格子体の活物質と接する表面にSnを含む層を形成することにより、過放電後の充電電流が確保できることがわかる。   From the results shown in Table 3, it can be seen that a charging current after overdischarge can be secured by forming a layer containing Sn on the surface of the positive electrode lattice body in contact with the active material.

(実施例4)
実施例4においては、実施例1における電池B、およびこの電池Bについて、正極格子体の活物質と接する面に表4で示す濃度のSbおよび/もしくはAgを有するPb合金層を10μm厚で形成した電池を作成した。各電池について、実施例1と同じ減液試験を行った。なお、本実施例では、電池の長期放置が減液量に及ぼす影響を確認するため、初期状態の電池について減液量を確認した後、各電池を40℃で6ヶ月放置後、再度、実施例1と同様の減液試験を行った。その結果を表4に示す。なお、減液量は、実施例1における比較例の電池Fの値を100とした相対値で示している。
Example 4
In Example 4, a battery B in Example 1 and a Pb alloy layer having a concentration of Sb and / or Ag shown in Table 4 on the surface in contact with the active material of the positive electrode grid body with a thickness of 10 μm were formed. Made a battery. About each battery, the same liquid reduction test as Example 1 was done. In this example, in order to confirm the effect of long-term storage of the battery on the liquid reduction amount, after confirming the liquid reduction amount of the battery in the initial state, each battery was left at 40 ° C. for 6 months and again. The same liquid reduction test as in Example 1 was performed. The results are shown in Table 4. In addition, the amount of liquid reduction is shown by the relative value which set the value of the battery F of the comparative example in Example 1 to 100.

Figure 2008034167
Figure 2008034167

表4に示したように、本発明例の電池Bにおいて、正極格子体表面に含Sb層を形成した場合(電池B3−1)、実施例2で示した寿命特性改善効果が得られる反面、保存後の減液量が増大する傾向にある。これは含Sb層中のSbが負極に移行するためと考えられる。   As shown in Table 4, in the battery B of the present invention example, when the Sb-containing layer was formed on the surface of the positive electrode grid (battery B3-1), the effect of improving the life characteristics shown in Example 2 was obtained, The amount of liquid reduction after storage tends to increase. This is considered because Sb in the Sb-containing layer moves to the negative electrode.

ところが、この含Sb層中にAgを添加することにより、保存後の減液量の増大が顕著に抑制されることがわかる。これは、Ag添加によって、含Sb層の耐食性が向上し、負極へのSbの移行が抑制されたためと考えられる。なお、このようなAg添加による効果は0.025wt%以上で得られる。本実施例では、Ag濃度の上限を0.5wt%としたが、Agは比較的高価な金属であるため、電池製造コストと勘案して上限を設定すればよい。   However, it can be seen that by adding Ag to the Sb-containing layer, an increase in the amount of liquid reduction after storage is significantly suppressed. This is presumably because the addition of Ag improved the corrosion resistance of the Sb-containing layer and suppressed the transfer of Sb to the negative electrode. In addition, the effect by such Ag addition is acquired at 0.025 wt% or more. In this embodiment, the upper limit of the Ag concentration is 0.5 wt%. However, since Ag is a relatively expensive metal, the upper limit may be set in consideration of the battery manufacturing cost.

なお、正極格子表面に形成する、Sb、Sn、Agを含むPb合金層は10μm厚とした例を示したが、これ以上の厚みであってもよい。また、表面のPb合金層は圧延により、少なくとも、これらのPb合金層を正極格子表面層に安定して付与するために、Pb合金の層厚みは2μm以上とすることがより好ましい。   In addition, although the example in which the Pb alloy layer containing Sb, Sn, and Ag formed on the surface of the positive electrode lattice is 10 μm thick is shown, the thickness may be larger than this. Further, in order to stably apply at least these Pb alloy layers to the positive electrode lattice surface layer by rolling the surface Pb alloy layer, the layer thickness of the Pb alloy is more preferably 2 μm or more.

以上、説明してきたように、本発明の構成によれば、鉛蓄電池の減液量を極めて低減できる。また、鉛蓄電池の長期の使用によって、電解液面が低下した場合にも、液口から、容易に補水が可能で、結果として、極めて長期間使用可能な、鉛蓄電池を安価に提供することができる。   As described above, according to the configuration of the present invention, the liquid reduction amount of the lead storage battery can be extremely reduced. In addition, even when the electrolytic solution level is lowered due to long-term use of the lead storage battery, it is possible to easily refill water from the liquid port, and as a result, it is possible to provide a lead storage battery that can be used for a very long time at low cost. it can.

本発明は、鉛蓄電池の減液を極めて顕著に抑制することから、自動車用をはじめとする、様々な鉛蓄電池に極めて好適である。   The present invention is extremely suitable for various lead storage batteries including those for automobiles because the liquid reduction of the lead storage battery is extremely remarkably suppressed.

本発明の鉛蓄電池を示す断面図Sectional drawing which shows the lead acid battery of this invention 本発明の鉛蓄電池の要部断面を示す図The figure which shows the principal part cross section of the lead acid battery of this invention.

符号の説明Explanation of symbols

1 鉛蓄電池
2 正極板
2a 正極耳
3 負極板
3a 負極耳
4 セパレータ
5a 正極ストラップ
5b 負極ストラップ
6 極板群
7 電槽
7a 隔壁
7b セル室
8 蓋
9 注液口
10 液口栓
11 排出口
12 シート
12a 端部
13 ガス排出路
21 弁
22 本体筒
23 弁収納体
23a 排気孔
23b 底壁
23c 側壁
23d 弁体
23e 押え板
23f スポンジ体
24 防沫体
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 2a Positive electrode ear 3 Negative electrode plate 3a Negative electrode ear 4 Separator 5a Positive electrode strap 5b Negative electrode strap 6 Electrode plate group 7 Battery case 7a Bulkhead 7b Cell chamber 8 Lid 9 Injection port 10 Liquid port plug 11 Discharge port 12 Sheet 12a End portion 13 Gas discharge passage 21 Valve 22 Body cylinder 23 Valve housing body 23a Exhaust hole 23b Bottom wall 23c Side wall 23d Valve body 23e Holding plate 23f Sponge body 24 Splash-proof body

Claims (6)

電池内圧の変化に応じて開弁する弁を備えた液口栓を蓋に装着した鉛蓄電池であり、開弁時に電池内のガスを電池外部に排出するよう、前記液口栓に排出口を設け、前記電池内部には、正極板および負極板の各極板面の全面が電解液に浸漬した状態で収納され、前記正極板および前記負極板は、Pb−Ca合金よりなる正極格子体および負極格子体をそれぞれ備え、前記正極板および前記負極板の少なくともいずれか一方の極板が、ポリエチレン等の微多孔膜で形成された袋状セパレータに収納され、前記排出口を覆うシートを前記蓋面に貼り合わせ、前記シートと前記蓋との貼り合わせ面には、前記シートと前記蓋とが接合された接合部と、前記シートと前記蓋とが接合されない非接合部と設け、前記非接合部を前記排出口からの排出ガスを前記排出口から離間した位置で大気中に放出するためのガス排出路として設けた鉛蓄電池。 A lead-acid battery with a lid fitted with a liquid port plug that opens according to changes in the battery internal pressure.When the valve is opened, the liquid port plug has a discharge port so that gas inside the battery is discharged to the outside of the battery. And the inside of the battery is housed in a state where the entire surface of each electrode plate of the positive electrode plate and the negative electrode plate is immersed in an electrolytic solution, and the positive electrode plate and the negative electrode plate are a positive electrode lattice body made of a Pb—Ca alloy, and Each of the positive electrode plate and the negative electrode plate is provided in a bag-like separator formed of a microporous film such as polyethylene, and a sheet covering the discharge port is covered with the lid. And a non-bonding portion where the sheet and the lid are not bonded to each other, and a non-bonding portion where the sheet and the lid are not bonded are provided on the bonding surface of the sheet and the lid. Part of the exhaust gas from the outlet Lead-acid battery is provided as a gas discharge path for discharging to the atmosphere at a location spaced from the discharge port. 前記正極板および前記負極板の同極性の極板耳同士を集合溶接するストラップとしてSbを実質上含まない鉛もしくは鉛合金を用いた請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein lead or a lead alloy substantially free of Sb is used as a strap for collectively welding electrode plates of the same polarity of the positive electrode plate and the negative electrode plate. 前記正極格子体の活物質と接する表面の少なくとも一部に、Snを含む、含Sn層を形成した請求項1もしくは2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein an Sn-containing layer containing Sn is formed on at least a part of a surface of the positive electrode lattice body in contact with the active material. 前記正極格子体の活物質と接する表面の少なくとも一部に、Sbを含む、含Sb層を形成した請求項1、2もしくは3に記載の鉛蓄電池。 The lead acid battery according to claim 1, 2 or 3, wherein an Sb-containing layer containing Sb is formed on at least a part of a surface of the positive electrode lattice body in contact with the active material. 前記含Sb層中にさらにAgを含む請求項4に記載の鉛蓄電池。 The lead acid battery according to claim 4, further comprising Ag in the Sb-containing layer. 前記弁の開弁圧を6kPa以下とした請求項1、2、3、4もしくは5に記載の鉛蓄電池。 The lead acid battery according to claim 1, 2, 3, 4 or 5, wherein a valve opening pressure of the valve is 6 kPa or less.
JP2006204361A 2006-07-27 2006-07-27 Lead acid storage battery Pending JP2008034167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204361A JP2008034167A (en) 2006-07-27 2006-07-27 Lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204361A JP2008034167A (en) 2006-07-27 2006-07-27 Lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2008034167A true JP2008034167A (en) 2008-02-14

Family

ID=39123377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204361A Pending JP2008034167A (en) 2006-07-27 2006-07-27 Lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2008034167A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113933A (en) * 2008-11-06 2010-05-20 Panasonic Corp Paste type lead-acid storage battery
JP2010129424A (en) * 2008-11-28 2010-06-10 Panasonic Corp Lead storage battery
WO2012117502A1 (en) 2011-02-28 2012-09-07 株式会社Gsユアサ Lead storage battery and method for manufacturing same
JP2019029069A (en) * 2017-07-25 2019-02-21 株式会社Gsユアサ Lead storage battery
JP2019106320A (en) * 2017-12-13 2019-06-27 株式会社Gsユアサ Lead storage battery
US11047508B2 (en) 2017-03-30 2021-06-29 Donaldson Company, Inc. Vent with relief valve
JP2022120197A (en) * 2017-11-14 2022-08-17 昭和電工マテリアルズ株式会社 Lead-acid battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281262A (en) * 1986-05-28 1987-12-07 Shin Kobe Electric Mach Co Ltd Safety valve of enclosed lead storage battery
JPH02123065U (en) * 1989-03-22 1990-10-09
JPH0337962A (en) * 1989-06-30 1991-02-19 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH08180852A (en) * 1994-12-26 1996-07-12 Nippon Glass Fiber Co Ltd Bag separator for storage battery and its manufacture
JPH08203489A (en) * 1995-01-27 1996-08-09 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH1031992A (en) * 1996-07-16 1998-02-03 Matsushita Electric Ind Co Ltd Lead-acid battery separator and its manufacture
JP2002175798A (en) * 2000-12-08 2002-06-21 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2003045394A (en) * 2001-07-26 2003-02-14 Matsushita Electric Ind Co Ltd Lead storage battery with control valve
JP2005228685A (en) * 2004-02-16 2005-08-25 Japan Storage Battery Co Ltd Lead-acid storage battery
JP2005276741A (en) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd Lead storage battery
JP2005317332A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006066254A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2006164598A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Lead acid battery
WO2006068095A1 (en) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. Control valve type lead battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281262A (en) * 1986-05-28 1987-12-07 Shin Kobe Electric Mach Co Ltd Safety valve of enclosed lead storage battery
JPH02123065U (en) * 1989-03-22 1990-10-09
JPH0337962A (en) * 1989-06-30 1991-02-19 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH08180852A (en) * 1994-12-26 1996-07-12 Nippon Glass Fiber Co Ltd Bag separator for storage battery and its manufacture
JPH08203489A (en) * 1995-01-27 1996-08-09 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH1031992A (en) * 1996-07-16 1998-02-03 Matsushita Electric Ind Co Ltd Lead-acid battery separator and its manufacture
JP2002175798A (en) * 2000-12-08 2002-06-21 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2003045394A (en) * 2001-07-26 2003-02-14 Matsushita Electric Ind Co Ltd Lead storage battery with control valve
JP2005228685A (en) * 2004-02-16 2005-08-25 Japan Storage Battery Co Ltd Lead-acid storage battery
JP2005276741A (en) * 2004-03-26 2005-10-06 Matsushita Electric Ind Co Ltd Lead storage battery
JP2005317332A (en) * 2004-04-28 2005-11-10 Furukawa Battery Co Ltd:The Lead-acid storage battery
JP2006066254A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2006164598A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Lead acid battery
WO2006068095A1 (en) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. Control valve type lead battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113933A (en) * 2008-11-06 2010-05-20 Panasonic Corp Paste type lead-acid storage battery
JP2010129424A (en) * 2008-11-28 2010-06-10 Panasonic Corp Lead storage battery
WO2012117502A1 (en) 2011-02-28 2012-09-07 株式会社Gsユアサ Lead storage battery and method for manufacturing same
US11047508B2 (en) 2017-03-30 2021-06-29 Donaldson Company, Inc. Vent with relief valve
US11692644B2 (en) 2017-03-30 2023-07-04 Donaldson Company, Inc. Vent with relief valve
JP2019029069A (en) * 2017-07-25 2019-02-21 株式会社Gsユアサ Lead storage battery
JP2022120197A (en) * 2017-11-14 2022-08-17 昭和電工マテリアルズ株式会社 Lead-acid battery
JP2019106320A (en) * 2017-12-13 2019-06-27 株式会社Gsユアサ Lead storage battery
JP7021527B2 (en) 2017-12-13 2022-02-17 株式会社Gsユアサ Lead-acid battery

Similar Documents

Publication Publication Date Title
WO2006109549A1 (en) Lead-acid battery
JP2008034167A (en) Lead acid storage battery
JP5098243B2 (en) Lead acid battery
US7879490B2 (en) Lead battery and lead battery storage method
JP2008235055A (en) Lead acid storage cell
CN100541869C (en) Lead accumulator
JP2007087871A (en) Lead-acid battery
JP4449527B2 (en) Lead acid battery
JP5145707B2 (en) Lead acid battery
JP5125041B2 (en) Lead acid battery
JP5326196B2 (en) Lead acid battery
US20200212504A1 (en) Compact absorbent glass mat battery
JP5125040B2 (en) Lead acid battery
JP5151088B2 (en) Lead acid battery
JP4887649B2 (en) Control valve type lead acid battery
JP2006086039A (en) Lead-acid storage battery
JP2010205572A (en) Lead acid battery
JP2006294292A (en) Lead-acid battery
JP2007213895A (en) Lead-acid battery
JP2006318658A (en) Lead-acid battery
JP6197426B2 (en) Lead acid battery
JP6953821B2 (en) Liquid lead-acid battery
JP2007157612A (en) Lead-acid battery
JP5340615B2 (en) Lead-acid battery for vehicle engine start
CN111247683B (en) Compact absorptive glass mat battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514