JP2008006652A - Method for partitioning processing of rigid and brittle material plate - Google Patents

Method for partitioning processing of rigid and brittle material plate Download PDF

Info

Publication number
JP2008006652A
JP2008006652A JP2006178474A JP2006178474A JP2008006652A JP 2008006652 A JP2008006652 A JP 2008006652A JP 2006178474 A JP2006178474 A JP 2006178474A JP 2006178474 A JP2006178474 A JP 2006178474A JP 2008006652 A JP2008006652 A JP 2008006652A
Authority
JP
Japan
Prior art keywords
brittle material
material plate
hard
laser beam
waist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006178474A
Other languages
Japanese (ja)
Other versions
JP4835927B2 (en
Inventor
Ryuichiro Sasaki
隆一郎 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2006178474A priority Critical patent/JP4835927B2/en
Publication of JP2008006652A publication Critical patent/JP2008006652A/en
Application granted granted Critical
Publication of JP4835927B2 publication Critical patent/JP4835927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To partition accurately along a predetermined line. <P>SOLUTION: In a method for partitioning a plate 10 of a rigid and brittle material, when the incidence of a repeating short optical pulse laser beam 30 with an optically transparent wavelength is performed into the surface 11 of the rigid and brittle material plate 10 through a condenser lens 200 to the rigid and brittle material plate 10 with a thickness t, the focus position of the condenser lens 200 is adjusted so that the waist 31 of the laser beam 30 exists either at a shallower or deeper position than the inner part t/2 of the rigid and brittle material plate body 10, and overlapping incidence of the repeating short optical pulse laser beam 30 into the surface 11 of the rigid and brittle material plate body 10. A process for generating a photo-induced breakage in a region of the waist 31 and in the neighborhood of the back face 12 of the rigid and brittle material plate body 10 separated in the depth direction from the region of the waist 31 is included. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体基板等に用いられる硬脆材料板体の分割加工方法に関し、詳しくは、短光パルスレーザビームを用いて分割加工対象の硬脆材料板体に光誘起破壊域を形成して分割加工する方法に関する。   The present invention relates to a method for dividing a hard and brittle material plate used for a semiconductor substrate or the like, and more specifically, by forming a light-induced fracture region in a hard and brittle material plate to be divided using a short optical pulse laser beam. The present invention relates to a division processing method.

従来、半導体基板とか、圧電セラミック基板とか、ガラス基板等の硬脆材料板体を分割加工するにあたり、加工対象の板体の表層部に分割予定ラインに沿って板体に透明な波長を有する短光パルスレーザを入射させ、表層部に微小クラックが群生した微細溶融痕を生成させ、その後応力を加えて、その微細溶融痕を起点に板体内部に向かって生じるクラックを利用して分割していた(例えば、特許文献1参照。)。   Conventionally, when a hard and brittle material plate such as a semiconductor substrate, a piezoelectric ceramic substrate, or a glass substrate is divided and processed, a short wavelength having a transparent wavelength in the plate along the line to be divided is formed on the surface layer portion of the plate to be processed. An optical pulse laser is incident to generate fine melt marks with microcracks clustered on the surface layer, and then stress is applied to divide the cracks using the cracks generated from the fine melt marks toward the inside of the plate. (For example, refer to Patent Document 1).

また、シリコンやIII−V族半導体、ガラス等板体に対して透明な波長である1.5μm近傍に中心波長をもつ短光パルスレーザを表面から分割予定ラインに沿って入射させ、裏面に焦点が位置するように集光照射することにより、裏面に位置する集光部位で光誘起破壊を起こさせる分割加工方法も知られている(例えば、特許文献2参照。)。
特開2005−271563号公報 特開2004−351466号公報
In addition, a short optical pulse laser having a center wavelength in the vicinity of 1.5 μm, which is a transparent wavelength with respect to a plate body such as silicon, a group III-V semiconductor, or glass, is made incident along a predetermined division line from the front surface and focused on the rear surface. There is also known a split processing method in which light-induced destruction is caused at a condensing portion located on the back surface by performing condensing irradiation so that the position is located (see, for example, Patent Document 2).
JP 2005-271563 A JP 2004-351466 A

上記従来の分割加工方法は、加工対象の硬脆材料板体の表層部あるいは裏面に微細溶融痕或いは光誘起破壊痕を形成している。すなわち、従来の分割加工方法は、表面或いは裏面にだけレーザ加工痕を形成するものである。したがって、その後の応力印加による分割工程では、レーザ加工痕を起点とするクラックを分割予定ラインに沿って発生させることができず、分割予定ラインに精度よく沿う分割が困難であった。   In the conventional division processing method, fine melting marks or light-induced fracture marks are formed on the surface layer portion or the back surface of the hard and brittle material plate to be processed. That is, the conventional division processing method forms a laser processing mark only on the front surface or the back surface. Therefore, in the subsequent dividing step by applying stress, it is difficult to generate a crack starting from the laser processing trace along the planned dividing line, and it is difficult to perform the dividing along the planned dividing line with high accuracy.

本発明は、上記従来の分割加工方法の問題に鑑みてなされたもので、分割予定ラインに沿って精度よく分割できる硬脆材料板体の分割加工方法を提供することを課題とする。   The present invention has been made in view of the above-described problems of the conventional division processing method, and an object thereof is to provide a division processing method for a hard and brittle material plate that can be divided with high accuracy along a predetermined division line.

上記課題を解決するための本発明の硬脆材料板体の分割加工方法は、厚さtの硬脆材料板体に対し光学的に透明な波長を有する繰り返し短光パルスレーザビームを集光レンズを介して該硬脆材料板体の表面に入射したとき、前記レーザビームのウエストが前記硬脆材料板体の内部t/2より浅いか或いは深い位置に存在するように前記集光レンズの焦点位置を調整し、前記繰り返し短光パルスレーザビームが前記硬脆材料板体の表面にオーバラップ入射するように該レーザビームの光軸を該硬脆材料板体に対して想定された分割予定ラインに沿って相対的に移動させながら、該レーザビームを該硬脆材料板体の表面に入射する毎に、該ウエストの領域及び該ウエストの領域から深さ方向に離間した該硬脆材料板体の裏面付近に光誘起破壊を起こさせる工程を含むことを特徴としている。   In order to solve the above-mentioned problem, the method for splitting a hard and brittle material plate of the present invention is a condensing lens for a repetitive short optical pulse laser beam having a wavelength optically transparent to a hard and brittle material plate having a thickness t. When the laser beam is incident on the surface of the hard and brittle material plate, the focal point of the condenser lens is such that the waist of the laser beam exists at a position shallower or deeper than the inside t / 2 of the hard and brittle material plate. The position of the laser beam is adjusted and the optical axis of the laser beam is assumed to be divided with respect to the hard and brittle material plate so that the repeated short light pulse laser beam is incident on the surface of the hard and brittle material plate. Each time the laser beam is incident on the surface of the hard and brittle material plate while relatively moving along the surface, the waist region and the hard and brittle material plate separated in the depth direction from the waist region. Causing light-induced breakdown near the backside It is characterized by comprising the step of.

硬脆材料板体の内部と裏面或いは表面と裏面に分割予定ラインに沿って光誘起破壊痕が形成されるので、その後の応力印加による分割工程で分割予定ラインに沿って精度よく分割することができる。   Since light-induced fracture marks are formed along the planned split lines on the inside and back surfaces or front and back surfaces of the hard and brittle material plate, it is possible to accurately split along the planned split lines in the subsequent splitting process by applying stress. it can.

また、前記集光レンズの開口数が0.3以下であることが好ましい。   Moreover, it is preferable that the numerical aperture of the said condensing lens is 0.3 or less.

開口数が0.3以下であると、所謂焦点深度が大きいためにビームウエストが光軸方向に緩やかに広がるので、加工対象の板体の厚さが大になっても内部と裏面或いは表面と裏面に光誘起破壊痕を形成することができる。   When the numerical aperture is 0.3 or less, the so-called depth of focus is large, so that the beam waist gradually spreads in the direction of the optical axis. Therefore, even if the thickness of the plate to be processed increases, Photo-induced fracture marks can be formed on the back surface.

さらに、前記t/2より浅い位置が前記硬脆材料板体の表面からレーリーレンジ以内であり、前記t/2より深い位置が該硬脆材料板体の裏面よりレーリーレンジ以内であることが望ましい。   Further, it is desirable that the position shallower than t / 2 is within the Rayleigh range from the surface of the hard and brittle material plate, and the position deeper than t / 2 is within the Rayleigh range from the back surface of the hard and brittle material plate. .

ウエストから表面或いは裏面までの距離がレーリーレンジより小さいので、加工対象の板体の厚さが大になっても内部と裏面或いは表面と裏面に光誘起破壊痕をより一層確実に形成することができる。   Since the distance from the waist to the front or back surface is smaller than the Rayleigh range, even if the thickness of the plate to be processed increases, it is possible to more reliably form light-induced fracture marks on the inside and back surface or on the front and back surfaces. it can.

硬脆材料板体の内部と裏面或いは表面と裏面に分割予定ラインに沿って光誘起破壊痕が形成されるので、その後の応力印加による分割工程で分割予定ラインに沿って精度よく分割することができる。   Since light-induced fracture marks are formed along the planned split lines on the inside and back surfaces or front and back surfaces of the hard and brittle material plate, it is possible to accurately split along the planned split lines in the subsequent splitting process by applying stress. it can.

本発明の硬脆材料板体の分割加工方法を図1〜4を用いて説明する。図1は本発明の分割加工方法を説明する模式図、図2は図1のA−A線から見た一部切欠断面図、図3は図2のビームウエスト付近を拡大して模式的に示した図である。図4は、ビームウエストがサファイア基板の表面11からその厚さtの半分より浅い位置にあるように調整されたときのビームウエスト付近の拡大図である。図1及び図2で10が硬脆材料板体である例えばサファイア基板、レーザビームが入射する表面11に点線で示す15が分割予定ラインである。図1及び図2に示すように、サファイア基板10によって線形吸収を起こさないような波長を有する、例えば、希土類ドープモードロックファイバレーザベースのフェムト秒レーザ装置から、発生された、例えば、400fsのパルス幅を有する繰り返し周期100kHzの短光パルスレーザビーム30が使用される。この短光パルスレーザビーム30は、表面11に対して、垂直に且つビーム30のウエスト31が基板1の内部に位置するように集光レンズ200で絞り込まれて入射される。この場合、当該分割加工を開始する前に、後述する加工装置(図6)の駆動部61で光学ベンチ64をZ軸方向に微動させ、サファイア基板の表面11と集光レンズ200との間隔距離を調整することにより、レーザビーム30のビームウエスト31が基板10の表面11から深さ方向に厚さtの半分より深い位置に存在するように設定される。   A method for dividing a hard and brittle material plate according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram for explaining the division processing method of the present invention, FIG. 2 is a partially cutaway sectional view taken along line AA in FIG. 1, and FIG. 3 is an enlarged schematic view of the vicinity of the beam waist in FIG. FIG. FIG. 4 is an enlarged view of the vicinity of the beam waist when the beam waist is adjusted to be at a position shallower than half the thickness t from the surface 11 of the sapphire substrate. In FIG. 1 and FIG. 2, reference numeral 10 denotes a hard and brittle material plate, for example, a sapphire substrate, and reference numeral 15 shown by a dotted line on a surface 11 on which a laser beam is incident. As shown in FIGS. 1 and 2, for example, a 400 fs pulse generated from, for example, a rare earth doped mode-locked fiber laser-based femtosecond laser device having a wavelength that does not cause linear absorption by the sapphire substrate 10. A short optical pulse laser beam 30 having a width and a repetition period of 100 kHz is used. The short optical pulse laser beam 30 is incident on the front surface 11 after being narrowed down by the condenser lens 200 so that the waist 31 of the beam 30 is positioned inside the substrate 1. In this case, before starting the division processing, the optical bench 64 is finely moved in the Z-axis direction by a driving unit 61 of a processing apparatus (FIG. 6) to be described later, and the distance between the surface 11 of the sapphire substrate and the condenser lens 200. Is adjusted so that the beam waist 31 of the laser beam 30 exists at a position deeper than half the thickness t in the depth direction from the surface 11 of the substrate 10.

上記集光レンズ200により集光された短光パルスレーザビーム30のウエスト31の表面11に垂直な方向(深さ方向)距離d0(>t/2)位置への設定は、先ず、照明光源を用いて上記集光レンズ200の焦点を基板10の表面11に設定し、次いで、集光レンズ200を基板10の表面11側に所定の距離d移動させることにより行われる。前記所定距離dとd0の関係は、レーザビーム30の波長λと基板10の屈折率n(λ)に依存し、
0=n(λ)d (1)
と表される。例えば、基板10の厚さが100μmで、表面11から深さ方向に80μmの位置にウエスト31を設定する場合、d0=80μm、n(λ)=1.75から、d=45.7μmと求まり、集光レンズ200を表面11側に約46μm移動させればよい。
The setting of the short light pulse laser beam 30 collected by the condenser lens 200 to the position in the direction (depth direction) distance d 0 (> t / 2) perpendicular to the surface 11 of the waist 31 is first performed as an illumination light source. Is used to set the focal point of the condenser lens 200 to the surface 11 of the substrate 10 and then move the condenser lens 200 to the surface 11 side of the substrate 10 by a predetermined distance d. The relationship between the predetermined distances d and d 0 depends on the wavelength λ of the laser beam 30 and the refractive index n (λ) of the substrate 10.
d 0 = n (λ) d (1)
It is expressed. For example, when the thickness of the substrate 10 is 100 μm and the waist 31 is set at a position of 80 μm from the surface 11 in the depth direction, d 0 = 80 μm, n (λ) = 1.75, and d = 45.7 μm. What is necessary is just to move the condensing lens 200 to the surface 11 side about 46 micrometers.

短光パルスレーザビーム30の光軸OAが、サファイア基板10の表面11に想定された分割予定ライン15(図1中に点線で示す)に沿って、所定の加工速度Vをもって矢印D方向(図2においては、光軸OAと直交し紙面に平行な方向)に、基板10の表面11に対して、相対的に移動させられる。このとき、パルスレーザビーム30の各パルスは、図3Bに示すように、実線のスポット31と点線のスポット31´(スポット31の一つ前のパルスによるスポット)がオーバラップするように矢印D方向の移動速度(加工速度)Vが設定される。ここで、オーバラップ度合いを示すスポット31の中心線CLとスポット31´の中心線CL´の間隔γは、レーザビーム30のパルス繰り返し周波数Rと加工移動速度Vで一義的に定まる。すなわちγは、
γ=V/R (2)
と表される。例えば、スポット31、31´の直径が7μmでγ=0.4μmにするには、R=100kHzの場合、V=40mm/sとなる。すなわち、V=40mm/sとすることで、中心CLには9パルスのレーザビームがオーバラップ照射されることになる。
The optical axis OA of the short optical pulse laser beam 30 is in the direction indicated by the arrow D (see FIG. 1) with a predetermined processing speed V along the planned division line 15 (indicated by a dotted line in FIG. 1) assumed on the surface 11 of the sapphire substrate 10. 2 is moved relative to the surface 11 of the substrate 10 in a direction perpendicular to the optical axis OA and parallel to the paper surface. At this time, as shown in FIG. 3B, each pulse of the pulsed laser beam 30 is in the direction of arrow D so that the solid spot 31 and the dotted spot 31 ′ (spot by the pulse immediately before the spot 31) overlap. Moving speed (processing speed) V is set. Here, the interval γ between the center line CL of the spot 31 indicating the degree of overlap and the center line CL ′ of the spot 31 ′ is uniquely determined by the pulse repetition frequency R and the processing moving speed V of the laser beam 30. That is, γ is
γ = V / R (2)
It is expressed. For example, if the diameter of the spots 31, 31 ′ is 7 μm and γ = 0.4 μm, when R = 100 kHz, V = 40 mm / s. That is, by setting V = 40 mm / s, the center CL is irradiated with 9 pulses of laser beam in an overlapping manner.

次に、図3を用いて、ウエストの領域及びウエストの領域から深さ方向に離間した硬脆材料板体の裏面付近に例えば多光子吸収による光誘起破壊が起こるメカニズムについて説明する。図3に示すように、例えば、ウエスト31が表面11からd(>t/2)、裏面からレーリーレンジZr離れた位置にある場合は次のように考えられる。 Next, with reference to FIG. 3, a description will be given of a waist region and a mechanism in which light-induced breakdown due to, for example, multiphoton absorption occurs in the vicinity of the back surface of the hard and brittle material plate separated from the waist region in the depth direction. As shown in FIG. 3, for example, when the waist 31 is located at a position d 0 (> t / 2) from the front surface 11 and away from the rear surface by the Rayleigh range Zr, it is considered as follows.

今、図3に示すように、ウエスト31から上下δの範囲(斜線でハッチングした範囲)をウエスト領域S、Sの下端からδの範囲をS、上端からδの範囲をS′、Sの下端からδの範囲をS、S′の上端からδの範囲をS′とすると、当然レーザビーム30の強度(単位面積当たりのパワー)は、Sが最も高く、次いでS及びS′、S及びS′の順である。したがって、レーザビームの強度が例えば5TW/cm程度であると、サファイア基板の結晶が同じ束縛条件下にあれば、S→S、S′→S、S′の順に多光子吸収による光誘起破壊加工が行われると考えられる。しかしながら、図3に示すように、Sの下端は自由空間に接し、束縛が弱いためと、光誘起破壊により発生する蒸気や粒子が自由空間に逃げやすいために、Sが加工され易い。それに対して、S、S、S′、S′は、自由空間から隔絶しており、束縛が強く、光誘起破壊により発生する蒸気や粒子が逃げられないために、加工されにくい。したがって、まず、Sが加工され、次に最も強度の高いSが加工されるものと考えられる。すなわち、ウエスト領域Sとそこから深さ方向に離間した裏面付近のS領域に光誘起破壊痕が形成され、光誘起破壊痕13、14となる。なお、このSの加工は、蒸気や粒子の逃げ道がないと進まないので、S領域も若干加工される必要があると思われる。したがって、S領域が全く加工されない非加工領域でなく、部分的に加工される領域である。 Now, as shown in FIG. 3, S 1 and range of [delta] 1 from the lower end of the range waist region (range hatched with diagonal lines) S 0, S 0 of the upper and lower [delta] 0 from the waist 31, the range of [delta] 1 from the top If the range of δ 2 from the lower end of S ′ 1 and S 1 is S 2 , and the range of δ 2 from the upper end of S ′ 1 is S ′ 2 , the intensity (power per unit area) of the laser beam 30 is naturally S 0 is the highest, followed by S 1 and S ′ 1 , S 2 and S ′ 2 . Therefore, if the intensity of the laser beam is, for example, about 5 TW / cm 2 , the multiphoton in the order of S 0 → S 1 , S ′ 1 → S 2 , S ′ 2 if the crystal of the sapphire substrate is under the same constraint condition. It is considered that light-induced fracture processing by absorption is performed. However, as shown in FIG. 3, the lower end of S 2 is in contact with the free space, and the binding is weak, and the vapor and particles generated by light-induced breakdown easily escape to the free space, so that S 2 is easily processed. On the other hand, S 0 , S 1 , S ′ 1 , S ′ 2 are isolated from free space, are strongly bound, and are difficult to be processed because vapors and particles generated by light-induced destruction cannot escape. . Therefore, it is considered that S 2 is first processed and then S 0 having the highest strength is processed. That is, light-induced destruction marks 13 and 14 are formed in the waist region S 0 and in the S 2 region near the back surface spaced from the waist region S 0 in the depth direction. Incidentally, the processing of S 0, since not proceed and no escape of vapor or particles, would need to S 1 region is also processed a little. Therefore, instead of the non-processing region where S 1 region is not at all processed, a region that is partially processed.

ここで、レーリーレンジZrについて、説明する。レーリーレンジは、シングルモードのレーザビーム(ガウスビーム)を集光レンズで集光したときのビーム径がウエスト31でのスポット径の√2倍以内である距離であり、図3に示すようにレーリーレンジを越えるとビームは急激に大きくなる。したがって、レーリーレンジ以内のビームの強度が高く、レーリーレンジを越えるとビーム強度は急激に小さくなる。よって、ビームウエスト31の位置は、裏面12からレーリーレンジ以内が望ましい。なお、レーリーレンジZrは、集光レンズ200に入射するレーザビーム径を2aとすると、
Zr=(4λ/π)(1/2a) (3)
と表される。ここで、例えば、波長λ=1.045μmのレーザビームを集光する場合、NA=0.65のとき、f=4mm、2a=3mmを代入すると、Zr=2.4μm、となる。また、NA=0.24のとき、f=20mm、2a=3mmを代入すると、Zr=59μmとなる。したがって、NAが大きいほどZrが小さく、反対にNAが小さいほどZrが大きくなることがわかる。よって、集光レンズのNAを0.3以下にすると、分割加工対象である硬脆材料板体の厚さtが100μmのオーダでも上記のようなウエスト領域Sと裏面領域Sに光誘起破壊痕を形成することができるようになる。
Here, the Rayleigh range Zr will be described. The Rayleigh range is a distance in which the beam diameter when a single-mode laser beam (Gaussian beam) is condensed by the condenser lens is within √2 times the spot diameter at the waist 31, and as shown in FIG. Beyond the range, the beam grows rapidly. Therefore, the intensity of the beam within the Rayleigh range is high, and the beam intensity rapidly decreases after exceeding the Rayleigh range. Therefore, the position of the beam waist 31 is preferably within the Rayleigh range from the back surface 12. The Rayleigh range Zr is 2a when the diameter of the laser beam incident on the condenser lens 200 is 2a.
Zr = (4λ / π) (1 / 2a) 2 (3)
It is expressed. Here, for example, when condensing a laser beam having a wavelength λ = 1.45 μm, when NA = 0.65, if f = 4 mm and 2a = 3 mm are substituted, Zr = 2.4 μm. When NA = 0.24, if f = 20 mm and 2a = 3 mm are substituted, Zr = 59 μm. Therefore, it can be seen that the larger NA is, the smaller Zr is, and the smaller NA is, the larger Zr is. Therefore, when the NA of the condensing lens is 0.3 or less, the above-described waist region S 0 and the back surface region S 2 are photoinduced even when the thickness t of the hard and brittle material plate to be divided is on the order of 100 μm. Destruction marks can be formed.

次に、図4を用いて、ウエストの領域及びウエストの領域から深さ方向に離間した硬脆材料板体の裏面付近に多光子吸収による光誘起破壊が起こるメカニズムについて説明する。図4は、レーザビームのウエストが硬脆材料板体の内部t/2より浅い位置に存在するように集光レンズの焦点位置を調整した場合である。図4に示すように、例えば、ウエスト31が表面11からd(<t/2)、裏面から(Zr+Δ)離れた位置にある場合は次のように考えられる。 Next, with reference to FIG. 4, a description will be given of a waist region and a mechanism in which light-induced breakdown due to multiphoton absorption occurs in the vicinity of the back surface of the hard and brittle material plate separated in the depth direction from the waist region. FIG. 4 shows a case where the focal position of the condenser lens is adjusted so that the waist of the laser beam exists at a position shallower than the inside t / 2 of the hard and brittle material plate. As shown in FIG. 4, for example, when the waist 31 is located d 0 (<t / 2) away from the front surface 11 and (Zr + Δ) away from the back surface, it can be considered as follows.

今、図4に示すように、ウエスト31から上下δの範囲をウエスト領域S、Sの下端からδの範囲をS、上端からδの範囲をS′、Sの下端からδの範囲をS、Sの下端からΔの範囲をSとすると、当然レーザビーム30の強度(単位面積当たりのパワー)は、Sが最も高く、次いでS及びS′、S、Sの順である。したがって、サファイア基板の結晶が同じ束縛条件下にあれば、S→S、S′→S→Sの順に加工されると考えられる。しかしながら、図4に示すように、S´の途中、Sの下端は自由空間に接し、束縛が弱いためと、光誘起破壊により発生する蒸気や粒子が自由空間に逃げやすいために、S´、Sが加工され易い。それに対して、S、S、Sは、自由空間から隔絶しており、束縛が強く、光誘起破壊により発生する蒸気や粒子が逃げられないために、加工されにくい。したがって、まず、S´ついでSが加工され、次に最も強度の高いS、次いでSの下部が加工されるものと考えられる。すなわち、ウエスト領域Sとそこから表面11に至るS´の一部と裏面付近のS及びSの一部に光誘起破壊痕が形成され、光誘起破壊痕13´、14′となる。 Now, as shown in FIG. 4, the range from the lower end of the [delta] 1 of the upper and lower [delta] ranges waist region S 0, S 0 0 West 31 S 1, the range of [delta] 1 from the upper end S '1, the S 1 Assuming that the range of δ 2 from the lower end is S 2 and the range of Δ from the lower end of S 2 is S 3 , naturally the intensity (power per unit area) of the laser beam 30 is highest in S 0 , and then S 1 and S The order is' 1 , S 2 , S 3 . Therefore, if the crystals of the sapphire substrate are under the same constraining conditions, it is considered that they are processed in the order of S 0 → S 1 , S ′ 1 → S 2 → S 3 . However, as shown in FIG. 4, in the middle of S ′ 1 , the lower end of S 3 is in contact with the free space and the binding is weak, and the vapor and particles generated by light-induced breakdown easily escape to the free space. ′ 1 and S 3 are easily processed. On the other hand, S 0 , S 1 , and S 2 are isolated from free space, are strongly bound, and are difficult to process because vapors and particles generated by light-induced destruction cannot escape. Therefore, it is considered that S ′ 1 and S 3 are processed first, S 0 having the highest strength, and then the lower part of S 2 are processed. That is, photo-induced destruction marks are formed in the waist region S 0 , a part of S ′ 1 extending from the waist region S 0 to the front surface 11, and a part of S 3 and S 2 near the back surface. Become.

次に、上記分割加工方法で分割予定ラインに沿って形成されたサファイア基板30の内部光誘起破壊痕13及び裏面に連なる光誘起破壊痕14或いは表面に連なる光誘起破壊痕13´及び裏面に連なる光誘起破壊痕14´を介して分割又は割断する工程について図5と共に説明する。 図5で、10がサファイア基板、14、14´が分割予定ラインに沿って形成された裏面に連なる光誘起破壊痕である。まず、図6に示すように、サファイア基板10の分割予定ラインに沿って裏面12に形成された光誘起破壊痕14、14´の両側部(図5中白抜き矢印17で示す部分)を保持又は固定する一方、基板10の表面11における上記破壊痕14、14´に対応する部分(図5中、白抜き矢印18で示す部分)に図示しないブレーク刃等の刃先を押し当てて押圧することにより、破壊痕14、14´に歪み応力を集中作用させ、上記基板10を分割予定ラインに沿って簡単且つ容易に分割又は割断することができる。   Next, the internal light-induced breakdown marks 13 and the light-induced breakdown marks 14 connected to the back surface or the light-induced breakdown marks 13 ′ connected to the front surface and the back surface of the sapphire substrate 30 formed along the planned dividing line by the above-described split processing method. The process of dividing or cleaving via the light-induced fracture mark 14 'will be described with reference to FIG. In FIG. 5, 10 is a sapphire substrate, and 14 and 14 ′ are light-induced destruction traces connected to the back surface formed along the planned division lines. First, as shown in FIG. 6, hold both side portions (portions indicated by white arrows 17 in FIG. 5) of the light-induced breakdown marks 14 and 14 ′ formed on the back surface 12 along the planned dividing line of the sapphire substrate 10. Alternatively, while pressing, a cutting edge such as a break blade (not shown) is pressed against the portion corresponding to the fracture marks 14 and 14 'on the surface 11 of the substrate 10 (the portion indicated by the white arrow 18 in FIG. 5). Thus, strain stress is concentrated on the fracture marks 14 and 14 ′, and the substrate 10 can be divided or cleaved easily and easily along the division line.

次に本発明の分割加工方法を実施する分割加工装置の一例を図6と共に説明する。分割加工装置は、レーザビーム30を発生するレーザ装置50と、レーザビーム30をON−OFF制御するシャッター54と、レーザビーム30を透過するダイクロイックミラー55と、ダイクロイックミラー55を透過したレーザビーム30を集光する集光レンズ200と、集光レンズ200で集光されたレーザビーム30がZ軸方向から入射される加工対象物の硬脆材料板体10が吸着載置される溝aが付いた吸着台57と、吸着台57をX軸方向に移動させるためのX軸ステージ71と、吸着台57をX軸方向に直交するY軸方向に移動させるためのY軸ステージ72と、吸着台57をX軸及びY軸方向に直交するZ軸方向に移動させるためのZ軸ステージ73と、制御用パソコン80と、を備える。   Next, an example of a division processing apparatus for carrying out the division processing method of the present invention will be described with reference to FIG. The division processing apparatus includes a laser device 50 that generates a laser beam 30, a shutter 54 that controls the laser beam 30 on and off, a dichroic mirror 55 that transmits the laser beam 30, and a laser beam 30 that transmits the dichroic mirror 55. A condensing lens 200 for condensing, and a groove a on which the hard and brittle material plate 10 of the workpiece to which the laser beam 30 condensed by the condensing lens 200 is incident from the Z-axis direction is attached. The suction table 57, an X-axis stage 71 for moving the suction table 57 in the X-axis direction, a Y-axis stage 72 for moving the suction table 57 in the Y-axis direction orthogonal to the X-axis direction, and the suction table 57 Includes a Z-axis stage 73 for moving in the Z-axis direction orthogonal to the X-axis and Y-axis directions, and a control personal computer 80.

分割加工装置は、さらに、吸着台57に吸着された硬脆材料板体10を可視光線で照明して観察するための可視光線を発生する観察光源63と、観察光源63からの可視光線を90°曲げてダイクロイックミラー55に入射させるハーフミラー56と、集光レンズ200、ダイクロイックミラー55、及びハーフミラー56を介してウエハ100を撮像するCCDカメラ62を備える。   The division processing apparatus further includes an observation light source 63 that generates visible light for illuminating the hard and brittle material plate 10 adsorbed on the adsorption table 57 with visible light, and 90 visible light from the observation light source 63. A half mirror 56 that is bent and incident on a dichroic mirror 55, a condenser lens 200, a dichroic mirror 55, and a CCD camera 62 that images the wafer 100 via the half mirror 56 are provided.

分割加工装置はさらに、レーザ装置50、シャッター54、ダイクロイックミラー55、集光レンズ200、ハーフミラー56、観察光源63、及びCCDカメラ62を配置する光学ベンチ64と、光学ベンチ64をZ軸方向に駆動する駆動部61と、を備える。   The split processing apparatus further includes an optical bench 64 in which a laser device 50, a shutter 54, a dichroic mirror 55, a condenser lens 200, a half mirror 56, an observation light source 63, and a CCD camera 62 are arranged, and the optical bench 64 in the Z-axis direction. A drive unit 61 for driving.

シャッター54、観察光源63、CCDカメラ62、及び駆動部61は制御用パソコン80に接続されており、シャッター54、観察光源63のON−OFF制御、CCDカメラ62の撮像データ処理、駆動部61の駆動制御が行われる。したがって、制御用パソコン80からの命令でレーザビーム30のウエスト位置(焦点位置)31をCCDカメラ62で撮像して制御用パソコン80のモニター上で観察することができる。   The shutter 54, the observation light source 63, the CCD camera 62, and the drive unit 61 are connected to the control personal computer 80. The shutter 54, the observation light source 63 is turned on and off, the imaging data processing of the CCD camera 62, and the drive unit 61. Drive control is performed. Therefore, the waist position (focus position) 31 of the laser beam 30 can be imaged by the CCD camera 62 and observed on the monitor of the control personal computer 80 in accordance with a command from the control personal computer 80.

レーザ装置50は、発振モジュール51と、発振モジュール51から発振されたレーザ光を伝播するファイバ53と、ファイバ53を伝播してきたレーザ光を増幅する増幅モジュール52と、発振モジュール51からのレーザ光の出力、パルス幅、繰返し周波数を制御するレーザコントローラ54と、を備える。レーザコントローラ54はパソコン80に接続されており、パソコン80からの命令で動作する。発振モジュール51は、Ybドープのモードロックファイバレーザと、ファイバレーザから発振されたパルスレーザ光を受光して伸張されたパルスレーザ光を出力するファイバー伸張器と、伸張されたパルスレーザ光を受光してパルスを間引くパルス間引き器と、伸張されて間引かれたパルスレーザ光を受光して増幅されたパルスレーザ光を出力するファイバー前置増幅器と、を備える。増幅モジュール52は、発振モジュール51からのパルスレーザ光をファイバ53を通して受光してさらに増幅するファイバ主増幅器と、増幅されたパルスレーザ光を受光して圧縮されたパルスレーザ光を出力する圧縮器と、を備える。増幅モジュール52は光学ベンチ64にレーザビーム30がZ軸方向に出射されるように固定されている。増幅モジュール52からは波長が1045nm、平均出力が1.2W、パルス幅が500fs〜5ps、繰り返し周波数が50〜1000kHzのレーザビーム30が出射される。   The laser device 50 includes an oscillation module 51, a fiber 53 that propagates the laser light oscillated from the oscillation module 51, an amplification module 52 that amplifies the laser light propagated through the fiber 53, and the laser light from the oscillation module 51. And a laser controller 54 for controlling the output, the pulse width, and the repetition frequency. The laser controller 54 is connected to the personal computer 80 and operates according to a command from the personal computer 80. The oscillation module 51 receives a Yb-doped mode-locked fiber laser, a fiber stretcher that receives a pulsed laser beam oscillated from the fiber laser and outputs a stretched pulsed laser beam, and a stretched pulsed laser beam. And a fiber preamplifier that receives the pulsed laser light that has been thinned out and outputs the amplified pulsed laser light. The amplification module 52 receives the pulse laser light from the oscillation module 51 through the fiber 53 and further amplifies it, and a compressor that receives the amplified pulse laser light and outputs the compressed pulse laser light. . The amplification module 52 is fixed to the optical bench 64 so that the laser beam 30 is emitted in the Z-axis direction. The amplification module 52 emits a laser beam 30 having a wavelength of 1045 nm, an average output of 1.2 W, a pulse width of 500 fs to 5 ps, and a repetition frequency of 50 to 1000 kHz.

レーザ装置50は、上記の他に、波長が300〜1800nm、パルス幅が10fs〜10ps、繰り返し周波数が50kHz〜10MHzの性能を有するものであればよい。例えば、再生増幅タイプのTi:サファイアレーザ装置等を用いてもよい。   In addition to the above, the laser device 50 only needs to have a wavelength of 300 to 1800 nm, a pulse width of 10 fs to 10 ps, and a repetition frequency of 50 kHz to 10 MHz. For example, a reproduction amplification type Ti: sapphire laser device or the like may be used.

レーザ装置50は、波長が700〜1600nm、パルス幅が50fs〜2ps、繰り返し周波数が50〜300kHzの性能を有することが望ましい。   The laser device 50 desirably has a performance of a wavelength of 700 to 1600 nm, a pulse width of 50 fs to 2 ps, and a repetition frequency of 50 to 300 kHz.

以下に、上記構成の分割加工装置の操作手順について説明する。まず、シャッター54を閉じ、レーザ装置50を所定の繰り返し周波数で運転する。次にシャッター54を開いて集光レンズ200を出射するレーザビーム30のパルスエネルギが所定の値になるようにコントローラ54で発振モジュール51を制御する。   Hereinafter, an operation procedure of the division processing apparatus having the above configuration will be described. First, the shutter 54 is closed, and the laser device 50 is operated at a predetermined repetition rate. Next, the oscillation module 51 is controlled by the controller 54 so that the pulse energy of the laser beam 30 emitted from the condenser lens 200 by opening the shutter 54 becomes a predetermined value.

次に、シャッター54を閉じて、吸着台57に分割予定ライン15の方向がY軸方向になるように且つ分割予定ライン15が吸着台57の溝イの直上に位置するように脆材料板体10をセットする。次に、観察光源63をONしてCCDカメラ62で硬脆材料板体10の表面11を観察しながら、焦点位置が表面11の分割予定ライン15に一致するようにX軸ステージ71、Y軸ステージ72を移動させると共に、駆動部61で光学ベンチ64をZ軸方向に微動させる。   Next, the shutter 54 is closed, and the brittle material plate body is arranged so that the direction of the division line 15 on the suction table 57 is in the Y-axis direction and the division line 15 is located immediately above the groove i of the suction table 57. 10 is set. Next, while turning on the observation light source 63 and observing the surface 11 of the hard and brittle material plate 10 with the CCD camera 62, the X-axis stage 71 and the Y-axis are set so that the focal position coincides with the division line 15 on the surface 11. The stage 72 is moved, and the optical bench 64 is finely moved in the Z-axis direction by the drive unit 61.

次に、ウエスト位置31が表面11から所定の深さd0(<t/2、ただし、tは板体10の厚さである。)に位置するように、駆動部61で光学ベンチ64を表面11に近づける(下降させる)。 Next, the optical bench 64 is moved by the drive unit 61 so that the waist position 31 is located at a predetermined depth d 0 (<t / 2, where t is the thickness of the plate 10) from the surface 11. Approach (lower) the surface 11.

次に、シャッター54をONしてレーザビーム30をウエスト位置に集光照射しながら板体10をY軸ステージ72でY軸方向にビームスポットがオーバラップする所定の移動速度Vで移動させ、所定の距離移動させたらシャッター54をOFFする。   Next, the shutter 54 is turned on and the plate 10 is moved at a predetermined moving speed V at which the beam spot overlaps in the Y-axis direction on the Y-axis stage 72 while condensing and irradiating the laser beam 30 to the waist position. When the distance is moved, the shutter 54 is turned off.

裏面12に連なる光誘起破壊痕が形成される過程で、ガスや粒子といったデブリが放出されるが、分割予定ラインと吸着台の溝を一致させることで、次のような効果が発揮される。1)溝に純水或いはHe、N、反応性ガス等を流すことで、発生するデブリを効率よく除去することができる、2)分割加工対象の硬脆材料板体に応じて最適な反応性ガス(例えばフッ素ラジカルを生成するSF等)を選択使用することで化学エッチング作用が起こる(光誘起破壊で発生するプラズマの作用でフッ素ラジカルが発生し、例えば、ガラス板体に対して珪素のエッチングが化学的に進む)ため、裏面から内部に向けてより深い加工が可能になる、3)雰囲気ガスが最小限の容積で済む、4)溝を真空排気することで、デブリの飛散を抑制することができ、硬脆材料板体に形成されているデバイスへの付着を防止することができる。 Debris such as gas and particles is released in the process of forming the light-induced destruction traces continuous with the back surface 12, but the following effects are exhibited by matching the planned dividing line and the groove of the adsorption table. 1) Debris can be efficiently removed by flowing pure water or He, N 2 , reactive gas, etc. into the groove. 2) Optimal reaction according to the hard and brittle material plate to be divided. Chemical etching action occurs by selective use of a reactive gas (for example, SF 6 that generates fluorine radicals) (fluorine radicals are generated by the action of plasma generated by light-induced breakdown, for example, silicon on a glass plate body Since the etching of the process proceeds chemically, the deeper processing is possible from the back to the inside. 3) The atmosphere gas requires a minimum volume. 4) The groove is evacuated to prevent debris from being scattered. It can suppress, and adhesion to the device currently formed in the hard and brittle material board can be prevented.

次に、本発明の分割加工方法を用いてサファイア基板を分割加工した実施例を分割断面写真と共に説明する。   Next, an example in which a sapphire substrate is divided by using the division processing method of the present invention will be described together with divided sectional photographs.

図7にレーザビームのウエストをサファイア基板の厚さの1/2より深い位置に存在するように集光レンズの焦点位置を調整した分割加工結果を示す。   FIG. 7 shows the result of division processing in which the focal position of the condenser lens is adjusted so that the waist of the laser beam exists at a position deeper than ½ of the thickness of the sapphire substrate.

加工条件
加工対象:サファイア基板(厚さt=100μm)
レーザ装置:Ybドープモードロックファイバレーザベースフェムト秒レーザ装置
波長:1.045μm
パルス幅:3.7ps
パルス繰り返し周波数:200kHz
平均出力:1.2W
ビーム径:3mm
集光レンズ:開口数0.16、焦点距離15.4mm
集光レンズ透過後のパルスエネルギ:1.5μJ
レーザビーム入射面:サファイア結晶のC面
レーザビーム入射方向:C面に垂直
ウエスト位置:表面(入射面)から厚み方向内部に78.8μm(集光レンズの焦点位置を入射面に合わせてから集光レンズを入射面に45μm近づけたときの計算値)入った位置
レーリーレンジ:35.1μm(計算値)
移動速度:40mm/s
ビームウエスト(スポット)径:6.8μm(計算値)
スポットオーバーラップ度(次パルスまでのスポット移動距離):0.2μm(計算値)
スポット中心への入射パルス数:17(計算値)
ビームウエスト強度:1.1TW/cm(計算値)
Processing conditions Processing object: Sapphire substrate (thickness t = 100 μm)
Laser device: Yb-doped mode-locked fiber laser-based femtosecond laser device wavelength: 1.045 μm
Pulse width: 3.7ps
Pulse repetition frequency: 200 kHz
Average output: 1.2W
Beam diameter: 3mm
Condensing lens: numerical aperture 0.16, focal length 15.4 mm
Pulse energy after passing through the condenser lens: 1.5 μJ
Laser beam incident surface: C surface of sapphire crystal Laser beam incident direction: Waist position perpendicular to C surface: 78.8 μm from the surface (incident surface) to the inside in the thickness direction (collected after adjusting the focal point of the condenser lens to the incident surface) Positional Rayleigh range (calculated value when the optical lens is brought closer to the incident surface by 45 μm): 35.1 μm (calculated value)
Movement speed: 40mm / s
Beam waist (spot) diameter: 6.8 μm (calculated value)
Spot overlap degree (spot moving distance to the next pulse): 0.2 μm (calculated value)
Number of incident pulses to the center of the spot: 17 (calculated value)
Beam waist strength: 1.1 TW / cm 2 (calculated value)

図7は、上記加工条件で分割加工を行った後、ブレーク刃の刃先を押し当てて押圧して分割した分割面の顕微鏡写真である。このときのブレーク刃の押し込み量は100μmであった。表面から非加工域(劈開面)、加工域(ウエスト領域の光誘起破壊痕)、非加工域(部分加工域)及び裏面に連なる加工域が形成されていることがわかる。   FIG. 7 is a photomicrograph of a divided surface obtained by performing division processing under the above-described processing conditions and then pressing and pressing the cutting edge of the break blade. The pushing amount of the break blade at this time was 100 μm. It can be seen that a non-machined area (cleavage surface), a machined area (light-induced fracture marks in the waist area), a non-machined area (partially machined area), and a machined area connected to the back surface are formed from the front surface.

図8にレーザビームのウエストをサファイア基板の厚さの1/2より浅い位置に存在するように集光レンズの焦点位置を調整した分割加工結果を示す。   FIG. 8 shows the result of division processing in which the focal position of the condenser lens is adjusted so that the waist of the laser beam is present at a position shallower than ½ of the thickness of the sapphire substrate.

加工条件
加工対象:サファイア基板(厚さt=100μm)
レーザ装置:Ybドープモードロックファイバレーザベースフェムト秒レーザ装置
波長:1.045μm
パルス幅:480fs
パルス繰り返し周波数:200kHz
平均出力:1.2W
ビーム径:3mm
集光レンズ:開口数0.25、焦点距離11.0mm
集光レンズ透過後のパルスエネルギ:1.5μJ
レーザビーム入射面:サファイア結晶のC面
レーザビーム入射方向:C面に垂直
ウエスト位置:表面(入射面)から厚み方向内部に17.5μm(集光レンズの焦点位置を入射面に合わせてから集光レンズを入射面に10μm近づけたときの計算値)入った位置
レーリーレンジ:17.9μm(計算値)
移動速度:10mm/s
ビームウエスト(スポット)径:4.9μm(計算値)
スポットオーバーラップ度(次パルスまでのスポット移動距離):0.05μm(計算値)
スポット中心への入射パルス数:46(計算値)
ビームウエスト強度:16.6TW/cm(計算値)
Processing conditions Processing object: Sapphire substrate (thickness t = 100 μm)
Laser device: Yb-doped mode-locked fiber laser-based femtosecond laser device wavelength: 1.045 μm
Pulse width: 480fs
Pulse repetition frequency: 200 kHz
Average output: 1.2W
Beam diameter: 3mm
Condenser lens: numerical aperture 0.25, focal length 11.0 mm
Pulse energy after passing through the condenser lens: 1.5 μJ
Laser beam incident surface: C surface of sapphire crystal Laser beam incident direction: Waist position perpendicular to C surface: 17.5 μm from the surface (incident surface) to the inside in the thickness direction (collected after adjusting the focal point of the condenser lens to the incident surface) Positional Rayleigh range (calculated value when the optical lens is brought closer to the incident surface by 10 μm): 17.9 μm (calculated value)
Movement speed: 10mm / s
Beam waist (spot) diameter: 4.9 μm (calculated value)
Spot overlap degree (spot moving distance to next pulse): 0.05μm (calculated value)
Number of incident pulses to the center of the spot: 46 (calculated value)
Beam waist strength: 16.6 TW / cm 2 (calculated value)

図8は、上記加工条件で分割加工を行った後、ブレーク刃の刃先を押し当てて押圧して分割した分割面の顕微鏡写真である。このときのブレーク刃の押し込み量は100μmであった。表面から表面に連なる加工域(ウエスト領域の光誘起破壊痕)、非加工域及び裏面に連なる加工域が形成されていることがわかる。   FIG. 8 is a photomicrograph of a divided surface obtained by performing division processing under the above processing conditions and then pressing and pressing the cutting edge of the break blade. The pushing amount of the break blade at this time was 100 μm. It can be seen that there are formed a processing area (photo-induced fracture marks in the waist area) continuous from the front surface to the front surface, a non-processing area and a processing area continuous from the back surface.

レーザ装置に所謂超短パルスレーザ(フェムト秒パルスレーザ)を使用するので、加工原理が光誘起破壊であり、断熱的な加工となる。そのため裏面に連なる加工域はクラックの発生が抑制され、分割された板体の抗折強度が向上する。また、同時に行われる内部加工或いは表面に連なる加工もパルス幅が短いため、低い平均パワーであっても効率よく行うことができる。その結果、板体を透過する余剰レーザ光によるデバイスなどへのダメージを抑制することができる。また、中心波長が1μm以上の近赤外域のフェムト秒パルスレーザを用いると、板体及び半導体デバイスに対する透過性が高いため、さらに熱影響を抑制することができる。さらに、発振器や増幅器に光ファイバを用いるフェムト秒ファイバレーザ装置を使用すると、100kHz以上の繰り返し周波数をもつため、繰り返し周波数が1kHz程度の従来のチタンサファイア結晶をはじめとする再生増幅方式による大エネルギフェムト秒レーザ装置に比べ、高速な加工ができる。また、ビーム品質も優れている(M=1.3)ため、回折限界近くまで集光することができ、加工形状精度が向上する。 Since a so-called ultrashort pulse laser (femtosecond pulse laser) is used for the laser device, the processing principle is light-induced breakdown, which is adiabatic processing. Therefore, generation of cracks is suppressed in the processing area connected to the back surface, and the bending strength of the divided plate body is improved. In addition, internal processing performed simultaneously or processing connected to the surface can be efficiently performed even with a low average power because the pulse width is short. As a result, it is possible to suppress damage to the device and the like due to excess laser light that passes through the plate. In addition, when a near-infrared femtosecond pulse laser having a center wavelength of 1 μm or more is used, the thermal effect can be further suppressed because of high transparency to the plate and the semiconductor device. Further, when a femtosecond fiber laser device using an optical fiber for an oscillator or an amplifier is used, it has a repetition frequency of 100 kHz or more. Therefore, a large energy femto by a regenerative amplification method including a conventional titanium sapphire crystal having a repetition frequency of about 1 kHz. Compared to the second laser device, high-speed processing is possible. Further, since the beam quality is excellent (M 2 = 1.3), the beam can be condensed to near the diffraction limit, and the processing shape accuracy is improved.

半導体産業に利用される可能性が極めて高い。   Very likely to be used in the semiconductor industry.

本発明の分割加工方法を説明する模式図である。It is a schematic diagram explaining the division | segmentation processing method of this invention. 図1のA−A線から見た一部切欠断面図である。FIG. 2 is a partially cutaway sectional view taken along line AA in FIG. 1. 図2のビームウエスト付近を拡大して模式的に示した図である。It is the figure which expanded the beam waist vicinity of FIG. 2, and was shown typically. ビームウエストがサファイア基板の表面からその厚さの半分より浅い位置にあるように調整されたときのビームウエスト付近の拡大図である。It is an enlarged view of the vicinity of the beam waist when the beam waist is adjusted to be at a position shallower than half of its thickness from the surface of the sapphire substrate. 本発明の方法で分割加工された硬脆材料板体を分割する原理を説明する模式図である。It is a schematic diagram explaining the principle which divides | segments the hard-brittle material board divided | segmented by the method of this invention. 本発明の分割加工方法を実施できる、分割加工装置を示すブロック図である。It is a block diagram which shows the division processing apparatus which can implement the division processing method of this invention. レーザビームのウエストをサファイア基板の厚さの1/2より深い位置に存在するように集光レンズの焦点位置を調整して分割加工した実施例1の分割面の顕微鏡写真である。It is the microscope picture of the division surface of Example 1 which adjusted and adjusted the focus position of the condensing lens so that the waist of a laser beam may exist in the position deeper than 1/2 of the thickness of a sapphire substrate. レーザビームのウエストをサファイア基板の厚さの1/2より浅い位置に存在するように集光レンズの焦点位置を調整して分割加工した実施例2の分割面の顕微鏡写真である。It is the microscope picture of the division surface of Example 2 which adjusted and adjusted the focus position of the condensing lens so that the waist of a laser beam may exist in a position shallower than 1/2 of the thickness of a sapphire substrate.

符号の説明Explanation of symbols

10・・・・・・硬脆材料板体
11・・・・・・硬脆材料板体の表面
12・・・・・・硬脆材料板体の裏面
15・・・・・・分割予定ライン
30・・・・・・短光パルスレーザビーム
31・・・・・・ウエスト
200・・・・・集光レンズ
OA・・・・・・レーザビームの光軸
10... Hard and brittle material plate 11... Hard and brittle material plate surface 12... Hard and brittle material plate back surface 15. 30 ······ Short pulse laser beam 31 ··· Waist 200 ··· Condensing lens OA ··· Optical axis of laser beam

Claims (3)

厚さtの硬脆材料板体に対し光学的に透明な波長を有する繰り返し短光パルスレーザビームを集光レンズを介して該硬脆材料板体の表面に入射したとき、
前記レーザビームのウエストが前記硬脆材料板体の内部t/2より浅いか或いは深い位置に存在するように前記集光レンズの焦点位置を調整し、前記繰り返し短光パルスレーザビームが前記硬脆材料板体の表面にオーバラップ入射するように該レーザビームの光軸を該硬脆材料板体に対して想定された分割予定ラインに沿って相対的に移動させながら、該レーザビームを該硬脆材料板体の表面に入射する毎に、該ウエストの領域及び該ウエストの領域から深さ方向に離間した該硬脆材料板体の裏面付近に光誘起破壊を起こさせる工程を含むことを特徴とする硬脆材料板体の分割加工方法。
When a short optical pulse laser beam having a wavelength that is optically transparent to a hard and brittle material plate having a thickness t is incident on the surface of the hard and brittle material plate through a condenser lens,
The focal position of the condensing lens is adjusted so that the waist of the laser beam exists at a position shallower or deeper than the inside t / 2 of the hard and brittle material plate, and the repeated short optical pulse laser beam While moving the optical axis of the laser beam relative to the hard and brittle material plate along a predetermined split line so as to be incident on the surface of the material plate, the laser beam is moved to the hard plate. A step of causing light-induced breakdown near the back surface of the hard and brittle material plate that is spaced in the depth direction from the waist region each time it is incident on the surface of the brittle material plate. A method for dividing a hard and brittle material plate.
前記集光レンズの開口数が0.3以下であることを特徴とする請求項1に記載の硬脆材料板体の分割加工方法。   2. The method for dividing a hard and brittle material plate according to claim 1, wherein the condensing lens has a numerical aperture of 0.3 or less. 前記t/2より浅い位置が前記硬脆材料板体の表面からレーリーレンジ以内であり、前記t/2より深い位置が該硬脆材料板体の裏面よりレーリーレンジ以内であることを特徴とする請求項1或いは2に記載の硬脆材料板体の分割加工方法。   The position shallower than t / 2 is within the Rayleigh range from the surface of the hard and brittle material plate, and the position deeper than t / 2 is within the Rayleigh range from the back surface of the hard and brittle material plate. The division | segmentation processing method of the hard-brittle material board of Claim 1 or 2.
JP2006178474A 2006-06-28 2006-06-28 Method of splitting hard and brittle plate Expired - Fee Related JP4835927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006178474A JP4835927B2 (en) 2006-06-28 2006-06-28 Method of splitting hard and brittle plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006178474A JP4835927B2 (en) 2006-06-28 2006-06-28 Method of splitting hard and brittle plate

Publications (2)

Publication Number Publication Date
JP2008006652A true JP2008006652A (en) 2008-01-17
JP4835927B2 JP4835927B2 (en) 2011-12-14

Family

ID=39065301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006178474A Expired - Fee Related JP4835927B2 (en) 2006-06-28 2006-06-28 Method of splitting hard and brittle plate

Country Status (1)

Country Link
JP (1) JP4835927B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693186B1 (en) * 2005-09-09 2007-03-13 (주)천지엔비텍 The offensive odor treatment instrument by use of biological wet scrubber-chungi environment technologies
JP2009220142A (en) * 2008-03-17 2009-10-01 Sony Corp Laser beam machining apparatus and laser beam machining method
CN102237452A (en) * 2010-04-22 2011-11-09 株式会社迪思科 Optical device wafer processing method and laser processing apparatus
JP2011240363A (en) * 2010-05-18 2011-12-01 Oputo System:Kk Method for splitting wafer-like substrate
JP2012164740A (en) * 2011-02-04 2012-08-30 Mitsuboshi Diamond Industrial Co Ltd Laser scribing method
JP2012195472A (en) * 2011-03-17 2012-10-11 Disco Abrasive Syst Ltd Laser processing method of nonlinear crystal substrate
JP2013063468A (en) * 2012-11-19 2013-04-11 Laser System:Kk Laser machining apparatus
WO2013065450A1 (en) * 2011-11-04 2013-05-10 株式会社フジクラ Method of manufacturing substrate provided with micropores
JP2013133259A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Substrate having microhole and method for production thereof
JP2014165249A (en) * 2013-02-22 2014-09-08 Fujikura Ltd Method of manufacturing substrate with micropores
WO2014144322A1 (en) 2013-03-15 2014-09-18 Kinestral Technologies, Inc. Laser cutting strengthened glass
CN104722925A (en) * 2011-05-13 2015-06-24 日本电气硝子株式会社 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
KR20160053783A (en) * 2014-11-05 2016-05-13 가부시기가이샤 디스코 Wafer processing method
WO2021075807A1 (en) * 2019-10-16 2021-04-22 이준섭 Window for far-infrared thermal imaging sensor assembly and a far-infrared thermal image sensor assembly comprising same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351466A (en) * 2003-05-29 2004-12-16 Aisin Seiki Co Ltd Laser beam machining method and laser beam machining apparatus
JP2005057257A (en) * 2003-07-18 2005-03-03 Hamamatsu Photonics Kk Laser machining method and device, and machined product
JP2005086175A (en) * 2003-09-11 2005-03-31 Hamamatsu Photonics Kk Method of manufacturing semiconductor thin film, semiconductor thin film, semiconductor thin-film chip, electron tube and light detector
JP2005101413A (en) * 2003-09-26 2005-04-14 Disco Abrasive Syst Ltd Method and equipment for dividing sheet-like workpiece
JP2005109322A (en) * 2003-10-01 2005-04-21 Tokyo Seimitsu Co Ltd Laser beam dicing device
JP2005132694A (en) * 2003-10-31 2005-05-26 Japan Steel Works Ltd:The Glass cutting method
JP2006140354A (en) * 2004-11-12 2006-06-01 Hamamatsu Photonics Kk Laser processing method
JP2008078236A (en) * 2006-09-19 2008-04-03 Hamamatsu Photonics Kk Laser machining method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351466A (en) * 2003-05-29 2004-12-16 Aisin Seiki Co Ltd Laser beam machining method and laser beam machining apparatus
JP2005057257A (en) * 2003-07-18 2005-03-03 Hamamatsu Photonics Kk Laser machining method and device, and machined product
JP2005086175A (en) * 2003-09-11 2005-03-31 Hamamatsu Photonics Kk Method of manufacturing semiconductor thin film, semiconductor thin film, semiconductor thin-film chip, electron tube and light detector
JP2005101413A (en) * 2003-09-26 2005-04-14 Disco Abrasive Syst Ltd Method and equipment for dividing sheet-like workpiece
JP2005109322A (en) * 2003-10-01 2005-04-21 Tokyo Seimitsu Co Ltd Laser beam dicing device
JP2005132694A (en) * 2003-10-31 2005-05-26 Japan Steel Works Ltd:The Glass cutting method
JP2006140354A (en) * 2004-11-12 2006-06-01 Hamamatsu Photonics Kk Laser processing method
JP2008078236A (en) * 2006-09-19 2008-04-03 Hamamatsu Photonics Kk Laser machining method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693186B1 (en) * 2005-09-09 2007-03-13 (주)천지엔비텍 The offensive odor treatment instrument by use of biological wet scrubber-chungi environment technologies
JP2009220142A (en) * 2008-03-17 2009-10-01 Sony Corp Laser beam machining apparatus and laser beam machining method
CN102237452A (en) * 2010-04-22 2011-11-09 株式会社迪思科 Optical device wafer processing method and laser processing apparatus
JP2011224931A (en) * 2010-04-22 2011-11-10 Disco Corp Optical device wafer processing method and laser processing apparatus
JP2011240363A (en) * 2010-05-18 2011-12-01 Oputo System:Kk Method for splitting wafer-like substrate
JP2012164740A (en) * 2011-02-04 2012-08-30 Mitsuboshi Diamond Industrial Co Ltd Laser scribing method
JP2012195472A (en) * 2011-03-17 2012-10-11 Disco Abrasive Syst Ltd Laser processing method of nonlinear crystal substrate
CN104722925B (en) * 2011-05-13 2017-09-05 日本电气硝子株式会社 The shearing device and cutting-off method of layered product, the processing method of the cutting-off method of layered product and layered product and fragility plate object
CN104722925A (en) * 2011-05-13 2015-06-24 日本电气硝子株式会社 Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
US10279568B2 (en) 2011-05-13 2019-05-07 Nippon Electric Glass Co., Ltd. Laminate, method for cutting laminate, method for processing laminate, and device and method for cutting brittle plate-like object
JPWO2013065450A1 (en) * 2011-11-04 2015-04-02 株式会社フジクラ Method for manufacturing a substrate with fine holes
EP2762264A4 (en) * 2011-11-04 2015-12-16 Fujikura Ltd Method of manufacturing substrate provided with micropores
WO2013065450A1 (en) * 2011-11-04 2013-05-10 株式会社フジクラ Method of manufacturing substrate provided with micropores
JP2013133259A (en) * 2011-12-27 2013-07-08 Fujikura Ltd Substrate having microhole and method for production thereof
JP2013063468A (en) * 2012-11-19 2013-04-11 Laser System:Kk Laser machining apparatus
JP2014165249A (en) * 2013-02-22 2014-09-08 Fujikura Ltd Method of manufacturing substrate with micropores
WO2014144322A1 (en) 2013-03-15 2014-09-18 Kinestral Technologies, Inc. Laser cutting strengthened glass
EP2969375A4 (en) * 2013-03-15 2017-03-01 Kinestral Technologies, Inc. Laser cutting strengthened glass
JP2016087655A (en) * 2014-11-05 2016-05-23 株式会社ディスコ Wafer processing method
KR20160053783A (en) * 2014-11-05 2016-05-13 가부시기가이샤 디스코 Wafer processing method
KR102313271B1 (en) 2014-11-05 2021-10-18 가부시기가이샤 디스코 Wafer processing method
WO2021075807A1 (en) * 2019-10-16 2021-04-22 이준섭 Window for far-infrared thermal imaging sensor assembly and a far-infrared thermal image sensor assembly comprising same
KR20210045013A (en) * 2019-10-16 2021-04-26 이준섭 Window for Far Infrared Ray Thermogram Sensor Aseembly and Far Infrared Ray Thermogram Sensor Aseembly Having the Same
KR102253239B1 (en) * 2019-10-16 2021-05-17 이준섭 Window for Far Infrared Ray Thermogram Sensor Aseembly and Far Infrared Ray Thermogram Sensor Aseembly Having the Same

Also Published As

Publication number Publication date
JP4835927B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835927B2 (en) Method of splitting hard and brittle plate
JP4478184B2 (en) Laser cleaving method and laser processing apparatus
JP5122611B2 (en) Cutting method
JP4322881B2 (en) Laser processing method and laser processing apparatus
JP4418282B2 (en) Laser processing method
JP4490883B2 (en) Laser processing apparatus and laser processing method
JP5312761B2 (en) Cutting method
JP5089735B2 (en) Laser processing equipment
JP2006315017A (en) Laser beam cutting method, and member to be cut
JP4584322B2 (en) Laser processing method
KR20160117531A (en) Method and system for scribing brittle material followed by chemical etching
JP4703983B2 (en) Cutting method
KR20150016176A (en) Method and apparatus for performing laser filamentation within transparent materials
JP2006130691A (en) Method and apparatus for dividing and cutting fragile material
JP2005179154A (en) Method and apparatus for fracturing brittle material
JP2005159379A (en) Laser beam machining method
JP2005159378A (en) Laser beam machining method
JP2006007619A (en) Laser machining method and device
JP2008036641A (en) Laser beam machining apparatus and method
JP4167094B2 (en) Laser processing method
JP2010239157A (en) Laser cutting method
JP2008110400A (en) Laser processing method
JP2006095529A (en) Laser beam machining apparatus
JP4607537B2 (en) Laser processing method
JP2007185664A (en) Laser beam inside-scribing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4835927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees