JP2007325458A - Vehicular battery pack uniformizing system - Google Patents

Vehicular battery pack uniformizing system Download PDF

Info

Publication number
JP2007325458A
JP2007325458A JP2006155002A JP2006155002A JP2007325458A JP 2007325458 A JP2007325458 A JP 2007325458A JP 2006155002 A JP2006155002 A JP 2006155002A JP 2006155002 A JP2006155002 A JP 2006155002A JP 2007325458 A JP2007325458 A JP 2007325458A
Authority
JP
Japan
Prior art keywords
equalization
assembled battery
processing
command
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006155002A
Other languages
Japanese (ja)
Inventor
Akira Mano
亮 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006155002A priority Critical patent/JP2007325458A/en
Publication of JP2007325458A publication Critical patent/JP2007325458A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress power required for a uniformizing process in a vehicular battery pack uniformizing system. <P>SOLUTION: The vehicular battery pack uniformizing system 10 includes: a plurality of temperature sensors 14 for a battery pack; a plurality of voltage sensors 16 for electric cells for composing the battery pack; a uniformizing circuit 22 for implementing a uniformized discharge from the battery pack; and a control block 300. A uniformization processing instructing section 36 is provided in the control block 30, and determines whether a uniformization processing section 38 is instructed to implement the uniformization process based on a temperature fluctuation. The uniformization processing section 38 includes: a processing condition setting module 40 for setting a processing condition for implementing the uniformization processing for a limited target period or intermittently based on the temperature fluctuation; a voltage monitoring module 42 for monitoring a voltage of each electric cell; and a uniformizing circuit implementing module 44 for actually implementing the discharge in the uniformizing circuit 22. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は車両用組電池均等化システムに係り、特に、組電池を構成する各電池の充電状態又は放電状態を均等化するために車両用電源を用いる車両用組電池均等化システムに関する。   The present invention relates to an assembled battery equalizing system for a vehicle, and more particularly to an assembled battery equalizing system for a vehicle that uses a power source for a vehicle to equalize a charging state or a discharging state of each battery constituting the assembled battery.

車両に搭載される2次電池として、複数の単電池を組み合わせて高電圧を生成する組電池が用いられる。単電池としては、約1.2Vの出力電圧を有するニッケル水素単電池、あるいは約3.6Vの出力電圧を有するリチウムイオン単電池が用いられ、例えば200V程度の出力電圧を得るために、前者でおよそ200個程度の単電池を組み合わせ、後者でおよそ60個程度の単電池を組み合わせて、組電池として構成される。   As a secondary battery mounted on a vehicle, an assembled battery that generates a high voltage by combining a plurality of single cells is used. As the unit cell, a nickel metal hydride unit cell having an output voltage of about 1.2V or a lithium ion unit cell having an output voltage of about 3.6V is used. For example, in order to obtain an output voltage of about 200V, About 200 unit cells are combined, and about 60 unit cells are combined in the latter to form an assembled battery.

組電池を構成する各単電池の特性は必ずしも同じものでないので、組電池全体として充放電を行っても、各単電池の充電状態及び放電状態は同じではない。このように、組電池を構成する各単電池の充電状態あるいは放電状態が異なっていると、組電池全体として充電する場合に、過充電される単電池や、充電不足の単電池があり、組電池全体の特性が低下する。したがって、組電池を構成する各単電池の充電状態又は放電状態を均等化するために、均等化処理が行われている。   Since the characteristics of the individual cells constituting the assembled battery are not necessarily the same, even if charging / discharging is performed for the entire assembled battery, the charged state and the discharged state of each single battery are not the same. In this way, if the charging state or discharging state of each unit cell constituting the assembled battery is different, there are unit cells that are overcharged or insufficiently charged when charging the entire assembled battery. The overall battery characteristics are degraded. Therefore, equalization processing is performed in order to equalize the charge state or discharge state of each unit cell constituting the assembled battery.

例えば特許文献1には、充放電可能な2次電池を単位セルとして複数個直列接続する組電池の充電状態を制御する方法として、イグニッションスイッチがオフされても各セル間のセル電圧のばらつきを解消するための均等化処理を行う充電指令があるときはエンジン動作を継続動作させ、充電停止指令が出た時点でエンジンを停止させることが開示されている。   For example, in Patent Document 1, as a method for controlling the state of charge of a battery pack in which a plurality of chargeable / dischargeable secondary batteries are connected in series as unit cells, the cell voltage variation between the cells is reduced even when the ignition switch is turned off. It is disclosed that when there is a charge command for performing equalization processing to eliminate, the engine operation is continued and the engine is stopped when the charge stop command is issued.

特許文献2には、組電池を構成する各単位セルの充電状態の均等化を、イグニッションスイッチがオフのときにのみセルばらつき調整装置を動作させることが述べられている。イグニッションスイッチがオフのときは組電池を貫通する主電流が流れないので、各単位セルの持つ内部インピーダンスの影響を受けることなく、単位セルのセル電圧に単位セルの充電状態である残存容量が正しく反映された状態であるので、この状態でセルばらつき調整装置を動作させることで、各単位セルの充電状態を正しく均等化できる、と述べられている。   Patent Document 2 describes that the equalization of the state of charge of each unit cell constituting the assembled battery is operated only when the ignition switch is off. When the ignition switch is off, the main current that passes through the battery pack does not flow, so the remaining capacity, which is the unit cell charge state, is correct in the unit cell voltage without being affected by the internal impedance of each unit cell. Since it is reflected, it is stated that the state of charge of each unit cell can be equalized correctly by operating the cell variation adjusting device in this state.

特許文献3には、複数の電池で構成される組電池の充電において、組電池全体に対する定電圧・定電流で行われると、各電池毎に内部抵抗が異なるために、組電池全体として過充電あるいは電圧不足が生じることが述べられている。そして、各電池の電圧と温度とを検出し、各電池の内部抵抗の温度依存性に応じて、充電時の各電池の電圧が等しくなるように、各電池の温度を個別に制御することが述べられている。   In Patent Document 3, when charging an assembled battery composed of a plurality of batteries, if the constant voltage / current is applied to the entire assembled battery, the internal resistance differs for each battery. Or it is stated that a voltage shortage occurs. Then, the voltage and temperature of each battery can be detected, and the temperature of each battery can be individually controlled so that the voltage of each battery during charging is equal according to the temperature dependence of the internal resistance of each battery. It is stated.

特許文献4には、複数のセルから構成される蓄電装置において各セルの残容量であるSOCのばらつきを均等化する処理を12Vバッテリの残容量を考慮して行うことが開示されている。ここでは、均等化処理は長期間にわたる実施を確保するために、車両のイグニッションオフ時などにおいて12Vバッテリの電力を用いて行われるが、イグニッションオフのときは12Vバッテリに充電が行われないので、均等化処理が長期に及ぶと12Vバッテリが過放電状態となる。そこで、12Vバッテリの電圧又は残容量が所定値以下の場合は、均等化処理を停止させることが述べられている。   Patent Document 4 discloses that processing for equalizing variation in SOC, which is the remaining capacity of each cell, is performed in consideration of the remaining capacity of the 12V battery in a power storage device including a plurality of cells. Here, the equalization process is performed using the power of the 12V battery at the time of ignition off of the vehicle in order to ensure the implementation over a long period of time, but the 12V battery is not charged when the ignition is off. If the equalization process takes a long time, the 12V battery is overdischarged. Therefore, it is stated that the equalization process is stopped when the voltage or remaining capacity of the 12V battery is equal to or less than a predetermined value.

特開2002−281687号公報JP 2002-281687 A 特開2002−325370号公報JP 2002-325370 A 特開平8−37736号公報JP-A-8-37736 特開2003−189490号公報JP 2003-189490 A

均等化処理を行うには、それなりの処理期間を要し、また均等化処理のためには組電池の電圧状態が一定の下で行うことが好ましいので、その処理期間の間、その組電池を用いないことが好ましい。これらのことから、均等化処理を、車両運行が終了し、イグニッションオフの期間に実施することが考えられる。しかし、この均等化処理は、充電回路あるいは放電回路を用いるので、そのために電力を必要とするので、イグニッションオフの期間に、車両用電源の電力を用いて実施すると、その車両用電源に充電が行われず、そのままでは、均等化処理を行うことで、車両用電源の電力が一方的に消費されることになる。   In order to perform the equalization process, a certain processing period is required, and for the equalization process, it is preferable to perform the battery pack under a constant voltage state. It is preferable not to use it. For these reasons, it is conceivable that the equalization process is performed during the period when the vehicle operation ends and the ignition is off. However, since this equalization processing uses a charging circuit or a discharging circuit, power is required for this purpose. Therefore, if the power of the vehicle power source is used during the ignition off period, the vehicle power source is charged. If it is not performed, the power of the vehicle power source is unilaterally consumed by performing the equalization process.

本発明の目的は、均等化処理に要する電力を抑制することができる車両用組電池均等化システムを提供することである。   The objective of this invention is providing the assembled battery equalization system for vehicles which can suppress the electric power which an equalization process requires.

本発明に係る車両用組電池均等化システムは、組電池を構成する各電池の充電状態又は放電状態を均等化する均等化処理部と、組電池に関して異なる部位の温度を検出する複数の温度センサと、組電池の温度状態に基づいて均等化処理部の作動を制御する制御部と、を備え、制御部は、複数の温度センサの検出値によって組電池における温度ばらつきを求める手段と、組電池における温度ばらつきが任意に定める所定範囲を超える場合には均等化処理部に対しそれ以後の均等化処理を行う指令を出し、所定範囲内の場合には均等化処理を行わない指令を出す均等化指令手段と、を有することを特徴とする。   An assembled battery equalization system for a vehicle according to the present invention includes an equalization processing unit that equalizes a charging state or a discharging state of each battery constituting the assembled battery, and a plurality of temperature sensors that detect temperatures of different parts with respect to the assembled battery. And a control unit that controls the operation of the equalization processing unit based on the temperature state of the assembled battery, the control unit obtaining a temperature variation in the assembled battery based on detection values of a plurality of temperature sensors, and the assembled battery If the temperature variation in the above exceeds a predetermined range, the equalization processing unit is issued a command to perform the subsequent equalization processing, and if within the predetermined range, the command to perform no equalization processing is issued And command means.

また、均等化指令手段は、均等化処理を行うための処理間隔又は均等化処理を行うための対象期間を設定して、均等化処理を行う指令を出すことが好ましい。   Further, it is preferable that the equalization command means sets a processing interval for performing the equalization process or a target period for performing the equalization process and issues a command for performing the equalization process.

また、均等化指令手段は、組電池の温度ばらつきに応じて、均等化処理を行うための処理間隔又は均等化処理を行うための対象期間を設定することが好ましい。   Moreover, it is preferable that an equalization instruction | indication means sets the process interval for performing an equalization process, or the object period for performing an equalization process according to the temperature variation of an assembled battery.

また、本発明に係る組電池均等化システムにおいて、さらに、車両エンジンの作動を停止するイグニッション停止要求を受け取る手段を備え、均等化指令手段は、イグニッション停止指令を受け取り、組電池における温度ばらつきが所定範囲を超える場合に、均等化処理部に対しそれ以後の均等化処理を行う指令を出し、均等化指令手段が指令を出した後に、イグニッション停止を実行することが好ましい。   The assembled battery equalization system according to the present invention further includes means for receiving an ignition stop request for stopping the operation of the vehicle engine, the equalization command means receives the ignition stop command, and temperature variation in the assembled battery is predetermined. When exceeding the range, it is preferable to issue a command to perform equalization processing thereafter to the equalization processing unit, and execute the ignition stop after the equalization command means issues the command.

また、均等化処理部は、均等化処理を行う指令を受け取ったとき、均等化処理を行うための処理間隔を設定するタイマーを初期化して起動させ、処理間隔に到達するごとにタイマーを初期化して繰り返す手段と、タイマーが設定処理間隔に到達するたびに、組電池の電圧状態を監視し、均等化のための放電を行う必要があるか否か判断する手段と、均等化のための放電を行う必要があると判断されたときに、均等化処理を実行する手段と、を有することが好ましい。   Further, when the equalization processing unit receives an instruction to perform equalization processing, the equalization processing unit initializes and starts a timer for setting a processing interval for performing equalization processing, and initializes the timer every time the processing interval is reached. A means for repeating, a means for monitoring the voltage state of the assembled battery every time the timer reaches the set processing interval, a means for determining whether or not a discharge for equalization is necessary, and a discharge for equalization. It is preferable to have means for performing equalization processing when it is determined that it is necessary to perform the above.

また、均等化処理部は、均等化処理を行う指令を受け取ったとき、均等化処理を行うための対象期間を設定するタイマーを初期化して起動させる手段と、イグニッション停止実行からのタイマー経過時間が、設定対象期間内か否かを判断する手段と、設定対象期間内において組電池の電圧状態を監視し、均等化のための放電を行う必要があるか否か判断する手段と、均等化のための放電を行う必要があると判断されたときに、均等化処理を実行する手段と、を有することが好ましい。   Further, when the equalization processing unit receives a command to perform the equalization process, the equalization processing unit initializes and starts a timer for setting a target period for performing the equalization process, and a timer elapsed time from the execution of the ignition stop. Means for determining whether or not it is within the set target period, means for monitoring the voltage state of the assembled battery within the set target period and determining whether or not discharge for equalization is necessary, and It is preferable to have a means for performing an equalization process when it is determined that it is necessary to perform an electrical discharge.

上記構成の少なくとも1つにより、組電池における温度ばらつきが任意に定める所定範囲を超える場合には均等化処理部に対し均等化処理を行う指令を出し、所定範囲内の場合には均等化処理を行わない指令を出す。組電池における温度ばらつきは、組電池を構成する各単電池の自己放電ばらつきを反映する。したがって、組電池における温度ばらつきが小さいときは、各単電池の放電状態のばらつきが少なく、例えば、各単電池の出力電圧にばらつきがあったとしても、直ちに均等化処理を行う必要がない。上記構成によれば、通常ならば均等化処理を行う場合でも、組電池の温度ばらつきが小さいときは均等化処理を行わないので、均等化処理に要する電力を抑制することができる。   By at least one of the above-described configurations, a command to perform equalization processing is issued to the equalization processing unit when temperature variation in the assembled battery exceeds a predetermined range that is arbitrarily determined, and equalization processing is performed when the temperature variation is within the predetermined range. Issue a command not to be performed. The temperature variation in the assembled battery reflects the self-discharge variation of each unit cell constituting the assembled battery. Therefore, when the temperature variation in the assembled battery is small, the variation in the discharge state of each unit cell is small. For example, even if the output voltage of each unit cell varies, it is not necessary to perform the equalization process immediately. According to the above configuration, even when the equalization process is performed normally, since the equalization process is not performed when the temperature variation of the assembled battery is small, the power required for the equalization process can be suppressed.

また、組電池の温度ばらつきに応じて、均等化処理を行うための処理間隔又は均等化処理を行うための対象期間を設定するので、例えば、温度ばらつきがあまり大きくないときに、処理間隔を長くし、あるいは対象期間を短くして、均等化処理部における消費電力を抑制することができる。   Further, since the processing interval for performing the equalization process or the target period for performing the equalization process is set according to the temperature variation of the assembled battery, for example, when the temperature variation is not so large, the processing interval is increased. Alternatively, the target period can be shortened to reduce power consumption in the equalization processing unit.

また、本発明に係る組電池均等化システムにおいて、均等化指令手段が指令を出した後に、イグニッション停止を実行するので、均等化指令を出した後は組電池の電力を消費せず、それによって電圧状態が一定となる組電池に対し均等化処理を行うことができる。なお、それ以後の均等化処理に要する電力は、補機用の低電圧2次電池を電源として用いる。   Further, in the assembled battery equalization system according to the present invention, the ignition stop is executed after the equalization command means issues a command, so that after the equalization command is issued, the assembled battery power is not consumed. An equalization process can be performed on the battery pack having a constant voltage state. In addition, the electric power required for the subsequent equalization process uses a low-voltage secondary battery for auxiliary equipment as a power source.

また、均等化処理部は、均等化処理を行う指令を受け取ったとき、均等化処理を行うための処理間隔を設定するタイマーを初期化して起動させ、処理間隔に到達するごとにタイマーを初期化して繰り返す手段と、タイマーが設定処理間隔に到達するたびに、組電池の電圧状態を監視し、均等化のための放電を行う必要があるか否かを判断する。つまり、均等化処理指令を受け取っても、タイマーが設定処理間隔に到達したときに初めて電圧監視を行う。したがって、電圧監視を連続的でなく断続的に行い、これにより、均等化のための放電処理も連続的でなく間欠的に行うことができるので、均等化処理のための電力を抑制することができる。   Further, when the equalization processing unit receives an instruction to perform equalization processing, the equalization processing unit initializes and starts a timer for setting a processing interval for performing equalization processing, and initializes the timer every time the processing interval is reached. Each time the means and the timer reach the set processing interval, the voltage state of the assembled battery is monitored to determine whether it is necessary to discharge for equalization. That is, even when the equalization processing command is received, voltage monitoring is performed only when the timer reaches the set processing interval. Therefore, the voltage monitoring is performed intermittently instead of continuously, and thereby the discharge process for equalization can be performed intermittently instead of continuously, so that the power for the equalization process can be suppressed. it can.

また、均等化処理部は、均等化処理を行う指令を受け取ったとき、均等化処理を行うための対象期間を設定するタイマーを初期化して起動させ、イグニッション停止実行からのタイマー経過時間が、設定対象期間内の間に限って、組電池の電圧状態を監視し、均等化のための放電を行う必要があるか否かを判断する。この場合は、設定対象期間の間、連続的に電圧監視及びその結果による均等化放電処理が行われるが、設定対象期間が終了すると、それ以後は均等化処理が行われない。上記のように、設定対象期間は、電池の温度ばらつきに応じて設定されるので、無駄な均等化処理を行うことが防止され、これによって、均等化処理に要する電力を抑制することができる。   Further, when the equalization processing unit receives an instruction to perform the equalization process, the equalization process unit initializes and starts a timer for setting a target period for performing the equalization process, and the timer elapsed time from the execution of the ignition stop is set. Only during the target period, the voltage state of the assembled battery is monitored to determine whether or not discharge for equalization needs to be performed. In this case, the voltage monitoring and the equalization discharge process based on the result are continuously performed during the setting target period. However, after the setting target period ends, the equalization process is not performed thereafter. As described above, since the setting target period is set according to the temperature variation of the battery, it is possible to prevent unnecessary equalization processing, thereby suppressing power required for the equalization processing.

以下に図面を用いて、本発明に係る実施の形態に付き、詳細に説明する。以下では、均等化処理の対象の組電池を、ニッケル水素単電池を複数組み合わせて、あるいはリチウムイオン単電池を複数組み合わせて、高電圧バッテリとして構成するものとして説明するが、これ以外の種類の単電池を複数組み合わせる組電池であってもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, it is assumed that the assembled battery to be equalized is configured as a high-voltage battery by combining a plurality of nickel-metal hydride cells or a plurality of lithium-ion cells, but other types of cells are used. An assembled battery in which a plurality of batteries are combined may be used.

図1は、車両用組電池均等化システム10の構成を示すブロック図である。車両用組電池均等化システム10は、電池パック12に収容される組電池を構成する複数の単電池について、それらの充電状態又は放電状態を均等化する機能を有するものである。車両用組電池均等化システム10は、電池パック12に関する温度を検出するための複数の温度センサ14と、電池パック12に収容される組電池を構成する各単電池の電圧を検出する複数の電圧センサ16と、必要なときに電池パック12に収容される組電池の均等化放電を実行する均等化回路22と、均等化処理全体を制御する制御ブロック30と、制御ブロック30と各温度センサ14との間のインタフェース部である温度検出I/F18と、制御ブロックと各電圧センサ16との間のインタフェース部である電圧検出I/F20とを含んで構成される。これらの要素は、相互に接続される。   FIG. 1 is a block diagram showing a configuration of an assembled battery equalization system 10 for a vehicle. The assembled battery equalization system 10 for a vehicle has a function of equalizing the charged state or the discharged state of a plurality of single cells constituting the assembled battery housed in the battery pack 12. The assembled battery equalization system 10 for a vehicle includes a plurality of temperature sensors 14 for detecting temperatures related to the battery pack 12 and a plurality of voltages for detecting voltages of the individual cells constituting the assembled battery housed in the battery pack 12. The sensor 16, the equalization circuit 22 that performs equalization discharge of the assembled battery accommodated in the battery pack 12 when necessary, the control block 30 that controls the entire equalization process, the control block 30, and each temperature sensor 14 And a temperature detection I / F 18 that is an interface between the control block and each voltage sensor 16, and a voltage detection I / F 20 that is an interface between the control block and each voltage sensor 16. These elements are connected to each other.

電池パック12は、上記のように組電池が収容されるユニットで、組電池の他に、その周辺の要素、例えばシステムメインリレー、DC/DCコンバータ、場合によって昇圧コンバータ、インバータ回路等を含んで構成される。組電池は、複数の単電池を組み合わせて高圧バッテリとして構成されるもので、車両の駆動用モータの高電圧電源として用いられるものである。また、組電池は、適当なDC/DCコンバータ等を用いて、車両用低圧バッテリを充電する機能を有する。なお、制御ブロック30、均等化回路22等の動作には、この車両用低電圧バッテリの電力が用いられる。   The battery pack 12 is a unit in which the assembled battery is accommodated as described above. In addition to the assembled battery, the battery pack 12 includes peripheral elements such as a system main relay, a DC / DC converter, a boost converter, an inverter circuit, and the like. Composed. The assembled battery is configured as a high voltage battery by combining a plurality of single cells, and is used as a high voltage power source for a vehicle driving motor. The assembled battery has a function of charging a low-voltage battery for a vehicle using an appropriate DC / DC converter or the like. The electric power of the low-voltage battery for vehicles is used for the operations of the control block 30, the equalization circuit 22, and the like.

組電池である高圧バッテリは、例えばリチウムイオン電池又はニッケル水素電池等の単電池を複数組み合わせて構成される。ニッケル水素単電池は約1.2V、リチウムイオン単電池は、約3.6Vの出力電圧を有するので、例えば200V系の高圧バッテリの場合は、前者でおよそ200個程度の単電池を組み合わせ、後者でおよそ60個程度の単電池を組み合わせて構成される。   A high voltage battery which is an assembled battery is configured by combining a plurality of single cells such as lithium ion batteries or nickel metal hydride batteries. Since nickel-metal hydride cells have an output voltage of about 1.2V and lithium-ion cells have an output voltage of about 3.6V, for example, in the case of a 200V system high-voltage battery, the former is combined with about 200 cells, and the latter It is configured by combining about 60 single cells.

複数の温度センサ14は、組電池に関する異なる部位の温度を検出するためのもので、組電池の複数の部位の各温度、及び、組電池の周辺の温度を検出する。検出された結果は、温度検出I/F18を介して制御ブロック30に伝送される。制御ブロック30では、これらの温度センサ14の検出結果に基づき、後述の温度ばらつき判断部34の機能により、組電池における温度ばらつきが求められる。組電池における温度ばらつきは、組電池を構成する各単電池の自己放電ばらつきを反映する。つまり、複数の温度センサ14は、各単電池の間の放電ばらつきの程度を判断するために用いられるものである。   The plurality of temperature sensors 14 are for detecting temperatures of different parts related to the assembled battery, and detect temperatures of a plurality of parts of the assembled battery and temperatures around the assembled battery. The detected result is transmitted to the control block 30 via the temperature detection I / F 18. In the control block 30, based on the detection results of these temperature sensors 14, temperature variations in the assembled battery are obtained by the function of the temperature variation determination unit 34 described later. The temperature variation in the assembled battery reflects the self-discharge variation of each unit cell constituting the assembled battery. That is, the plurality of temperature sensors 14 are used to determine the degree of discharge variation among the individual cells.

均等化処理は、各単電池の充電状態又は放電状態のばらつきを少なくするために行うものであるから、各単電池の充電状態を示すSOC(State of Charge)に従って行うことが好ましい。したがって、後述する複数の電圧センサ16による各単電池の電圧検出に基づく電圧ばらつきの結果とは別に、あるいは、電圧ばらつきの結果と合わせて、組電池の温度ばらつきに基づいて、均等化処理の必要性を判断することが好ましい。複数の温度センサ14は、その観点から設けられたものである。   Since the equalization process is performed in order to reduce the variation in the charging state or discharging state of each unit cell, it is preferably performed according to SOC (State of Charge) indicating the charging state of each unit cell. Therefore, it is necessary to perform equalization processing based on the temperature variation of the assembled battery separately from the result of the voltage variation based on the voltage detection of each single cell by the plurality of voltage sensors 16 described later or together with the result of the voltage variation. It is preferable to determine sex. The plurality of temperature sensors 14 are provided from that viewpoint.

温度センサ14が設けられる位置は、組電池の両端部及び中央部を含む部位が好ましい。組電池を構成する各単電池は、放電の際の電池反応によって発熱するが、組電池の両端部の単電池は一方側が外気に接するのに対し、組電池の中央部の単電池は両側が他の単電池に接しているので、放電による発熱状態が同じでも、放熱状態が異なるので、温度が異なることが多い。したがって、組電池内部の温度ばらつきを検出するために、組電池の両端部及び中央部を含む部位に、温度センサ14が配置されることがよい。また、組電池の温度ばらつきは、電池パック12の外気の温度にも影響される。組電池の温度ばらつきに影響を与える外気温度には、車両の外部気温の他、車両内部の温度、電池パック12内部の温度も考えられる。特に、電池パック12の内部に、他の発熱する電子部品等が収容される場合は、その発熱電子部品の配置にも影響される。したがって、電池パック12の内外を含む組電池周辺の適当な部位に、温度センサ14が配置されることが好ましく、その部位の数は複数であってもよい。   The position where the temperature sensor 14 is provided is preferably a portion including both end portions and the center portion of the assembled battery. Each of the cells constituting the assembled battery generates heat due to the battery reaction during discharge, but the cells at both ends of the assembled battery are in contact with the outside air, whereas the cell at the center of the assembled battery is on both sides. Since it is in contact with other unit cells, even if the heat generation state due to discharge is the same, the heat dissipation state is different, so the temperature is often different. Therefore, in order to detect temperature variations in the assembled battery, the temperature sensor 14 is preferably arranged at a portion including both ends and the center of the assembled battery. Further, the temperature variation of the assembled battery is also affected by the temperature of the outside air of the battery pack 12. As the outside air temperature that affects the temperature variation of the assembled battery, the temperature inside the vehicle and the temperature inside the battery pack 12 can be considered in addition to the outside temperature of the vehicle. In particular, when other electronic components that generate heat are accommodated in the battery pack 12, the arrangement of the electronic components is also affected. Therefore, it is preferable that the temperature sensor 14 is disposed at an appropriate portion around the assembled battery including the inside and outside of the battery pack 12, and the number of the portions may be plural.

複数の電圧センサ16は、組電池を構成する各単電池の出力電圧を検出するセンサである。均等化処理は、上記のように、各電池の充電状態又は放電状態を揃えるために行われるが、充電状態又は放電状態を揃える指標として、各単電池の電圧が用いられる。複数の電圧センサ16は、制御ブロック30の電圧監視モジュール42の機能によって、電圧検出I/F20を介して検出が指令され、その検出結果は制御ブロック30に伝送される。   The plurality of voltage sensors 16 are sensors that detect the output voltage of each single battery constituting the assembled battery. As described above, the equalization process is performed in order to align the charging state or discharging state of each battery, and the voltage of each single cell is used as an index for aligning the charging state or discharging state. The detection of the plurality of voltage sensors 16 is instructed via the voltage detection I / F 20 by the function of the voltage monitoring module 42 of the control block 30, and the detection results are transmitted to the control block 30.

均等化回路22は、組電池を構成する各単電池について、均等化のための放電処理を行う回路である。具体的には、放電期間を制御するためのスイッチと、放電負荷としての抵抗素子等で構成することができる。   The equalization circuit 22 is a circuit that performs a discharge process for equalization on each unit cell constituting the assembled battery. Specifically, it can be composed of a switch for controlling the discharge period, a resistance element as a discharge load, and the like.

制御ブロック30は、均等化処理全体を制御する機能を有するコンピュータである。制御ブロック30は、単独のコンピュータとして構成することもでき、車両用の他のコンピュータに、その機能を兼ねさせることもできる。例えば、ハイブリッド車両の場合、全体の制御を行うハイブリッドCPUに、この制御ブロック30の機能を実行させてもよい。   The control block 30 is a computer having a function of controlling the entire equalization process. The control block 30 can also be configured as a single computer, and another computer for the vehicle can also serve as its function. For example, in the case of a hybrid vehicle, the function of the control block 30 may be executed by a hybrid CPU that performs overall control.

制御ブロック30は、車両に対しイグニッションオフ指令が出されたときに、その指令を受け取って均等化に関する一連の前処理を行い、その後にイグニッションオフを実行するIGオフ処理部32と、複数の温度センサ14の検出結果に基づき組電池に関する温度ばらつきを判断する温度ばらつき判断部34と、均等化処理部38に均等化処理を行う指令を出すか否かを判断する均等化処理指令部36と、均等化回路22に関する処理を行う均等化処理部38を含んで構成される。均等化処理部38は、温度ばらつき等に基づいて均等化処理を行うための処理条件を設定する処理条件設定モジュール40と、複数の電圧センサ16の検出値を監視する電圧監視モジュール42と、実際に均等化回路22において放電を実行させる均等化回路実行モジュール44とを含んで構成される。   When an ignition-off command is issued to the vehicle, the control block 30 receives the command, performs a series of pre-processing relating to equalization, and then performs ignition-off, and a plurality of temperatures. A temperature variation determination unit 34 that determines temperature variation related to the assembled battery based on the detection result of the sensor 14; an equalization processing command unit 36 that determines whether or not to issue a command to perform equalization processing to the equalization processing unit 38; An equalization processing unit 38 that performs processing related to the equalization circuit 22 is included. The equalization processing unit 38 includes a processing condition setting module 40 that sets processing conditions for performing equalization processing based on temperature variation and the like, a voltage monitoring module 42 that monitors the detection values of the plurality of voltage sensors 16, and The equalization circuit 22 includes an equalization circuit execution module 44 that executes discharge.

これらの機能は、ソフトウェアで実現でき、具体的には、対応する均等化処理プログラムを実行することで実現できる。これらの機能の一部をハードウェアで実現してもよい。   These functions can be realized by software, and specifically by executing a corresponding equalization processing program. Some of these functions may be realized by hardware.

なお、均等化処理部38は、均等化処理指令部36から均等化処理指令を受け取ると、それ以後は他の指令を受けなくても内部的に処理が可能であるので、これを独立のブロックとすることができる。   When the equalization processing unit 38 receives the equalization processing command from the equalization processing command unit 36, it can be processed internally without receiving another command thereafter. It can be.

上記構成の車両用組電池均等化システム10の動作、特に制御ブロック30の各機能について、図2、図4のフローチャート、及び図3、図5の均等化の様子を示す図を用いて以下に説明する。図2、図4は、車両用組電池について、2つの方法による均等化処理についての手順を示すフローチャートであり、各手順は、対応する均等化処理プログラムの各処理手順に該当する。2つの方法を区別して、図2のフローチャートの手順に従うものを第1均等化処理方法、図4のフローチャートの手順に従うものを第2均等化処理方法と呼ぶことにすると、図3は第1均等化処理方法の場合における組電池における温度ばらつき及び電圧ばらつきの時間経過を示し、図5は第2均等化処理の場合における組電池における温度ばらつき及び電圧ばらつきの時間経過を示すものである。これらの図に示されるように、第1均等化処理方法と第2均等化処理方法とでは共通部分が多い。そこで、最初に第1均等化処理方法について説明し、次に第2均等化処理方法について、第1均等化処理方法との相違を中心に説明する。   The operation of the assembled battery equalization system 10 for a vehicle having the above-described configuration, in particular, each function of the control block 30, will be described below with reference to the flowcharts of FIGS. 2 and 4 and the diagrams showing the state of equalization in FIGS. explain. FIG. 2 and FIG. 4 are flowcharts showing the procedure for equalization processing by two methods for the assembled battery for vehicles, and each procedure corresponds to each processing procedure of the corresponding equalization processing program. If the two methods are distinguished and the method according to the flowchart of FIG. 2 is called the first equalization processing method and the method according to the flowchart of FIG. 4 is called the second equalization processing method, FIG. FIG. 5 shows the time lapse of temperature variation and voltage variation in the assembled battery in the case of the second equalization process. As shown in these drawings, the first equalization processing method and the second equalization processing method have many common parts. Therefore, the first equalization processing method will be described first, and then the second equalization processing method will be described focusing on differences from the first equalization processing method.

図2は、第1均等化処理方法による組電池均等化の手順を示すフローチャートである。最初に、イグニッションオフ要求を受け取る(S10)と、IGオフ処理部32の機能により、すぐにイグニッションオフを実行せず、S12に進む。S12では、電池パックの複数の温度が取得される。具体的には、電池ばらつき判断部34の機能により、温度検出I/F18を介し、複数の温度センサ14に指令をだし、電池パック12に関する複数の温度を検出させ、その検出結果を伝送させて受け取る。そして、受け取った複数の検出結果に基づき、組電池における温度ばらつきを求め、予め定めておいた判断基準と比較し、
組電池に関する温度ばらつきが判断される(S14)。
FIG. 2 is a flowchart showing a procedure of battery pack equalization by the first equalization processing method. First, when an ignition-off request is received (S10), the ignition-off is not immediately executed by the function of the IG-off processing unit 32, and the process proceeds to S12. In S12, a plurality of temperatures of the battery pack are acquired. Specifically, the function of the battery variation determination unit 34 instructs the plurality of temperature sensors 14 via the temperature detection I / F 18 to detect a plurality of temperatures related to the battery pack 12 and transmit the detection results. receive. And based on a plurality of received detection results, temperature variation in the assembled battery is obtained, and compared with a predetermined criterion,
The temperature variation regarding the assembled battery is determined (S14).

組電池に関する温度ばらつきの判断は、その時点における組電池内部の温度ばらつきの判断の他に、温度ばらつきの拡大あるいは収束の速さ等も判断される。すなわち、組電池の両端部と中央部における温度の差から、その時点における組電池内部の温度ばらつきが求められる。また、電池パック12の内部の温度、電池パック12の外部の温度、及び、これらと組電池の温度との差等から、その時点における温度ばらつきが速く収束して少なくなるか、逆にさらに拡大するか、長時間かけても温度ばらつきは収束せず、そのまま維持されそうか、等が判断される。   The determination of the temperature variation relating to the assembled battery is made not only of the temperature variation inside the assembled battery at that time but also the speed of the expansion or convergence of the temperature variation. That is, the temperature variation inside the assembled battery at that time is obtained from the difference in temperature between both ends and the center of the assembled battery. In addition, the temperature variation at that time quickly converges or decreases due to the temperature inside the battery pack 12, the temperature outside the battery pack 12, and the difference between these and the temperature of the assembled battery, etc. It is determined whether the temperature variation does not converge even if it takes a long time, and is likely to be maintained as it is.

例えば、寒冷地において車両運行を停止した直後のように、今まで組電池において盛んに充放電が行われていて、組電池自体の温度ばらつきが少なくても、外気温度が組電池自体の温度よりかなり低い場合は、組電池の端部が急速に冷やされ、組電池の温度ばらつきが拡大することが予測される。逆に、車両があまり駆動されないうちに停止した場合のように、組電池の充放電があまり行われず、組電池自体の温度自体がかなり低く、温度ばらつきが大きくても、外気温度が組電池自体の温度より適当に高い場合は、組電池の端部が適当に暖められ、組電池の温度ばらつきが収束することが予測される。このように、組電池内外の温度等を考慮して、組電池の温度ばらつきの今後の推移を判断することができる。   For example, even if the battery pack has been actively charged and discharged up to now, such as immediately after stopping the vehicle operation in a cold region, even if the temperature variation of the battery pack itself is small, the outside air temperature is higher than the temperature of the battery pack itself. When it is considerably low, the end of the assembled battery is rapidly cooled, and it is predicted that the temperature variation of the assembled battery will increase. On the contrary, the battery pack is not charged or discharged so much as when the vehicle is stopped before it is driven too much, the temperature of the battery pack itself is considerably low, and even if the temperature variation is large, the outside air temperature is When the temperature is appropriately higher than the above temperature, it is predicted that the end of the assembled battery is appropriately warmed and the temperature variation of the assembled battery converges. Thus, the future transition of the temperature variation of the assembled battery can be determined in consideration of the temperature inside and outside the assembled battery.

この温度ばらつき判断の結果に基づき、均等化処理が必要か否かについて判断される(S16)。この判断は、組電池内部の温度ばらつきの大きさと、予め定めた基準範囲とを比較して行われる。例えば、組電池内部の複数の部位の温度の最大値と最小値との温度差についての基準範囲を4℃とすると、組電池内部の最大温度差が4℃を超えるときに均等化処理が必要と判断される。もちろんこれ以外の値を基準範囲とすることもできる。   Based on the temperature variation determination result, it is determined whether or not equalization processing is necessary (S16). This determination is made by comparing the magnitude of temperature variation inside the assembled battery with a predetermined reference range. For example, if the reference range for the temperature difference between the maximum value and the minimum value of a plurality of parts in the assembled battery is 4 ° C., equalization processing is required when the maximum temperature difference in the assembled battery exceeds 4 ° C. It is judged. Of course, other values can be used as the reference range.

この判断に、組電池の最大温度差の今後の推移の判断を加えることもできる。例えば、組電池内部の最大温度差が4.1℃等であって、上記判断基準では均等化処理が必要となる場合でも、組電池内部の最大温度差の今後の推移の判断が、数分以内に3℃のばらつきに収束するとの内容であるときは、均等化処理が不要であると判断することができる。このように、組電池の最大温度差の今後の推移の判断を採用する基準は、たとえば、組電池内部の最大温度差が基準範囲を超えている場合であって、数分以内に組電池内部の最大温度差が基準範囲以内に収束する場合とすることができる。   To this determination, it is possible to add a determination of future transition of the maximum temperature difference of the assembled battery. For example, even if the maximum temperature difference inside the assembled battery is 4.1 ° C. and the like, and even if the equalization process is required according to the above criteria, the determination of the future transition of the maximum temperature difference inside the assembled battery is several minutes. If the content converges to a variation of 3 ° C. within, it can be determined that the equalization process is unnecessary. In this way, the criterion for adopting the judgment of future transition of the maximum temperature difference of the assembled battery is, for example, when the maximum temperature difference inside the assembled battery exceeds the reference range, and within the assembled battery within a few minutes The maximum temperature difference can converge within the reference range.

均等化処理が必要であるとは判断されないときは、均等化フラグがオフされ(S18)均等化処理が必要であると判断されると、均等化フラグがオンされる(S20)。均等化フラグは、均等化処理部38に対し発行されるので、S18,S20の工程は、均等化処理指令に相当し、制御ブロック30の均等化処理指令部36の機能によって実行される。   When it is not determined that the equalization process is necessary, the equalization flag is turned off (S18). When it is determined that the equalization process is necessary, the equalization flag is turned on (S20). Since the equalization flag is issued to the equalization processing unit 38, steps S18 and S20 correspond to equalization processing commands and are executed by the function of the equalization processing command unit 36 of the control block 30.

均等化フラグがオンされると、さらに、電圧監視間隔が設定される(S22)。電圧監視間隔とは、均等化処理部38において均等化処理を行うために、複数の電圧センサ16の検出値に基づいて電圧ばらつきを判断するが、その電圧ばらつきを判断するために電圧を検出するタイミングの間隔のことである。つまり、以下における均等化処理においては、時間的において連続的に均等化処理を実行するのではなく、時間的において離散的に均等化処理を実行するものとし、均等化処理に要する電力を抑制する。   When the equalization flag is turned on, a voltage monitoring interval is further set (S22). The voltage monitoring interval determines voltage variation based on detection values of the plurality of voltage sensors 16 in order to perform equalization processing in the equalization processing unit 38, but detects voltage in order to determine the voltage variation. It is a timing interval. In other words, in the equalization processing described below, equalization processing is not performed continuously in time, but is performed discretely in time, and the power required for the equalization processing is suppressed. .

電圧監視間隔は、S14における温度ばらつきの結果が反映される。例えば、組電池内部の温度ばらつきが大きいときは、電圧監視間隔を短くし、頻繁に均等化処理を実行して、各単電池の間の充電状態及び放電状態を短い期間に均等化する。逆に、組電池内部の温度ばらつきがあまり大きくないときは、電圧監視間隔を長くし、均等化処理に要する電力を削減することができる。このように、電圧監視間隔は、組電池内部の最大温度差に応じて設定することができる。設定の基準は、予め、ルックアップテーブルに記憶するものとし、これを組電池内部の最大温度差と比較し、設定すべき電圧監視間隔を読み出すことができる。あるいは予め計算式を定めておき、その計算式に組電池内部の最大温度差を入力し、設定すべき電圧監視間隔を出力するものとしてもよい。   The voltage monitoring interval reflects the result of temperature variation in S14. For example, when the temperature variation in the assembled battery is large, the voltage monitoring interval is shortened, and the equalization process is frequently executed to equalize the charge state and the discharge state between the single cells in a short period. On the contrary, when the temperature variation in the assembled battery is not so large, the voltage monitoring interval can be lengthened and the power required for the equalization process can be reduced. Thus, the voltage monitoring interval can be set according to the maximum temperature difference inside the assembled battery. The reference for setting is stored in advance in a lookup table, and this can be compared with the maximum temperature difference inside the assembled battery, and the voltage monitoring interval to be set can be read out. Alternatively, a calculation formula may be determined in advance, a maximum temperature difference inside the assembled battery may be input to the calculation formula, and a voltage monitoring interval to be set may be output.

電圧監視間隔の設定基準に、組電池の最大温度差の今後の推移の判断結果を加えることもできる。例えば、組電池内部の最大温度差の今後の推移の判断が、最大温度差を拡大する方向であるときは電圧監視間隔を短くし、頻繁に均等化処理を実行して、最大温度差の拡大を抑制する方向に均等化を行う。逆に、組電池内部の最大温度差の今後の推移の判断が、最大温度差を収束する方向であるときは電圧監視間隔を長くし、均等化処理に要する電力を削減することができる。   The judgment result of the future transition of the maximum temperature difference of the assembled battery can be added to the setting standard of the voltage monitoring interval. For example, if the future transition of the maximum temperature difference inside the assembled battery is in the direction of expanding the maximum temperature difference, the voltage monitoring interval is shortened and frequent equalization is performed to increase the maximum temperature difference. Perform equalization in the direction to suppress On the contrary, when the determination of the future transition of the maximum temperature difference in the assembled battery is in a direction to converge the maximum temperature difference, the voltage monitoring interval can be lengthened, and the power required for the equalization process can be reduced.

S22で電圧監視間隔が設定されると、均等化フラグオンの指令と共に、均等化処理部38にその内容が送られる。S18で均等化フラグオフとされると、その指令も均等化処理部38に送られる。このようにして、S18の処理、又はS22の処理が終了すると、IGオフ処理部32の機能により、イグニッションオフの処理が実行される(S24)。これ以後、組電池の電力が消費されず、安定した電圧状態の組電池に対して、均等化処理を進めることができる。IGオフ要求を取得してすぐイグニッションオフを実行しないのは、温度ばらつきを判断し、均等化処理の要不要を判断し、電圧監視間隔を設定するのは、具体的な均等化処理である放電処理の前段階であるので、車両の運行中における他の処理と同様な扱いとするためである。なお、後述する第2均等化処理方法と異なり、S12,S14,S16,S18,S20,S22のいずれの工程もイグニッションオフ処理に関わりがないので、この第1均等化処理方法においては、場合によって、IGオフ要求を受け取ってすぐイグニッションオフを実行するものとしてもよい。   When the voltage monitoring interval is set in S22, the content is sent to the equalization processing unit 38 together with the command to turn on the equalization flag. When the equalization flag is turned off in S18, the command is also sent to the equalization processing unit 38. Thus, when the process of S18 or the process of S22 is completed, an ignition-off process is executed by the function of the IG-off processing unit 32 (S24). Thereafter, the power of the assembled battery is not consumed, and the equalization process can be performed on the assembled battery in a stable voltage state. The ignition is not executed immediately after the IG OFF request is acquired. The temperature variation is determined, the necessity of the equalization process is determined, and the voltage monitoring interval is set by a specific equalization process. This is because it is in the previous stage of processing, so that it is handled in the same manner as other processing during operation of the vehicle. Note that, unlike the second equalization processing method described later, none of the steps S12, S14, S16, S18, S20, and S22 is related to the ignition-off processing. The ignition-off may be executed immediately after receiving the IG-off request.

S30以後の工程は、均等化処理部38によって実行される処理工程である。最初に、均等化処理部38は、均等化処理指令部36から出された指令が均等化フラグオンであるか否かを判断する(S30)。指令が均等化フラグオフであるときは、S46に進み、均等化回路と、高電圧電池である組電池とを切り離し、均等化に関するすべての処理を終了する。指令が均等化フラグオンであるときは、予め備えるタイマーに設定すべき設定時間tをS22で定められた電圧監視間隔に設定する(S32)。この処理は、均等化処理部38の処理条件設定モジュール40の機能により実行される。   The steps after S30 are processing steps executed by the equalization processing unit 38. First, the equalization processing unit 38 determines whether or not the command issued from the equalization processing command unit 36 is an equalization flag on (S30). If the command is equalization flag OFF, the process proceeds to S46, where the equalization circuit and the assembled battery that is a high-voltage battery are disconnected, and all the processes related to equalization are terminated. When the command is equalization flag ON, the set time t to be set in the timer provided in advance is set to the voltage monitoring interval determined in S22 (S32). This processing is executed by the function of the processing condition setting module 40 of the equalization processing unit 38.

ついで、タイマーがリセットされ(S34)、この時点からタイマーが起動し、タイマーの経過時間が設定時間tに到達したか否かが判断され(S36)、タイマーの経過時間が設定時間tに到達したと判断されると、電圧監視が行われる(S38)。具体的には、電圧監視モジュール42の機能により、電圧検出I/F20を介して複数の電圧センサ16に各単電池の電圧検出が指令され、検出された各電圧値が制御ブロック30に伝送される。   Next, the timer is reset (S34), the timer is started from this point, and it is determined whether the elapsed time of the timer has reached the set time t (S36), and the elapsed time of the timer has reached the set time t. If it is determined, voltage monitoring is performed (S38). Specifically, the function of the voltage monitoring module 42 instructs the plurality of voltage sensors 16 to detect the voltage of each single cell via the voltage detection I / F 20, and each detected voltage value is transmitted to the control block 30. The

電圧監視によって取得された各単電池の電圧値に基づき、均等化処理放電が必要か否かについて判断される(S40)。具体的には、予め定められた電圧ばらつき基準範囲と、各単電池間の最大電圧差とが比較され、最大電圧差が電圧ばらつき基準範囲を超えるときに、均等化処理放電が必要と判断することができる。例えば、単電池の公称出力電圧に対し、幅で10%を電圧ばらつき基準範囲とすることができる。もちろんこれ以外の幅を電圧ばらつき基準範囲とすることもできる。   Based on the voltage value of each unit cell acquired by voltage monitoring, it is determined whether or not equalization processing discharge is necessary (S40). Specifically, the predetermined voltage variation reference range is compared with the maximum voltage difference between the individual cells, and when the maximum voltage difference exceeds the voltage variation reference range, it is determined that equalization processing discharge is necessary. be able to. For example, the voltage variation reference range can be 10% in width with respect to the nominal output voltage of the unit cell. Of course, other widths can be used as the voltage variation reference range.

均等化処理放電が必要と判断されると、均等化回路がオンされ、均等化処理放電が実行される(S42)。そして、再びS34に戻る。すなわち、タイマーが再びリセットされ、次の電圧監視間隔にタイマーの経過時間が到達すると電圧監視が再び行われる。S34に戻るのは、均等化処理放電が完了してからとしてもよく、あるいは、均等化処理放電の完了に関係なく、均等化処理放電が開始したときとしてもよい。後者の場合は、電圧監視間隔よりも短い時間で均等化処理放電が完了する必要がある。   If it is determined that the equalization process discharge is necessary, the equalization circuit is turned on and the equalization process discharge is executed (S42). And it returns to S34 again. That is, the timer is reset again, and voltage monitoring is performed again when the elapsed time of the timer reaches the next voltage monitoring interval. The process returns to S34 after the equalization process discharge is completed, or when the equalization process discharge is started regardless of the completion of the equalization process discharge. In the latter case, the equalization discharge needs to be completed in a time shorter than the voltage monitoring interval.

本発明に係る実施の形態における車両用組電池均等化システムの構成を示すブロック図である。It is a block diagram which shows the structure of the assembled battery equalization system for vehicles in embodiment which concerns on this invention. 本発明に係る実施の形態において、第1均等化処理方法による組電池均等化の手順を示すフローチャートである。In embodiment which concerns on this invention, it is a flowchart which shows the procedure of the assembled battery equalization by the 1st equalization processing method. 本発明に係る実施の形態において、第1均等化処理方法の場合における組電池における温度ばらつき及び電圧ばらつきの時間経過を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the time passage of the temperature variation and voltage variation in an assembled battery in the case of the 1st equalization processing method. 本発明に係る実施の形態において、第2均等化処理方法による組電池均等化の手順を示すフローチャートである。In embodiment which concerns on this invention, it is a flowchart which shows the procedure of the assembled battery equalization by the 2nd equalization processing method. 本発明に係る実施の形態において、第2均等化処理方法の場合における組電池における温度ばらつき及び電圧ばらつきの時間経過を説明する図である。In embodiment which concerns on this invention, it is a figure explaining the time passage of the temperature variation and voltage variation in an assembled battery in the case of the 2nd equalization processing method.

符号の説明Explanation of symbols

10 車両用組電池均等化システム、12 電池パック、14 温度センサ、16 電圧センサ、18 温度検出I/F、20 電圧検出I/F、22 均等化回路、30 制御ブロック、32 IGオフ処理部、34 温度ばらつき判断部、36 均等化処理指令部、38 均等化処理部、40 処理条件設定モジュール、42 電圧監視モジュール、44 均等化回路実行モジュール。   DESCRIPTION OF SYMBOLS 10 Vehicle assembled battery equalization system, 12 Battery pack, 14 Temperature sensor, 16 Voltage sensor, 18 Temperature detection I / F, 20 Voltage detection I / F, 22 Equalization circuit, 30 Control block, 32 IG off process part, 34 temperature variation determination unit, 36 equalization processing command unit, 38 equalization processing unit, 40 processing condition setting module, 42 voltage monitoring module, 44 equalization circuit execution module.

Claims (6)

組電池を構成する各電池の充電状態又は放電状態を均等化する均等化処理部と、
組電池に関して異なる部位の温度を検出する複数の温度センサと、
組電池の温度状態に基づいて均等化処理部の作動を制御する制御部と、
を備え、
制御部は、
複数の温度センサの検出値によって組電池における温度ばらつきを求める手段と、
組電池における温度ばらつきが任意に定める所定範囲を超える場合には均等化処理部に対しそれ以後の均等化処理を行う指令を出し、所定範囲内の場合には均等化処理を行わない指令を出す均等化指令手段と、
を有することを特徴とする車両用組電池均等化システム。
An equalization processing unit for equalizing the state of charge or discharge of each battery constituting the assembled battery;
A plurality of temperature sensors for detecting temperatures of different parts with respect to the assembled battery;
A control unit for controlling the operation of the equalization processing unit based on the temperature state of the assembled battery;
With
The control unit
Means for obtaining temperature variations in the assembled battery based on detection values of a plurality of temperature sensors;
If the temperature variation in the assembled battery exceeds a predetermined range that is arbitrarily determined, a command to perform equalization processing thereafter is issued to the equalization processing unit, and if it is within the predetermined range, a command not to perform equalization processing is issued. Equalization command means;
An assembled battery equalizing system for a vehicle characterized by comprising:
請求項1に記載の組電池均等化システムにおいて、
均等化指令手段は、均等化処理を行うための処理間隔又は均等化処理を行うための対象期間を設定して、均等化処理を行う指令を出すことを特徴とする車両用組電池均等化システム。
The assembled battery equalization system according to claim 1,
The equalization command means sets a processing interval for performing the equalization process or a target period for performing the equalization process, and issues a command for performing the equalization process. .
請求項2に記載の組電池均等化システムにおいて、
均等化指令手段は、組電池の温度ばらつきに応じて、均等化処理を行うための処理間隔又は均等化処理を行うための対象期間を設定することを特徴とする車両用組電池均等化システム。
The assembled battery equalization system according to claim 2,
The equalization command means sets a processing interval for performing equalization processing or a target period for performing equalization processing in accordance with temperature variation of the assembled batteries.
請求項2又は請求項3に記載の組電池均等化システムにおいて、さらに、車両エンジンの作動を停止するイグニッション停止要求を受け取る手段を備え、
均等化指令手段は、イグニッション停止指令を受け取り、組電池における温度ばらつきが所定範囲を超える場合に、均等化処理部に対しそれ以後の均等化処理を行う指令を出し、
均等化指令手段が指令を出した後に、イグニッション停止を実行することを特徴とする車両用組電池均等化システム。
The assembled battery equalization system according to claim 2 or 3, further comprising means for receiving an ignition stop request for stopping the operation of the vehicle engine,
The equalization command means receives the ignition stop command, and when the temperature variation in the assembled battery exceeds a predetermined range, issues a command to perform the subsequent equalization processing to the equalization processing unit,
An assembled battery equalizing system for a vehicle, characterized in that an ignition stop is executed after the equalization command means issues a command.
請求項2又は請求項3に記載の組電池均等化システムにおいて、
均等化処理部は、
均等化処理を行う指令を受け取ったとき、均等化処理を行うための処理間隔を設定するタイマーを初期化して起動させ、処理間隔に到達するごとにタイマーを初期化して繰り返す手段と、
タイマーが設定処理間隔に到達するたびに、組電池の電圧状態を監視し、均等化のための放電を行う必要があるか否か判断する手段と、
均等化のための放電を行う必要があると判断されたときに、均等化処理を実行する手段と、
を有することを特徴とする車両用組電池均等化システム。
In the assembled battery equalization system according to claim 2 or 3,
The equalization processor
Means for initializing and starting a timer for setting a processing interval for performing equalization processing when receiving a command for performing equalization processing, and initializing and repeating the timer each time the processing interval is reached;
Means for monitoring the voltage state of the assembled battery each time the timer reaches the set processing interval, and determining whether or not it is necessary to discharge for equalization;
Means for performing equalization processing when it is determined that discharge for equalization needs to be performed;
An assembled battery equalizing system for a vehicle characterized by comprising:
請求項4に記載の組電池均等化システムにおいて、
均等化処理部は、
均等化処理を行う指令を受け取ったとき、均等化処理を行うための対象期間を設定するタイマーを初期化して起動させる手段と、
イグニッション停止実行からのタイマー経過時間が、設定対象期間内か否かを判断する手段と、
設定対象期間内において組電池の電圧状態を監視し、均等化のための放電を行う必要があるか否か判断する手段と、
均等化のための放電を行う必要があると判断されたときに、均等化処理を実行する手段と、
を有することを特徴とする車両用組電池均等化システム。
The assembled battery equalization system according to claim 4,
The equalization processor
Means for initializing and starting a timer for setting a target period for performing equalization processing when receiving an instruction to perform equalization processing;
Means for determining whether or not the timer elapsed time from the execution of ignition stop is within the setting target period;
Means for monitoring the voltage state of the assembled battery within the set target period and determining whether or not it is necessary to perform discharge for equalization;
Means for performing equalization processing when it is determined that discharge for equalization needs to be performed;
An assembled battery equalizing system for a vehicle characterized by comprising:
JP2006155002A 2006-06-02 2006-06-02 Vehicular battery pack uniformizing system Pending JP2007325458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006155002A JP2007325458A (en) 2006-06-02 2006-06-02 Vehicular battery pack uniformizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006155002A JP2007325458A (en) 2006-06-02 2006-06-02 Vehicular battery pack uniformizing system

Publications (1)

Publication Number Publication Date
JP2007325458A true JP2007325458A (en) 2007-12-13

Family

ID=38857752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006155002A Pending JP2007325458A (en) 2006-06-02 2006-06-02 Vehicular battery pack uniformizing system

Country Status (1)

Country Link
JP (1) JP2007325458A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651497A (en) * 1992-07-28 1994-02-25 Fujitsu Ltd Normal/defective condition discriminating method for size by each process for production of reticule and reticule having means for this method
JPH0753313A (en) * 1993-08-13 1995-02-28 Nissan Chem Ind Ltd Herbicidal composition
JP2008228518A (en) * 2007-03-15 2008-09-25 Mitsubishi Heavy Ind Ltd Power storage system
WO2010013395A1 (en) * 2008-07-31 2010-02-04 パナソニック株式会社 Imbalance reduction circuit, power supply device, and imbalance reduction method
JP2011015516A (en) * 2009-07-01 2011-01-20 Denso Corp In-vehicle power supply device
JP2011072153A (en) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd Vehicular power supply device, vehicle equipped with the same, and method for equalizing capacity of power vehicular supply device
WO2011102458A1 (en) * 2010-02-19 2011-08-25 本田技研工業株式会社 Power supply system and electric vehicle
WO2011045188A3 (en) * 2009-10-14 2011-11-17 Bayerische Motoren Werke Aktiengesellschaft Energy storage system for the electrical energy supply of consumers in a vehicle
WO2011155034A1 (en) 2010-06-09 2011-12-15 トヨタ自動車株式会社 Vehicle battery-pack equalization system and vehicle battery-pack equalization method
WO2013128809A1 (en) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 Battery control system and battery pack
WO2013128808A1 (en) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 Battery control system, battery pack, electronic device, and charger
WO2014061153A1 (en) * 2012-10-19 2014-04-24 日立ビークルエナジー株式会社 Battery pack monitoring device
EP2744067A1 (en) * 2011-08-11 2014-06-18 Panasonic Corporation Equalizer circuit, power supply system, and vehicle
WO2014115310A1 (en) * 2013-01-25 2014-07-31 日立ビークルエナジー株式会社 Cell controller and cell monitoring device
JP2015026527A (en) * 2013-07-26 2015-02-05 富士通株式会社 Self-discharge amount calculation device, self-discharge amount calculation program, and self-discharge amount calculation method
WO2015021195A1 (en) * 2013-08-06 2015-02-12 Gogoro Taiwan Limited Adjusting electric vehicle systems based on an electrical energy storage device thermal profile
US9216687B2 (en) 2012-11-16 2015-12-22 Gogoro Inc. Apparatus, method and article for vehicle turn signals
US9407024B2 (en) 2014-08-11 2016-08-02 Gogoro Inc. Multidirectional electrical connector, plug and system
US9437058B2 (en) 2011-07-26 2016-09-06 Gogoro Inc. Dynamically limiting vehicle operation for best effort economy
US9552682B2 (en) 2011-07-26 2017-01-24 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
US9837842B2 (en) 2014-01-23 2017-12-05 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
US10055911B2 (en) 2011-07-26 2018-08-21 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries, based on user profiles
WO2019042439A1 (en) * 2017-08-31 2019-03-07 比亚迪股份有限公司 Battery balancing system, vehicle, battery balancing method, and storage medium
CN109986967A (en) * 2017-12-30 2019-07-09 北京长城华冠汽车科技股份有限公司 A kind of fault diagnosis system and its diagnostic method of the equalizing circuit of electric automobile power battery
US10345843B2 (en) 2011-07-26 2019-07-09 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
US10421462B2 (en) 2015-06-05 2019-09-24 Gogoro Inc. Systems and methods for vehicle load detection and response

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651497A (en) * 1992-07-28 1994-02-25 Fujitsu Ltd Normal/defective condition discriminating method for size by each process for production of reticule and reticule having means for this method
JPH0753313A (en) * 1993-08-13 1995-02-28 Nissan Chem Ind Ltd Herbicidal composition
JP2008228518A (en) * 2007-03-15 2008-09-25 Mitsubishi Heavy Ind Ltd Power storage system
WO2010013395A1 (en) * 2008-07-31 2010-02-04 パナソニック株式会社 Imbalance reduction circuit, power supply device, and imbalance reduction method
JP2010035392A (en) * 2008-07-31 2010-02-12 Panasonic Corp Imbalance reduction circuit, power supply unit and imbalance reduction method
US20110121785A1 (en) * 2008-07-31 2011-05-26 Takuma Iida Imbalance reduction circuit, power supply device, and imbalance reduction method
JP2011015516A (en) * 2009-07-01 2011-01-20 Denso Corp In-vehicle power supply device
JP2011072153A (en) * 2009-09-28 2011-04-07 Sanyo Electric Co Ltd Vehicular power supply device, vehicle equipped with the same, and method for equalizing capacity of power vehicular supply device
WO2011045188A3 (en) * 2009-10-14 2011-11-17 Bayerische Motoren Werke Aktiengesellschaft Energy storage system for the electrical energy supply of consumers in a vehicle
US9184624B2 (en) 2009-10-14 2015-11-10 Bayerische Motoren Werke Aktiengesellschaft Energy storage system for supplying electrical energy to consumers in a vehicle
WO2011102458A1 (en) * 2010-02-19 2011-08-25 本田技研工業株式会社 Power supply system and electric vehicle
JPWO2011102458A1 (en) * 2010-02-19 2013-06-17 本田技研工業株式会社 Power supply system and electric vehicle
US8957636B2 (en) 2010-06-09 2015-02-17 Toyota Jidosha Kabushiki Kaisha Vehicle battery-pack equalization system and vehicle battery-pack equalization method
WO2011155034A1 (en) 2010-06-09 2011-12-15 トヨタ自動車株式会社 Vehicle battery-pack equalization system and vehicle battery-pack equalization method
US9437058B2 (en) 2011-07-26 2016-09-06 Gogoro Inc. Dynamically limiting vehicle operation for best effort economy
US10345843B2 (en) 2011-07-26 2019-07-09 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
US10055911B2 (en) 2011-07-26 2018-08-21 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries, based on user profiles
US9552682B2 (en) 2011-07-26 2017-01-24 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
EP2744067A1 (en) * 2011-08-11 2014-06-18 Panasonic Corporation Equalizer circuit, power supply system, and vehicle
US9350177B2 (en) 2011-08-11 2016-05-24 Panasonic Intellectual Property Management Co., Ltd. Equalization circuit, power supply system, and vehicle
EP2744067A4 (en) * 2011-08-11 2015-01-14 Panasonic Corp Equalizer circuit, power supply system, and vehicle
WO2013128808A1 (en) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 Battery control system, battery pack, electronic device, and charger
WO2013128809A1 (en) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 Battery control system and battery pack
JPWO2013128808A1 (en) * 2012-02-29 2015-07-30 Necエナジーデバイス株式会社 Battery control system, battery pack, electronic device and charging device
US9525289B2 (en) 2012-02-29 2016-12-20 Nec Energy Devices, Ltd. Battery control system and battery pack
CN106972206A (en) * 2012-02-29 2017-07-21 Nec能源元器件株式会社 Battery control system and battery pack
CN104145399A (en) * 2012-02-29 2014-11-12 Nec能源元器件株式会社 Battery control system and battery pack
US9276417B2 (en) 2012-02-29 2016-03-01 Nec Energy Devices, Ltd. Battery control system, battery pack, electronic device and charger
CN104145400A (en) * 2012-02-29 2014-11-12 Nec能源元器件株式会社 Battery control system, battery pack, electronic device, and charger
JPWO2013128809A1 (en) * 2012-02-29 2015-07-30 Necエナジーデバイス株式会社 Battery control system and battery pack
JPWO2014061153A1 (en) * 2012-10-19 2016-09-05 日立オートモティブシステムズ株式会社 Battery monitoring device
US9825477B2 (en) 2012-10-19 2017-11-21 Hitachi Automotive Systems, Ltd. Assembled battery monitoring device
WO2014061153A1 (en) * 2012-10-19 2014-04-24 日立ビークルエナジー株式会社 Battery pack monitoring device
US9216687B2 (en) 2012-11-16 2015-12-22 Gogoro Inc. Apparatus, method and article for vehicle turn signals
JPWO2014115310A1 (en) * 2013-01-25 2017-01-26 日立オートモティブシステムズ株式会社 Cell controller and battery monitoring device
US9755453B2 (en) 2013-01-25 2017-09-05 Hitachi Automotive Systems, Ltd. Cell controller and battery-monitoring device
WO2014115310A1 (en) * 2013-01-25 2014-07-31 日立ビークルエナジー株式会社 Cell controller and cell monitoring device
JP2015026527A (en) * 2013-07-26 2015-02-05 富士通株式会社 Self-discharge amount calculation device, self-discharge amount calculation program, and self-discharge amount calculation method
WO2015021195A1 (en) * 2013-08-06 2015-02-12 Gogoro Taiwan Limited Adjusting electric vehicle systems based on an electrical energy storage device thermal profile
US10065525B2 (en) 2013-08-06 2018-09-04 Gogoro Inc. Adjusting electric vehicle systems based on an electrical energy storage device thermal profile
US9837842B2 (en) 2014-01-23 2017-12-05 Gogoro Inc. Systems and methods for utilizing an array of power storage devices, such as batteries
US9407024B2 (en) 2014-08-11 2016-08-02 Gogoro Inc. Multidirectional electrical connector, plug and system
US10421462B2 (en) 2015-06-05 2019-09-24 Gogoro Inc. Systems and methods for vehicle load detection and response
WO2019042439A1 (en) * 2017-08-31 2019-03-07 比亚迪股份有限公司 Battery balancing system, vehicle, battery balancing method, and storage medium
CN109986967A (en) * 2017-12-30 2019-07-09 北京长城华冠汽车科技股份有限公司 A kind of fault diagnosis system and its diagnostic method of the equalizing circuit of electric automobile power battery

Similar Documents

Publication Publication Date Title
JP2007325458A (en) Vehicular battery pack uniformizing system
JP6540781B2 (en) Power storage device
JP4946749B2 (en) Vehicle battery control device
JP6902201B2 (en) Vehicle power supply
JP4967162B2 (en) Secondary battery pack
US10320204B2 (en) Electric storage apparatus and electric-storage controlling method
US9231418B2 (en) Method for monitoring a charging process of a battery
US9413037B2 (en) Cell capacity adjusting device
US20100237832A1 (en) Charging method and charging system
JP5835136B2 (en) In-vehicle charging controller
JP2007325324A (en) Charging system, battery pack and its charging method
CN108352714B (en) Power supply device and battery unit
JP6589773B2 (en) Electric vehicle
JP2009296699A (en) Charging control circuit, power supply, and charging control method
WO2022009669A1 (en) Storage battery control device
WO2013008396A1 (en) Battery pack, charging control system and charging method
WO2013008614A1 (en) Battery management unit
JP2011023271A (en) Battery capacity control device of battery pack
CN113140817B (en) Charging control method and device, computer readable storage medium and charger
JP2017063520A (en) Power storage device
JP2007129812A (en) Charge controller and control method
JP2016208638A (en) Charge control system, discharge control system, charge control method, and discharge control method
JP2024061273A (en) Battery Equalization Control Device
JP2021126036A (en) Vehicle charging system
JP2022152830A (en) battery system