JP2008026185A - Radiation visualization system - Google Patents

Radiation visualization system Download PDF

Info

Publication number
JP2008026185A
JP2008026185A JP2006199891A JP2006199891A JP2008026185A JP 2008026185 A JP2008026185 A JP 2008026185A JP 2006199891 A JP2006199891 A JP 2006199891A JP 2006199891 A JP2006199891 A JP 2006199891A JP 2008026185 A JP2008026185 A JP 2008026185A
Authority
JP
Japan
Prior art keywords
radiation
radiation dose
detector
signal
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006199891A
Other languages
Japanese (ja)
Inventor
Isao Imura
功 井村
Teruo Kobayashi
輝男 小林
Isao Yoshida
功 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tepco Systems Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Tepco Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Tepco Systems Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2006199891A priority Critical patent/JP2008026185A/en
Publication of JP2008026185A publication Critical patent/JP2008026185A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a worker to easily recognize changes in the radiation environment in real time. <P>SOLUTION: This radiation visualization system comprises: a radiation dose detector 1f; a radiation dose signal transmitter 1b which outputs by radio a radiation dose signal indicating a result detected by the radiation dose detector; one or more of detector modules 1 disposed in an object space to be recognized for radiation environment, having a position-indicating signal transmitter 1d which outputs by radio a position-indicating signal; a module position detector 2 which determines a position of the detector module based on a position-indicating signal from the detector module; radiation dose signal receiver 3 which receives a radiation dose signal from the detector module; and radiation dose distribution image display devices 4 and 5 which display a visual image on a display by superimposing the radiation dose distribution on an equipment model present in the object space to be recognized for radiation environment, by determining radiation dose distribution in the object space to be recognized for radiation environment based on the position of the detector module determined by the module position detector and the radiation dose signal received by the radiation dose signal receiver. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、放射線源を持つ原子力発電所や研究所や病院等の放射線環境を可視化して提示するシステムに関するものである。   The present invention relates to a system for visualizing and presenting a radiation environment such as a nuclear power plant having a radiation source, a laboratory, or a hospital.

原子力発電所では定期検査等のため、機器類の分解点検や検査等の各種作業が放射線環境下で恒常的に行われている。それゆえ作業員の放射線被曝線量を可能な限り低く抑えるために各種の方策が採られており、その基本的な考え方は、放射線源の線量を下げること、放射線源に対する遮蔽をすること、放射線源から距離をおくこと、の三点である。   At the nuclear power plant, various operations such as overhaul and inspection of equipment are regularly performed in a radiation environment for periodic inspections. Therefore, various measures have been taken to keep the radiation exposure of workers as low as possible, and the basic idea is to lower the radiation source dose, to shield the radiation source, The three points are to keep a distance.

そこで、放射線源の線量を下げるために除染をし、放射線源を鉛毛マットで遮蔽し、放射線源から距離をおくために放射線源からできるだけ離れて作業する、といった対策を行っている。   Therefore, measures are taken such as decontamination to reduce the dose of the radiation source, shielding the radiation source with a lead hair mat, and working as far away from the radiation source as possible to keep the distance from the radiation source.

ところで、上記の対策を行うためには放射線環境を把握する必要があり、従来は、原子力発電所内の所定箇所に固定した検出器で放射線量を測定する他、作業員が原子力発電所内の所定箇所に一定の間隔で定期的に行って空間内の放射線量を測定し、それらの測定結果の線量の数値を平面図上に記載して状況を把握していた(特許文献1参照)。
特開2005−009896号公報
By the way, in order to carry out the above measures, it is necessary to grasp the radiation environment. Conventionally, in addition to measuring the radiation dose with a detector fixed at a predetermined location in the nuclear power plant, the worker has to be in a predetermined location in the nuclear power plant. The radiation dose in the space was measured periodically at regular intervals, and the numerical values of the doses of the measurement results were recorded on a plan view to grasp the situation (see Patent Document 1).
JP-A-2005-009896

しかしながら、上記従来の方法では、次のような不充分な点がある。
1.配管内を流れている水の有無や性状によって放射線量測定時とその後で放射線環境が変わるケースがあるが、作業員は配管内の水の流れを知ることができず、環境変化を把握しにくい。
2.平面図への数値の記載では、ある一定の高さの放射線量を示すため、高さ方向の放射線量を把握しにくい。
3.リアルタイムの表示ではないので、現状把握がしにくい。
4.遮蔽物による遮蔽効果が把握しにくい。
5.どの位置で作業するのが被爆量を少なくするのに効果的か、わかりにくい。
However, the conventional method has the following insufficiency.
1. There are cases where the radiation environment changes during and after radiation dose measurement depending on the presence and nature of the water flowing in the pipe, but workers cannot know the flow of water in the pipe and are difficult to grasp environmental changes. .
2. In the description of the numerical values on the plan view, the radiation dose at a certain height is indicated, so that it is difficult to grasp the radiation dose in the height direction.
3. Since it is not a real-time display, it is difficult to grasp the current situation.
4). It is difficult to grasp the shielding effect of the shielding object.
5. It is difficult to tell which position is effective for reducing the amount of exposure.

この発明は、上記課題を有利に解決することを目的とするものであり、この発明の放射線可視化システムは、放射線量検出器と、その放射線量検出器による検出結果を示す放射線量信号を無線で出力する放射線量信号送信機と、位置表示信号を無線で出力する位置表示信号送信機とを有して放射線環境把握対象空間内に配置される一または複数の検出器モジュールと、前記検出器モジュールからの位置表示信号に基づき前記検出器モジュールの位置を特定するモジュール位置検出器と、前記検出器モジュールからの放射線量信号を受信する放射線量信号受信機と、前記モジュール位置検出器が特定した前記検出器モジュールの位置と、前記放射線量信号受信機が受信した放射線量信号とに基づき前記放射線環境把握対象空間内での放射線量分布を求めて、その放射線量分布を、前記放射線環境把握対象空間内に存在する設備のモデルに重畳して画面上に可視的に画像表示する放射線量分布画像表示装置と、を具えてなるものである。   An object of the present invention is to advantageously solve the above-described problems. A radiation visualization system according to the present invention wirelessly transmits a radiation dose detector and a radiation dose signal indicating a detection result by the radiation dose detector. One or a plurality of detector modules disposed in a radiation environment grasping space having a radiation dose signal transmitter for outputting and a position display signal transmitter for outputting a position display signal wirelessly, and the detector module A module position detector that identifies the position of the detector module based on a position indication signal from the radiation module, a radiation dose signal receiver that receives a radiation dose signal from the detector module, and the module position detector that identifies the module position detector Based on the position of the detector module and the radiation dose signal received by the radiation dose signal receiver, the radiation dose distribution in the radiation environment grasping target space is determined. A radiation dose distribution image display device that visually superimposes the radiation dose distribution on a model of equipment existing in the radiation environment grasping target space and displays the image on a screen visually. is there.

かかるこの発明の放射線可視化システムにあっては、例えば原子力発電所の原子炉を設置した室内等の放射線環境把握対象空間内に配置される一または複数の検出器モジュールの放射線量検出器がその検出器モジュールの位置での放射線量を検出し、その検出器モジュールの放射線量信号送信機が、前記放射線量検出器による検出結果を示す放射線量信号を無線で出力し、併せてその検出器モジュールの位置表示信号送信機が、位置表示信号を無線で出力する。そして、モジュール位置検出器が、前記検出器モジュールからの位置表示信号に基づき前記検出器モジュールの位置を特定し、併せて放射線量信号受信機が、前記検出器モジュールからの放射線量信号を受信し、これにより放射線量分布画像表示装置が、前記モジュール位置検出器が特定した前記検出器モジュールの位置と、前記放射線量信号受信機が受信した放射線量信号とに基づき前記放射線環境把握対象空間内での放射線量分布を求めて、その放射線量分布を、前記放射線環境把握対象空間内に存在する設備のモデルに重畳して画面上に可視的に画像表示する。   In such a radiation visualization system of the present invention, for example, a radiation dose detector of one or a plurality of detector modules arranged in a radiation environment grasping space such as a room where a nuclear power plant reactor is installed is detected. The radiation dose signal transmitter of the detector module detects the radiation dose at the position of the detector module, and the radiation dose signal indicating the detection result by the radiation dose detector is wirelessly output together with the detector module. A position display signal transmitter outputs a position display signal wirelessly. Then, the module position detector specifies the position of the detector module based on the position display signal from the detector module, and the radiation dose signal receiver also receives the radiation dose signal from the detector module. In this way, the radiation dose distribution image display device is arranged in the radiation environment grasping target space based on the position of the detector module specified by the module position detector and the radiation dose signal received by the radiation dose signal receiver. The radiation dose distribution is obtained, and the radiation dose distribution is superimposed on a model of the facility existing in the radiation environment grasping target space and is visually displayed on the screen.

従って、この発明の放射線可視化システムによれば、放射線環境把握対象空間内に固定した放射線量検出器からその対象空間外まで信号出力ケーブルを敷設する作業を行わなくても、作業員は、画面上に例えば線量に応じた色分けや濃度変化等により可視的に表示された、放射線環境把握対象空間内での放射線量の分布から、放射線環境をリアルタイムで容易に把握することができ、また放射線環境把握対象空間内の配管内を水が流れている場合と流れていない場合との放射線環境の変化も確実に把握することができ、さらに放射線環境把握対象空間内に遮蔽材を持ち込んだときの、放射線遮蔽の効果の確認も行うことができ、そして放射線源からどの程度離れて作業すれば安全かも容易に確認することができ、しかも放射線環境把握対象空間内での通常の作業を信号出力ケーブルが妨げるということもない。   Therefore, according to the radiation visualization system of the present invention, even if the operation of laying the signal output cable from the radiation dose detector fixed in the radiation environment grasping target space to the outside of the target space is not performed, For example, the radiation environment can be easily grasped in real time from the distribution of radiation dose in the radiation environment grasped space, which is visually displayed by color coding or concentration change according to the dose, etc. Changes in the radiation environment between when the water is flowing through the piping in the target space and when it is not flowing can be reliably grasped, and radiation when a shielding material is brought into the radiation environment target space. The effect of shielding can also be confirmed, and how far away from the radiation source the work can be confirmed safely and easily. Normal nor that the signal output cable hinder work within.

それゆえこの発明の放射線可視化システムによれば、原子力発電所の原子炉を設置した室内での機器類の分解点検や検査等の各種作業を行う作業員の被爆量低減に寄与することができ、また原子炉の解体作業の際の作業員の被爆量低減に寄与することができ、さらには、病院等の医療施設のCT等の放射線機器を設置した室内で各種作業を行う医師や検査技師等の過剰な被爆も防止することができる。   Therefore, according to the radiation visualization system of the present invention, it can contribute to the reduction of the exposure amount of workers who perform various operations such as overhaul and inspection of equipment in the room where the nuclear power plant reactor is installed, In addition, it can contribute to reducing the amount of exposure to workers when the reactor is dismantled. In addition, doctors and laboratory technicians who perform various operations in a room where radiation equipment such as CT is installed in medical facilities such as hospitals. Excessive exposure can be prevented.

なお、この発明の放射線可視化システムにおいては、前記モジュール位置検出器は、前記検出器モジュールからの位置表示信号に基づき前記検出器モジュールの三次元位置を特定し、前記放射線量分布画像表示装置は、前記モジュール位置検出器が特定した前記検出器モジュールの三次元位置と、前記放射線量信号受信機が受信した放射線量信号とに基づき前記放射線環境把握対象空間内での放射線量分布を三次元的に求めて、その三次元的放射線量分布を、前記放射線環境把握対象空間内に存在する設備の三次元モデルに重畳して画面上に可視的に画像表示するものであっても良く、このようにすれば、放射線環境把握対象空間内の設備の三次元モデルに重畳した三次元的放射線量分布を画面で見ることができるので、放射線環境をより容易に把握することができる。   In the radiation visualization system of the present invention, the module position detector specifies a three-dimensional position of the detector module based on a position display signal from the detector module, and the radiation dose distribution image display device includes: Based on the three-dimensional position of the detector module specified by the module position detector and the radiation dose signal received by the radiation dose signal receiver, the radiation dose distribution in the radiation environment grasping target space is three-dimensionally determined. The three-dimensional radiation dose distribution obtained may be superimposed on a three-dimensional model of equipment existing in the radiation environment grasping target space and displayed visually on the screen as described above. By doing so, you can see on the screen the three-dimensional radiation dose distribution superimposed on the three-dimensional model of the equipment in the radiation environment grasping space. It is possible to grasp.

また、この発明の放射線可視化システムにおいては、前記位置表示信号送信機は、前記位置表示信号として超音波を出力し、前記モジュール位置検出器は、例えば所定時刻に発信する前記超音波を少なくとも三つの位置で受信してそれらの位置での超音波の到達時間と時間差とに基づき前記検出器モジュールの三次元位置を特定するものであっても良く、このようにすれば、原子力発電所の建屋等の、GPSの電波の届きづらいコンクリート構造の建物の内部でも検出器モジュールの三次元位置を確実に検出することができる。その一方、前記超音波の発信を、所定時刻の代わりに、例えば無線電波で検出器モジュールに与える出力命令によって行ってもよく、このようにすれば、任意の時点で検出器モジュールの三次元位置を特定することができる。   In the radiation visualization system of the present invention, the position display signal transmitter outputs an ultrasonic wave as the position display signal, and the module position detector transmits at least three ultrasonic waves to be transmitted at a predetermined time, for example. The three-dimensional position of the detector module may be specified based on the arrival time and the time difference of the ultrasonic waves at those positions, and in this way, a building of a nuclear power plant, etc. Thus, the three-dimensional position of the detector module can be reliably detected even in a concrete structure where GPS radio waves are difficult to reach. On the other hand, the transmission of the ultrasonic wave may be performed by, for example, an output command given to the detector module by wireless radio waves instead of a predetermined time, and in this way, the three-dimensional position of the detector module at an arbitrary time point. Can be specified.

さらに、この発明の放射線可視化システムにおいては、前記検出器モジュールは、例えば人手での搬送等により、前記放射線環境把握対象空間内を移動しながら前記放射線量信号と前記位置表示信号とを出力するものであっても良く、このようにすれば、少ない数の検出器モジュールで多くの位置での放射線量を検出し得て、高精度の放射線量分布を安価に得ることができる。   Furthermore, in the radiation visualization system according to the present invention, the detector module outputs the radiation dose signal and the position display signal while moving in the radiation environment grasping space, for example, by manual transportation. In this way, the radiation dose at many positions can be detected with a small number of detector modules, and a highly accurate radiation dose distribution can be obtained at low cost.

そして、この発明の放射線可視化システムにおいては、放射線量分布画像表示装置は、前記放射線量信号に基づく放射線量が所定レベルを超えた場合に警告音等や警告光等の警報を出力するものであっても良く、このようにすれば、放射線量が所定レベルを超えた場合に作業員等が速やかに退避し得て、作業員等の被爆量低減を確保することができる。   In the radiation visualization system according to the present invention, the radiation dose distribution image display device outputs an alarm such as a warning sound or warning light when the radiation dose based on the radiation dose signal exceeds a predetermined level. In this way, when the radiation dose exceeds a predetermined level, the worker or the like can evacuate quickly, and a reduction in the exposure amount of the worker or the like can be ensured.

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1は、この発明の放射線可視化システムの一実施例の全体構成を示す構成図、図2は、その実施例の放射線可視化システムの検出器モジュールの構成を機能的に示すブロック線図、図3は、上記実施例の放射線可視化システムにおいて検出器モジュールの三次元位置を検出する方法を示す説明図、図4は、上記実施例の放射線可視化システムに用いられる可搬式の検出器モジュールを示す説明図、図5は、その可搬式の検出器モジュールの使用方法を示す説明図、図6は、上記実施例の放射線可視化システムにおけるデータ処理手順を示す説明図、図7は、上記実施例の放射線可視化システムにおけるパーソナルコンピュータがディスプレイ装置の画面上に三次元的に可視化表示する放射線量分布画像を例示する説明図、そして図8は、上記実施例の放射線可視化システムにおけるパーソナルコンピュータがパーソナルデータアシスタント(PDA)の画面上にニ次元的に可視化表示する放射線量分布画像を例示する説明図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the overall configuration of an embodiment of the radiation visualization system of the present invention, and FIG. 2 is a block diagram functionally showing the configuration of the detector module of the radiation visualization system of the embodiment. FIG. 3 is an explanatory diagram showing a method for detecting the three-dimensional position of the detector module in the radiation visualization system of the above embodiment, and FIG. 4 shows a portable detector module used in the radiation visualization system of the above embodiment. FIG. 5 is an explanatory view showing a method of using the portable detector module, FIG. 6 is an explanatory view showing a data processing procedure in the radiation visualization system of the above embodiment, and FIG. 7 is the above embodiment. Explanatory drawing which illustrates the radiation dose distribution image which a personal computer in the radiation visualization system of FIG. Is an explanatory view illustrating a radiation dose distribution image by the personal computer in the radiation visualization system of the above embodiment is to display two-dimensional visualized on the screen of a personal data assistant (PDA).

この実施例の放射線可視化システムは、放射線環境把握対象空間としての、原子力発電所の原子炉建屋内の空間の三次元的放射線量分布をリアルタイムで把握するためのもので、図1に示すように、その原子炉建屋内の壁面や機器表面や空間内の所望の位置に固定または移動可能に配置される複数の検出器モジュール1と、その原子炉建屋内の位置が明らかな互いに離間する所定位置に固定される少なくとも三つの超音波受信機2と、上記原子炉建屋内に設置される電波送受信機3と、上記原子炉建屋に隣接する中央制御室内に設置されてそれら超音波受信機2および電波送受信機3と接続されるパーソナルコンピュータ(PC)4と、上記中央制御室に設置されてそのPC4と接続されるディスプレイ装置5とを具えている。   The radiation visualization system of this embodiment is for grasping in real time the three-dimensional radiation dose distribution in the nuclear reactor building space as the radiation environment grasping target space, as shown in FIG. , A plurality of detector modules 1 that are fixedly or movably disposed at a desired position in the wall, equipment surface, or space in the reactor building, and predetermined positions that are clearly spaced from each other in the reactor building At least three ultrasonic receivers 2 fixed to the reactor building, a radio wave transmitter / receiver 3 installed in the reactor building, an ultrasonic receiver 2 installed in a central control room adjacent to the reactor building, and A personal computer (PC) 4 connected to the radio wave transmitter / receiver 3 and a display device 5 installed in the central control room and connected to the PC 4 are provided.

ここで、各検出器モジュール1は、図2に示すように、アンテナ1aを介して電波で信号を送受信する電波送受信機1bと、超音波トランスデューサ1cを介して超音波を発信する超音波発信機1dと、放射線計数管1eを介して放射線量を検出する放射線量検出器1fと、それらを駆動する図示しないバッテリとを有している。   Here, as shown in FIG. 2, each detector module 1 includes a radio wave transmitter / receiver 1b that transmits / receives a signal via an antenna 1a and an ultrasonic transmitter that transmits an ultrasonic wave via an ultrasonic transducer 1c. 1d, a radiation dose detector 1f for detecting the radiation dose via the radiation counter 1e, and a battery (not shown) for driving them.

そしてこの実施例の放射線可視化システムは、図3に示すように、原子力発電所の原子炉建屋R内に配置された各検出器モジュール1(図では一台だけ示す)の三次元位置を検出するに際しては、PC4が、電波送受信機3を介して特定の検出器モジュール1に出力命令を送信するとともに少なくとも三つの超音波受信機2のそれぞれに対応するタイマを起動し、その出力命令に応じてその特定の検出器モジュール1が、放射線計数管1eを介して放射線量検出器1fにより放射線量を検出し、その放射線量のデータを電波送受信機1bによりアンテナ1aを介して電波で送信するとともに、超音波発信機1dにより超音波トランスデューサ1cを介して超音波を発信すると、その超音波を少なくとも三つの超音波受信機2を介して受信してそれらの超音波受信機2が受信したタイミングでそれぞれのタイマを止め、その特定の検出器モジュール1の超音波の発信から各超音波受信機2での受信までの時間からその特定の検出器モジュール1と各超音波受信機2との間の距離を計算し、各超音波受信機2の位置からその求めた距離だけ離間した球面の交点を求めることにより三角測量の原理でその特定の検出器モジュール1の三次元位置を求める、という処理を各検出器モジュール1について行う。従って、超音波受信機2とPC4とは、各検出器モジュール1のためのモジュール位置検出器として機能する。   And the radiation visualization system of this Example detects the three-dimensional position of each detector module 1 (only one is shown in the figure) arrange | positioned in the reactor building R of a nuclear power station, as shown in FIG. At that time, the PC 4 transmits an output command to a specific detector module 1 via the radio wave transmitter / receiver 3 and activates a timer corresponding to each of at least three ultrasonic receivers 2, and according to the output command. The specific detector module 1 detects the radiation dose by the radiation dose detector 1f via the radiation counter 1e, transmits the radiation dose data by radio waves via the antenna 1a by the radio wave transmitter / receiver 1b, When an ultrasonic wave is transmitted through the ultrasonic transducer 1c by the ultrasonic transmitter 1d, the ultrasonic wave is received through at least three ultrasonic receivers 2. Each timer is stopped at the timing received by these ultrasonic receivers 2, and the specific detector is determined from the time from the transmission of the ultrasonic wave of the specific detector module 1 to the reception by each ultrasonic receiver 2. The distance between the module 1 and each ultrasonic receiver 2 is calculated, and the specific detection is performed by the principle of triangulation by calculating the intersection of the spherical surfaces separated from the position of each ultrasonic receiver 2 by the determined distance. The process of obtaining the three-dimensional position of the detector module 1 is performed for each detector module 1. Therefore, the ultrasonic receiver 2 and the PC 4 function as a module position detector for each detector module 1.

また、この実施例の放射線可視化システムは、図4に示す如き、可搬式の検出器モジュール1Aも具えており、この検出器モジュール1Aは棒状をなしていて、超音波トランスデューサ1cおよび超音波発信機1dを有する代わりに、先端部にコイル状のアンテナ1gを放射線計数管1eとともに有しており、図5に示すように、この検出器モジュール1Aのハンドル1hを保持した作業員Wがその先端部のアンテナ1gを、原子炉建屋R内の位置が明らかな所定位置に固定されるとともに各々無線通信機能と識別番号記憶機能とを持つ既知の複数のRFIDチップ6の何れかに接近させると、検出器モジュール1A内の電波送受信機1bが、そのRFIDチップ6とアンテナ1gを介して交信してそのRFIDチップ6の識別番号を読み取り、その識別番号を、放射線計数管1eを介して放射線量検出器1fが検出した放射線量とともに電波送受信機3に送信し、PC4は電波送受信機3を介してその識別番号と放射線量のデータを取り込む。従って、電波送受信機3とPC4とは、検出器モジュール1Aのためのモジュール位置検出器として機能する。   The radiation visualization system of this embodiment also includes a portable detector module 1A as shown in FIG. 4, and this detector module 1A has a rod shape, and includes an ultrasonic transducer 1c and an ultrasonic transmitter. Instead of having 1d, it has a coiled antenna 1g at the tip with a radiation counter 1e, and as shown in FIG. 5, the operator W holding the handle 1h of the detector module 1A has its tip. Is detected when the antenna 1g is fixed at a predetermined position where the position in the reactor building R is clear and close to any of a plurality of known RFID chips 6 each having a wireless communication function and an identification number storage function. The radio wave transmitter / receiver 1b in the receiver module 1A communicates with the RFID chip 6 via the antenna 1g and reads the identification number of the RFID chip 6 The identification number is transmitted to the radio wave transmitter / receiver 3 together with the radiation dose detected by the radiation dose detector 1f via the radiation counter 1e, and the PC 4 transmits the identification number and the radiation dose data via the radio wave transmitter / receiver 3. take in. Therefore, the radio wave transceiver 3 and the PC 4 function as a module position detector for the detector module 1A.

図6は、この実施例の放射線可視化システムを用いて上記原子炉建屋R内の放射線量分布を可視化して示す際のデータ処理手順を示しており、ここでは先ず、ステップS1で、例えばデジタルカメラによって上記原子炉建屋R内の機器類Dのレイアウトを撮影してその写真データをPC4に入力し、またステップS2で、上記原子炉建屋R内の機器類Dのレイアウトを示す図面を調査してその図面データもPC4に入力し、これらのデータからPC4が、通常のコンピュータ支援デザイン(CAD)機能により、ステップS3で、図7に示す如き、上記原子炉建屋R内の機器類Dの仮想現実(VR)三次元モデルの画像を作成しておく。   FIG. 6 shows a data processing procedure when the radiation dose distribution in the reactor building R is visualized and shown using the radiation visualization system of this embodiment. First, in step S1, for example, a digital camera is shown. To capture the layout of the equipment D in the reactor building R and input the photograph data to the PC 4, and in step S2, investigate the drawing showing the layout of the equipment D in the reactor building R. The drawing data is also input to the PC 4, and from these data, the PC 4 performs a virtual reality of the equipment D in the reactor building R as shown in FIG. (VR) Create an image of a three-dimensional model.

次いでここではステップS4で、PC4が、一定時間(例えば1分)毎に上記複数の検出器モジュール1にそれぞれ電波送受信機3を介して出力命令を送信してそれらの検出器モジュール1に単位時間当たりの放射線量を検出させ、それらの検出器モジュール1が検出して電波で送信した放射線量データを電波送受信機3で受信して、それらの放射線量を検出した検出器モジュール1の、超音波受信機2による超音波受信タイミングからそれぞれ求めた位置データとともに取り込み、併せて、作業員Wが所要に応じて任意のタイミングで原子炉建屋R内に入り、検出器モジュール1Aを任意の機器DのRFIDチップ6に近づけて単位時間当たりの放射線量を検出し、その放射線量を検出した位置にあるRFIDの識別番号とともに電波で送信した放射線量データも電波送受信機3で受信して、その識別番号から求めた検出器モジュール1Aの先端部の位置データとともに取り込む。従って、電波送受信機3は、放射線量信号受信機として機能する。   Next, in step S4, the PC 4 transmits an output command to each of the plurality of detector modules 1 via the radio wave transmitter / receiver 3 every predetermined time (for example, 1 minute), and unit time is sent to those detector modules 1 The radiation amount data detected by those detector modules 1 and transmitted by radio waves are received by the radio wave transmitter / receiver 3 and the ultrasonic waves of the detector modules 1 that detect the radiation doses are detected. Along with the position data obtained from the ultrasonic reception timing by the receiver 2, the operator W enters the reactor building R at an arbitrary timing as required, and the detector module 1A is connected to an arbitrary device D. The amount of radiation per unit time is detected close to the RFID chip 6 and transmitted together with the RFID identification number at the position where the amount of radiation is detected. Also it receives radiation quantity data at radio transceiver 3, taking together with the position data of the distal end portion of the detector module 1A determined from its identification number. Therefore, the radio wave transmitter / receiver 3 functions as a radiation dose signal receiver.

そしてPC4は、取り込んだ複数位置の放射線量データとその放射線量の測定位置データとから原子炉建屋R内の実質的にリアルタイムの放射線量の三次元分布を示す等高線マップを作成し、その放射線量三次元分布等高線マップをステップS5で、先に作成した上記原子炉建屋R内の機器類DのVR三次元モデルの画像に重畳し、例えば図7に示す如き、そのVR三次元画像に重畳した放射線量三次元分布等高線マップを、ディスプレイ装置5の二次元の画面上に画像表示する。従って、PC4およびディスプレイ装置5は、放射線量分布画像表示装置として機能する。   Then, the PC 4 creates a contour map showing a three-dimensional distribution of the substantially real-time radiation dose in the reactor building R from the captured radiation dose data at a plurality of positions and the measurement position data of the radiation dose. In step S5, the three-dimensional distribution contour map is superimposed on the VR three-dimensional model image of the equipment D in the reactor building R previously created, and superimposed on the VR three-dimensional image, for example, as shown in FIG. The radiation dose three-dimensional distribution contour map is displayed as an image on the two-dimensional screen of the display device 5. Accordingly, the PC 4 and the display device 5 function as a radiation dose distribution image display device.

なお、図7では、単位時間当たりの放射線量が多いほど等高線マップの等高線間領域のハッチングの線密度(濃度)を高くすることで放射線量分布を可視的に示している(最も放射線量が多い領域を符号Pで表している)が、例えば放射線量が多い領域を赤、放射線量が中程度の領域を緑、放射線量が少ない領域を青とするというように、放射線量分布を色分けで可視的に表示しても良い。   In FIG. 7, the radiation dose distribution is visibly shown by increasing the hatching line density (concentration) in the region between contour lines of the contour map as the radiation dose per unit time increases (the radiation dose is the highest). The radiation dose distribution is visible in different colors, for example, a region with a high radiation dose is red, a region with a medium radiation dose is green, and a region with a low radiation dose is blue. May be displayed.

PC4はさらに、上記の如くして作成した原子炉建屋R内の実質的にリアルタイムの放射線量の三次元分布を示す等高線マップを、上方から見た二次元マップに変換し、これを上記原子炉建屋R内の図面データに重畳して、図示しないモデムを介し、各作業員Wが携帯する図8に示す如き、PCの機能と携帯型電話機の機能とを持った通常のパーソナルデータアシスタント(PDA)7にも電話回線を介してパケットで送信する。従って、PC4およびPDA7も、放射線量分布画像表示装置として機能する。   The PC 4 further converts the contour map showing the substantially three-dimensional distribution of the radiation dose in the reactor building R created as described above into a two-dimensional map viewed from above, and converts the contour map to the reactor. An ordinary personal data assistant (PDA) having the function of a PC and the function of a portable telephone as shown in FIG. 8 carried by each worker W through a modem (not shown) superimposed on the drawing data in the building R. ) 7 is also transmitted as a packet via the telephone line. Accordingly, the PC 4 and the PDA 7 also function as a radiation dose distribution image display device.

PC4はさらに、上記放射線量データに基づく放射線量が所定レベルを超えた領域があった場合に、ディスプレイ装置5およびPDA7の画面上でその領域を例えば点滅により強調表示するとともに、図示しないスピーカーや警告灯により、警告音や警告光等の警報を出力する。   Further, when there is a region where the radiation dose based on the radiation dose data exceeds a predetermined level, the PC 4 highlights the region on the screens of the display device 5 and the PDA 7 by, for example, blinking, and displays a speaker or warning (not shown). A warning sound or warning light is output by the lamp.

従って、この実施例の放射線可視化システムによれば、放射線環境把握対象空間としての原子炉建屋R内に固定した放射線量検出器からその対象空間外まで信号出力ケーブルを敷設する作業を行わなくても、作業員は、原子炉建屋Rに隣接する中央制御室に設置されたPC4のディスプレイ装置5の画面上に線量に応じた濃度変化により可視的に表示されたその原子炉建屋R内での放射線量の三次元分布および、各自が携帯するPDA7の画面上に線量に応じた濃度変化により可視的に表示されたその原子炉建屋R内での放射線量の二次元分布から、、原子炉建屋R内の放射線環境をリアルタイムで容易に把握することができ、また原子炉建屋R内の配管内を水が流れている場合と流れていない場合との放射線環境の変化も確実に把握することができ、さらに原子炉建屋R内に放射線遮蔽材を持ち込んだときの、放射線遮蔽の効果の確認も行うことができ、そして放射線源からどの程度離れて作業すれば被爆線量を低減できるかも容易に確認することができ、しかも原子炉建屋R内での通常の作業を信号出力ケーブルに妨げられるということもない。   Therefore, according to the radiation visualization system of this embodiment, it is not necessary to lay the signal output cable from the radiation dose detector fixed in the reactor building R as the radiation environment grasping target space to the outside of the target space. The worker radiates radiation in the reactor building R that is visually displayed by the concentration change according to the dose on the screen of the display device 5 of the PC 4 installed in the central control room adjacent to the reactor building R. From the three-dimensional distribution of the dose and the two-dimensional distribution of the radiation dose in the reactor building R visually displayed by the concentration change according to the dose on the screen of the PDA 7 carried by each person, the reactor building R The radiation environment in the reactor can be easily grasped in real time, and changes in the radiation environment with and without water flowing through the piping inside the reactor building R can be grasped with certainty. It is also possible to confirm the radiation shielding effect when a radiation shielding material is brought into the reactor building R, and how far away from the radiation source the work can be done to reduce the exposure dose. In addition, the signal output cable does not prevent normal operation in the reactor building R.

それゆえこの実施例の放射線可視化システムによれば、原子力発電所の原子炉建屋R内での機器類Dの分解点検や検査等の各種作業を行う作業員の被爆線量を低減することができ、またこの原子力発電所の原子炉の解体作業の際の作業員の被爆線量も低減することができる。   Therefore, according to the radiation visualization system of this embodiment, it is possible to reduce the exposure dose of workers who perform various operations such as disassembly inspection and inspection of the equipment D in the reactor building R of the nuclear power plant, In addition, the radiation dose to workers during the dismantling of the nuclear power plant reactor can be reduced.

また、この実施例の放射線可視化システムによれば、超音波受信機2と無線送受信機3とPC4とが、検出器モジュール1からの位置表示信号である超音波に基づき検出器モジュール1の三次元位置を特定するとともに、検出器モジュール1Aからの位置表示信号であるRFID6の識別番号に基づき検出器モジュール1Aの三次元位置を特定し、PC4が、その特定した検出器モジュール1,1Aの三次元位置と、無線送受信機3が受信した放射線量データとに基づき原子炉建屋R内での放射線量分布を三次元的に求めて、その三次元的放射線量分布を、原子炉建屋R内に存在する機器類Dの三次元モデルに重畳してディスプレイ装置5の画面上に可視的に画像表示するので、作業員Wは、原子炉建屋R内の機器類Dの三次元モデルに重畳した三次元的放射線量分布を画面で見得て、放射線環境をより容易に把握することができる。   Further, according to the radiation visualization system of this embodiment, the ultrasonic receiver 2, the wireless transceiver 3, and the PC 4 are based on the ultrasonic wave that is the position display signal from the detector module 1 and the three-dimensional of the detector module 1. While specifying the position, the three-dimensional position of the detector module 1A is specified based on the identification number of the RFID 6 which is a position display signal from the detector module 1A, and the PC 4 determines the three-dimensional of the specified detector modules 1 and 1A. The radiation dose distribution in the reactor building R is obtained three-dimensionally based on the position and the radiation dose data received by the wireless transceiver 3, and the three-dimensional radiation dose distribution exists in the reactor building R. Since the image is visibly displayed on the screen of the display device 5 superimposed on the three-dimensional model of the equipment D to be operated, the worker W is superimposed on the three-dimensional model of the equipment D in the reactor building R. The three-dimensional radiation dose distribution obtained seen in screens, radiation environment can be more easily grasped.

さらに、この実施例の放射線可視化システムによれば、各検出器モジュール1の超音波発信機1dは、位置表示信号として超音波を出力し、PC4は、無線電波で検出器モジュール1に与える出力命令に応じて超音波発信機1dが出力する超音波を少なくとも三つの位置の超音波受信機2で受信して、それらの位置での超音波の到達時間と時間差とに基づき各検出器モジュール1の三次元位置を特定するものであることから、GPSの電波の届きづらいコンクリート構造の原子力発電所の建屋の内部でも、任意の時点での検出器モジュール1の三次元位置を、5m離れて2〜3cm以内の誤差で確実に検出することができる。   Furthermore, according to the radiation visualization system of this embodiment, the ultrasonic transmitter 1d of each detector module 1 outputs an ultrasonic wave as a position display signal, and the PC 4 outputs an output command to the detector module 1 by radio waves. Accordingly, the ultrasonic wave output from the ultrasonic transmitter 1d is received by the ultrasonic receivers 2 at at least three positions, and the detection time of each detector module 1 is determined based on the arrival time and time difference of the ultrasonic waves at those positions. Since the three-dimensional position is specified, the three-dimensional position of the detector module 1 at an arbitrary point in time within a concrete nuclear power plant building where GPS radio waves are difficult to reach can be It can be reliably detected with an error within 3 cm.

さらに、この実施例の放射線可視化システムによれば、検出器モジュール1Aは、作業員Wの人手での搬送により、原子力発電所の原子炉建屋R内を移動しながら、RFIDチップに近づけられると放射線量信号と識別信号とを出力するので、少ない数の検出器モジュール1aで多くの位置での放射線量を検出し得て、高精度の放射線量分布を安価に得ることができる。   Furthermore, according to the radiation visualization system of this embodiment, when the detector module 1A is moved close to the RFID chip while being moved in the reactor building R of the nuclear power plant by being manually transported by the worker W, the radiation is emitted. Since the dose signal and the identification signal are output, the radiation dose at many positions can be detected with a small number of detector modules 1a, and a highly accurate radiation dose distribution can be obtained at low cost.

そして、この実施例の放射線可視化システムによれば、PC4は、放射線量信号に基づく放射線量が所定レベルを超えた場合に警告音等や警告光等の警報を出力するので、放射線量が所定レベルを超えた場合に作業員W等が速やかに退避し得て、作業員等の被爆線量の低減を確保することができる。   According to the radiation visualization system of this embodiment, when the radiation dose based on the radiation dose signal exceeds a predetermined level, the PC 4 outputs an alarm such as a warning sound or warning light, so that the radiation dose is at a predetermined level. The worker W and the like can evacuate quickly when exceeding the above, and it is possible to secure a reduction in exposure dose of the worker and the like.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、例えば、可搬式の検出器モジュール1Aも、RFIDチップ6と交信するのでなく超音波トランスデューサ1cおよび超音波発信機1dを有して超音波を出力し、超音波受信機2でその超音波を受信することで三次元位置を特定するものでも良い。   Although the present invention has been described based on the illustrated example, the present invention is not limited to the above-described example. For example, the portable detector module 1A does not communicate with the RFID chip 6, but the ultrasonic transducer 1c and the ultrasonic wave. The transmitter 1d may be used to output an ultrasonic wave, and the ultrasonic receiver 2 may receive the ultrasonic wave to identify the three-dimensional position.

また、この発明の放射線可視化システムは、原子力発電所内に限られず、例えば研究所や病院等の内部の放射線環境を可視化するのにも用いることができる。   The radiation visualization system according to the present invention is not limited to a nuclear power plant, and can be used to visualize the radiation environment inside a laboratory or a hospital, for example.

かくしてこの発明の放射線可視化システムによれば、放射線環境把握対象空間内に固定した放射線量検出器からその対象空間外まで信号出力ケーブルを敷設する作業を行わなくても、作業員は、画面上に例えば線量に応じた色分けや濃度変化等により可視的に表示された、放射線環境把握対象空間内での放射線量の分布から、放射線環境をリアルタイムで容易に把握することができ、また放射線環境把握対象空間内の配管内を水が流れている場合と流れていない場合との放射線環境の変化も確実に把握することができ、さらに放射線環境把握対象空間内に遮蔽材を持ち込んだときの、放射線遮蔽の効果の確認も行うことができ、そして放射線源からどの程度離れて作業すれば被爆線量を低減できるかも容易に確認することができ、しかも放射線環境把握対象空間内での通常の作業を信号出力ケーブルが妨げるということもない。   Thus, according to the radiation visualization system of the present invention, even if the operation of laying the signal output cable from the radiation dose detector fixed in the radiation environment grasping target space to the outside of the target space is not performed, For example, the radiation environment can be easily grasped in real time from the radiation dose distribution in the radiation environment grasped space, which is visually displayed by color coding or concentration change according to the dose. It is possible to reliably grasp changes in the radiation environment between when water is flowing in the piping in the space and when it is not flowing, and radiation shielding when a shielding material is brought into the radiation environment grasping space It is also possible to confirm the effects of radiation and to easily confirm how far the radiation dose can be reduced by working away from the radiation source. There is no fact that the interfering signal output cable normal working in environment managing object space.

それゆえこの発明の放射線可視化システムによれば、原子力発電所の原子炉を設置した室内での機器類の分解点検や検査等の各種作業を行う作業員の被爆量低減に寄与することができ、また原子炉の解体作業の際の作業員の被爆量低減にも寄与することができ、さらには、病院等の医療施設のCT等の放射線機器を設置した室内で各種作業を行う医師や検査技師等の過度の被爆も防止することができる。   Therefore, according to the radiation visualization system of the present invention, it can contribute to the reduction of the exposure amount of workers who perform various operations such as overhaul and inspection of equipment in the room where the nuclear power plant reactor is installed, In addition, it can contribute to reducing the amount of exposure to workers when the reactor is dismantled. In addition, doctors and laboratory technicians who perform various operations in a room with radiation equipment such as CT in medical facilities such as hospitals. Excessive exposure such as can be prevented.

この発明の放射線可視化システムの一実施例の全体構成を示す構成図である。It is a block diagram which shows the whole structure of one Example of the radiation visualization system of this invention. 上記実施例の放射線可視化システムの検出器モジュールの構成を機能的に示すブロック線図である。It is a block diagram which shows functionally the structure of the detector module of the radiation visualization system of the said Example. 上記実施例の放射線可視化システムにおいて検出器モジュールの三次元位置を検出する方法を示す説明図である。It is explanatory drawing which shows the method to detect the three-dimensional position of a detector module in the radiation visualization system of the said Example. 上記実施例の放射線可視化システムに用いられる可搬式の検出器モジュールを示す説明図である。It is explanatory drawing which shows the portable detector module used for the radiation visualization system of the said Example. 上記可搬式の検出器モジュールの使用方法を示す説明図である。It is explanatory drawing which shows the usage method of the said portable detector module. 上記実施例の放射線可視化システムにおけるデータ処理手順を示す説明図である。It is explanatory drawing which shows the data processing procedure in the radiation visualization system of the said Example. 上記実施例の放射線可視化システムにおけるパーソナルコンピュータがディスプレイ装置の画面上に三次元的に可視化表示する放射線量分布画像を例示する説明図である。It is explanatory drawing which illustrates the radiation dose distribution image which the personal computer in the radiation visualization system of the said Example visualizes and displays in three dimensions on the screen of a display apparatus. 上記実施例の放射線可視化システムにおけるパーソナルコンピュータがパーソナルデータアシスタント(PDA)の画面上にニ次元的に可視化表示する放射線量分布画像を例示する説明図である。It is explanatory drawing which illustrates the radiation dose distribution image which the personal computer in the radiation visualization system of the said Example visualizes and displays two-dimensionally on the screen of a personal data assistant (PDA).

符号の説明Explanation of symbols

1,1A 検出器モジュール
1a,1g アンテナ
1b,3 電波送受信機
1c 超音波トランスデューサ
1d 超音波発信機
1e 放射線計数管
1f 放射線量検出器
1h ハンドル
2 超音波受信機
4 パーソナルコンピュータ(PC)
5 ディスプレイ装置
6 RFIDチップ
7 パーソナルデータアシスタント(PDA)
D 機器類
R 原子炉建屋
W 作業員
P 最も放射線量が多い領域
1, 1A detector module 1a, 1g antenna 1b, 3 radio wave transmitter / receiver 1c ultrasonic transducer 1d ultrasonic transmitter 1e radiation counter 1f radiation dose detector 1h handle 2 ultrasonic receiver 4 personal computer (PC)
5 Display device 6 RFID chip 7 Personal data assistant (PDA)
D Equipment R Reactor building W Worker P Area with the highest radiation dose

Claims (5)

放射線量検出器と、その放射線量検出器による検出結果を示す放射線量信号を無線で出力する放射線量信号送信機と、位置表示信号を無線で出力する位置表示信号送信機とを有して放射線環境把握対象空間内に配置される一または複数の検出器モジュールと、
前記検出器モジュールからの位置表示信号に基づき前記検出器モジュールの位置を特定するモジュール位置検出器と、
前記検出器モジュールからの放射線量信号を受信する放射線量信号受信機と、
前記モジュール位置検出器が特定した前記検出器モジュールの位置と、前記放射線量信号受信機が受信した放射線量信号とに基づき前記放射線環境把握対象空間内での放射線量分布を求めて、その放射線量分布を、前記放射線環境把握対象空間内に存在する設備のモデルに重畳して画面上に可視的に画像表示する放射線量分布画像表示装置と、
を具えてなる、放射線可視化システム。
Radiation having a radiation dose detector, a radiation dose signal transmitter for wirelessly outputting a radiation dose signal indicating a detection result by the radiation dose detector, and a position display signal transmitter for wirelessly outputting a position display signal One or more detector modules arranged in the environment grasping space;
A module position detector that identifies the position of the detector module based on a position indication signal from the detector module;
A radiation dose signal receiver for receiving a radiation dose signal from the detector module;
Based on the position of the detector module specified by the module position detector and the radiation dose signal received by the radiation dose signal receiver, a radiation dose distribution in the radiation environment grasping target space is obtained, and the radiation dose is obtained. A radiation dose distribution image display device that visually displays an image on a screen by superimposing a distribution on a model of equipment existing in the radiation environment grasping target space;
Radiation visualization system comprising
前記モジュール位置検出器は、前記検出器モジュールからの位置表示信号に基づき前記検出器モジュールの三次元位置を特定し、
前記放射線量分布画像表示装置は、前記モジュール位置検出器が特定した前記検出器モジュールの三次元位置と、前記放射線量信号受信機が受信した放射線量信号とに基づき前記放射線環境把握対象空間内での放射線量分布を三次元的に求めて、その三次元的放射線量分布を、前記放射線環境把握対象空間内に存在する設備の三次元モデルに重畳して画面上に可視的に画像表示することを特徴とする、請求項1記載の放射線可視化システム。
The module position detector specifies a three-dimensional position of the detector module based on a position indication signal from the detector module,
The radiation dose distribution image display device is configured in the radiation environment grasping target space based on a three-dimensional position of the detector module specified by the module position detector and a radiation dose signal received by the radiation dose signal receiver. The radiation dose distribution of the three-dimensional radiation is obtained in a three-dimensional manner, and the three-dimensional radiation dose distribution is superimposed on the three-dimensional model of the equipment existing in the radiation environment grasping target space and displayed on the screen as a visual image. The radiation visualization system according to claim 1, wherein:
前記位置表示信号送信機は、前記位置表示信号として超音波を出力し、
前記モジュール位置検出器は、少なくとも三つの位置で前記超音波を受信してそれらの位置での超音波の到達時間差に基づき前記検出器モジュールの三次元的位置を特定することを特徴とする、請求項2記載の放射線可視化システム。
The position display signal transmitter outputs an ultrasonic wave as the position display signal,
The module position detector receives the ultrasonic waves at at least three positions and specifies a three-dimensional position of the detector module based on a difference in arrival times of the ultrasonic waves at those positions. Item 3. The radiation visualization system according to Item 2.
前記検出器モジュールは、前記放射線環境把握対象空間内を移動しながら前記放射線量信号と前記位置表示信号とを出力することを特徴とする、請求項1から3までの何れか記載の放射線可視化システム。   The radiation visualization system according to claim 1, wherein the detector module outputs the radiation dose signal and the position display signal while moving in the radiation environment grasping target space. . 放射線量分布画像表示装置は、前記放射線量信号に基づく放射線量が所定レベルを超えた場合に警報を出力することを特徴とする、請求項1から4までの何れか記載の放射線可視化システム。   The radiation visualization system according to claim 1, wherein the radiation dose distribution image display device outputs an alarm when a radiation dose based on the radiation dose signal exceeds a predetermined level.
JP2006199891A 2006-07-21 2006-07-21 Radiation visualization system Pending JP2008026185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199891A JP2008026185A (en) 2006-07-21 2006-07-21 Radiation visualization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199891A JP2008026185A (en) 2006-07-21 2006-07-21 Radiation visualization system

Publications (1)

Publication Number Publication Date
JP2008026185A true JP2008026185A (en) 2008-02-07

Family

ID=39116957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199891A Pending JP2008026185A (en) 2006-07-21 2006-07-21 Radiation visualization system

Country Status (1)

Country Link
JP (1) JP2008026185A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122610A1 (en) * 2010-03-30 2011-10-06 新日鉄ソリューションズ株式会社 Information processing apparatus, information processing method, and program
JP2011227879A (en) * 2010-03-30 2011-11-10 Ns Solutions Corp Information providing device, information providing method, and program
JP2012022668A (en) * 2010-06-17 2012-02-02 Ns Solutions Corp Information processor, information processing method and program
CN102692637A (en) * 2012-05-25 2012-09-26 西南科技大学 Teleoperation-device-based virtual reconstruction system and method for nuclear radiation environment
KR101187647B1 (en) * 2010-12-15 2012-10-05 한국수력원자력 주식회사 High level alpha/beta Contamination Visualization Method and System Thereof
JP2012207969A (en) * 2011-03-29 2012-10-25 Toshiba Corp Radiation monitor
JP2012213083A (en) * 2011-03-31 2012-11-01 Secom Co Ltd Monitoring range detection device
JP2012213084A (en) * 2011-03-31 2012-11-01 Secom Co Ltd Monitoring detection device
JP2013061203A (en) * 2011-09-13 2013-04-04 Hitachi Aloka Medical Ltd Radiation dose monitoring system
JP2013108815A (en) * 2011-11-18 2013-06-06 Toshiba Corp Three-dimensional radioactivity measurement device, radiation handling work management system and radiation handling work management method
JP2014006645A (en) * 2012-06-22 2014-01-16 Mitsubishi Heavy Ind Ltd Work plan support device and work plan support method for nuclear facility
EP2733663A1 (en) * 2011-07-11 2014-05-21 Nec Corporation Work assistance system, terminal, method, and program
CN104794085A (en) * 2015-03-20 2015-07-22 北京华泰诺安科技有限公司 Radiation data real-time uploading device
JP2016024020A (en) * 2014-07-18 2016-02-08 東京電力株式会社 Position correction method, movement locus acquisition device and radiation dose mapping method
JP2017181114A (en) * 2016-03-28 2017-10-05 株式会社東芝 Radiation intensity distribution measurement system and method
CN107330970A (en) * 2017-06-15 2017-11-07 新奥泛能网络科技股份有限公司 A kind of threedimensional model processing method, server and computer read/write memory medium
JP2019090741A (en) * 2017-11-16 2019-06-13 株式会社荏原製作所 Measuring system and measuring method using drone
CN112313757A (en) * 2018-06-22 2021-02-02 法玛通公司 Method and assembly for intervention in a radioactive area

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263487A (en) * 1986-05-09 1987-11-16 Mitsubishi Nuclear Fuel Co Ltd Apparatus for measuring radiation dose
JPH06102353A (en) * 1992-09-22 1994-04-15 Ngk Insulators Ltd Display of radiation intensity
JP2004340883A (en) * 2003-05-19 2004-12-02 Hideo Kishimoto Method and apparatus for measuring underwater three-dimensional coordinate position by ultrasonic wave
JP2005049148A (en) * 2003-07-31 2005-02-24 Hitachi Ltd Device for visualizing distribution of radiation dose rate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263487A (en) * 1986-05-09 1987-11-16 Mitsubishi Nuclear Fuel Co Ltd Apparatus for measuring radiation dose
JPH06102353A (en) * 1992-09-22 1994-04-15 Ngk Insulators Ltd Display of radiation intensity
JP2004340883A (en) * 2003-05-19 2004-12-02 Hideo Kishimoto Method and apparatus for measuring underwater three-dimensional coordinate position by ultrasonic wave
JP2005049148A (en) * 2003-07-31 2005-02-24 Hitachi Ltd Device for visualizing distribution of radiation dose rate

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667881B (en) * 2010-03-30 2013-11-27 新日铁住金系统集成株式会社 Information processing apparatus, information processing method, and program
JP2011227879A (en) * 2010-03-30 2011-11-10 Ns Solutions Corp Information providing device, information providing method, and program
CN102667881A (en) * 2010-03-30 2012-09-12 新日铁系统集成株式会社 Information processing apparatus, information processing method, and program
US9030494B2 (en) 2010-03-30 2015-05-12 Ns Solutions Corporation Information processing apparatus, information processing method, and program
WO2011122610A1 (en) * 2010-03-30 2011-10-06 新日鉄ソリューションズ株式会社 Information processing apparatus, information processing method, and program
US9001152B2 (en) 2010-03-30 2015-04-07 Ns Solutions Corporation Information processing apparatus, information processing method, and program
JP2012022668A (en) * 2010-06-17 2012-02-02 Ns Solutions Corp Information processor, information processing method and program
KR101187647B1 (en) * 2010-12-15 2012-10-05 한국수력원자력 주식회사 High level alpha/beta Contamination Visualization Method and System Thereof
JP2012207969A (en) * 2011-03-29 2012-10-25 Toshiba Corp Radiation monitor
JP2012213083A (en) * 2011-03-31 2012-11-01 Secom Co Ltd Monitoring range detection device
JP2012213084A (en) * 2011-03-31 2012-11-01 Secom Co Ltd Monitoring detection device
US9024257B2 (en) 2011-07-11 2015-05-05 Nec Corporation Work assistance system, terminal, method and program
EP2733663A1 (en) * 2011-07-11 2014-05-21 Nec Corporation Work assistance system, terminal, method, and program
EP2733663A4 (en) * 2011-07-11 2015-03-11 Nec Corp Work assistance system, terminal, method, and program
JP2013061203A (en) * 2011-09-13 2013-04-04 Hitachi Aloka Medical Ltd Radiation dose monitoring system
JP2013108815A (en) * 2011-11-18 2013-06-06 Toshiba Corp Three-dimensional radioactivity measurement device, radiation handling work management system and radiation handling work management method
CN102692637B (en) * 2012-05-25 2014-04-16 西南科技大学 Teleoperation-device-based virtual reconstruction system and method for nuclear radiation environment
CN102692637A (en) * 2012-05-25 2012-09-26 西南科技大学 Teleoperation-device-based virtual reconstruction system and method for nuclear radiation environment
JP2014006645A (en) * 2012-06-22 2014-01-16 Mitsubishi Heavy Ind Ltd Work plan support device and work plan support method for nuclear facility
JP2016024020A (en) * 2014-07-18 2016-02-08 東京電力株式会社 Position correction method, movement locus acquisition device and radiation dose mapping method
CN104794085A (en) * 2015-03-20 2015-07-22 北京华泰诺安科技有限公司 Radiation data real-time uploading device
JP2017181114A (en) * 2016-03-28 2017-10-05 株式会社東芝 Radiation intensity distribution measurement system and method
CN107330970A (en) * 2017-06-15 2017-11-07 新奥泛能网络科技股份有限公司 A kind of threedimensional model processing method, server and computer read/write memory medium
JP2019090741A (en) * 2017-11-16 2019-06-13 株式会社荏原製作所 Measuring system and measuring method using drone
CN112313757A (en) * 2018-06-22 2021-02-02 法玛通公司 Method and assembly for intervention in a radioactive area
JP2021529942A (en) * 2018-06-22 2021-11-04 フラマトムFramatome Assembly for intervention in the radiation belt
JP7368392B2 (en) 2018-06-22 2023-10-24 フラマトム Assembly for intervention in radioactive zones

Similar Documents

Publication Publication Date Title
JP2008026185A (en) Radiation visualization system
JP6634314B2 (en) Facility inspection system using unmanned aerial vehicles
EP3132379B1 (en) System and method for augmented reality display of dynamic environment information
RU2472226C2 (en) Apparatus for monitoring location of individuals
US9024257B2 (en) Work assistance system, terminal, method and program
US20200141734A1 (en) Crowdsourced mapping of environmental hazards
CA2928174C (en) Systems and methods for automated device pairing
JP2010266304A (en) System and method for monitoring of environmental radiation in emergency
JP2019036269A (en) Flight control method of pilotless small flying object, and inspection method of condition of internal space and condition of wall surface thereof
TW201027108A (en) Method of determining position where work is done in space surrounded by surfaces and work result
JP5651517B2 (en) Radiation monitoring device
JP2017219386A (en) Radiation piping diagnosis system
JP5577121B2 (en) Radiation measurement equipment
JP2008008684A (en) Position specifying apparatus
JP6256831B2 (en) Underwater structure installation work support device and underwater structure installation method using the same
CN113256836A (en) Immersive intelligent inspection method for port facilities
CN108708770B (en) Radioactive radon Intellisense monitors system and method in tunnel based on climbing robot
JP2010071979A (en) Radiation measuring device and radiation measurement training system
CN214704736U (en) Immersive intelligent inspection system for port facilities
US20130113782A1 (en) Method for determining characteristics of a unique location of a selected situs and determining the position of an environmental condition at situs
CN108803628A (en) The control method and computer readable storage medium of Robot
CN109115124A (en) Inner wall of the pipe mapping method and computer readable storage medium
CN109141283A (en) A kind of Robot for inner wall of the pipe mapping
JP2005233801A (en) Condition display system for displacement detection-measuring machine
JP2005283519A (en) Diagnosis system for coating deterioration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823