JP2007321575A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2007321575A
JP2007321575A JP2006149654A JP2006149654A JP2007321575A JP 2007321575 A JP2007321575 A JP 2007321575A JP 2006149654 A JP2006149654 A JP 2006149654A JP 2006149654 A JP2006149654 A JP 2006149654A JP 2007321575 A JP2007321575 A JP 2007321575A
Authority
JP
Japan
Prior art keywords
addition
fuel
amount
exhaust
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006149654A
Other languages
Japanese (ja)
Inventor
Atsushi Tawara
淳 田原
Masaru Yamada
勝 山田
Tadashi Toyoda
義 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2006149654A priority Critical patent/JP2007321575A/en
Priority to FR0703797A priority patent/FR2901839A1/en
Priority to DE102007024891A priority patent/DE102007024891A1/en
Priority to US11/802,943 priority patent/US20070277509A1/en
Publication of JP2007321575A publication Critical patent/JP2007321575A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • F02D41/1467Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1811Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0812Particle filter loading
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/06Fuel-injection apparatus having means for preventing coking, e.g. of fuel injector discharge orifices or valve needles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent blocking-up of a nozzle port of a fuel adding valve, while restraining the deterioration in fuel economy, in an exhaust emission control device having the fuel adding valve for adding fuel to an exhaust passage. <P>SOLUTION: In an environmental change such as an atmospheric pressure change when transferring to highland operation from flatland operation and transfer to transitional operation from steady operation, the final adding interval (a fuel adding quantity per unit time) is set by correcting a reference adding interval (Step ST4 and ST8), by calculating an adding interval correction factor on the basis of a variation in a PM discharge quantity, by taking into consideration a point of increasing the PM discharge quantity more than a flatland steady operation state when the suction air volume of an engine reduces. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気ガスを触媒にて浄化する装置に関し、さらに詳しくは、排気通路に燃料を添加する燃料添加弁を備えた排気浄化装置に関する。   The present invention relates to an apparatus for purifying exhaust gas of an internal combustion engine with a catalyst, and more particularly to an exhaust purification apparatus provided with a fuel addition valve for adding fuel to an exhaust passage.

一般に、ディーゼルエンジン等のように希薄燃焼を行う内燃機関では、高い空燃比(リーン雰囲気)の混合気を燃焼させる運転領域が全運転領域の大部分を占めている。このため、この種のエンジンの排気通路に、排気ガス中に含まれる窒素酸化物(以下、NOxという)を吸蔵(吸収)するためのNOx吸蔵剤(NOx吸蔵触媒)を配置して排気ガスを浄化するようにしている。   In general, in an internal combustion engine that performs lean combustion, such as a diesel engine, an operation region in which an air-fuel mixture with a high air-fuel ratio (lean atmosphere) is burned occupies most of the entire operation region. For this reason, a NOx storage agent (NOx storage catalyst) for storing (absorbing) nitrogen oxide (hereinafter referred to as NOx) contained in the exhaust gas is disposed in the exhaust passage of this type of engine, and the exhaust gas is disposed. I try to purify it.

このようなNOx吸蔵触媒において、NOx吸蔵量が飽和状態に達した場合には、NOxを還元させてNOx吸蔵触媒を回復させる必要がある。NOxを還元させる方法としては、排気通路のNOx吸蔵触媒の上流にNOx還元剤(軽油等の燃料)を添加することにより、触媒コンバータ内の酸素濃度を低下させ、余剰な炭化水素や一酸化炭素などを還元剤としてNOxの還元を促進させる処理(NOx還元処理)が行われている。   In such a NOx storage catalyst, when the NOx storage amount reaches a saturated state, it is necessary to reduce the NOx and recover the NOx storage catalyst. As a method for reducing NOx, by adding a NOx reducing agent (fuel such as light oil) upstream of the NOx storage catalyst in the exhaust passage, the oxygen concentration in the catalytic converter is lowered, and excess hydrocarbons and carbon monoxide are added. The process (NOx reduction process) which accelerates | stimulates the reduction | restoration of NOx by using etc. as a reducing agent is performed.

また、ディーゼルエンジンの排気ガス中には、カーボンを主成分とする粒子状物質(以下、PM(Particulate Matter)という)、SOOT(煤)、SOF(可溶性有機成分:Soluble Organic Fraction)などが含まれており、大気汚染の原因になる。このようなPM等を浄化することを目的として、パティキュレートフィルタをディーゼルエンジンの排気通路に配置し、排気通路を通過する排気ガス中に含まれるPMを捕集することによって、大気中に放出されるエミッションの量を低減する排気浄化装置が知られている。パティキュレートフィルタとしては、例えばDPF(Diesel Particulate Filter)や、DPNR(Diesel Particulate−NOx Reduction system)触媒が用いられている。   In addition, the exhaust gas of diesel engines includes particulate matter mainly composed of carbon (hereinafter referred to as PM (Particulate Matter)), SOOT (soot), SOF (Soluble Organic Fraction), and the like. Cause air pollution. For the purpose of purifying such PM and the like, a particulate filter is disposed in the exhaust passage of the diesel engine, and the PM contained in the exhaust gas passing through the exhaust passage is collected and released into the atmosphere. There are known exhaust emission control devices that reduce the amount of emissions. As the particulate filter, for example, a DPF (Diesel Particulate Filter) or a DPNR (Diesel Particulate-NOx Reduction system) catalyst is used.

パティキュレートフィルタを用いてPMの捕集を行う場合、捕集したPMの堆積量が多くなってパティキュレートフィルタの詰りが生じると、パティキュレートフィルタを通過する排気の圧力損失が増大し、これに伴うエンジンの排気背圧増大によってエンジン出力低下や燃費の低下が発生する。これを解消する方法として、排気通路(パティキュレートフィルタ上流)に燃料添加を行って排気温度を上昇させることによって、パティキュレートフィルタ上のPMの酸化(燃焼)を促進する処理(PM再生処理)が行われている。   When collecting particulate matter using a particulate filter, if the amount of collected particulate matter increases and the particulate filter becomes clogged, the pressure loss of the exhaust gas passing through the particulate filter increases. Along with this, an increase in engine exhaust back pressure causes a decrease in engine output and fuel consumption. As a method for solving this problem, there is a process (PM regeneration process) that promotes oxidation (combustion) of PM on the particulate filter by adding fuel to the exhaust passage (upstream of the particulate filter) to raise the exhaust temperature. Has been done.

以上のように、触媒の排気浄化作用の低下を抑制するために実施されるNOx還元処理やPM再生処理では、排気通路に燃料添加弁を配置して燃料(還元剤)を排気通路内に供給している。しかし、燃料添加弁の噴孔が排気通路内に露出しているため、排気ガス中に含まれるSOOTやSOFなどの物質が燃料添加弁の噴孔に付着・堆積する。そして、その付着・堆積した物質が高温の排気ガスにさらされることにより変質・固化し、デポジットとなって燃料添加弁の噴孔が閉塞することが、懸念される。このような燃料添加弁の詰りを防止する方法として、NOx還元やPM再生時の燃料添加以外のタイミングで、強制的に燃料添加を実施することにより、燃料添加弁の先端温度を下げるという方法がある(例えば、特許文献1参照)。
特開2003−222019号公報
As described above, in the NOx reduction process and the PM regeneration process that are performed in order to suppress the reduction in the exhaust gas purification effect of the catalyst, the fuel addition valve is disposed in the exhaust passage and the fuel (reducing agent) is supplied into the exhaust passage. is doing. However, since the injection hole of the fuel addition valve is exposed in the exhaust passage, substances such as SOOT and SOF contained in the exhaust gas adhere to and accumulate on the injection hole of the fuel addition valve. Then, there is a concern that the adhered / deposited material may be altered and solidified by exposure to high-temperature exhaust gas, resulting in deposits and blocking the nozzle holes of the fuel addition valve. As a method of preventing such clogging of the fuel addition valve, there is a method of lowering the tip temperature of the fuel addition valve by forcibly adding fuel at a timing other than fuel addition during NOx reduction or PM regeneration. Yes (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2003-222019

ところで、例えば平地運転から高地運転に移行したときの大気圧変化等の環境変化や、定常運転から過渡運転への移行時などにおいて、エンジンの吸入空気量が低下すると、平地・平常運転状態よりもPM排出量が増加する。PM排出量が増加すると、燃料添加弁の噴孔に付着・侵入するPM量が増加してデポジットが生成されやすくなるため、燃料添加弁の噴孔閉塞が発生する可能性がある。   By the way, for example, when the engine intake air amount decreases due to environmental changes such as changes in atmospheric pressure when shifting from flatland operation to highland operation, or when shifting from steady operation to transient operation, it is more than the flatland / normal operation state. PM emissions increase. When the PM discharge amount increases, the amount of PM adhering to / intruding into the nozzle hole of the fuel addition valve increases, and deposits are likely to be generated. Therefore, the nozzle hole of the fuel addition valve may be blocked.

このような噴孔閉塞の問題を解消するには、PM排出量のばらつきの上限で燃料添加量(単位時間当たりの添加量)を適合すればよいが、PM排出量のばらつき上限で燃料添加量を適合すると、燃料消費量(燃費)が悪化傾向になることが懸念される。   In order to solve such a problem of injection hole blockage, it is sufficient to adapt the fuel addition amount (addition amount per unit time) at the upper limit of the variation in the PM discharge amount, but the fuel addition amount at the upper limit of the variation in the PM discharge amount. There is a concern that the fuel consumption (fuel consumption) tends to deteriorate if the above is applied.

本発明はそのような実情を考慮してなされたもので、燃費の悪化を抑制しながら、燃料添加弁の噴孔閉塞を防止することが可能な排気浄化装置の提供を目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an exhaust emission control device capable of preventing the fuel injection valve from closing the nozzle hole while suppressing deterioration in fuel consumption.

本発明は、内燃機関の排気通路に配設された触媒と、前記排気通路に燃料を添加する燃料添加弁とを備えた排気浄化装置において、前記内燃機関の燃焼室からの粒子状物質の排出量(PMの排出量)の変化量に基づいて、前記燃料添加弁から排気通路に添加する燃料の単位時間当たりの添加量を補正する補正手段を備えていることを特徴としている。   The present invention relates to an exhaust gas purification apparatus including a catalyst disposed in an exhaust passage of an internal combustion engine and a fuel addition valve for adding fuel to the exhaust passage, and discharging particulate matter from a combustion chamber of the internal combustion engine. A correction means is provided for correcting the addition amount per unit time of the fuel added from the fuel addition valve to the exhaust passage based on the change amount of the amount (PM emission amount).

本発明では、平地運転から高地運転に移行したときの大気圧変化等の環境変化や、定常運転から過渡運転への移行時などにおいて、エンジンの吸入空気量が低下すると、平地・平常運転状態よりもPM排出量が増加する点を考慮して、PM排出量の変化量(例えば実吸入空気量の変化)に基づいて単位時間当たりの燃料添加量を補正しているので、PM排出量の変化量に見合った適切な添加量で燃料添加を行うことが可能になり、過度の燃料添加を抑制することができる。これによって燃費の悪化を抑制しながら、燃料添加弁の噴孔閉塞を防止することができる。   In the present invention, when the intake air amount of the engine decreases, such as when the engine intake air amount decreases due to an environmental change such as a change in atmospheric pressure when shifting from flatland operation to highland operation, or when shifting from steady operation to transient operation, In consideration of the increase in PM emission amount, the fuel addition amount per unit time is corrected based on the change amount of PM emission amount (for example, change in actual intake air amount). It becomes possible to add fuel with an appropriate addition amount commensurate with the amount, and excessive fuel addition can be suppressed. As a result, it is possible to prevent the injection hole blockage of the fuel addition valve while suppressing deterioration of fuel consumption.

本発明において、単位時間当たりの添加量を補正する方法として、内燃機関の運転状態に応じた基準添加間隔に、PM排出量の変化量に応じた補正係数を乗じて最終添加間隔を設定するという方法を挙げることができる。この場合、より具体的には、内燃機関の実吸入空気量が基準吸入空気量よりも少ないとき(空気量比(実吸入空気量/基準吸入空気量)が小さいとき)に、添加間隔を短い側つまり単位時間当たりの添加量を多くする側に補正する補正係数を基準添加間隔に乗じて最終添加間隔を設定する。   In the present invention, as a method of correcting the addition amount per unit time, the final addition interval is set by multiplying the reference addition interval according to the operating state of the internal combustion engine by the correction coefficient according to the change amount of the PM emission amount. A method can be mentioned. In this case, more specifically, the addition interval is short when the actual intake air amount of the internal combustion engine is smaller than the reference intake air amount (when the air amount ratio (actual intake air amount / reference intake air amount) is small). The final addition interval is set by multiplying the reference addition interval by a correction coefficient that is corrected to the side that increases the addition amount per unit time.

ここで、排気通路に燃料を添加する燃料添加弁を備えた排気浄化装置においては、燃料添加弁の先端部の雰囲気温度(排気温度)が、基準設定時よりも上昇したときには、燃料添加弁の先端温度も上昇するので、その温度上昇によって生成されるデポジットにて燃料添加弁の噴孔が閉塞される可能性もあり、この場合も燃料添加量を増加する必要がある。このような点を考慮して、本発明では、燃料添加弁の先端温度を加味して最終添加間隔を設定する。   Here, in the exhaust emission control device provided with the fuel addition valve for adding fuel to the exhaust passage, when the atmospheric temperature (exhaust temperature) at the tip of the fuel addition valve is higher than the reference setting, Since the tip temperature also rises, there is a possibility that the injection hole of the fuel addition valve is blocked by the deposit generated by the temperature rise, and in this case also, it is necessary to increase the amount of fuel addition. In consideration of such points, in the present invention, the final addition interval is set in consideration of the tip temperature of the fuel addition valve.

具体的には、内燃機関の排気通路に配設された触媒と、前記排気通路に燃料を添加する燃料添加弁とを備えた排気浄化装置において、前記内燃機関の燃焼室からの粒子状物質の排出量の変化量(PMの変化量)に基づいて前記燃料添加弁から排気通路に添加する燃料の添加間隔を補正する補正手段と、添加弁温度推定手段とを備え、前記補正手段は、前記内燃機関の実吸入空気量が基準吸入空気量よりも少ないときに添加間隔を短い側に補正する第1補正係数と、前記添加弁温度推定手段にて推定される添加弁温度が低い側から高い側に変化したときに添加間隔を短い側に補正する第2補正係数とを比較し、それら第1補正係数または第2補正係数のうち、添加間隔が短い側となる補正係数を基準添加間隔に乗じて最終添加間隔を設定する。   Specifically, in an exhaust gas purification apparatus comprising a catalyst disposed in an exhaust passage of an internal combustion engine and a fuel addition valve for adding fuel to the exhaust passage, particulate matter from a combustion chamber of the internal combustion engine Compensation means for correcting the addition interval of fuel added to the exhaust passage from the fuel addition valve based on the change amount of the discharge amount (PM change amount), and addition valve temperature estimation means, the correction means, A first correction coefficient for correcting the addition interval to a shorter side when the actual intake air amount of the internal combustion engine is smaller than the reference intake air amount, and the addition valve temperature estimated by the addition valve temperature estimating means is higher from the lower side The second correction coefficient that corrects the addition interval to the short side when the addition interval is changed is compared, and the correction coefficient on the short addition interval is selected as the reference addition interval among the first correction coefficients or the second correction coefficients. Multiply to set the final addition interval.

このように、PM排気量の変化量に基づく補正係数または添加弁先端温度に基づく補正係数のうち、添加間隔が短くなる方(つまり単位時間当たりの添加量が多くなる方)の補正係数を選択して基準添加間隔を補正することにより、燃料添加弁の先端温度の上昇、または、環境変化・過渡期におけるPM排出量の増加のうち、燃料添加弁の噴孔閉塞が発生しやすい状況変化に対して添加間隔を補正することが可能になるので、燃料添加弁の噴孔閉塞をより効果的に抑制することができる。しかも、燃料添加弁の先端温度の上昇、または、環境変化・過渡期におけるPM排出量の増加の各状況変化に見合った適切な添加量で燃料添加を行うことができるので、過度の燃料添加を抑制することができる。これによって燃費の悪化を抑制しながら、燃料添加弁の噴孔閉塞を防止することができる。   As described above, the correction coefficient based on the change amount of the PM exhaust amount or the correction coefficient based on the addition valve tip temperature is selected which has a shorter addition interval (i.e., a larger addition amount per unit time). By correcting the reference addition interval, the fuel addition valve tip temperature rises or the environment changes and the PM emission increases during the transition period. On the other hand, since the addition interval can be corrected, the injection hole blockage of the fuel addition valve can be more effectively suppressed. In addition, fuel can be added at an appropriate amount that matches the changes in the situation, such as an increase in the temperature at the tip of the fuel addition valve, or an increase in PM emissions during environmental changes and transitional periods. Can be suppressed. As a result, it is possible to prevent the injection hole blockage of the fuel addition valve while suppressing deterioration of fuel consumption.

ところで、燃料添加弁の噴孔閉塞を抑制するために、単位時間当たりの燃料添加量を増量すると、燃料が触媒内にて反応して触媒床温が所定の範囲(例えば750℃)を超える可能性がある。これを防止する方法として、触媒の温度が所定値以上となったときに、その触媒の温度(具体的には所定値からの触媒温度の変化量)に応じて単位時間当たりの燃料添加量を少なくするという方法を挙げることができる。このような方法を採用すると、燃料添加量の増量により触媒床温が過剰に上昇して、触媒が熱劣化するという問題を回避することができる。   By the way, when the fuel addition amount per unit time is increased in order to suppress the injection hole blockage of the fuel addition valve, the fuel reacts in the catalyst and the catalyst bed temperature can exceed a predetermined range (for example, 750 ° C.). There is sex. As a method for preventing this, when the temperature of the catalyst exceeds a predetermined value, the amount of fuel added per unit time is set according to the temperature of the catalyst (specifically, the amount of change in the catalyst temperature from the predetermined value). One way to do this is to reduce it. By adopting such a method, it is possible to avoid the problem that the catalyst bed temperature rises excessively due to the increase in the amount of fuel added and the catalyst is thermally deteriorated.

なお、単位時間当たりの燃料添加量を少なくする方法として、基準添加間隔よりも最終添加間隔を短くし(例えば、上記した補正によって求めた最終添加間隔とし)、図8に示す1回当たりの添加時間を短くするという方法を挙げることができる。このような方法を採用すると、燃料添加弁の噴孔閉塞を抑制する短い添加間隔を確保しつつ、トータルの燃料添加量を少なくすることができるので、触媒床温の過剰上昇を抑えながら、燃料添加弁の噴孔閉塞を抑制することが可能になる。   As a method of reducing the amount of fuel added per unit time, the final addition interval is made shorter than the reference addition interval (for example, the final addition interval obtained by the above correction), and the addition per one time shown in FIG. The method of shortening time can be mentioned. By adopting such a method, it is possible to reduce the total amount of fuel added while ensuring a short addition interval that suppresses the clogging of the injection hole of the fuel addition valve. It is possible to suppress the injection hole blockage of the addition valve.

また、触媒床温の過剰上昇を防止する他の方法として、排気温度等により推定される触媒床温が所定値を超えないように、単位時間当たりの燃料添加量の増量補正を制限するという方法を挙げることができる。   Further, as another method for preventing an excessive increase in the catalyst bed temperature, a method of limiting the increase correction of the fuel addition amount per unit time so that the catalyst bed temperature estimated by the exhaust temperature or the like does not exceed a predetermined value. Can be mentioned.

本発明によれば、平地・平常運転状態よりもPM排出量が増加する点を考慮して、PM排出量の変化量に基づいて単位時間当たりの燃料添加量(添加間隔)を補正しているので、PM排出量の変化量に見合った適切な添加量で燃料添加を行うことが可能となり、これによって燃費の悪化を抑制しながら、燃料添加弁の噴孔閉塞を防止することができる。   According to the present invention, the fuel addition amount (addition interval) per unit time is corrected based on the amount of change in the PM emission amount in consideration of the fact that the PM emission amount increases more than the flat ground / normal operation state. Therefore, it is possible to add fuel with an appropriate addition amount commensurate with the amount of change in the PM emission amount, thereby preventing the fuel injection valve from being blocked while the deterioration of fuel consumption is suppressed.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

−エンジン−
本発明の燃料添加装置を適用するディーゼルエンジンの概略構成を図1を参照して説明する。
-Engine-
A schematic configuration of a diesel engine to which the fuel addition apparatus of the present invention is applied will be described with reference to FIG.

この例のディーゼルエンジン1(以下、「エンジン1」という)は、例えばコモンレール式筒内直噴4気筒エンジンであって、燃料供給系2、燃焼室3、吸気系6、及び、排気系7などを主要部として構成されている。   A diesel engine 1 (hereinafter referred to as “engine 1”) in this example is, for example, a common rail in-cylinder direct injection four-cylinder engine, and includes a fuel supply system 2, a combustion chamber 3, an intake system 6, an exhaust system 7, and the like. Is configured as the main part.

燃料供給系2は、サプライポンプ21、コモンレール22、インジェクタ(燃料噴射弁)23、遮断弁24、燃料添加弁25、機関燃料通路26、及び、添加燃料通路27などを備えている。   The fuel supply system 2 includes a supply pump 21, a common rail 22, an injector (fuel injection valve) 23, a shutoff valve 24, a fuel addition valve 25, an engine fuel passage 26, an addition fuel passage 27, and the like.

サプライポンプ21は、燃料タンクから燃料を汲み上げ、この汲み上げた燃料を高圧にした後、機関燃料通路26を介してコモンレール22に供給する。コモンレール22は、サプライポンプ21から供給された高圧燃料を所定圧力に保持(蓄圧)する蓄圧室としての機能を有し、この蓄圧した燃料を各インジェクタ23に分配する。インジェクタ23は所定電圧が印加されたときに開弁して、燃焼室3内に燃料を噴射供給する電磁駆動式の開閉弁である。   The supply pump 21 pumps fuel from the fuel tank, raises the pumped fuel to a high pressure, and supplies the pumped fuel to the common rail 22 via the engine fuel passage 26. The common rail 22 has a function as a pressure accumulation chamber that holds (accumulates) the high-pressure fuel supplied from the supply pump 21 at a predetermined pressure, and distributes the accumulated fuel to each injector 23. The injector 23 is an electromagnetically driven on-off valve that opens when a predetermined voltage is applied and injects fuel into the combustion chamber 3.

また、サプライポンプ21は、燃料タンクから汲み上げた燃料の一部を、添加燃料通路27を介して燃料添加弁25に供給する。燃料添加弁25は、所定電圧が印加されたときに開弁して、排気系7(排気ポート71から排気マニホールド72)に燃料を添加する電磁駆動式の開閉弁である。燃料添加弁25の噴孔は排気系7内に露出している。遮断弁24は、緊急時に添加燃料通路27を遮断して燃料供給を停止する。   Further, the supply pump 21 supplies a part of the fuel pumped from the fuel tank to the fuel addition valve 25 via the addition fuel passage 27. The fuel addition valve 25 is an electromagnetically driven on-off valve that opens when a predetermined voltage is applied and adds fuel to the exhaust system 7 (from the exhaust port 71 to the exhaust manifold 72). The nozzle hole of the fuel addition valve 25 is exposed in the exhaust system 7. The shutoff valve 24 shuts off the fuel supply by shutting off the added fuel passage 27 in an emergency.

吸気系6は、シリンダヘッドに形成された吸気ポートに接続される吸気マニホールド63を備え、この吸気マニホールド63に、吸気通路を構成する吸気管64が接続されている。また、吸気通路には、上流側から順にエアクリーナ65、エアフローメータ32、スロットル弁62が配設されている。エアフローメータ32は、エアクリーナ65を介して吸気通路に流入される空気量に応じた電気信号を出力するようになっている。   The intake system 6 includes an intake manifold 63 connected to an intake port formed in the cylinder head, and an intake pipe 64 constituting an intake passage is connected to the intake manifold 63. Further, an air cleaner 65, an air flow meter 32, and a throttle valve 62 are disposed in the intake passage in order from the upstream side. The air flow meter 32 outputs an electrical signal corresponding to the amount of air that flows into the intake passage via the air cleaner 65.

排気系7は、シリンダヘッドに形成された排気ポート71に接続される排気マニホールド72を備え、この排気マニホールド72に、排気通路を構成する排気管73,74が接続されている。また、この排気通路には触媒装置4が配設されている。   The exhaust system 7 includes an exhaust manifold 72 connected to an exhaust port 71 formed in the cylinder head, and exhaust pipes 73 and 74 constituting an exhaust passage are connected to the exhaust manifold 72. A catalyst device 4 is disposed in the exhaust passage.

触媒装置4は、NOx吸蔵還元型触媒4aとDPNR触媒4bとを備えている。NOx吸蔵還元型触媒4aは、排気中に多量の酸素が存在している状態においてはNOxを吸蔵し、排気中の酸素濃度が低く、かつ還元成分(例えば燃料の未燃成分(HC))が多量に存在している状態においてはNOxをNO2もしくはNOに還元して放出する。NO2やNOとして放出されたNOxは、排気中のHCやCOと速やかに反応することによってさらに還元されてN2となる。また、HCやCOは、NO2やNOを還元することで、自身は酸化されてH2OやCO2となる。 The catalyst device 4 includes a NOx storage reduction catalyst 4a and a DPNR catalyst 4b. The NOx occlusion reduction type catalyst 4a occludes NOx in a state where a large amount of oxygen is present in the exhaust gas, has a low oxygen concentration in the exhaust gas, and has a reducing component (for example, an unburned component (HC) of the fuel). In a state where a large amount exists, NOx is reduced to NO 2 or NO and released. NO NOx released as NO 2 or NO, the N 2 is further reduced due to quickly reacting with HC or CO in the exhaust. Further, HC and CO are oxidized to H 2 O and CO 2 by reducing NO 2 and NO.

DPNR触媒4bは、例えば多孔質セラミック構造体にNOx吸蔵還元型触媒を担持させたものであり、排気ガス中のPMは多孔質の壁を通過する際に捕集される。また、排気ガスの空燃比がリーンの場合、排気ガス中のNOxはNOx吸蔵還元型触媒に吸蔵され、空燃比がリッチになると吸蔵したNOxは還元浄化される。さらに、DPNR触媒4bでは、捕集したPMを酸化・燃焼する機能を有する。   The DPNR catalyst 4b is, for example, a NOx occlusion reduction catalyst supported on a porous ceramic structure, and PM in the exhaust gas is collected when passing through the porous wall. Further, when the air-fuel ratio of the exhaust gas is lean, NOx in the exhaust gas is stored in the NOx storage reduction catalyst, and when the air-fuel ratio becomes rich, the stored NOx is reduced and purified. Further, the DPNR catalyst 4b has a function of oxidizing and burning the collected PM.

以上の触媒装置4、燃料添加弁25、添加燃料通路27、遮断弁24、及び、燃料添加弁25の開閉制御を実行するECU(電子制御ユニット)100等によって排気浄化装置が構成されている。   The above-described catalyst device 4, the fuel addition valve 25, the added fuel passage 27, the shut-off valve 24, the ECU (electronic control unit) 100 that performs opening / closing control of the fuel addition valve 25, and the like constitute an exhaust purification device.

エンジン1には、ターボチャージャ(過給機)5が設けられている。このターボチャージャ5は、タービンシャフト5aを介して連結されたタービンホイール5b及びコンプレッサインペラ5cを備えている。コンプレッサインペラ5cは吸気管64内部に臨んで配置され、タービンホイール5bは排気管73内部に臨んで配置されている。このようなターボチャージャ5は、タービンホイール5bが受ける排気流(排気圧)を利用してコンプレッサインペラ5cを回転させることにより吸入空気を過給する。この例のターボチャージャ5は、可変ノズル式ターボチャージャであって、タービンホイール5b側に可変ノズルベーン機構5dが設けられており、この可変ノズルベーン機構5dの開度を調整することにより、エンジン1の過給圧を調整することができる。   The engine 1 is provided with a turbocharger (supercharger) 5. The turbocharger 5 includes a turbine wheel 5b and a compressor impeller 5c connected via a turbine shaft 5a. The compressor impeller 5c is arranged facing the inside of the intake pipe 64, and the turbine wheel 5b is arranged facing the inside of the exhaust pipe 73. Such a turbocharger 5 supercharges intake air by rotating the compressor impeller 5c using an exhaust flow (exhaust pressure) received by the turbine wheel 5b. The turbocharger 5 of this example is a variable nozzle type turbocharger, and is provided with a variable nozzle vane mechanism 5d on the turbine wheel 5b side. The supply pressure can be adjusted.

吸気系6の吸気管64には、ターボチャージャ5での過給によって昇温した吸入空気を強制冷却するためのインタークーラ61が設けられている。このインタークーラ61よりも更に下流側にスロットル弁62が設けられている。スロットル弁62は、その開度を無段階に調整することが可能な電子制御式の開閉弁であり、所定の条件下において吸入空気の流路面積を絞り、この吸入空気の供給量を調整(低減)する機能を有している。   An intake pipe 64 of the intake system 6 is provided with an intercooler 61 for forcibly cooling the intake air whose temperature has been raised by supercharging in the turbocharger 5. A throttle valve 62 is provided further downstream than the intercooler 61. The throttle valve 62 is an electronically controlled on-off valve whose opening degree can be adjusted in a stepless manner, and the flow area of the intake air is reduced under a predetermined condition, and the supply amount of the intake air is adjusted ( It has a function to reduce).

また、エンジン1には、吸気系6と排気系7とを接続するEGR通路(排気還流通路)8が設けられている。EGR通路8は、排気の一部を適宜吸気系6に還流させて燃焼室3へ再度供給することにより燃焼温度を低下させ、これによってNOx発生量を低減させるものである。また、EGR通路8には、EGR弁81と、EGR通路8を通過(還流)する排気を冷却するためのEGRクーラ82とが設けられており、EGR弁81の開度を調整することにより、排気系7から吸気系6に導入されるEGR量(排気還流量)を調整することができる。   Further, the engine 1 is provided with an EGR passage (exhaust gas recirculation passage) 8 that connects the intake system 6 and the exhaust system 7. The EGR passage 8 is configured to reduce the combustion temperature by recirculating a part of the exhaust gas to the intake system 6 and supplying it again to the combustion chamber 3, thereby reducing the amount of NOx generated. Further, the EGR passage 8 is provided with an EGR valve 81 and an EGR cooler 82 for cooling the exhaust gas passing (refluxing) through the EGR passage 8, and by adjusting the opening degree of the EGR valve 81, The amount of EGR (exhaust gas recirculation amount) introduced from the exhaust system 7 to the intake system 6 can be adjusted.

−センサ類−
エンジン1の各部位には、各種センサが取り付けられており、それぞれの部位の環境条件や、エンジン1の運転状態に関する信号を出力する。
-Sensors-
Various sensors are attached to each part of the engine 1, and signals related to the environmental conditions of each part and the operating state of the engine 1 are output.

例えば、エアフローメータ32は、吸気系6内のスロットル弁62上流において吸入空気の流量(吸入空気量)に応じた検出信号を出力する。吸気温センサ33は、吸気マニホールド63に配置され、吸入空気の温度に応じた検出信号を出力する。吸気圧センサ34は、吸気マニホールド63に配置され、吸入空気圧力に応じた検出信号を出力する。A/F(空燃比)センサ35は、排気系7の触媒装置4の下流において排気中の酸素濃度に応じて連続的に変化する検出信号を出力する。排気温センサ36は、同じく排気系7の触媒装置4の下流において排気ガスの温度(排気温度)に応じた検出信号を出力する。レール圧センサ37はコモンレール22内に蓄えられている燃料の圧力に応じた検出信号を出力する。燃圧センサ38は、添加燃料通路27内を流通する燃料の圧力(燃圧)に応じた検出信号を出力する。   For example, the air flow meter 32 outputs a detection signal corresponding to the flow rate (intake air amount) of intake air upstream of the throttle valve 62 in the intake system 6. The intake air temperature sensor 33 is disposed in the intake manifold 63 and outputs a detection signal corresponding to the intake air temperature. The intake pressure sensor 34 is disposed in the intake manifold 63 and outputs a detection signal corresponding to the intake air pressure. The A / F (air-fuel ratio) sensor 35 outputs a detection signal that continuously changes in accordance with the oxygen concentration in the exhaust gas downstream of the catalyst device 4 of the exhaust system 7. Similarly, the exhaust temperature sensor 36 outputs a detection signal corresponding to the temperature of exhaust gas (exhaust temperature) downstream of the catalyst device 4 of the exhaust system 7. The rail pressure sensor 37 outputs a detection signal corresponding to the fuel pressure stored in the common rail 22. The fuel pressure sensor 38 outputs a detection signal corresponding to the pressure (fuel pressure) of the fuel flowing through the added fuel passage 27.

−ECU−
ECU100は、図2に示すように、CPU101、ROM102、RAM103及びバックアップRAM104などを備えている。ROM102は、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU101は、ROM102に記憶された各種制御プログラムやマップに基づいて各種の演算処理を実行する。また、RAM103は、CPU101での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリであり、バックアップRAM104は、例えばエンジン1の停止時にその保存すべきデータ等を記憶する不揮発性のメモリである。
-ECU-
As shown in FIG. 2, the ECU 100 includes a CPU 101, a ROM 102, a RAM 103, a backup RAM 104, and the like. The ROM 102 stores various control programs, maps that are referred to when the various control programs are executed, and the like. The CPU 101 executes various arithmetic processes based on various control programs and maps stored in the ROM 102. The RAM 103 is a memory that temporarily stores calculation results of the CPU 101, data input from each sensor, and the like. The backup RAM 104 is a nonvolatile memory that stores data to be saved when the engine 1 is stopped, for example. Memory.

以上のROM102、CPU101、RAM103及びバックアップRAM104は、バス107を介して互いに接続されるとともに、入力インターフェース105及び出力インターフェース106と接続されている。   The ROM 102, CPU 101, RAM 103, and backup RAM 104 are connected to each other via a bus 107 and are connected to an input interface 105 and an output interface 106.

入力インターフェース105には、エアフローメータ32、吸気温センサ33、吸気圧センサ34、A/Fセンサ35、排気温センサ36、レール圧センサ37、燃圧センサ38が接続されており、さらに、エンジン1の冷却水温に応じた検出信号を出力する水温センサ31、高度などの環境に起因して変動する大気圧を検出する大気圧センサ39、アクセルペダルへの踏み込み量に応じた検出信号を出力するアクセル開度センサ40、及び、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力するクランクポジションセンサ41などが接続されている。一方、出力インターフェース106には、インジェクタ23、遮断弁24、燃料添加弁25、可変ノズルベーン機構5d、スロットル弁62、及び、EGR弁81などが接続されている。   An air flow meter 32, an intake air temperature sensor 33, an intake air pressure sensor 34, an A / F sensor 35, an exhaust gas temperature sensor 36, a rail pressure sensor 37, and a fuel pressure sensor 38 are connected to the input interface 105. A water temperature sensor 31 that outputs a detection signal corresponding to the cooling water temperature, an atmospheric pressure sensor 39 that detects an atmospheric pressure that fluctuates due to an environment such as altitude, and an accelerator opening that outputs a detection signal corresponding to the amount of depression of the accelerator pedal A degree sensor 40 and a crank position sensor 41 that outputs a detection signal (pulse) each time the output shaft (crankshaft) of the engine 1 rotates by a certain angle are connected. On the other hand, the injector 23, the shutoff valve 24, the fuel addition valve 25, the variable nozzle vane mechanism 5d, the throttle valve 62, the EGR valve 81, and the like are connected to the output interface 106.

そして、ECU100は、上記した各種センサの出力に基づいて、エンジン1の各種制御を実行する。さらに、ECU100は、下記のPM再生制御、及び、添加間隔補正処理を実行する。   The ECU 100 executes various controls of the engine 1 based on the outputs of the various sensors described above. Further, the ECU 100 executes the following PM regeneration control and addition interval correction processing.

−PM再生制御−
まず、ECU100は、DPNR触媒4bへのPMの堆積量を推定している。PM堆積量を推定する方法としては、例えば、エンジン1の運転状態(例えば、排気温度、燃料噴射量、エンジン回転数等)に応じたPM付着量を予め実験等により求めてマップ化しておき、このマップにより求められるPM付着量を積算してPMの堆積量とする方法や、車両走行距離もしくは走行時間に応じてPMの堆積量を推定する方法、あるいは、触媒装置4にDPNR触媒4bの上流側圧力と下流側圧力との差圧を検出する差圧センサを設け、そのセンサ出力に基づいてDPNR触媒4bに捕集されたPMの堆積量を推定する方法などが挙げられる。
-PM regeneration control-
First, the ECU 100 estimates the amount of PM deposited on the DPNR catalyst 4b. As a method for estimating the PM accumulation amount, for example, a PM adhesion amount corresponding to the operating state of the engine 1 (for example, exhaust temperature, fuel injection amount, engine speed, etc.) is obtained in advance through experiments or the like and mapped. A method for accumulating the PM adhesion amount obtained from this map to obtain the PM accumulation amount, a method for estimating the PM accumulation amount according to the vehicle travel distance or travel time, or the upstream of the DPNR catalyst 4b in the catalyst device 4 Examples include a method in which a differential pressure sensor that detects a differential pressure between the side pressure and the downstream pressure is provided, and the amount of PM collected in the DPNR catalyst 4b is estimated based on the sensor output.

そして、ECU100は、PM推定量が所定の基準値(限界堆積量)以上となったときにDPNR触媒4bの再生時期であると判定してPM再生制御を実行する。具体的には、クランクポジションセンサ41の出力から読み込んだエンジン回転数に基づいて、予め実験等により作成されたマップを参照して燃料の要求添加量及び添加間隔を算出し、その算出結果に応じて燃料添加弁25の開閉を制御して、排気系7に燃料添加を断続的に繰り返す。このような燃料添加により、DPNR触媒4bの触媒床温が上昇し、DPNR触媒4bに堆積しているPMが酸化され、H2OやCO2となって排出する。 Then, the ECU 100 determines that it is time to regenerate the DPNR catalyst 4b when the estimated PM amount is equal to or greater than a predetermined reference value (limit accumulation amount), and executes PM regeneration control. Specifically, based on the engine speed read from the output of the crank position sensor 41, the required addition amount and addition interval of fuel are calculated with reference to a map created in advance through experiments, etc. Then, the opening and closing of the fuel addition valve 25 is controlled, and fuel addition to the exhaust system 7 is repeated intermittently. By such fuel addition, the catalyst bed temperature of the DPNR catalyst 4b rises, and the PM deposited on the DPNR catalyst 4b is oxidized and discharged as H 2 O or CO 2 .

なお、ECU100は、以上のPM再生制御のほか、S被毒回復制御やNOx還元制御を実行する場合もある。S被毒回復制御とは、燃料添加弁25からの燃料添加を断続的に繰り返して触媒床温を高温化するとともに、排気ガスの空燃比をストイキあるいはリッチとし、NOx吸蔵還元型触媒4a及びDPNR触媒4b内のNOx吸蔵還元型触媒から硫黄分を放出させる制御である。また、NOx還元制御は、燃料添加弁25からの間欠的な燃料添加により、NOx吸蔵還元型触媒4a及びDPNR触媒4b内のNOx吸蔵還元型触媒に吸蔵されたNOxを、N2、CO2及びH2Oに還元して浄化する制御である。 In addition to the above PM regeneration control, the ECU 100 may execute S poison recovery control and NOx reduction control. The S poison recovery control is to intermittently repeat the fuel addition from the fuel addition valve 25 to increase the catalyst bed temperature, and to make the air-fuel ratio of the exhaust gas stoichiometric or rich so that the NOx occlusion reduction type catalyst 4a and DPNR In this control, sulfur is released from the NOx occlusion reduction catalyst in the catalyst 4b. In addition, the NOx reduction control is performed by intermittently adding fuel from the fuel addition valve 25 to store NOx stored in the NOx storage reduction catalyst 4a and the NOx storage reduction catalyst in the DPNR catalyst 4b as N 2 , CO 2 and This is control to reduce to H 2 O and purify.

これらのPM再生制御、S被毒回復制御及びNOx還元制御は、それぞれの実行要求があったときに行われるが、各制御の実行が重なったときには、PM再生制御→S被毒回復制御→NOx還元制御の順で優先して行われる。   These PM regeneration control, S poison recovery control and NOx reduction control are performed when there is a request for execution of each, but when the execution of each control overlaps, PM regeneration control → S poison recovery control → NOx. Prioritized in the order of reduction control.

−添加間隔補正処理−
まず、車両に搭載されるエンジン1では、上述したように、平地運転から高地運転に移行したときの大気圧変化等の環境変化や、定常運転状態から過渡運転状態への移行時などにおいて、エンジンの吸入空気量が低下すると、平地・平常運転状態よりもPM排出量が増加する。PM排出量が増加すると、燃料添加弁25の噴孔に付着・侵入するPM量が増加してデポジットが生成されやすくなるため、燃料添加弁25の噴孔閉塞が発生する可能性がある。また、燃料添加弁25の先端部の雰囲気温度(排気温度)が、基準設定時よりも上昇した場合には、燃料添加弁25の先端温度も上昇するので、その温度上昇によって生成されるデポジットにて燃料添加弁25の噴孔が閉塞される可能性がある。
-Addition interval correction processing-
First, in the engine 1 mounted on the vehicle, as described above, the engine changes when the environment changes, such as a change in atmospheric pressure when the operation is changed from the flat operation to the high operation, or when the operation changes from the steady operation state to the transient operation state. When the intake air amount decreases, the PM emission amount increases more than in the flat ground / normal operation state. When the PM discharge amount increases, the amount of PM adhering to and intruding into the nozzle hole of the fuel addition valve 25 increases, and deposits are easily generated. Therefore, the nozzle hole of the fuel addition valve 25 may be blocked. Further, when the atmospheric temperature (exhaust temperature) at the front end of the fuel addition valve 25 is higher than that at the reference setting, the front end temperature of the fuel addition valve 25 also increases, so that the deposit generated by the temperature rise is increased. As a result, the nozzle hole of the fuel addition valve 25 may be blocked.

このような問題を解消するため、この実施形態では、燃料添加弁25の先端温度に基づいて燃料の添加間隔を補正する添加間隔補正係数eminttempを算出する。また、環境変化・過渡期のPM排出量の変化量に基づいて燃料の添加間隔を補正する添加間隔補正係数emintpmを算出し、それら添加間隔補正係数eminttempまたは添加間隔補正係数emintpmのうち、単位時間当たりの燃料添加量が多くなる方の補正係数を選択して燃料の最終添加間隔を設定することによって、燃費の悪化を抑制しながら、燃料添加弁25の噴孔閉塞を防止する点に特徴がある。   In order to solve such a problem, in this embodiment, an addition interval correction coefficient eminttemp for correcting the addition interval of the fuel based on the tip temperature of the fuel addition valve 25 is calculated. Further, an addition interval correction coefficient emintpm for correcting the addition interval of fuel is calculated based on the change amount of the PM emission amount in the environmental change / transition period, and the unit time of the addition interval correction coefficient eminttemp or the addition interval correction coefficient emintpm is calculated. A feature is that the injection hole blockage of the fuel addition valve 25 is prevented while suppressing the deterioration of fuel consumption by selecting the correction coefficient that increases the fuel addition amount per hit and setting the final fuel addition interval. is there.

その添加間隔補正処理の具体的な例を図3のフローチャートを参照しながら説明する。この添加間隔補正処理はECU100が実行する処理である。なお、この補正処理ルーチンは所定時間周期で繰り返し実行される。   A specific example of the addition interval correction process will be described with reference to the flowchart of FIG. This addition interval correction process is a process executed by the ECU 100. This correction processing routine is repeatedly executed at a predetermined time period.

まず、ステップST1において、クランクポジションセンサ41の出力からエンジン回転数Neを読み込み、そのエンジン回転数Neに基づいてマップを参照して要求添加量Qを算出する。要求添加量Qを算出するマップは、エンジン回転数Neと要求添加量Qとの関係を予め実験・計算等によって求め、それらの関係をマップ化したものであり、ECU100のROM102内に予め記憶されている。   First, in step ST1, the engine speed Ne is read from the output of the crank position sensor 41, and the required addition amount Q is calculated with reference to a map based on the engine speed Ne. The map for calculating the required addition amount Q is a map in which the relationship between the engine speed Ne and the required addition amount Q is obtained in advance through experiments and calculations, and is stored in the ROM 102 of the ECU 100 in advance. ing.

ステップST2では、要求添加量Qとエンジン回転数Neに基づいて図4のマップを参照して燃料の基準添加間隔Tb(図8参照)を算出する。基準添加間隔算出マップは、要求添加量Q及びエンジン回転数Neと基準添加間隔Tbとの関係を予め実験・計算等によって求め、それらの関係をマップ化したものであり、ECU100のROM102内に予め記憶されている。また、ステップST2において、基準添加間隔Tbを算出したときの基準排気温度(燃料添加弁25の周辺温度)を取得しておく。   In step ST2, the fuel reference addition interval Tb (see FIG. 8) is calculated with reference to the map of FIG. 4 based on the required addition amount Q and the engine speed Ne. The reference addition interval calculation map is a map in which the relationship between the required addition amount Q and the engine speed Ne and the reference addition interval Tb is obtained in advance through experiments and calculations, and is mapped in the ROM 102 of the ECU 100 in advance. It is remembered. In step ST2, a reference exhaust temperature (a temperature around the fuel addition valve 25) when the reference addition interval Tb is calculated is acquired.

ステップST3では、燃料添加弁25の先端温度に基づいて燃料の添加間隔を補正する添加間隔補正係数eminttempを算出する。   In step ST3, an addition interval correction coefficient eminttemp for correcting the addition interval of the fuel based on the tip temperature of the fuel addition valve 25 is calculated.

具体的には、上記ステップST2で求めた基準排気温度と現在の排気温度との差(排気温度変化量ΔTh)に基づいて図5のマップを参照して添加間隔補正係数eminttempを算出する。図5に示す添加間隔補正係数マップは、排気温度変化量ΔThと添加間隔補正係数eminttempとの関係を予め実験・計算等によって求め、それらの関係をマップ化したものであり、ECU100のROM102内に予め記憶されている。添加間隔補正係数eminttempは、排気温度変化量ΔThが大きいほど小さい値となるように設定されており、この添加弁先端温度に基づく添加間隔補正係数eminttempが小さくなるほど燃料の添加間隔が短縮される。   Specifically, the addition interval correction coefficient eminttemp is calculated with reference to the map of FIG. 5 based on the difference (exhaust temperature change amount ΔTh) between the reference exhaust temperature obtained in step ST2 and the current exhaust temperature. The addition interval correction coefficient map shown in FIG. 5 is obtained by previously obtaining the relationship between the exhaust gas temperature change amount ΔTh and the addition interval correction coefficient einttemp by experiment / calculation and the like, and mapping these relationships in the ROM 102 of the ECU 100. Stored in advance. The addition interval correction coefficient eminttemp is set to be smaller as the exhaust gas temperature change amount ΔTh is larger, and the fuel addition interval is shortened as the addition interval correction coefficient eminttemp based on the addition valve tip temperature is smaller.

なお、排気温度(燃料添加弁25の周辺温度)は、エンジン回転数Ne、吸気温度及び大気圧等をパラメータとする排気温度算出マップを、予め実験・計算等によって作成してECU100のROM102に記憶しておき、その排気温度算出マップを参照して算出するようにしてもよいし、また、例えばターボチャージャ5の上流側の排気温度を検出するターボ前排気温センサを設置し、そのセンサ出力から排気温度を得るようにしてもよい。   As for the exhaust temperature (ambient temperature of the fuel addition valve 25), an exhaust temperature calculation map using the engine speed Ne, the intake air temperature, the atmospheric pressure, and the like as parameters is created in advance through experiments and calculations and stored in the ROM 102 of the ECU 100. In addition, the exhaust temperature calculation map may be used for calculation, or, for example, a pre-turbo exhaust temperature sensor that detects the exhaust temperature upstream of the turbocharger 5 is installed, and the sensor output is calculated from the sensor output. The exhaust temperature may be obtained.

ステップST4において、環境変化・過渡期のPM排出量の変化量に基づいて燃料の添加間隔を補正する添加間隔補正係数emintpmを算出する。   In step ST4, an addition interval correction coefficient emintpm for correcting the fuel addition interval is calculated based on the amount of change in the PM emission amount in the environmental change / transition period.

具体的には、まずは下記の空気量比の算出とPM排出量のλ補正係数の算出とを行う。   Specifically, first, the following air amount ratio calculation and PM emission coefficient λ correction coefficient are calculated.

・空気量比の算出
エアフローメータ32の出力信号から得られるエンジン1の実吸入空気量と、平地での基準吸入空気量とに基づいて、空気量比gnr(空気量比=吸入空気量/基準吸入空気量)を算出する。
Calculation of the air amount ratio Based on the actual intake air amount of the engine 1 obtained from the output signal of the air flow meter 32 and the reference intake air amount on flat ground, the air amount ratio gnr (air amount ratio = intake air amount / reference Intake air amount) is calculated.

・PM排出量のλ補正係数算出
以上の処理で算出した空気量比gnr及び大気圧センサ39の出力信号から得られる大気圧(検出値)に基づいて、図6に示すマップを参照してPM排出量のλ(空気過剰率)補正係数emgpmlmdを算出する。図6のλ補正係数マップは、空気量比gnr及び大気圧をパラメータとして、予め実験・計算等によって求めたλ補正係数をマップ化したものであり、ECU100のROM102内に予め記憶されている。λ補正係数emgpmlmdは、空気量比gnr及び大気圧が低くなるほど大きな値となるように設定されている。
Calculation of λ correction coefficient for PM emission amount Based on the air amount ratio gnr calculated by the above processing and the atmospheric pressure (detected value) obtained from the output signal of the atmospheric pressure sensor 39, the PM shown in FIG. A discharge amount λ (excess air ratio) correction coefficient imgpmmld is calculated. The λ correction coefficient map in FIG. 6 is a map of λ correction coefficients obtained in advance through experiments and calculations using the air amount ratio gnr and atmospheric pressure as parameters, and is stored in advance in the ROM 102 of the ECU 100. The λ correction coefficient imgpmmld is set so as to increase as the air amount ratio gnr and the atmospheric pressure decrease.

そして、このようにして算出したλ補正係数emgpmlmdに基づいて、図7に示すマップを参照して添加間隔補正係数emintpmを算出する。図7の添加間隔補正係数マップは、λ補正係数emgpmlmdと添加間隔補正係数emintpmとの関係を予め実験・計算等によって求め、それらの関係をマップ化したものであり、ECU100のROM102内に予め記憶されている。添加間隔補正係数emintpmは、PM排出量の変化量(λ補正係数emgpmlmd)が大きいほど小さい値となるように設定されており、この添加間隔補正係数emintpmが小さくなるほど燃料の添加間隔が短縮される。   Then, based on the λ correction coefficient empgmlmd calculated in this way, the addition interval correction coefficient emintpm is calculated with reference to the map shown in FIG. The addition interval correction coefficient map of FIG. 7 is obtained by previously obtaining the relationship between the λ correction coefficient empgpmmd and the addition interval correction coefficient emintpm by experiments and calculations, and mapping those relationships, and storing them in the ROM 102 of the ECU 100 in advance. Has been. The addition interval correction coefficient emintpm is set so as to be smaller as the amount of change in the PM discharge amount (λ correction coefficient empgmlmd) is larger. The smaller the addition interval correction coefficient emintpm is, the shorter the fuel addition interval is. .

ステップST5〜ST7では、上記したステップST3で算出した添加間隔補正係数eminttempとステップST4で算出した添加間隔補正係数emintpmとを比較し、添加間隔補正係数が小さい方、つまり、単位時間当たり燃料添加量が多い方の添加間隔補正係数を選択する。具体的には、添加弁先端温度による添加間隔補正係数eminttempが、PM排出量の変化による添加間隔補正係数emintpmよりも小さい場合(ステップST5の判定結果が肯定判定である場合)は、その添加弁先端温度による添加間隔補正係数eminttempを最終添加間隔補正係数emintadとして選択する(ステップST6)。一方、PM排出量の変化による添加間隔補正係数emintpmが添加弁先端温度による添加間隔補正係数eminttempよりも小さい場合(ステップST5の判定結果が否定判定である場合)、そのPM排出量の変化による添加間隔補正係数emintpmを最終添加間隔補正係数emintadとして選択する(ステップST7)。   In steps ST5 to ST7, the addition interval correction coefficient eminttemp calculated in step ST3 is compared with the addition interval correction coefficient emintpm calculated in step ST4, and the addition interval correction coefficient is smaller, that is, the fuel addition amount per unit time. The addition interval correction coefficient with the larger value is selected. Specifically, when the addition interval correction coefficient eminttemp due to the addition valve tip temperature is smaller than the addition interval correction coefficient emintpm due to the change in the PM discharge amount (when the determination result of step ST5 is affirmative determination), the addition valve The addition interval correction coefficient eminttemp according to the tip temperature is selected as the final addition interval correction coefficient emintad (step ST6). On the other hand, when the addition interval correction coefficient emintpm due to the change in the PM discharge amount is smaller than the addition interval correction coefficient eminttemp due to the addition valve tip temperature (when the determination result of step ST5 is negative), the addition due to the change in the PM discharge amount The interval correction coefficient emintpm is selected as the final addition interval correction coefficient emintad (step ST7).

そして、ステップST8においては、以上のステップST6またはステップST7で選択した最終添加間隔補正係数emintadを用い、上記ステップST2で算出した基準添加間隔に最終添加間隔補正係数emintadに乗じて最終添加間隔(最終添加間隔=[補正前の基準添加間隔]×emintad)を算出して、このルーチンを終了する。   In step ST8, the final addition interval correction coefficient emintad selected in the above step ST6 or step ST7 is used, and the final addition interval correction coefficient emintad is multiplied by the reference addition interval calculated in step ST2 to obtain the final addition interval (final interval). (Addition interval = [reference addition interval before correction] × emintad) is calculated, and this routine is terminated.

以上の添加間隔補正処理によれば、添加弁先端温度に基づいて算出した添加間隔補正係数eminttemp、または、PM排気量の変化量に基づいて算出した添加間隔補正係数emintpmのうち、添加間隔が短くなる方(つまり単位時間当たりの燃料添加量が多い方の補正係数)を選択して最終添加間隔を設定しているので、燃料添加弁25の先端温度の上昇、または、環境変化・過渡期におけるPM排出量の増加のうち、燃料添加弁25の噴孔閉塞が発生しやすい状況変化に対して添加間隔を補正することが可能になり、燃料添加弁25の噴孔閉塞を効果的に抑制することができる。しかも、燃料添加弁25の先端温度上昇、または、環境変化・過渡期におけるPM排出量の増加の各状況変化に見合った適切な添加量(単位時間当たりの添加量)で燃料添加を行うことができるので、例えばPM排出量のばらつき上限で添加量を適合する場合と比べて、燃費の悪化を抑制することができる。   According to the addition interval correction process described above, the addition interval is short among the addition interval correction coefficient eminttemp calculated based on the addition valve tip temperature or the addition interval correction coefficient emintpm calculated based on the change amount of the PM exhaust amount. Since the final addition interval is set by selecting the one (that is, the correction coefficient with the larger amount of fuel addition per unit time), the rise of the tip temperature of the fuel addition valve 25 or the environmental change / transition period It becomes possible to correct the addition interval with respect to the change in the situation where the injection hole clogging of the fuel addition valve 25 is likely to occur in the increase in the PM discharge amount, and the injection hole clogging of the fuel addition valve 25 is effectively suppressed. be able to. Moreover, it is possible to add fuel at an appropriate addition amount (addition amount per unit time) commensurate with each situation change such as a rise in the temperature of the tip of the fuel addition valve 25 or an increase in the PM emission amount during an environmental change or transition period. Therefore, deterioration of fuel consumption can be suppressed as compared with, for example, the case where the addition amount is adapted at the upper limit of variation in the PM emission amount.

ところで、燃料添加弁25の噴孔閉塞を抑制するために単位時間当たりの燃料添加量を増量すると、燃料が触媒内にて反応して触媒床温が所定の範囲(例えば750℃)を超える可能性がある。これを回避する方法として、排気温センサ35の出力から得られる排気温度に基づいてDPNR触媒4bの触媒床温を推定し、その推定した触媒床温が所定の設定値以上となったときに、その触媒床温(具体的には、所定値からの触媒温度の変化量)に応じて単位時間当たりの燃料添加量を少なくすることにより、触媒床温の過度の上昇を防止するという方法を挙げることができる。なお、触媒床温に対する設定値は、触媒床温の設定範囲(例えば750℃)を考慮して経験的に求めた値を採用する。   By the way, if the fuel addition amount per unit time is increased in order to suppress the injection hole clogging of the fuel addition valve 25, the fuel reacts in the catalyst and the catalyst bed temperature may exceed a predetermined range (for example, 750 ° C.). There is sex. As a method of avoiding this, when the catalyst bed temperature of the DPNR catalyst 4b is estimated based on the exhaust temperature obtained from the output of the exhaust temperature sensor 35, and the estimated catalyst bed temperature becomes equal to or higher than a predetermined set value, A method of preventing an excessive increase in the catalyst bed temperature by reducing the amount of fuel added per unit time according to the catalyst bed temperature (specifically, the amount of change in the catalyst temperature from a predetermined value) is mentioned. be able to. In addition, the value calculated | required empirically considering the setting range (for example, 750 degreeC) of a catalyst bed temperature is employ | adopted for the setting value with respect to a catalyst bed temperature.

ここで、単位時間当たりの燃料添加量を少なくする方法として、上記した添加間隔補正処理により求めた最終添加間隔はそのままにして、図8に示す1回当たりの添加時間を短くするという方法を挙げることができる。このような方法を採用すると、燃料添加弁25の噴孔閉塞を抑制する短い添加間隔を確保しつつ、トータルの燃料添加量を少なくすることができるので、触媒床温の過剰上昇を抑えながら、燃料添加弁25の噴孔閉塞を抑制することが可能になる。   Here, as a method of reducing the fuel addition amount per unit time, there is a method of shortening the addition time per one time shown in FIG. 8 while keeping the final addition interval obtained by the addition interval correction processing described above. be able to. By adopting such a method, it is possible to reduce the total amount of fuel added while securing a short addition interval that suppresses the injection hole clogging of the fuel addition valve 25, while suppressing an excessive increase in the catalyst bed temperature, It is possible to suppress the injection hole blockage of the fuel addition valve 25.

また、触媒床温の過剰上昇を防止する他の方法として、排気温センサ35の出力から得られる排気温度に基づいてDPNR触媒4bの触媒床温を推定し、その推定した現在の触媒床温と上記した添加間隔補正処理で算出した最終添加間隔とに基づいて、最終添加間隔で燃料添加を行ったときの触媒床温の上昇温度を推定し、その推定した触媒床温が設定値(触媒床温の許容上限温度を考慮した設定値)を超えないように、単位時間当たりの燃料添加量の増量補正を制限するという方法を挙げることができる。   Further, as another method for preventing an excessive increase in the catalyst bed temperature, the catalyst bed temperature of the DPNR catalyst 4b is estimated based on the exhaust temperature obtained from the output of the exhaust temperature sensor 35, and the estimated current catalyst bed temperature and Based on the final addition interval calculated in the addition interval correction process described above, the rising temperature of the catalyst bed temperature when fuel is added at the final addition interval is estimated, and the estimated catalyst bed temperature is set to a set value (catalyst bed). A method of limiting the increase correction of the fuel addition amount per unit time so as not to exceed the set value in consideration of the allowable upper limit temperature of the temperature can be mentioned.

−他の実施形態−
以上の例では、添加弁先端温度に基づいて算出した添加間隔補正係数eminttemp、または、PM排気量の変化量に基づいて算出した添加間隔補正係数emintpmを用いて最終添加間隔を設定しているが、本発明はこれに限られることなく、PM排気量の変化量に応じた添加間隔補正係数emintpmのみを算出して最終添加間隔を設定するようにしてもよい。
-Other embodiments-
In the above example, the final addition interval is set using the addition interval correction coefficient eminttemp calculated based on the addition valve tip temperature or the addition interval correction coefficient eintpm calculated based on the change amount of the PM exhaust amount. The present invention is not limited to this, and the final addition interval may be set by calculating only the addition interval correction coefficient emintpm corresponding to the amount of change in the PM exhaust amount.

以上の例では、基準添加間隔Tbに添加間隔補正係数eminttempまたは添加間隔補正係数emintpmを乗じて燃料の添加量を補正しているが、これに替えて、1回当たり基準添加時間(図8参照)に添加間隔補正係数eminttempまたは添加間隔補正係数emintpmを乗じて単位時間当たりの燃料の添加量を補正するようにしてもよい。なお、1回当たり基準添加時間を補正する場合、添加間隔補正係数eminttempは、排気温度変化量ΔThが大きくなるほど大きな値となるように設定する。また、添加間隔補正係数emintpmについても、PM排出量の変化量(λ補正係数emgpmlmd)が大きいほど大きな値となるように設定する。   In the above example, the fuel addition amount is corrected by multiplying the reference addition interval Tb by the addition interval correction coefficient eminttemp or the addition interval correction coefficient emintpm. Instead, the reference addition time (see FIG. 8) is used instead. ) May be multiplied by the addition interval correction coefficient eminttemp or the addition interval correction coefficient emintpm to correct the addition amount of fuel per unit time. In addition, when correcting the reference addition time per time, the addition interval correction coefficient eminttemp is set so as to increase as the exhaust gas temperature change amount ΔTh increases. Also, the addition interval correction coefficient emintpm is set so as to increase as the change amount of the PM discharge amount (λ correction coefficient empgmlmd) increases.

以上の例では、燃料添加弁25の先端温度による添加間隔補正係数eminttemp補正係数を、排気温度変化量ΔThに基づいて算出しているが、これに替えて、水温センサ31の出力信号から得られるエンジン1の冷却水温に基づいて、図9に示すマップを参照して添加間隔補正係数eminttempを算出するようにしてもよい。   In the above example, the addition interval correction coefficient eminttemp correction coefficient due to the tip temperature of the fuel addition valve 25 is calculated based on the exhaust temperature change amount ΔTh, but instead, it is obtained from the output signal of the water temperature sensor 31. Based on the coolant temperature of the engine 1, the addition interval correction coefficient eminttemp may be calculated with reference to the map shown in FIG.

以上の例では、本発明の排気浄化装置を筒内直噴4気筒ディーゼルエンジンに適用した例を示したが、本発明はこれに限られることなく、例えば筒内直噴6気筒ディーゼルエンジンなど他の任意の気筒数のディーゼルエンジンにも適用できる。また、筒内直噴ディーゼルエンジンに限られることなく、他のタイプのディーゼルエンジンにも本発明を適用することは可能である。また、車両用に限らず、その他の用途に使用されるエンジンにも適用可能である。   In the above example, the exhaust purification apparatus of the present invention is applied to an in-cylinder direct injection 4-cylinder diesel engine. However, the present invention is not limited to this, and other examples such as an in-cylinder direct injection 6-cylinder diesel engine, etc. It can also be applied to diesel engines with any number of cylinders. Further, the present invention is not limited to an in-cylinder direct injection diesel engine, but can be applied to other types of diesel engines. Moreover, it is applicable not only for vehicles but also for engines used for other purposes.

以上の例では、触媒装置4として、NOx吸蔵還元型触媒4a及びDPNR触媒4bを備えたものとしたが、NOx吸蔵還元型触媒4aあるいは酸化触媒、及びDPFを備えたものとしてもよい。   In the above example, the catalyst device 4 includes the NOx storage reduction catalyst 4a and the DPNR catalyst 4b. However, the catalyst device 4 may include the NOx storage reduction catalyst 4a or the oxidation catalyst and the DPF.

本発明を適用するディーゼルエンジンの一例を示す概略構成図である。It is a schematic structure figure showing an example of a diesel engine to which the present invention is applied. ECU等の制御系の構成を示すブロック図である。It is a block diagram which shows the structure of control systems, such as ECU. ECUが実行する添加間隔補正処理の一例を示すフローチャートである。It is a flowchart which shows an example of the addition space | interval correction | amendment process which ECU performs. 図3の添加間隔補正処理で用いる基準添加間隔算出マップを示す図である。It is a figure which shows the reference | standard addition space | interval calculation map used with the addition space | interval correction | amendment process of FIG. 図3の添加間隔補正処理で用いる添加間隔補正係数マップを示す図である。It is a figure which shows the addition space | interval correction coefficient map used with the addition space | interval correction | amendment process of FIG. 図3の添加間隔補正処理で用いるPM排出量のλ補正係数マップを示す図である。It is a figure which shows (lambda) correction coefficient map of PM discharge amount used with the addition space | interval correction | amendment process of FIG. 図3の添加間隔補正処理で用いる添加間隔補正係数マップを示す図である。It is a figure which shows the addition space | interval correction coefficient map used with the addition space | interval correction | amendment process of FIG. 燃料の添加間隔と添加時間を示す図である。It is a figure which shows the addition interval and addition time of a fuel. 添加先端温度による添加間隔補正係数マップの他の例を示す図である。It is a figure which shows the other example of the addition space | interval correction coefficient map by the addition tip temperature.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
2 燃料供給系
21 サプライポンプ
22 コモンレール
24 遮断弁
23 インジェクタ
25 燃料添加弁
27 添加燃料通路
4 触媒装置
4a NOx吸蔵還元型触媒
4b DPNR触媒
6 吸気系
7 排気系
31 水温センサ
33 吸気温センサ
36 排気温センサ
39 大気圧センサ
41 クランクポジションセンサ
100 ECU
1 engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 2 Fuel supply system 21 Supply pump 22 Common rail 24 Shutoff valve 23 Injector 25 Fuel addition valve 27 Additional fuel passage 4 Catalytic device 4a NOx occlusion reduction type catalyst 4b DPNR catalyst 6 Intake system 7 Exhaust system 31 Water temperature sensor 33 Intake temperature sensor 36 Exhaust temperature Sensor 39 Atmospheric pressure sensor 41 Crank position sensor 100 ECU

Claims (6)

内燃機関の排気通路に配設された触媒と、前記排気通路に燃料を添加する燃料添加弁とを備えた排気浄化装置において、
前記内燃機関の燃焼室からの粒子状物質の排出量の変化量に基づいて、前記燃料添加弁から排気通路に添加する燃料の単位時間当たりの添加量を補正する補正手段を備えていることを特徴とする排気浄化装置。
In an exhaust purification device comprising a catalyst disposed in an exhaust passage of an internal combustion engine and a fuel addition valve for adding fuel to the exhaust passage,
Correction means for correcting an addition amount per unit time of the fuel added from the fuel addition valve to the exhaust passage based on a change amount of the discharge amount of the particulate matter from the combustion chamber of the internal combustion engine. A featured exhaust purification device.
請求項1記載の排気浄化装置において、
前記補正手段は、基準添加間隔に、前記粒子状物質排出量の変化量に応じた補正係数を乗じて最終添加間隔を設定することを特徴とする排気浄化装置。
The exhaust emission control device according to claim 1,
The exhaust gas purification apparatus according to claim 1, wherein the correction means sets a final addition interval by multiplying a reference addition interval by a correction coefficient corresponding to a change amount of the particulate matter discharge amount.
請求項2記載の排気浄化装置において、
前記補正手段は、前記内燃機関の実吸入空気量が基準吸入空気量よりも少ないときに、添加間隔を短い側に補正する補正係数を前記基準添加間隔に乗じて最終添加間隔を設定することを特徴とする排気浄化装置。
The exhaust emission control device according to claim 2,
The correction means sets the final addition interval by multiplying the reference addition interval by a correction coefficient for correcting the addition interval to a shorter side when the actual intake air amount of the internal combustion engine is smaller than the reference intake air amount. A featured exhaust purification device.
内燃機関の排気通路に配設された触媒と、前記排気通路に燃料を添加する燃料添加弁とを備えた排気浄化装置において、
前記内燃機関の燃焼室からの粒子状物質の排出量の変化量に基づいて前記燃料添加弁から排気通路に添加する燃料の添加間隔を補正する補正手段と、添加弁温度推定手段とを備え、
前記補正手段は、前記内燃機関の実吸入空気量が基準吸入空気量よりも少ないときに添加間隔を短い側に補正する第1補正係数と、前記添加弁温度推定手段にて推定される添加弁温度が低い側から高い側に変化したときに添加間隔を短い側に補正する第2補正係数とを比較し、それら第1補正係数または第2補正係数のうち、添加間隔が短い側となる補正係数を基準添加間隔に乗じて最終添加間隔を設定することを特徴とする排気浄化装置。
In an exhaust purification device comprising a catalyst disposed in an exhaust passage of an internal combustion engine and a fuel addition valve for adding fuel to the exhaust passage,
Correction means for correcting the addition interval of fuel added from the fuel addition valve to the exhaust passage based on the amount of change in the discharge amount of particulate matter from the combustion chamber of the internal combustion engine, and addition valve temperature estimation means,
The correction means includes a first correction coefficient for correcting an addition interval to a shorter side when the actual intake air amount of the internal combustion engine is smaller than a reference intake air amount, and an addition valve estimated by the addition valve temperature estimation means Compared with the second correction coefficient that corrects the addition interval to the short side when the temperature changes from the low side to the high side, of the first correction coefficient or the second correction coefficient, the correction on the short addition interval side An exhaust emission control device that sets a final addition interval by multiplying a reference addition interval by a coefficient.
請求項1〜4のいずれかに記載の排気浄化装置において、
前記補正手段は、前記触媒の温度が所定値以上となったときに、当該触媒の温度に応じて単位時間当たりの燃料添加量を少なくすることを特徴とする排気浄化装置。
The exhaust emission control device according to any one of claims 1 to 4,
The exhaust gas purification apparatus according to claim 1, wherein when the temperature of the catalyst becomes equal to or higher than a predetermined value, the correction means reduces the fuel addition amount per unit time according to the temperature of the catalyst.
請求項5記載の排気浄化装置において、
燃料添加の1回当たりの添加時間を減じるとともに、添加間隔を短い側に補正して単位時間当たりの燃料噴射量を少なくすることを特徴とする排気浄化装置。
The exhaust emission control device according to claim 5,
An exhaust emission control device that reduces the addition time per fuel addition and corrects the addition interval to a shorter side to reduce the fuel injection amount per unit time.
JP2006149654A 2006-05-30 2006-05-30 Exhaust emission control device Pending JP2007321575A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006149654A JP2007321575A (en) 2006-05-30 2006-05-30 Exhaust emission control device
FR0703797A FR2901839A1 (en) 2006-05-30 2007-05-29 EXHAUST GAS PURIFICATION SYSTEM AND EXHAUST GAS PURIFICATION METHOD
DE102007024891A DE102007024891A1 (en) 2006-05-30 2007-05-29 Exhaust gas purification system and method for purifying exhaust gas
US11/802,943 US20070277509A1 (en) 2006-05-30 2007-05-29 Exhaust gas purification system and method of purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149654A JP2007321575A (en) 2006-05-30 2006-05-30 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2007321575A true JP2007321575A (en) 2007-12-13

Family

ID=38650739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149654A Pending JP2007321575A (en) 2006-05-30 2006-05-30 Exhaust emission control device

Country Status (4)

Country Link
US (1) US20070277509A1 (en)
JP (1) JP2007321575A (en)
DE (1) DE102007024891A1 (en)
FR (1) FR2901839A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8307636B2 (en) 2007-10-24 2012-11-13 Toyota Jidosha Kabushiki Kaisha Addition valve control method and addition valve controller
JP2014114786A (en) * 2012-12-12 2014-06-26 Volvo Lastvagnar Aktiebolag Exhaust pipe injection device of engine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101878353B (en) * 2007-12-26 2012-09-05 丰田自动车株式会社 Exhaust purification device for internal combustion engine
US8740103B2 (en) 2008-04-21 2014-06-03 GM Global Technology Operations LLC Heater coolant flow control for HVAC module
FR2937382A1 (en) * 2008-10-20 2010-04-23 Renault Sas Fuel injecting device for combustion engine i.e. diesel engine, of motor vehicle, has injection channel provided at longitudinal end of elongated shape body, and another injection channel provided on lateral wall of body
JP5835293B2 (en) * 2013-09-12 2015-12-24 トヨタ自動車株式会社 Internal combustion engine
JP6183392B2 (en) * 2015-03-02 2017-08-23 トヨタ自動車株式会社 Internal combustion engine with a supercharger
US10920695B1 (en) * 2019-09-05 2021-02-16 Ford Global Technologies, Llc Methods and systems for regeneration of an exhaust aftertreatment device
US11846242B2 (en) * 2022-01-03 2023-12-19 Ford Global Technologies, Llc Methods and system for overcoming a degraded particulate filter pressure sensor
US11781497B1 (en) 2022-06-07 2023-10-10 Thermo King Llc Diesel particulate filter (DPF) backpressure sensor as altitude sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046086B2 (en) * 2004-01-21 2008-02-13 トヨタ自動車株式会社 Variable compression ratio internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8307636B2 (en) 2007-10-24 2012-11-13 Toyota Jidosha Kabushiki Kaisha Addition valve control method and addition valve controller
JP2014114786A (en) * 2012-12-12 2014-06-26 Volvo Lastvagnar Aktiebolag Exhaust pipe injection device of engine

Also Published As

Publication number Publication date
FR2901839A1 (en) 2007-12-07
US20070277509A1 (en) 2007-12-06
DE102007024891A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4240025B2 (en) Exhaust purification equipment
JP3945526B2 (en) Fuel addition device
JP4119927B2 (en) Exhaust gas purification device for internal combustion engine
JP2007321575A (en) Exhaust emission control device
JP4816739B2 (en) Exhaust gas purification device for internal combustion engine
JP6228159B2 (en) Urea water supply device for internal combustion engine
US7320214B2 (en) Exhaust gas purifier for internal combustion engine
EP3133258B1 (en) Control system for internal combustion engine and control method
JP5287794B2 (en) Exhaust gas purification device for internal combustion engine
JP2007064182A (en) Exhaust emission control device
JP6278344B2 (en) Engine exhaust purification system
JP5370252B2 (en) Exhaust gas purification device for internal combustion engine
JP2010090875A (en) Exhaust gas control device for internal combustion engine
JP5699922B2 (en) Exhaust gas purification device for internal combustion engine
JP4452525B2 (en) Exhaust gas purification device for internal combustion engine
JP4697286B2 (en) Exhaust gas purification device for internal combustion engine
JP2007255308A (en) Exhaust emission control device of internal combustion engine
JP4720712B2 (en) Recirculation exhaust gas supply control device for internal combustion engine
JP2008232058A (en) Exhaust emission control system for internal combustion engine
JP2009024505A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729