JP2008030114A - Method of manufacturing electric resistance welded tube with excellent weld characteristic - Google Patents

Method of manufacturing electric resistance welded tube with excellent weld characteristic Download PDF

Info

Publication number
JP2008030114A
JP2008030114A JP2006266224A JP2006266224A JP2008030114A JP 2008030114 A JP2008030114 A JP 2008030114A JP 2006266224 A JP2006266224 A JP 2006266224A JP 2006266224 A JP2006266224 A JP 2006266224A JP 2008030114 A JP2008030114 A JP 2008030114A
Authority
JP
Japan
Prior art keywords
electric resistance
taper
plate
welding
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266224A
Other languages
Japanese (ja)
Inventor
Kazuhito Kenmochi
一仁 剣持
Yoshitomo Okabe
能知 岡部
Hiroyasu Yokoyama
泰康 横山
Toshihiro Inoue
智弘 井上
Kenichi Iwasaki
謙一 岩崎
Hiroyuki Shirosawa
広幸 城澤
Yasuo Nishida
保夫 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006266224A priority Critical patent/JP2008030114A/en
Publication of JP2008030114A publication Critical patent/JP2008030114A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electric resistance welded tube with excellent weld part characteristic capable of maintaining excellent weld quality by providing a proper taper shape to the end part of a plate (a band material) before the electric resistance welding when manufacturing the electric resistance welded tube. <P>SOLUTION: The electric resistance welding is performed while a V-shape angle formed by lateral end parts of plates immediately before the electric resistance welding is 2-8° after a predetermined taper shape is given to the end parts of the plate by a finpass forming. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、油井のラインパイプ向けなど溶接部の靭性が要求される管あるいは油井のケーシングパイプなどの溶接部強度が要求される管における製造方法に関わる。   The present invention relates to a method for manufacturing a pipe that requires toughness of a welded portion such as for oil well line pipes or a pipe that requires welded portion strength such as a casing pipe of oil well.

通常、管は溶接管と継目無管に大別される。溶接管は、電縫鋼管を例とするように、板をロール成形等によって丸めて端部を突き合わせて溶接して製造し、継目無管は、材料の塊を高温で穿孔しマンドレルミル等で圧延して製造する。溶接管の場合、一般に溶接部の特性は母材より劣ると言われ、管の適用に当たって、用途ごとに溶接部の靭性や強度の保証が常に議論されて問題となってきた。   Usually, pipes are roughly classified into welded pipes and seamless pipes. Welded pipes are manufactured by rolling a plate by roll forming or the like and welding by welding the end, as in the case of ERW steel pipes, and seamless pipes are made by drilling a lump of material at high temperature and using a mandrel mill, etc. Rolled and manufactured. In the case of a welded pipe, it is generally said that the properties of the welded part are inferior to that of the base metal, and in the application of the pipe, guarantees of toughness and strength of the welded part have always been discussed for each application.

例えば、原油や天然ガスなどを輸送するラインパイプでは、管を寒冷地に敷設することが多いため低温靭性が重要であり、また、原油採掘の油井では採掘管を保護するためのケーシングパイプが必要とされ、管の強度が重要視される。   For example, in line pipes that transport crude oil, natural gas, etc., pipes are often laid in cold regions, so low temperature toughness is important, and in oil wells for crude oil mining, casing pipes are required to protect the mining pipes. The strength of the tube is regarded as important.

通常、管の母材となる熱延板(帯材)は、管製造後の母材特性を考慮して成分設計や熱処理等が行われて、母材の靭性や強度等の特性が確保される。   In general, hot strips (strips), which are the base material of pipes, are subjected to component design and heat treatment in consideration of the base material characteristics after pipe manufacture, ensuring characteristics such as toughness and strength of the base material. The

しかし、溶接部の特性は、母材の成分設計や熱処理等以上に、電縫溶接方法によって大きく左右されるため、溶接技術の開発が重要であった。   However, since the characteristics of the welded part are greatly influenced by the electric resistance welding method more than the component design and heat treatment of the base metal, the development of the welding technique has been important.

電縫溶接の不良原因としては、ペネトレータと呼ばれる溶接板材の端面に生成する酸化物が、電縫溶接時に溶鋼とともに端面から排出されずに残留し、この残留したペネトレータを原因として靭性が低下し強度不足になる例が多かった。   The reason for the failure of ERW welding is that the oxide generated on the end face of the welded plate material called penetrator remains without being discharged from the end face together with the molten steel during ERW welding, and the toughness decreases due to this residual penetrator and the strength. There were many cases where there was a shortage.

そこで、従来、電縫溶接不良の主原因であるペネトレータを溶接部から除くため、溶接部の板端面から積極的に溶鋼を排出する技術が鋭意検討されてきた。例えば、特許文献1〜5などに、板端面の形状について検討した例が記載されている。すなわち、通常、板の端面はスリットや端面研削によってほぼ矩形を呈しているが、これをロール成形の前においてテーパ加工して、加工した端部形状によって溶接時の溶鋼排出を良好にすることを目的としている。
特開昭57−31485号公報 特開昭63−317212号公報 特開2001−170779号公報 特開2001−259733号公報 特開2003−1649095号公報
Therefore, conventionally, in order to remove the penetrator, which is the main cause of poor ERW welding, from the welded portion, a technique for actively discharging molten steel from the plate end surface of the welded portion has been intensively studied. For example, Patent Documents 1 to 5 describe examples of examining the shape of the plate end surface. In other words, the end face of the plate is generally rectangular due to slits and end face grinding, but this is tapered before roll forming to improve the discharge of molten steel during welding with the processed end shape. It is aimed.
JP 57-31485 A Japanese Patent Laid-Open No. Sho 63-317212 JP 2001-17079A JP 2001-259733 A JP 2003-1649095 A

しかし、特許文献1〜5では、単にテーパ加工手段を羅列して紹介したのみであるため、それだけでは実際に電縫管製造工程に適用しても効果が充分でない場合があり、さらに詳細な検討が必要であった。   However, in Patent Documents 1 to 5, since the taper processing means is merely listed and introduced, the effect may not be sufficient even if it is applied to the ERW tube manufacturing process. Was necessary.

本発明は、上記のような事情に鑑みてなされたものであり、電縫管を製造するに際して、電縫溶接前の板(帯材)の端部にテーパ形状を適切に付与することによって、溶接品質を良好に保持することができる溶接部特性の良好な電縫管の製造方法を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and when producing an electric resistance welded tube, by appropriately giving a tapered shape to the end of the plate (band material) before the electric resistance welding, It is an object of the present invention to provide a method for manufacturing an electric resistance welded tube having good welded portion characteristics that can maintain good welding quality.

上記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]板を成形して端部を突き合わせて電縫溶接して管とする電縫管の製造方法において、フィンパス成形により板端部にテーパ形状を付与した後に、Vシェープ角度を2°〜8°として電縫溶接することを特徴とする溶接部特性の良好な電縫管の製造方法。   [1] In a method of manufacturing an electric resistance welded tube which forms a plate, abuts the end portions, and is welded by electro-welding to form a tube, after giving a taper shape to the plate end portion by fin pass molding, the V shape angle is set to 2 ° to A method of manufacturing an electric resistance welded tube having good welded portion characteristics, characterized by performing electric resistance welding at 8 °.

[2]板を成形して端部を突き合わせて電縫溶接して管とする電縫管の製造方法において、孔型ロールの圧延により板端部にテーパ形状を付与した後に、Vシェープ角度を2°〜8°として電縫溶接することを特徴とする溶接部特性の良好な電縫管の製造方法。   [2] In a method of manufacturing an electric resistance welded tube which forms a plate, butts the end portions and is electro-welded to form a tube, after giving a tapered shape to the plate end portion by rolling a perforated roll, the V shape angle is set. A method of manufacturing an electric resistance welded tube having good welded portion characteristics, characterized by performing electric resistance welding at 2 ° to 8 °.

[3]板端部に付与するテーパ形状は、テーパの板厚方向に対する角度を25°〜50°とし、テーパの板厚方向の長さを板厚の20%〜40%とすることを特徴とする前記[1]または[2]に記載の溶接部特性の良好な電縫管の製造方法。   [3] The taper shape to be applied to the plate end portion is characterized in that the angle of the taper with respect to the plate thickness direction is 25 ° to 50 °, and the length of the taper in the plate thickness direction is 20% to 40% of the plate thickness. The method for producing an electric resistance welded tube having good weld joint characteristics according to [1] or [2].

本発明は著しく良好な靭性および溶接強度を備えた電縫管を得ることができる。   The present invention can obtain an electric resistance welded tube having remarkably good toughness and weld strength.

前述したように、特許文献1〜5では、単にテーパ加工手段を羅列して紹介したのみであるため、それだけでは実際に電縫管製造工程に適用しても効果が充分でない場合があり、さらに詳細な検討が必要であった。   As described above, in Patent Documents 1 to 5, since only taper processing means are introduced, there may be cases where the effect is not sufficient even when actually applied to the ERW tube manufacturing process. Detailed examination was necessary.

そこで、本発明者らは、電縫溶接前の板端部に所望のテーパ形状を適切に付与する方法について鋭意検討し、その結果、電縫溶接前の板の端部に所望のテーパ形状を適切に付与するために、フィンパス成形を活用することにした。フィンパス成形では、フィンパスロールに板の円周方向全周が充満しなくとも、板がロールに装入される際に、板端部がフィンに強圧されて、板端部がフィンに充分に密着することを把握したからである。すなわち、板がフィンパスロールに装入される場合、フィンに接触した板端部およびそのほぼ180°反対側に位置する板底の部分(板中央部)とが梁撓みの状態となって、断面を円弧形状に曲げようとする板の反力が大きく作用し、たとえ帯材がフィンパスロールに充満しなくとも板端部には円周方向に大きな圧縮力が作用し、その結果、板端部はフィンに強圧されてフィンの形状がそのまま板端部に転写されることを把握した。   Therefore, the present inventors have intensively studied a method for appropriately imparting a desired taper shape to the plate end portion before ERW welding. As a result, the desired taper shape is applied to the end portion of the plate before ERW welding. In order to give it properly, we decided to utilize fin pass molding. In fin pass molding, even if the fin pass roll does not fill the entire circumference of the plate in the circumferential direction, when the plate is inserted into the roll, the plate end is strongly pressed by the fin, and the plate end is sufficiently in the fin. This is because it is understood that they are in close contact. That is, when the plate is inserted into the fin pass roll, the plate end portion in contact with the fin and the plate bottom portion (plate center portion) located on the opposite side of 180 ° are in a state of beam bending, The reaction force of the plate that tries to bend the cross-section into an arc shape acts greatly, and even if the strip does not fill the fin pass roll, a large compressive force acts on the plate end in the circumferential direction. It was grasped that the end portion was strongly pressed by the fin and the shape of the fin was transferred to the end portion of the plate as it was.

そして、本発明者らは板端部がフィンに強圧されることに着目して、この現象を積極的に活用する手段を検討し、その結果、フィンに2段階以上のテーパを付与することにした。こうしておけば、フィンパス成形でのアプセット量が小さくとも板端部にはテーパ形状を適切に付与できて、板端部に所望とするテーパ形状を充分付与できるわけである。   Then, the present inventors pay attention to the fact that the plate end is strongly pressed by the fin, and examine means for actively utilizing this phenomenon. As a result, the fin is provided with two or more stages of taper. did. In this way, even if the amount of upset in the fin pass molding is small, a taper shape can be appropriately given to the plate end portion, and a desired taper shape can be sufficiently given to the plate end portion.

その際、管の内面側になる側の板端部か管の外面側になる側の板端部のいずれか片側にテーパ形状を付与する場合は、フィン形状を2段階とすればよい。   At that time, when a tapered shape is given to either one of the plate end on the inner surface side of the tube or the plate end on the outer surface side of the tube, the fin shape may be made in two stages.

また、管の内面側になる側の板端部と管の外面側になる側の板端部の両方に同時にテーパ形状を付与する場合は、3段階の角度を有するフィン形状とすればよい。ただし、これらのフィンのいずれかの角度がフィンパスロールの垂直方向より大きな角度になると、板端部がフィンにより削り取られて、「ひげ」と称する余肉材が発生することがあり、フィンパス成形時に傷を発生させるとともに、電縫溶接のスパークの原因となるので、フィンの角度は垂直方向以下にしておくとよい。   In addition, when a tapered shape is simultaneously given to both the plate end on the inner surface side of the tube and the plate end on the outer surface side of the tube, the fin shape having three stages of angles may be used. However, if the angle of any of these fins is larger than the vertical direction of the fin pass roll, the end of the plate may be scraped off by the fins, and a surplus material called a “whisker” may be generated. Since it sometimes causes scratches and causes sparks in ERW welding, it is preferable to keep the angle of the fins below the vertical direction.

なお、可能であれば、フィンパス成形の最終スタンドで、上記の板端部の片側もしくは両側にテーパ形状を付与すると、その直後に電縫溶接が行われるため、良好なテーパ形状を保持したまま電縫溶接が可能である。ただし、フィンパス成形の開始スタンドや途中スタンドでテーパ形状を付与した場合でも、一旦テーパ形状が付与された板端面は強圧によって著しく加工硬化するため、その後のフィンパス成形ではテーパ形状は比較的潰れにくくなっており、フィンパス成形後もテーパ形状を付与した状態が保持できる。   If possible, if a taper shape is applied to one or both sides of the plate edge at the final stand of the fin pass molding, since electric welding is performed immediately after that, the electric tape is maintained while maintaining a good taper shape. Sewing welding is possible. However, even if a taper shape is given at the start stand or a halfway stand of fin pass molding, the taper shape is relatively hard to be crushed in subsequent fin pass molding because the plate end surface once provided with the taper shape is significantly hardened by strong pressure. The taper shape can be maintained even after the fin pass molding.

また、2スタンド以上のフィンパス成形が可能である場合は、1つのスタンドのフィンに2段階のテーパを付与して一方の板端部(例えば、管の外面側)にテーパ形状を付与し、別のスタンドのフィンに前記と異なる形状の2段階のテーパを付与して他方の板端部(例えば、管の外面側)にテーパ形状を付与するとよい。1つのスタンドで板端部の一方の側にテーパ形状を付与すると、その部分は強圧によって著しく加工硬化するため、さらに別のスタンドで他方の板端部にテーパ形状を付与しても、前段スタンドで付与したテーパ形状は比較的潰れにくく、フィンパス成形後の板端部には管内面側および管外面側とも所望のテーパ形状を付与することができる。   In addition, when fin path molding of two or more stands is possible, a two-step taper is given to the fin of one stand, and a taper shape is given to one plate end (for example, the outer surface side of the pipe). It is preferable that a two-step taper having a shape different from the above is given to the fin of the stand and a taper shape is given to the other plate end (for example, the outer surface side of the tube). When a taper shape is given to one side of the plate end portion with one stand, the portion is remarkably processed and hardened by strong pressure. Therefore, even if a taper shape is given to the other plate end portion with another stand, the front stand The taper shape imparted in (1) is relatively difficult to be crushed, and a desired taper shape can be imparted to the plate end after fin pass molding on both the tube inner surface side and the tube outer surface side.

ただし、上記のようにして電縫溶接前の板端部にテーパ形状を付与した場合でも、電縫溶接後の溶接部の靭性または強度を充分に向上することが難しい場合があった。   However, even when a taper shape is imparted to the plate end portion before ERW welding as described above, it may be difficult to sufficiently improve the toughness or strength of the welded portion after ERW welding.

この原因を詳細に調査すると、以下のようなことが分かった。   Detailed investigation of this cause revealed the following.

すなわち、電縫溶接前の板端部が加熱される過程において、溶接欠陥であるペネトレータの原因となる酸化物が板端面に形成される。その後、板端面の酸化物は電縫溶接時の溶鋼表面に浮いて、一部は溶鋼とともに排出される。この際に、板端面にテーパ形状が付与されていると、溶鋼が容易に排出されて、同時にペネトレータも有効に排出できるわけである。しかし、ペネトレータの元になる板端面の酸化物は、電縫溶接の加熱とともに順次生成してくるため、溶接条件によっては、板端部にテーパ形状を付与するのみでは、溶接後の靭性または強度を充分に向上できない場合が生じていた。   That is, in the process in which the plate end portion before the electric seam welding is heated, an oxide that causes a penetrator which is a welding defect is formed on the plate end surface. Thereafter, the oxide on the end face of the plate floats on the surface of the molten steel during ERW welding, and a part is discharged together with the molten steel. At this time, if the end face of the plate is tapered, the molten steel is easily discharged, and at the same time, the penetrator can be effectively discharged. However, since the oxide on the plate end face that is the basis of the penetrator is generated sequentially with the heating of ERW welding, depending on the welding conditions, it is only necessary to give a taper shape to the plate end toughness or strength after welding. In some cases, it was not possible to sufficiently improve.

そこで、上記の問題に対応するために、本発明者らは電縫溶接現象を詳細に観察し直した結果、電縫溶接直前において板の幅方向両端面同士が長手方向になすV字形状の頂角(Vシェープ角度)に着目した。すなわち、溶鋼とともにペネトレータを有効に排出するためには、板端部のテーパ形状だけではなく、Vシェープ角度も大きく影響することを見出した。   Therefore, in order to cope with the above-mentioned problem, the present inventors have re-observed the electric seam welding phenomenon in detail, and as a result, a V-shaped shape in which both end faces in the width direction of the plate are formed in the longitudinal direction immediately before the electric seam welding. Attention was paid to the vertex angle (V-shape angle). That is, in order to effectively discharge the penetrator together with the molten steel, it has been found that not only the taper shape of the plate end but also the V shape angle has a great influence.

電縫溶接において、板端面のVシェープ角度が変わると、溶鋼の生成・排出状態が異なってくる。すなわち、Vシェープ角度が小さくなると、板端面は溶接部から遠方において加熱が開始されて、溶接部に近づくにつれて徐々に温度が上昇し、また、板端面の板厚上部および下部から板厚中央部に加熱が広がっていく。これらの現象とともに、溶鋼が徐々に発生するが、板端面の板厚上部(管外面側)および板厚下部(管内面側)から発生した溶鋼が溶接部に到達する前に固化が始まって、板厚中央部の溶鋼が外部に排出されにくくなる。その結果、溶鋼とともに生成するペネトレータも板内部に留まりやすくて、電縫溶接部の靭性または強度を大幅に低下させてしまうわけである。   In ERW welding, when the V shape angle of the plate end surface changes, the state of generation and discharge of molten steel differs. That is, when the V shape angle is reduced, the plate end surface starts to be heated far from the welded portion, and gradually increases in temperature as it approaches the welded portion. The heating spreads. With these phenomena, molten steel is gradually generated, but solidification starts before the molten steel generated from the plate thickness upper part (pipe outer surface side) and plate thickness lower part (pipe inner surface side) of the plate end surface reaches the weld, The molten steel at the center of the plate thickness is less likely to be discharged to the outside. As a result, the penetrator generated together with the molten steel tends to stay inside the plate, and the toughness or strength of the ERW weld is greatly reduced.

そこで、Vシェープ角度について鋭意検討した結果、Vシェープ角度が2°以上であれば、溶鋼の排出が良好となって溶接部の靭性または強度が向上することを把握した。   Therefore, as a result of intensive studies on the V shape angle, it has been found that if the V shape angle is 2 ° or more, the discharge of molten steel is good and the toughness or strength of the welded portion is improved.

ただし、Vシェープ角度が大きくなりすぎると、溶接部の加熱が不足して板端面の温度が上昇しにくくなり、溶鋼が発生せずに、冷接と称する端面全体が酸化膜に覆われた状態となって、溶接部の靭性または強度が著しく低下する。これに対しては、Vシェープ角度が8°以下であれば、冷接を防止できることを把握した。   However, if the V shape angle becomes too large, the heating of the welded portion is insufficient and the temperature of the plate end face is difficult to rise, and molten steel is not generated, and the entire end face called cold welding is covered with an oxide film. As a result, the toughness or strength of the weld is significantly reduced. On the other hand, it was grasped that cold welding can be prevented if the V shape angle is 8 ° or less.

なお、その際に、板端部にテーパ形状を付与しておくと、その体積減少分だけ先に溶融する一方の端部の溶融量が減少し、かつ、テーパ形状に沿って溶融して、さらに溶鋼が減少して、溶鋼による溶接部前の固化が起こりにくくなるため、Vシェープ角度とテーパ形状の双方の効果で、電縫溶接部のペネトレータを充分排出することができて、靭性および強度が著しく向上するわけである。   At that time, if the taper shape is given to the plate end portion, the melting amount of one end portion that is melted first by the volume decrease is reduced, and the melt is performed along the taper shape, Furthermore, since the molten steel is reduced and solidification before the welded portion due to the molten steel is less likely to occur, the penetrator of the ERW welded portion can be discharged sufficiently by the effects of both the V-shape angle and the taper shape, and the toughness and strength Is significantly improved.

また、板端部に付与するテーパ形状について、その形状の最適化を図った結果、垂線からの角度(テーパの板厚方向に対する角度)を25°〜50°とし、テーパ開始位置から終了位置までの垂線の長さ(テーパの板厚方向の長さ)を板厚の20%〜40%とすると良いことを把握した。   In addition, as a result of optimization of the taper shape to be applied to the plate end, the angle from the perpendicular (angle with respect to the thickness direction of the taper) is set to 25 ° to 50 °, and from the taper start position to the end position It was understood that the length of the vertical line (the length of the taper in the thickness direction) should be 20% to 40% of the thickness.

すなわち、垂線からの角度(テーパ角度)を25°未満とすると、板厚中央部からの溶鋼排出が不充分となってペネトレータが残留して不良となり、電縫溶接後の靭性や強度が低下し、垂線からの角度(テーパ角度)が50°を超えると、電縫溶接後にもそのテーパ形状が製品の管の傷として残留し問題である。さらに、テーパ開始位置から終了位置までの垂線の長さ(テーパ高さ)について、板厚の20%未満であると板厚中央部の溶鋼排出が不充分となってペネトレータが残留しやすくなり、板厚の40%を超えると電縫溶接後にもそのテーパ形状が製品の管の傷として残留し問題である。   That is, if the angle from the perpendicular (taper angle) is less than 25 °, the molten steel discharge from the central portion of the plate thickness becomes insufficient, the penetrator remains and becomes defective, and the toughness and strength after ERW welding decrease. When the angle from the perpendicular (taper angle) exceeds 50 °, the taper shape remains as a flaw on the tube of the product even after the electric resistance welding. Furthermore, if the length of the perpendicular (taper height) from the taper start position to the end position is less than 20% of the plate thickness, the molten steel discharge at the center portion of the plate thickness becomes insufficient and the penetrator tends to remain, If it exceeds 40% of the plate thickness, the taper shape remains as a flaw on the tube of the product even after the electric resistance welding.

上記のような本発明の第1の実施形態を以下に述べる。   The first embodiment of the present invention as described above will be described below.

図1は、本発明の第1の実施形態において用いる電縫管製造ラインを示す図である。この電縫管製造ラインは、板(帯材)10を、アンコイラ1から払い出し、レベラー2で平坦に矯正し、ロール成形機4で帯材10を徐々に丸めていき、丸めて管状になった帯材20の左右両幅端部を、誘導加熱部5とスクイズロール(電縫溶接部)6からなる電縫溶接機で電縫溶接して管30となし、管30の溶接ビード部をビード部切削機7で切削し、切削後の管30をサイザー8にて外径調整した後、管切断機9で所定長さに切断するという基本構成を有している。   FIG. 1 is a diagram showing an electric resistance welded tube production line used in the first embodiment of the present invention. In this electric sewing tube manufacturing line, the plate (band material) 10 is discharged from the uncoiler 1 and straightened by the leveler 2, and the band material 10 is gradually rounded by the roll forming machine 4 and rounded into a tubular shape. The left and right width ends of the strip 20 are electro-welded with an electric-welding welder including an induction heating unit 5 and a squeeze roll (electro-sealed welding unit) 6 to form a pipe 30, and the weld bead part of the pipe 30 is beaded. After cutting with the partial cutting machine 7, the outer diameter of the cut pipe 30 is adjusted with the sizer 8, and then the pipe cutting machine 9 cuts it to a predetermined length.

そして、この実施形態においては、ロール成形機4は最後段に複数スタンド(例えば、3スタンド)からなるフィンパス成形スタンド3を備えており、前述したように、各スタンドのフィンを適切な形状とすることによって、板端部の上面側(管の内面側)または/および板端部の下面側(管の外面側)に所定のテーパ形状を付与できるようになっている。   In this embodiment, the roll forming machine 4 is provided with the fin path forming stand 3 including a plurality of stands (for example, 3 stands) at the last stage, and as described above, the fins of each stand have an appropriate shape. Thus, a predetermined taper shape can be given to the upper surface side (the inner surface side of the tube) of the plate end portion and / or the lower surface side (the outer surface side of the tube) of the plate end portion.

例えば、図2(a)に断面図を示し、図2(b)にその部分詳細図を示すように、フィンパス成形スタンド3の任意のスタンドが、所定の2段テーパ(2段目のテーパ傾斜角度α、2段目の傾斜部垂直長さβ)となったフィン形状を備えている。そのフィン形状を帯材10の幅端部に転写することによって、帯材10の下面側(管の外面側)の左右両端部に、テーパ角度がαでテーパ高さがβのテーパ形状を付与する。   For example, as shown in a sectional view in FIG. 2 (a) and a partial detailed view in FIG. 2 (b), an arbitrary stand of the fin-pass molding stand 3 has a predetermined two-step taper (second-step taper inclination). A fin shape having an angle α and a second inclined portion vertical length β) is provided. By transferring the fin shape to the width end of the strip 10, a taper shape with a taper angle of α and a taper height of β is imparted to the left and right ends of the lower surface of the strip 10 (the outer surface of the tube). To do.

そして、上記のようにして、外面側にテーパ角度αでテーパ高さβのテーパ形状が付与され、内面側にテーパ角度γでテーパ高さδのテーパ形状が付与された管状の帯材20を、図3に示すように、Vシェープ角度ψが2°〜8°となるようにして、電縫溶接を行なうようになっている。   Then, as described above, a tubular strip 20 having a taper shape with a taper angle β at a taper angle α on the outer surface side and a taper shape with a taper height δ at a taper angle γ on the inner surface side is provided. As shown in FIG. 3, the electric resistance welding is performed such that the V shape angle ψ is 2 ° to 8 °.

これによって、電縫溶接部のペネトレータを充分排出することができ、著しく良好な靭性および溶接強度を備えた電縫管を得ることができる。   As a result, the penetrator of the electric resistance welded portion can be sufficiently discharged, and an electric resistance welded tube having remarkably good toughness and welding strength can be obtained.

さらに、本発明者らは、電縫溶接前の板端部に所望のテーパ形状を適切に付与するための他の方法も検討し、その結果、孔型ロールを用いることを考え付いた。   Furthermore, the present inventors also examined other methods for appropriately imparting a desired taper shape to the plate end portion before ERW welding, and as a result, have come up with the use of a perforated roll.

孔型ロールを用いると、板端部の形状がその孔型に従って精度よく得られやすいからである。すなわち、テーパ形状を精度良く付与するには移動中の板を拘束する必要があるが、特にロール成形前またはロール成形前段では板端部のばたつきが大きくて、そのままではテーパ形状を付与することが難しい。しかし、孔型ロールを用いることによって、孔型ロール自身で板端部を拘束しつつ精度良くテーパ形状を付与することが可能である。また、孔型ロールは設備が比較的小型でよいことから、電縫溶接前において、ロール成形の前やロール成形の途中に設置することが容易である。   This is because when a perforated roll is used, the shape of the end portion of the plate is easily obtained with high accuracy according to the perforated shape. In other words, it is necessary to constrain the moving plate in order to give the taper shape with high accuracy. However, the fluttering of the plate end portion is particularly large before or before roll forming, and the taper shape can be given as it is. difficult. However, by using a perforated roll, it is possible to provide a tapered shape with high accuracy while restraining the plate end portion by the perforated roll itself. In addition, since the perforated roll may be relatively small in equipment, it can be easily installed before roll forming or in the middle of roll forming before electro-welding welding.

なお、孔型ロールを用いて電縫溶接前の板端部に所望のテーパ形状を付与した場合でも、前述したように、Vシェープ角度ψが2°〜8°となるようにして、電縫溶接を行なうことが必要である。   Even when a desired taper shape is given to the end of the plate before electro-welding using a hole-type roll, as described above, the V-shape angle ψ is set to 2 ° to 8 ° so that electro-sewing is performed. It is necessary to perform welding.

また、板端部に付与するテーパ形状についても、前述したように、垂線からの角度(テーパの板厚方向に対する角度)を25°〜50°とし、テーパ開始位置から終了位置までの垂線の長さ(テーパの板厚方向の長さ)を板厚の20%〜40%とすると良い。   In addition, as described above, the taper shape to be applied to the end of the plate is set so that the angle from the perpendicular (angle with respect to the thickness direction of the taper) is 25 ° to 50 °, and the length of the perpendicular from the taper start position to the end position. The length (the length of the taper in the plate thickness direction) is preferably 20% to 40% of the plate thickness.

上記に基づいた本発明の第2の実施形態を以下に述べる。   A second embodiment of the present invention based on the above will be described below.

図5は、本発明の第2の実施形態において用いる電縫管製造ラインを示す図である。この電縫管製造ラインは、板(帯材)10を、アンコイラ1から払い出し、レベラー2で平坦に矯正し、ロール成形機4で帯材10を徐々に丸めていき、丸めて管状になった帯材20の左右両幅端部を、誘導加熱部5とスクイズロール(電縫溶接部)6からなる電縫溶接機で電縫溶接して管30となし、管30の溶接ビード部をビード部切削機7で切削し、切削後の管30をサイザー8にて外径調整した後、管切断機9で所定長さに切断するという基本構成を有している。   FIG. 5 is a view showing an electric resistance weld tube production line used in the second embodiment of the present invention. In this electric sewing tube manufacturing line, the plate (band material) 10 is discharged from the uncoiler 1 and straightened by the leveler 2, and the band material 10 is gradually rounded by the roll forming machine 4 and rounded into a tubular shape. The left and right width ends of the strip 20 are electro-welded with an electric-welding welder including an induction heating unit 5 and a squeeze roll (electro-sealed welding unit) 6 to form a pipe 30, and the weld bead part of the pipe 30 is beaded. After cutting with the partial cutting machine 7, the outer diameter of the cut pipe 30 is adjusted with the sizer 8, and then the pipe cutting machine 9 cuts it to a predetermined length.

そして、この実施形態においては、ロール成形機4のブレークダウン第1スタンド41の後に孔型ロール42を備えており、この孔型ロール42での圧延によって板端部の上面側(管の内面側)または/および板端部の下面側(管の外面側)に所定のテーパ形状を付与できるようになっている。   In this embodiment, the roll forming machine 4 is provided with a perforated roll 42 after the first breakdown stand 41 of the roll forming machine 4, and the upper end side (the inner surface side of the tube) of the plate end by rolling with the perforated roll 42. ) Or / and a predetermined taper shape can be provided on the lower surface side (the outer surface side of the tube) of the plate end.

そして、前述の図3に示したものと同様に、例えば、外面側にテーパ角度αでテーパ高さβのテーパ形状が付与され、内面側にテーパ角度γでテーパ高さδのテーパ形状が付与された管状の帯材20を、Vシェープ角度ψが2°〜8°となるようにして、電縫溶接を行なうようになっている。   3, for example, a taper shape with a taper angle α and a taper height β is provided on the outer surface side, and a taper shape with a taper angle γ and a taper height δ is provided on the inner surface side. The tubular band member 20 is subjected to electro-welding welding so that the V-shape angle ψ is 2 ° to 8 °.

これによって、電縫溶接部のペネトレータを充分排出することができ、著しく良好な靭性および溶接強度を備えた電縫管を得ることができる。   As a result, the penetrator of the electric resistance welded portion can be sufficiently discharged, and an electric resistance welded tube having remarkably good toughness and welding strength can be obtained.

なお、孔型ロール42は、板(帯材)10が比較的平坦な位置に設置するのが好ましい。上記のブレークダウン第1スタンド41の後以外では、例えば、ロール成形機4の前に設置すればよい。   The hole-type roll 42 is preferably installed at a position where the plate (band material) 10 is relatively flat. Except after the above-mentioned first breakdown stand 41, for example, it may be installed in front of the roll forming machine 4.

以下、実施例1に基づいて説明する。   Hereinafter, a description will be given based on the first embodiment.

ここでは、板幅1920mm×19.1tmmの帯材(鋼帯)を用いて、φ600の電縫管を製造した。   Here, an electric resistance welded tube of φ600 was manufactured using a strip (steel strip) having a plate width of 1920 mm × 19.1 tmm.

そして、製造した電縫管の溶接部から試験片を切り出してシャルピー試験を行い、性能を評価した。シャルピー試験片は、管長手方向の相違する10点から1本ずつ、試験片長さ方向を管円周方向に平行にし、ノッチ長さ中心を溶接部肉厚中心位置として採取し、JIS5号の2mmVノッチ衝撃試験片として、−46℃での衝撃試験を行い、吸収エネルギー、脆性破面率を測定した。なお、吸収エネルギーは125J以上、脆性破面率が35%以下を性能許容範囲とした。   And the test piece was cut out from the weld part of the manufactured ERW pipe, the Charpy test was done, and the performance was evaluated. Each Charpy test piece is taken from 10 points with different pipe longitudinal directions, the specimen length direction is parallel to the pipe circumferential direction, the notch length center is taken as the weld thickness center position, and 2 mmV of JIS5 An impact test at −46 ° C. was performed as a notch impact test piece, and the absorbed energy and the brittle fracture surface ratio were measured. In addition, the absorbed energy was 125 J or more and the brittle fracture surface ratio was 35% or less as the allowable performance range.

(本発明例1)本発明例1として、前述の第1の実施形態に基づいて上記の電縫管を製造した。その際、3スタンドからなるフィンパス成形スタンドの第3スタンドにおいて、帯材10の下面側(管20の外面側)に、テーパ角度αが25°でテーパ高さβが4mm(板厚の21%)のほぼ直線上のテーパ形状を付与し、電縫溶接直前の板端面同士のなすVシェープ角度ψが2.5°となるようにロール成形を調整して、電縫溶接を行なった。   (Invention Example 1) As Invention Example 1, the above-mentioned electric resistance welded tube was manufactured based on the first embodiment described above. At that time, in the third stand of the fin-pass molding stand comprising three stands, the taper angle α is 25 ° and the taper height β is 4 mm (21% of the plate thickness) on the lower surface side (the outer surface side of the tube 20) of the band member 10. ) Was formed, and roll forming was adjusted so that the V shape angle ψ formed by the plate end surfaces immediately before the ERW welding was 2.5 °, and the ERW welding was performed.

(本発明例2)本発明例2として、2スタンドからなるフィンパス成形スタンドの第1スタンドにおいて、帯材10の上面側(管20の内面側)に、テーパ角度γが45°でテーパ高さδが7mm(板厚の37%)のほぼ直線上のテーパ形状を付与し、フィンパス成形スタンドの第2スタンドにおいて、帯材10の下面側(管20の外面側)に、テーパ角度αが45°でテーパ高さβが7mm(板厚の37%)のほぼ直線上のテーパ形状を付与し、電縫溶接直前の板端面同士のなすVシェープ角度ψが7.5°となるようにロール成形を調整して、電縫溶接を行なった。   (Invention Example 2) As Invention Example 2, in the first stand of the fin pass molding stand comprising two stands, the taper angle γ is 45 ° on the upper surface side (the inner surface side of the tube 20) of the band member 10 and the taper height. A substantially linear taper shape with δ of 7 mm (37% of the plate thickness) is provided, and in the second stand of the fin pass forming stand, the taper angle α is 45 on the lower surface side of the strip 10 (the outer surface side of the tube 20). A roll with a taper height β of 7 mm (37% of the plate thickness) and a substantially linear taper shape, and a V-shape angle ψ formed by the plate end surfaces immediately before ERW welding is 7.5 °. The molding was adjusted and electro-resistance welding was performed.

(比較例1)比較例1として、3スタンドからなるフィンパス成形の第1スタンドにおいて、帯材10の下面側(管20の外面側)に、テーパ角度αが20°でテーパ高さβが3mm(板厚の16%)のほぼ直線上のテーパ形状を付与し、帯材10の上面側(管20の内面側)に、テーパ角度γが20°でテーパ高さδが3mm(板厚の16%)のほぼ直線上のテーパ形状を付与し、電縫溶接直前の板端面同士のなすVシェープ角度ψが1.5°となるようにロール成形を調整して、電縫溶接を行なった。   (Comparative example 1) As a comparative example 1, in a fin stand molding first stand comprising three stands, the taper angle α is 20 ° and the taper height β is 3 mm on the lower surface side (the outer surface side of the tube 20) of the band member 10. (16% of the plate thickness) is provided with a substantially linear taper shape, and the taper angle γ is 20 ° and the taper height δ is 3 mm (the plate thickness) on the upper surface side (the inner surface side of the tube 20) of the band member 10. 16%), a taper shape on a substantially straight line was given, and roll forming was adjusted so that the V-shape angle ψ formed by the plate end faces immediately before the ERW welding was 1.5 °, and ERW welding was performed. .

(従来例1)従来例1として、板端面をほぼ矩形として、図4に示す電縫溶接直前の板端面同士のなすVシェープ角度ψが1.8°となるようにロール成形を調整して、電縫溶接を行なった。   (Conventional Example 1) As Conventional Example 1, the plate end surface is substantially rectangular, and the roll forming is adjusted so that the V shape angle ψ formed by the plate end surfaces immediately before ERW welding shown in FIG. 4 is 1.8 °. Electro-sewing welding was performed.

これらにより製造した電縫管の溶接部におけるシャルピー衝撃値と脆性破面率を測定した結果を表1に示す。   Table 1 shows the results of measuring the Charpy impact value and the brittle fracture surface ratio at the welded portion of the electric resistance welded tube manufactured as described above.

Figure 2008030114
Figure 2008030114

表1より、本発明例1、2による電縫管は、溶接部の衝撃強度が高く脆性破面率が小さくて、靭性が良好であって、製品の信頼性が高い。これに対して、比較例1および従来例1による電縫管は、溶接部の衝撃強度が低く脆性破面率が大きくて、靭性が低下しており、製品の信頼性に乏しい。   From Table 1, the ERW pipes according to Examples 1 and 2 of the present invention have high impact strength at the welded portion, small brittle fracture surface ratio, good toughness, and high product reliability. On the other hand, the ERW pipes according to Comparative Example 1 and Conventional Example 1 have poor impact strength at the welded portion, high brittle fracture surface ratio, reduced toughness, and poor product reliability.

これにより、本発明によって溶接部特性の良好な電縫管を製造できることが確認された。   Thereby, it was confirmed that the electric resistance welded tube with a favorable welded part characteristic can be manufactured by the present invention.

以下、実施例2に基づいて説明する。   Hereinafter, a description will be given based on the second embodiment.

ここでも、板幅1920mm×19.1tmmの帯材(鋼帯)を用いて、φ600の電縫管を製造した。   Here, a φ600 electric resistance welded tube was manufactured using a strip (steel strip) having a plate width of 1920 mm × 19.1 tmm.

そして、製造した電縫管の溶接部から試験片を切り出してシャルピー試験を行い、性能を評価した。シャルピー試験片は、管長手方向の相違する10点から1本ずつ、試験片長さ方向を管円周方向に平行にし、ノッチ長さ中心を溶接部肉厚中心位置として採取し、JIS5号の2mmVノッチ衝撃試験片として、−46℃での衝撃試験を行い、吸収エネルギー、脆性破面率を測定した。なお、吸収エネルギーは125J以上、脆性破面率が35%以下を性能許容範囲とした。   And the test piece was cut out from the weld part of the manufactured ERW pipe, the Charpy test was done, and the performance was evaluated. Each Charpy test piece is taken from 10 points with different pipe longitudinal directions, the specimen length direction is parallel to the pipe circumferential direction, the notch length center is taken as the weld thickness center position, and 2 mmV of JIS5 An impact test at −46 ° C. was performed as a notch impact test piece, and the absorbed energy and the brittle fracture surface ratio were measured. In addition, the absorbed energy was 125 J or more and the brittle fracture surface ratio was 35% or less as the allowable performance range.

(本発明例3)本発明例3として、前述の第2の実施形態に基づいて上記の電縫管を製造した。その際、孔型ロール42によって、帯材10の下面側(管20の外面側)に、テーパ角度αが25°でテーパ高さβが4mm(板厚の21%)のほぼ直線上のテーパ形状を付与し、帯材10の上面側(管20の内面側)に、テーパ角度γが25°でテーパ高さδが4mm(板厚の21%)のほぼ直線上のテーパ形状を付与し、電縫溶接直前の板端面同士のなすVシェープ角度ψが2.5°となるようにロール成形を調整して、電縫溶接を行なった。   (Invention Example 3) As Invention Example 3, the above-described electric resistance welded tube was manufactured based on the second embodiment described above. At that time, the hole-shaped roll 42 is formed on the lower surface side (the outer surface side of the tube 20) of the band member 10 so that the taper angle α is 25 ° and the taper height β is 4 mm (21% of the plate thickness). A shape is imparted, and a substantially linear taper shape with a taper angle γ of 25 ° and a taper height δ of 4 mm (21% of the plate thickness) is imparted to the upper surface side (inner surface side of the tube 20) of the band member 10. The roll forming was adjusted so that the V shape angle ψ formed between the plate end faces immediately before the electric resistance welding was 2.5 °, and the electric resistance welding was performed.

(本発明例4)本発明例4として、前述の第2の実施形態において、孔型ロール42をロール成形機4の前に移動して上記の電縫管を製造した。その際、孔型ロール42によって、帯材10の下面側(管20の外面側)に、テーパ角度αが45°でテーパ高さβが7mm(板厚の37%)のほぼ直線上のテーパ形状を付与し、帯材10の上面側(管20の内面側)に、テーパ角度γが45°でテーパ高さδが7mm(板厚の37%)のほぼ直線上のテーパ形状を付与し、電縫溶接直前の板端面同士のなすVシェープ角度ψが2.5°となるようにロール成形を調整して、電縫溶接を行なった。   (Invention Example 4) As Invention Example 4, in the above-described second embodiment, the hole-shaped roll 42 was moved in front of the roll forming machine 4 to manufacture the above-mentioned electric sewing tube. At that time, the hole-shaped roll 42 causes the taper on the lower surface side (the outer surface side of the tube 20) of the strip 10 to be a substantially linear taper having a taper angle α of 45 ° and a taper height β of 7 mm (37% of the plate thickness). A shape is applied, and a substantially linear taper shape with a taper angle γ of 45 ° and a taper height δ of 7 mm (37% of the plate thickness) is provided on the upper surface side (the inner surface side of the tube 20) of the band member 10. The roll forming was adjusted so that the V shape angle ψ formed between the plate end faces immediately before the electric resistance welding was 2.5 °, and the electric resistance welding was performed.

(比較例2)比較例2として、ロール成形機4の前に切削バイトを配置し、その切削バイトによって、帯材10の下面側(管20の外面側)に、テーパ角度αが20°でテーパ高さβが3mm(板厚の16%)のほぼ直線上のテーパ形状を付与し、帯材10の上面側(管20の内面側)に、テーパ角度γが20°でテーパ高さδが3mm(板厚の16%)のほぼ直線上のテーパ形状を付与し、電縫溶接直前の板端面同士のなすVシェープ角度ψが1.5°となるようにロール成形を調整して、電縫溶接を行なった。   (Comparative Example 2) As Comparative Example 2, a cutting tool is arranged in front of the roll forming machine 4, and the taper angle α is 20 ° on the lower surface side (the outer surface side of the tube 20) of the strip 10 by the cutting tool. A substantially linear taper shape having a taper height β of 3 mm (16% of the plate thickness) is provided, and a taper angle γ is 20 ° on the upper surface side (the inner surface side of the tube 20) of the band member 10 and the taper height δ. Is adjusted to roll forming so that the V shape angle ψ formed by the plate end faces immediately before ERW welding is 1.5 °. ERW welding was performed.

(従来例2)前述の従来例1と同様に、従来例2として、板端面をほぼ矩形として、図4に示す電縫溶接直前の板端面同士のなすVシェープ角度ψが1.8°となるようにロール成形を調整して、電縫溶接を行なった。   (Conventional Example 2) Similar to Conventional Example 1 described above, as Conventional Example 2, the plate end surface is substantially rectangular, and the V shape angle ψ formed by the plate end surfaces immediately before ERW welding shown in FIG. 4 is 1.8 °. The roll forming was adjusted so as to achieve ERW welding.

これらにより製造した電縫管の溶接部におけるシャルピー衝撃値と脆性破面率を測定した結果を表2に示す。   Table 2 shows the results of measuring the Charpy impact value and the brittle fracture surface ratio at the welded part of the electric resistance welded tube manufactured as described above.

Figure 2008030114
Figure 2008030114

表2より、本発明例3、4による電縫管は、溶接部の衝撃強度が高く脆性破面率が小さくて、靭性が良好であって、製品の信頼性が高い。これに対して、比較例2および従来例2による電縫管は、溶接部の衝撃強度が低く脆性破面率が大きくて、靭性が低下しており、製品の信頼性に乏しい。   From Table 2, the ERW pipes according to Examples 3 and 4 of the present invention have high impact strength at the welded portion, low brittle fracture surface ratio, good toughness, and high product reliability. On the other hand, the ERW pipes according to Comparative Example 2 and Conventional Example 2 have low impact strength at the welded portion, a high brittle fracture surface ratio, reduced toughness, and poor product reliability.

これにより、本発明によって溶接部特性の良好な電縫管を製造できることが確認された。   Thereby, it was confirmed that the electric resistance welded tube with a favorable welded part characteristic can be manufactured by the present invention.

本発明の第1の実施形態における電縫管製造ラインを示す図である。It is a figure which shows the ERW pipe manufacturing line in the 1st Embodiment of this invention. 2段テーパを備えたフィン形状のフィンパス圧延スタンドを示す図である。It is a figure which shows the fin-shaped fin pass rolling stand provided with the 2 step | paragraph taper. テーパ形状を付与した板の電縫溶接直前のVシェープ角度を示す図である。It is a figure which shows the V shape angle just before the electric-welding welding of the board | substrate which provided the taper shape. 従来の矩形端面の板の電縫溶接直前のVシェープ角度を示す図である。It is a figure which shows the V shape angle just before the electric resistance welding of the board of the conventional rectangular end surface. 本発明の第2の実施形態における電縫管製造ラインを示す図である。It is a figure which shows the ERW pipe manufacturing line in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 アンコイラ
2 レベラー
3 フィンパス成形スタンド
4 ロール成形機
5 誘導加熱装置(コンタクトチップ)
6 スクイズロール(電縫溶接部)
7 ビード部切削機
8 サイザー
9 管切断機
10 帯材(板)
20 管状に成形された板
30 管
41 ブレ−クダウン第1スタンド
42 孔型ロール
DESCRIPTION OF SYMBOLS 1 Uncoiler 2 Leveler 3 Fin pass forming stand 4 Roll forming machine 5 Induction heating device (contact chip)
6 squeeze roll
7 Bead cutting machine 8 Sizer 9 Pipe cutting machine 10 Band material (plate)
20 Plate formed into a tube 30 Tube 41 Breakdown first stand 42 Hole type roll

Claims (3)

板を成形して端部を突き合わせて電縫溶接して管とする電縫管の製造方法において、フィンパス成形により板端部にテーパ形状を付与した後に、Vシェープ角度を2°〜8°として電縫溶接することを特徴とする溶接部特性の良好な電縫管の製造方法。   In a method of manufacturing an electric resistance welded tube which forms a plate, abuts the end portions, and is welded by electro-welding to form a tube. A method of manufacturing an electric resistance welded tube having good weld-part characteristics, characterized by performing electric resistance welding. 板を成形して端部を突き合わせて電縫溶接して管とする電縫管の製造方法において、孔型ロールの圧延により板端部にテーパ形状を付与した後に、Vシェープ角度を2°〜8°として電縫溶接することを特徴とする溶接部特性の良好な電縫管の製造方法。   In a method of manufacturing an electric resistance welded tube, which is formed by forming a plate, butting ends and then performing electro-welding welding to form a tube, a taper shape is imparted to the plate end by rolling a perforated roll, and then the V shape angle is set to 2 ° to A method of manufacturing an electric resistance welded tube having good welded portion characteristics, characterized by performing electric resistance welding at 8 °. 板端部に付与するテーパ形状は、テーパの板厚方向に対する角度を25°〜50°とし、テーパの板厚方向の長さを板厚の20%〜40%とすることを特徴とする請求項1または2に記載の溶接部特性の良好な電縫管の製造方法。   The taper shape imparted to the plate end portion is characterized in that the angle of the taper with respect to the plate thickness direction is 25 ° to 50 °, and the length of the taper in the plate thickness direction is 20% to 40% of the plate thickness. Item 3. A method for producing an electric resistance welded tube having good weld joint characteristics according to Item 1 or 2.
JP2006266224A 2006-07-06 2006-09-29 Method of manufacturing electric resistance welded tube with excellent weld characteristic Pending JP2008030114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266224A JP2008030114A (en) 2006-07-06 2006-09-29 Method of manufacturing electric resistance welded tube with excellent weld characteristic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006186675 2006-07-06
JP2006266224A JP2008030114A (en) 2006-07-06 2006-09-29 Method of manufacturing electric resistance welded tube with excellent weld characteristic

Publications (1)

Publication Number Publication Date
JP2008030114A true JP2008030114A (en) 2008-02-14

Family

ID=39120064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266224A Pending JP2008030114A (en) 2006-07-06 2006-09-29 Method of manufacturing electric resistance welded tube with excellent weld characteristic

Country Status (1)

Country Link
JP (1) JP2008030114A (en)

Similar Documents

Publication Publication Date Title
JP5055938B2 (en) ERW pipe manufacturing equipment with good weld characteristics
JP4816015B2 (en) High-efficiency manufacturing method for ERW pipes with good weld characteristics
JP4983201B2 (en) ERW pipe manufacturing method for oil well line pipes or oil well casing pipes with excellent weld properties
JP5055848B2 (en) Manufacturing method of electric resistance welded tube with good weld characteristics
JP4720480B2 (en) Manufacturing method of electric resistance welded tube with good weld characteristics
JP4720479B2 (en) High-efficiency manufacturing method for ERW pipes with good weld characteristics
JP2008110399A (en) Method of manufacturing electric resistance welded tube excellent in property of weld zone
JP2008030114A (en) Method of manufacturing electric resistance welded tube with excellent weld characteristic
JP4682780B2 (en) ERW pipe manufacturing method with good weld characteristics
JP5194728B2 (en) ERW pipe manufacturing method with excellent weld properties
JP2007090415A (en) Method for consistently manufacturing electric resistance welded tube with excellent weld part characteristic
JP5055843B2 (en) Manufacturing method of electric resistance welded tube with good weld characteristics
JP5312735B2 (en) ERW pipe manufacturing method with good weld characteristics
JP2007330983A (en) Method for manufacturing electric resistance welded tube having excellent weld characteristic
JP5176495B2 (en) ERW pipe manufacturing method with excellent weld properties
JP2007319869A (en) Highly efficient method of producing electric resistance welded tube having good weld zone characteristic
JP5055823B2 (en) High-efficiency manufacturing method for ERW pipes with good weld characteristics
JP2008012582A (en) Method for manufacturing electric resistance welded tube having excellent weld characteristic
JP2008105075A (en) Method for manufacturing electric resistance welded tube having excellent characteristic of weld zone
JP2008105061A (en) Method for manufacturing electric resistance welded tube having excellent characteristic of weld zone
JP4682779B2 (en) ERW pipe manufacturing method with good weld characteristics
JP2009119484A (en) Method for manufacturing electric resistance welded tube excellent in characteristic of weld zone
JP2008307571A (en) Method for manufacturing seam welded pipe having excellent welded portion characteristic
JP2008080390A (en) Method for producing electric resistance welded tube having satisfactory weld zone characteristic
JP2008302379A (en) Method for manufacturing seam welded pipe having excellent welded property