JP2008008794A - Analyzing device - Google Patents

Analyzing device Download PDF

Info

Publication number
JP2008008794A
JP2008008794A JP2006180338A JP2006180338A JP2008008794A JP 2008008794 A JP2008008794 A JP 2008008794A JP 2006180338 A JP2006180338 A JP 2006180338A JP 2006180338 A JP2006180338 A JP 2006180338A JP 2008008794 A JP2008008794 A JP 2008008794A
Authority
JP
Japan
Prior art keywords
light
intensity
reflected light
test solution
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006180338A
Other languages
Japanese (ja)
Inventor
Osamu Okabayashi
理 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006180338A priority Critical patent/JP2008008794A/en
Publication of JP2008008794A publication Critical patent/JP2008008794A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzing device capable of acquiring a reliable analysis result, even when the particle diameter of particles contained in a suspension to be analyzed becomes large. <P>SOLUTION: The analyzing device comprises a transmitted light measuring system 2 for measuring the absorbance of the suspension A through which light emitted from a light source 21 is transmitted, and a reflected light measuring system 3 for measuring the intensity of the light emitted from the light source 21 and reflected to the suspension A. Until the reflected light measuring system 3 detects a predetermined reflected light intensity, the analyzing device measures the absorbance of the suspension A using the transmitted light measuring system 2. When the reflected light measuring system 3 detects the predetermined reflected light intensity, after that, the analyzing device measures the intensity of light reflected to the suspension A using the reflected light measuring system 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、生化学分析、免疫検査等の分析を行う分析装置に関に関するものである。   The present invention relates to an analyzer for performing analyzes such as biochemical analysis and immunological test.

生化学分析、免疫検査等の分析を行う分析装置が広く知られている。たとえば、生化学分析を行う分析装置は、キュベットと称される反応容器に試薬と検体とを分注した後、試薬と検体との混合液(以下、検液という)に光を照射して透過した光量(吸光度)を測定することにより、検体を分析していた(たとえば、特許文献1、特許文献2参照)。   Analytical apparatuses that perform analyzes such as biochemical analysis and immunological tests are widely known. For example, an analyzer that performs biochemical analysis dispenses a reagent and a sample into a reaction container called a cuvette, and then irradiates and transmits light to a mixed solution of the reagent and the sample (hereinafter referred to as a test solution). The specimen was analyzed by measuring the amount of light (absorbance) (see, for example, Patent Document 1 and Patent Document 2).

特開2002−48714号公報JP 2002-48714 A 特開平6−273330号公報JP-A-6-273330

しかしながら、分析対象となる検液に含まれる粒子の粒子径が大きくなると、透過する光量が減少する一方、散乱する光量が増大し、透過した光の光量を測定しても信頼性の高い分析結果を取得することができなかった。   However, as the particle size of the particles contained in the test solution to be analyzed increases, the amount of light transmitted decreases, while the amount of light scattered increases, and even if the amount of light transmitted is measured, the analysis result is highly reliable. Could not get.

本発明は、上記に鑑みてなされたものであって、分析対象となる検液に含まれる粒子の粒子径が大きくなっても、信頼性の高い分析結果を取得可能な分析装置を提供することを目的とする。   The present invention has been made in view of the above, and provides an analyzer capable of obtaining a highly reliable analysis result even when the particle size of particles contained in a test solution to be analyzed is increased. With the goal.

上述した課題を解決し、目的を達成するために、本発明は、光源から照射された光が透過した検液の吸光度を測定する透過光測定系と、光源から照射され、検液に反射した光(検液で散乱した光で後方に向かう光)の強度を測定する反射光測定系とを備えた分析装置であって、反射光測定系が所定の値の反射光強度を検出するまでは、前記透過光測定系を用いて検液の吸光度を測定する一方、反射光測定系が所定の値の反射光強度を検出した場合には、それ以後、前記反射光測定系を用いて検液に反射した光(検液で散乱した光で後方に向かう光)の強度を測定することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a transmitted light measurement system for measuring the absorbance of a test solution through which light emitted from a light source is transmitted, and the light emitted from the light source and reflected by the test solution. An analyzer including a reflected light measurement system that measures the intensity of light (light scattered by the test solution and traveling backward) until the reflected light measurement system detects a reflected light intensity of a predetermined value. In the case where the absorbance of the test solution is measured using the transmitted light measurement system, and the reflected light measurement system detects a reflected light intensity of a predetermined value, the test solution is subsequently used using the reflected light measurement system. The intensity of the light reflected by the light (light scattered by the test solution and traveling backward) is measured.

本発明にかかる分析装置は、反射光測定系が所定の値の反射光強度を検出するまでは、透過光測定系(吸光度測定系)を用いて検液の吸光度を測定する一方、反射光測定系が所定の値の反射光強度を検出した場合には、それ以後、反射光測定系(後方散乱測定系)を用いて検液に反射した光の強度を測定する。したがって、反射光測定系が所定の値の反射光強度を検出するまで、すなわち、分析対象となる検液の濁度が小さい場合には、検液の吸光度を測定することにより、検液に含まれる成分濃度を分析し、反射光測定系が所定の値の反射光強度を検出した場合、すなわち、分析対象となる検液の濁度が大きい場合には、検液に反射した光の強度を測定することにより、成分濃度を分析する。なお、検液に含まれる成分濃度は、検液に含まれる成分濃度を予め定めた標準検体の吸光度から求めた検量線と、標準検体に反射した光の強度から求めた検量線とを参照することにより求められる。したがって、分析対象となる検液に含まれる粒子の粒子径が大きくなっても、信頼性の高い分析結果を取得できる。また、検液に含まれる検液の吸光度は、キュベットが集光レンズとコリメーションレンズの間を通過するごと、あるいは、所定時間ごとに測定可能である。   The analyzer according to the present invention measures the absorbance of the test solution using the transmitted light measurement system (absorbance measurement system) until the reflected light measurement system detects the reflected light intensity of a predetermined value, while measuring the reflected light. When the system detects the reflected light intensity of a predetermined value, the intensity of the light reflected on the test solution is measured thereafter using a reflected light measurement system (backscatter measurement system). Therefore, until the reflected light measurement system detects the reflected light intensity of a predetermined value, that is, when the turbidity of the test solution to be analyzed is small, it is included in the test solution by measuring the absorbance of the test solution. When the reflected light measurement system detects a reflected light intensity of a predetermined value, that is, when the turbidity of the test solution to be analyzed is large, the intensity of the light reflected on the test solution is calculated. The component concentration is analyzed by measuring. Note that the component concentration contained in the test solution refers to a calibration curve obtained from the absorbance of a standard sample, which is a predetermined concentration of the component contained in the test solution, and a calibration curve obtained from the intensity of light reflected on the standard sample. Is required. Therefore, even if the particle diameter of the particles contained in the test solution to be analyzed increases, a highly reliable analysis result can be obtained. Further, the absorbance of the test solution contained in the test solution can be measured every time the cuvette passes between the condenser lens and the collimation lens, or every predetermined time.

また、上記所定の反射光強度の値は光の波長に応じて定められる。たとえば、波長の短い光を用いて分析する場合には所定の値を小さなものとし、波長の長い光を用いて分析する場合には所定値を大きなものとする。したがって、光の波長に応じて定めた所定の値を閾値として、閾値に至るまでは、透過光測定系(吸光度測定系)を用いて検液の吸光度を測定することにより、検液に含まれる成分濃度を分析することができ、閾値を越えた場合には、反射光測定系(後方散乱測定系)を用いて検液に反射した光の強度を測定することにより、検液に含まれる成分濃度を分析することができる。   The value of the predetermined reflected light intensity is determined according to the wavelength of light. For example, when analyzing using light having a short wavelength, the predetermined value is small, and when analyzing using light having a long wavelength, the predetermined value is large. Therefore, a predetermined value determined according to the wavelength of light is used as a threshold value, and until the threshold value is reached, the absorbance of the test solution is measured using a transmitted light measurement system (absorbance measurement system), and is included in the test solution. The component concentration can be analyzed, and when the threshold value is exceeded, the component contained in the test solution is measured by measuring the intensity of the light reflected on the test solution using a reflected light measurement system (backscattering measurement system). The concentration can be analyzed.

以下に添付図面を参照して、本発明の実施の形態にかかる分析装置を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, an analysis apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments.

本発明にかかる分析装置は、生化学分析、免疫検査等の分析を自動で行う分析装置に適用可能であるが、ここでは、臨床検査等に用いられる生化学分析装置を例に説明する。   The analysis apparatus according to the present invention can be applied to an analysis apparatus that automatically performs analysis such as biochemical analysis and immunological test. Here, a biochemical analysis apparatus used for clinical tests and the like will be described as an example.

(実施の形態)
まず、図1を参照し、本発明の実施の形態にかかる分析装置を説明する。なお、図1は本発明の実施の形態にかかる分析装置の測定光学系の構成を示す概念図、図2は本発明の実施の形態にかかる分析装置のブロック図である。
(Embodiment)
First, an analyzer according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a conceptual diagram showing the configuration of the measurement optical system of the analyzer according to the embodiment of the present invention, and FIG. 2 is a block diagram of the analyzer according to the embodiment of the present invention.

本発明の実施の形態にかかる分析装置は、測定光学系1を有している。測定光学系1は、図1に示すように、透過光測定系2と、反射光測定系3とを有している。   The analyzer according to the embodiment of the present invention has a measurement optical system 1. The measurement optical system 1 includes a transmitted light measurement system 2 and a reflected light measurement system 3 as shown in FIG.

透過光測定系2は、吸光度測定系と称されるものであり、光源21から照射された光が透過した検液Aの吸光度を測定可能である。透過光測定系2は、従前の分析装置と同様に、光源21、集光レンズ22、コリメーションレンズ23、グレーティング24、PDA25を同一直線上に配設することにより構成してある。   The transmitted light measurement system 2 is called an absorbance measurement system, and can measure the absorbance of the test solution A through which the light emitted from the light source 21 has been transmitted. The transmitted light measurement system 2 is configured by arranging a light source 21, a condensing lens 22, a collimation lens 23, a grating 24, and a PDA 25 on the same straight line as in a conventional analyzer.

光源21は、検液Aを分析するための照射光を出射するものであり、340〜800ナノメートルの波長の光を出射可能である。集光レンズ22は、図1に示すように、光源21から出射した照射光を一旦集光するものであり、集光した照射光は検液Aに入射する。コリメーションレンズ23は、検液Aを透過した光を平行光に収束させるものであり、平行光に収束した光がグレーティング24に入射する。グレーティング24は、検液Aに特異的に吸収される波長の光を選択する回析格子であり、測定項目ごとに予め定めたものが使用される。PDA(Photo Detector Array)25は、グレーティング24から入射した光の強度(光量)を測定する光検出素子群であり、吸光度は、予めブランク試料に関する光の強度を測定しておくことにより比較対照が可能となる。   The light source 21 emits irradiation light for analyzing the test solution A, and can emit light having a wavelength of 340 to 800 nanometers. As shown in FIG. 1, the condensing lens 22 temporarily condenses the irradiation light emitted from the light source 21, and the condensed irradiation light enters the test solution A. The collimation lens 23 converges the light transmitted through the test solution A into parallel light, and the light converged on the parallel light enters the grating 24. The grating 24 is a diffraction grating that selects light having a wavelength that is specifically absorbed by the test solution A, and a grating that is predetermined for each measurement item is used. A PDA (Photo Detector Array) 25 is a group of light detecting elements that measure the intensity (light quantity) of light incident from the grating 24. The absorbance is measured by measuring the intensity of light relating to a blank sample in advance. It becomes possible.

集光レンズ22とコリメーションレンズ23との間には、キュベットと称させる反応容器C(以下「キュベット」という)が位置している。キュベットCは、角筒形状をした有底の透明容器であり、上方部が開口したものである。なお、キュベットCは、集光レンズ22とコリメーションレンズ23との間に位置するものであれば、集光レンズ22とコリメーションレンズ23との間に固定したものであっても良いし、所定時間ごとに通過するものであっても良い。   Between the condensing lens 22 and the collimation lens 23, a reaction container C (hereinafter referred to as “cuvet”) called a cuvette is located. The cuvette C is a bottomed transparent container having a rectangular tube shape, and an upper portion is opened. As long as the cuvette C is located between the condenser lens 22 and the collimation lens 23, the cuvette C may be fixed between the condenser lens 22 and the collimation lens 23, or every predetermined time. It may be one that passes through.

キュベットCには、試薬と検体とが分注可能であり、上述した透過光測定系2は、その混合液(検液A)の吸光度(OD:Optical Density(光学濃度))を測定可能である。検液Aの吸光度(OD値)は、キュベットCが集光レンズ22とコリメーションレンズ23との間を通過するごと、あるいは、所定時間ごとに測定可能である。   Reagents and specimens can be dispensed into the cuvette C, and the transmitted light measurement system 2 described above can measure the absorbance (OD: Optical Density (optical density)) of the mixed solution (test solution A). . The absorbance (OD value) of the test solution A can be measured every time the cuvette C passes between the condenser lens 22 and the collimation lens 23 or every predetermined time.

反射光測定系3は、後方散乱測定系と称されるものであり、光源21から照射され、検液Aに反射した光の強度を測定可能である。反射光測定系3は、上述した透過光測定系2の光源21および集光レンズ22と、一対の光検出器31,32とにより構成される。   The reflected light measurement system 3 is called a backscattering measurement system, and can measure the intensity of light irradiated from the light source 21 and reflected by the test solution A. The reflected light measurement system 3 includes the light source 21 and the condenser lens 22 of the transmitted light measurement system 2 described above, and a pair of photodetectors 31 and 32.

一対の光検出器31,32は、集光レンズ22とコリメーションレンズ23との間であって、光源21側に配設してある。一対の光検出器31,32は、入射光の光軸の上部に配設した上部検出器31と、入射光の光軸の下部に配設した下部検出器32とからなる。これら上部検出器31と下部検出器32とは、光源21からキュベットCへ入射する入射光を遮らない位置であって、入射光の光軸と平行となるように配設してある。したがって、上部検出器31は検液Aの上部(上澄み)に反射した光の強度を、下部検出器32は検液Aの下部に反射した光の強度を測定できる。これは、検出器31,32が検液Aのどの部分に反射した光の強度を測定したものか不明確となる事態を回避したものである。たとえば、入射光の光軸に対して手前上がりとなるように上部検出器31を配設した場合には、検液Aの上澄みに入射した後、沈澱した部分に反射した光の強度を検出器が測定することになり、好ましくない。   The pair of photodetectors 31 and 32 are disposed on the light source 21 side between the condenser lens 22 and the collimation lens 23. The pair of photodetectors 31 and 32 includes an upper detector 31 disposed above the optical axis of incident light and a lower detector 32 disposed below the optical axis of incident light. The upper detector 31 and the lower detector 32 are disposed so as not to block incident light incident on the cuvette C from the light source 21 and are parallel to the optical axis of the incident light. Therefore, the upper detector 31 can measure the intensity of light reflected on the upper portion (supernatant) of the test solution A, and the lower detector 32 can measure the intensity of light reflected on the lower portion of the test solution A. This avoids a situation in which it is unclear which part of the test liquid A the detectors 31 and 32 have measured the intensity of the reflected light. For example, when the upper detector 31 is disposed so as to rise toward the optical axis of the incident light, the intensity of the light reflected on the sedimented portion after entering the supernatant of the test solution A is detected by the detector. However, this is not preferable.

このように、上部検出器31は、検液Aの上部(上澄み)に反射した光の強度を測定可能であり、下部検出器32は、検液Aの下部に反射した光の強度を測定可能である。したがって、反射光測定系3は、キュベットCが集光レンズ22とコリメーションレンズ23の間を通過するごと、あるいは、所定時間ごとに、検液Aに反射した光の強度を測定可能である。   Thus, the upper detector 31 can measure the intensity of the light reflected on the upper part (supernatant) of the test solution A, and the lower detector 32 can measure the intensity of the light reflected on the lower part of the test solution A. It is. Therefore, the reflected light measurement system 3 can measure the intensity of the light reflected on the test solution A every time the cuvette C passes between the condenser lens 22 and the collimation lens 23 or every predetermined time.

図2に示すように、上述した光源21、PDA25、上部検出器31および下部検出器32は、制御部4に接続してあり、統括的に制御可能である。制御部4は、たとえば、マイクロコンピュータ等を採用可能である。   As shown in FIG. 2, the light source 21, the PDA 25, the upper detector 31, and the lower detector 32 described above are connected to the control unit 4 and can be controlled comprehensively. The control unit 4 can employ, for example, a microcomputer.

制御部4には、データ処理部5(以下、DPRという)が接続してある。DPR5は、制御部4が取得した各種データを処理する部分である。DPR5は、入力部51と出力部52とを備えている。入力部51は、たとえば、キーボードやマウス等であり、検体数や検査項目等の各種情報が入力可能である。出力部52は、たとえば、ディスプレイパネルやプリンタ等であり、分析結果を含む分析内容等の各種情報が出力可能である。   A data processing unit 5 (hereinafter referred to as DPR) is connected to the control unit 4. The DPR 5 is a part that processes various data acquired by the control unit 4. The DPR 5 includes an input unit 51 and an output unit 52. The input unit 51 is, for example, a keyboard or a mouse, and can input various information such as the number of specimens and examination items. The output unit 52 is, for example, a display panel or a printer, and can output various types of information such as analysis contents including analysis results.

また、DPR5は、制御部4を介して、PDA25、上部検出器31および下部検出器32と接続してあり、PDA25が測定した光量情報(吸光度情報)、上部検出器31および下部検出器32が測定した反射光の強度に基づいて、検体の成分濃度等を分析可能である。吸光度は、PDA25によって予めブランク試料(たとえば、水)に関する光量を測定しておくことにより比較対照が可能である。また、反射光の強度は、上部検出器31および下部検出器32によって予めブランク試料(たとえば、水)に関する光の強度を求めておくことにより比較対照が可能である。これらの分析結果は、出力部52に出力可能である。   The DPR 5 is connected to the PDA 25, the upper detector 31 and the lower detector 32 via the control unit 4, and the light quantity information (absorbance information) measured by the PDA 25, the upper detector 31 and the lower detector 32 are Based on the measured intensity of the reflected light, it is possible to analyze the component concentration and the like of the specimen. The absorbance can be compared and compared by measuring the amount of light relating to the blank sample (for example, water) in advance by the PDA 25. Further, the intensity of the reflected light can be compared and contrasted by obtaining the intensity of the light relating to the blank sample (for example, water) in advance by the upper detector 31 and the lower detector 32. These analysis results can be output to the output unit 52.

上述した本実施の形態にかかる分析装置は、分析を開始するにあたって、検液Aに含まれる成分濃度を予め定めた標準検体の吸光度および反射光の強度を所定時間ごとに測定し、検量線を作成する。すなわち、反射光測定系3が測定した反射光の強度がゼロから所定の値となるまでは吸光度に検液Aの成分濃度を関連付けた検量線を作成し、反射光測定系3が所定の反射光強度を検出した場合には、それ以後(所定の反射光強度以上の範囲)反射光の強度に検液Aの成分濃度を関連付けた検量線を作成する。反射光の強度に検液Aの成分濃度を関連付けた検量線は、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との和と、検液Aの成分濃度とが関連付けてある。このため、検液Aの上部(上澄み)と検液Aの下部(沈澱した部分)とにおいて、反射光の強度が大きく異なる場合でも、検液全体を対象とした検量線が作成される。   When starting the analysis, the analyzer according to the present embodiment described above measures the absorbance and reflected light intensity of a standard sample with predetermined component concentrations contained in the test solution A every predetermined time, and generates a calibration curve. create. That is, until the intensity of the reflected light measured by the reflected light measurement system 3 reaches a predetermined value from zero, a calibration curve is created in which the component concentration of the test solution A is associated with the absorbance, and the reflected light measurement system 3 performs the predetermined reflection. When the light intensity is detected, a calibration curve in which the component concentration of the test solution A is associated with the intensity of the reflected light thereafter (in a range equal to or greater than the predetermined reflected light intensity) is created. The calibration curve in which the component concentration of the test solution A is associated with the intensity of the reflected light is the sum of the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32, and The component concentration is related. Therefore, a calibration curve for the entire test solution is created even when the intensity of the reflected light differs greatly between the upper portion (supernatant) of the test solution A and the lower portion (precipitated portion) of the test solution A.

その後、分析を開始すると、反射光測定系3が所定の値の反射光強度を検出するまでは、所定時間ごとに吸光度を測定する。そして、検量線を参照し、測定した吸光度から、検液Aの成分濃度を分析する。   Thereafter, when the analysis is started, the absorbance is measured every predetermined time until the reflected light measurement system 3 detects the reflected light intensity having a predetermined value. Then, referring to the calibration curve, the component concentration of the test solution A is analyzed from the measured absorbance.

一方、反射光測定系3が所定の値の反射光強度を検出した場合は、所定時間ごとに反射光の強度を測定する。具体的には、上部検出器31が測定した反射光の強度と、下部検出器32が測定した反射光の強度とを測定し、その和を測定した反射光の強度とする。そして、検量線を参照し、測定した反射光の強度から、検液Aの成分濃度を分析する。   On the other hand, when the reflected light measurement system 3 detects a reflected light intensity having a predetermined value, the intensity of the reflected light is measured every predetermined time. Specifically, the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32 are measured, and the sum thereof is taken as the measured intensity of the reflected light. Then, referring to the calibration curve, the component concentration of the test solution A is analyzed from the measured intensity of the reflected light.

上述した実施の形態にかかる分析装置は、反射光測定系3が所定の値の反射光強度を検出するまでは、透過光測定系2(吸光度測定系)を用いて検液Aの吸光度を測定する。一方、反射光測定系3が所定の値の反射光強度を検出した後は、当該反射光測定系3(後方散乱測定系)を用いて検液Aに反射した光の強度を測定する。したがって、反射光測定系3が所定の値の反射光強度を検出するまで、すなわち、分析対象となる検液Aの濁度が小さい場合には、検液Aの吸光度を測定することにより、検液Aに含まれる成分濃度を分析し、反射光測定系3が所定の値の反射光強度を検出した場合、すなわち、分析対象となる検液Aの濁度が大きい場合には、検液Aに反射した光の強度を測定することにより、検液Aに含まれる成分濃度を分析する。したがって、ラテックス凝集反応を用いた分析等のように、粒子の粒子径が大きくなっても、信頼性の高い分析結果を取得できる。   The analyzer according to the embodiment described above measures the absorbance of the test solution A using the transmitted light measurement system 2 (absorbance measurement system) until the reflected light measurement system 3 detects the reflected light intensity of a predetermined value. To do. On the other hand, after the reflected light measurement system 3 detects the reflected light intensity of a predetermined value, the intensity of the light reflected on the test solution A is measured using the reflected light measurement system 3 (backscattering measurement system). Therefore, until the reflected light measurement system 3 detects the reflected light intensity of a predetermined value, that is, when the turbidity of the test solution A to be analyzed is small, the absorbance is measured by measuring the absorbance of the test solution A. When the component concentration contained in the liquid A is analyzed and the reflected light measurement system 3 detects a reflected light intensity of a predetermined value, that is, when the turbidity of the sample A to be analyzed is large, the sample A The concentration of the component contained in the test solution A is analyzed by measuring the intensity of the light reflected on the sample. Therefore, a highly reliable analysis result can be obtained even when the particle diameter of the particles is increased, such as in an analysis using a latex agglutination reaction.

また、上述した実施の形態にかかる分析装置では、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との和と、検液Aの成分濃度とを関連付けて、反射光の強度に検液Aの成分濃度を関連付けた検量線を作成し、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との和に基づいて検液Aの成分濃度を分析するものとした。しかしながら、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との平均値と、検液Aの成分濃度とを関連付けて、反射光の強度に検液Aの成分濃度を関連付けた検量線を作成し、上部検出器31が測定した反射光の強度と下部検出器32が測定した反射光の強度との平均値に基づいて検液Aの成分濃度を分析するものとしても良い。   In the analyzer according to the above-described embodiment, the sum of the reflected light intensity measured by the upper detector 31 and the reflected light intensity measured by the lower detector 32 is associated with the component concentration of the test solution A. Then, a calibration curve in which the component concentration of the test solution A is associated with the intensity of the reflected light is created, and based on the sum of the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32. Thus, the component concentration of the test solution A was analyzed. However, the average value of the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32 is associated with the component concentration of the test solution A, and the test solution A is related to the intensity of the reflected light. A calibration curve relating the component concentrations of the sample A is prepared, and the component concentration of the test solution A is analyzed based on the average value of the intensity of the reflected light measured by the upper detector 31 and the intensity of the reflected light measured by the lower detector 32 It is good to do.

本発明の実施の形態にかかる分析装置の測定光学系の構成を示す概念図である。It is a conceptual diagram which shows the structure of the measurement optical system of the analyzer concerning embodiment of this invention. 本発明の実施の形態にかかる分析装置のブロック図である。It is a block diagram of the analyzer concerning an embodiment of the invention.

符号の説明Explanation of symbols

1 測定光学系
2 透過光測定系
3 反射光測定系
4 制御部
5 データ処理部(DPR)
21 光源
22 集光レンズ
23 コリメーションレンズ
24 グレーティング
31 上部検出器(光検出器)
32 下部検出器(光検出器)
C キュベット(反応容器)
DESCRIPTION OF SYMBOLS 1 Measurement optical system 2 Transmitted light measurement system 3 Reflected light measurement system 4 Control part 5 Data processing part (DPR)
21 Light source 22 Condensing lens 23 Collimation lens 24 Grating 31 Upper detector (light detector)
32 Lower detector (light detector)
C cuvette (reaction vessel)

Claims (1)

光源から照射された光が透過した検液の吸光度を測定する透過光測定系と、
光源から照射され、検液に反射した光の強度を測定する反射光測定系と
を備えた分析装置であって、
反射光測定系が所定の値の反射光強度を検出するまでは、前記透過光測定系を用いて検液の吸光度を測定する一方、
反射光測定系が所定の値の反射光強度を検出した場合には、それ以後、前記反射光測定系を用いて検液に反射した光の強度を測定することを特徴とする分析装置。
A transmitted light measurement system for measuring the absorbance of the test solution through which the light emitted from the light source is transmitted;
An analyzer equipped with a reflected light measurement system for measuring the intensity of light irradiated from a light source and reflected by a test solution,
Until the reflected light measurement system detects the reflected light intensity of a predetermined value, while measuring the absorbance of the test solution using the transmitted light measurement system,
When the reflected light measurement system detects a reflected light intensity of a predetermined value, thereafter, the analyzer measures the intensity of light reflected on the test solution using the reflected light measurement system.
JP2006180338A 2006-06-29 2006-06-29 Analyzing device Withdrawn JP2008008794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180338A JP2008008794A (en) 2006-06-29 2006-06-29 Analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180338A JP2008008794A (en) 2006-06-29 2006-06-29 Analyzing device

Publications (1)

Publication Number Publication Date
JP2008008794A true JP2008008794A (en) 2008-01-17

Family

ID=39067132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180338A Withdrawn JP2008008794A (en) 2006-06-29 2006-06-29 Analyzing device

Country Status (1)

Country Link
JP (1) JP2008008794A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004781A1 (en) 2009-07-10 2011-01-13 株式会社日立ハイテクノロジーズ Automatic analyzer
WO2011105464A1 (en) 2010-02-25 2011-09-01 株式会社日立ハイテクノロジーズ Automatic analysis device
WO2011162139A1 (en) 2010-06-23 2011-12-29 株式会社日立ハイテクノロジーズ Automated analysis device and automated analysis method
WO2012077536A1 (en) 2010-12-08 2012-06-14 株式会社日立ハイテクノロジーズ Automatic analytical apparatus
JP2013533769A (en) * 2010-06-22 2013-08-29 センスペック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for identifying and monitoring components or characteristics of a measurement medium, in particular physiological blood values
WO2014013820A1 (en) 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2014124824A (en) * 2012-12-26 2014-07-07 Canon Inc Inkjet recording method and inkjet recording apparatus
WO2014192963A1 (en) * 2013-05-31 2014-12-04 積水メディカル株式会社 Method of agglutination immunoassay
KR20160131010A (en) * 2014-03-06 2016-11-15 카나가와 아카데미 오브 사이언스 앤드 테크놀로지 Transparent fluorescent sialon ceramic and method for producing same
US10168345B2 (en) 2012-06-25 2019-01-01 Hitachi High-Technologies Corporation Automatic analysis apparatus and sample measuring method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023282B2 (en) 2009-07-10 2015-05-05 Hitachi High-Technologies Corporation Automatic analyzer
US10113962B2 (en) 2009-07-10 2018-10-30 Hitachi High-Technologies Corporation Automatic analyzer
WO2011004781A1 (en) 2009-07-10 2011-01-13 株式会社日立ハイテクノロジーズ Automatic analyzer
US8852511B2 (en) 2009-07-10 2014-10-07 Hitachi High-Technologies Corporation Automatic analyzer
WO2011105464A1 (en) 2010-02-25 2011-09-01 株式会社日立ハイテクノロジーズ Automatic analysis device
US8858882B2 (en) 2010-02-25 2014-10-14 Hitachi High-Technologies Corporation Automatic analysis device
JP2013533769A (en) * 2010-06-22 2013-08-29 センスペック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Apparatus and method for identifying and monitoring components or characteristics of a measurement medium, in particular physiological blood values
US9222832B2 (en) 2010-06-22 2015-12-29 Senspec Gmbh Device and method for detecting and monitoring ingredients or properties of a measurement medium, in particular of physiological blood values
WO2011162139A1 (en) 2010-06-23 2011-12-29 株式会社日立ハイテクノロジーズ Automated analysis device and automated analysis method
WO2012077536A1 (en) 2010-12-08 2012-06-14 株式会社日立ハイテクノロジーズ Automatic analytical apparatus
JP5661124B2 (en) * 2010-12-08 2015-01-28 株式会社日立ハイテクノロジーズ Automatic analyzer
US10168345B2 (en) 2012-06-25 2019-01-01 Hitachi High-Technologies Corporation Automatic analysis apparatus and sample measuring method
WO2014013820A1 (en) 2012-07-20 2014-01-23 株式会社日立ハイテクノロジーズ Automatic analysis device
US9658237B2 (en) 2012-07-20 2017-05-23 Hitachi High-Technologies Corporation Automatic analyzer
JP2014124824A (en) * 2012-12-26 2014-07-07 Canon Inc Inkjet recording method and inkjet recording apparatus
US20160195522A1 (en) * 2013-05-31 2016-07-07 Sekisui Medical Co., Ltd. Method of agglutination immunoassay
JPWO2014192963A1 (en) * 2013-05-31 2017-02-23 積水メディカル株式会社 Immunoagglutination assay
CN105431728A (en) * 2013-05-31 2016-03-23 积水医疗株式会社 Method of agglutination immunoassay
KR20160014007A (en) * 2013-05-31 2016-02-05 세키스이 메디칼 가부시키가이샤 Method of agglutination immunoassay
WO2014192963A1 (en) * 2013-05-31 2014-12-04 積水メディカル株式会社 Method of agglutination immunoassay
JP2019060891A (en) * 2013-05-31 2019-04-18 積水メディカル株式会社 Agglutination immunoassay
CN110068678A (en) * 2013-05-31 2019-07-30 积水医疗株式会社 Agglutination immunoassay method
KR102302678B1 (en) 2013-05-31 2021-09-27 주식회사 히타치하이테크 Method of agglutination immunoassay
US11536717B2 (en) 2013-05-31 2022-12-27 Hitachi High-Tech Corporation Method of agglutination immunoassay
KR20160131010A (en) * 2014-03-06 2016-11-15 카나가와 아카데미 오브 사이언스 앤드 테크놀로지 Transparent fluorescent sialon ceramic and method for producing same
JPWO2015133612A1 (en) * 2014-03-06 2017-04-06 公益財団法人神奈川科学技術アカデミー Transparent fluorescent sialon ceramics and method for producing the same
KR102367209B1 (en) 2014-03-06 2022-02-23 카나가와 인스티튜트 오브 인더스트리얼 사이언스 앤 테크놀로지 Transparent fluorescent sialon ceramic and method for producing same

Similar Documents

Publication Publication Date Title
JP2008008794A (en) Analyzing device
EP2016390B1 (en) A method and a system for quantitative hemoglobin determination
JP6013796B2 (en) Automatic analyzer and sample measurement method
JP5740264B2 (en) Automatic analyzer and analysis method
US8858882B2 (en) Automatic analysis device
JP5984290B2 (en) Automatic analyzer
US20110223066A1 (en) Automatic analysis device
JP5216051B2 (en) Automatic analyzer and automatic analysis method
JP5296015B2 (en) Automatic analyzer
JP5948173B2 (en) Automatic analyzer and automatic analysis method
JP5661124B2 (en) Automatic analyzer
EP2988111B1 (en) Analyzer and automatic analyzer
JP5865713B2 (en) Automatic analyzer
US10856391B2 (en) Method to correct signal light intensities measured by a detector of a detection unit in a laboratory instrument
JP5946776B2 (en) Automatic analyzer
JP6710535B2 (en) Automatic analyzer
JP6031552B2 (en) Automatic analyzer and analysis method
JP2012211782A (en) Biological material analyzer and method for analyzing biological material
JP2008008795A (en) Analyzing device
JP6422414B2 (en) Method for performing nephelometric determination of a sample
JP7330869B2 (en) Automatic analysis method and automatic analysis device
JP6657016B2 (en) Automatic analyzer
JP6666702B2 (en) Measuring method and measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090901