JP2007321383A - Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat - Google Patents

Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat Download PDF

Info

Publication number
JP2007321383A
JP2007321383A JP2006150949A JP2006150949A JP2007321383A JP 2007321383 A JP2007321383 A JP 2007321383A JP 2006150949 A JP2006150949 A JP 2006150949A JP 2006150949 A JP2006150949 A JP 2006150949A JP 2007321383 A JP2007321383 A JP 2007321383A
Authority
JP
Japan
Prior art keywords
heat
pipe
flow path
ground
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006150949A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuoka
茂 松岡
Hirobumi Yanagi
博文 柳
Kazuya Matsuura
和也 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tekken Corp
Original Assignee
Tekken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekken Corp filed Critical Tekken Corp
Priority to JP2006150949A priority Critical patent/JP2007321383A/en
Publication of JP2007321383A publication Critical patent/JP2007321383A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T50/00Geothermal systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/03Arrangements for heat transfer optimization
    • F24S2080/05Flow guiding means; Inserts inside conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Piles And Underground Anchors (AREA)
  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-exchange excavated pile capable of being constructed even on a narrow site and capable of reducing construction costs without decreasing heat exchange efficiency, and snow-melting equipment utilizing geothermal heat, which can reduce running costs. <P>SOLUTION: In this heat-exchange excavated pile, a pipe-like main body, which is buried in an excavated hole with a predetermined depth, comprises a first channel which supplies a heating medium into the ground from on the ground, and a second channel which warms or cools the heating medium by utilizing the almost constant state of an earth temperature and which returns the warmed or cooled heating medium onto the ground. The cross-sectional area 2a of the first channel is set not greater than 1/2 of the cross-sectional area 2b of the second channel. The main body comprises at least a double pipe 20 which is composed of outer and inner pipes 22 and 21; the inside of the inner pipe serves as the first channel; an annular space, which is formed between the outer and inner pipes, serves as the second channel; the ratio between the outside diameter of the inner pipe and that diameter of the outer pipe is set to be in the range of 0.2-0.6; and the outside diameter of the outer pipe is set no longer than 80 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、熱交換掘削杭及び地中熱利用消融雪装置に関するものである。   The present invention relates to a heat excavation pile and an underground heat-utilizing snow melting device.

地中は、ある一定以上の深さになると通年略一定温度であるため、従来から、地中に設置した熱交換杭に熱媒体を流通させて地中から採熱あるいは地中に排熱して、地上の施設の消融雪、冷暖房、給湯などに利用することが既に行われている。例えば、熱媒体を通過させる伝熱管を杭の外周面において杭長手方向に延設した状態で杭周方向に複数並べて配置し、その周りに帯具を配置し、この帯具により伝熱管を杭の外周面に取付けた杭が提案されている(特許文献1参照)。   When the depth of the underground reaches a certain level, the temperature is almost constant throughout the year. Conventionally, a heat medium is circulated through the heat exchanging pile installed in the ground to collect heat from the ground or exhaust heat to the ground. It has already been used for snow melting, air conditioning and hot water supply for ground facilities. For example, a plurality of heat transfer tubes that allow the heat medium to pass through are arranged in the pile circumferential direction in a state extending in the pile longitudinal direction on the outer peripheral surface of the pile, and a band tool is arranged around the heat transfer pipe, and the heat transfer tube is piled by this band tool. A stake attached to the outer peripheral surface is proposed (see Patent Document 1).

しかし、この特許文献1に記載されているような杭では、基礎杭がないと施工できないため、基礎杭がなくともよい地盤の地域や、基礎杭から遠い施設、例えば山間部の一般道などでは設置することができないという問題点がある。   However, since the piles described in Patent Document 1 cannot be constructed without a foundation pile, the ground area where there is no foundation pile or facilities far from the foundation pile, such as general roads in mountainous areas, etc. There is a problem that it cannot be installed.

また、このような問題点を解決するために新たに杭を掘削新設して、その掘削杭を地中熱を利用した熱交換杭として融雪装置等に利用することが行われている。例えば、外筒内に内筒を同心状に設けて地中に垂直に埋設し、その中に液媒(熱媒体)を循環させて地中熱を採取する同軸二重管方式の熱交換器(杭)を用いた地中熱利用融雪装置が提案されている(特許文献2参照)。   Further, in order to solve such problems, a new pile is excavated and the excavated pile is used as a heat exchange pile using underground heat for a snow melting device or the like. For example, a coaxial double-tube heat exchanger that concentrically arranges an inner cylinder inside an outer cylinder, embeds it vertically in the ground, and circulates a liquid medium (heat medium) in it to collect underground heat. A ground heat utilizing snow melting device using (pile) has been proposed (see Patent Document 2).

しかし、特許文献2に記載されている地中熱利用融雪装置の熱交換器(杭)では、新たに熱交換器設置用の孔を掘削しなければならないため、その掘削費が高く初期費用が膨大なものとなり、特に、前記のような従来の熱交換杭の外筒の径は90mm程度又はそれ以上の比較的大きい口径であるため、初期費用の大部分を占める掘削杭の施工費が嵩んでしまうという問題点がある。またそのため、一般に熱交換掘削杭を普及するにあたり障害となっていた。   However, in the heat exchanger (pile) of the ground heat snow melting device described in Patent Document 2, since a hole for installing the heat exchanger has to be newly excavated, the excavation cost is high and the initial cost is high. In particular, since the diameter of the outer cylinder of the conventional heat exchange pile as described above is a relatively large diameter of about 90 mm or more, the construction cost of the excavation pile that occupies most of the initial cost is high. There is a problem that it ends up. For this reason, it has generally been an obstacle to popularizing heat excavation piles.

更に、このような問題点を解決するために、熱交換の効率を高めて熱交換器(杭)の全長を短くし、設置コストを低減する地中熱交換器(杭)が提案されている(特許文献3参照)。この特許文献3に記載されている地中熱交換器は、外管の内径に対する内管の外径の比を0.70以上0.95以下とし、あるいは、外管の内周面及び又は内管の外周面の表面粗さRaを10μm以上1mm以下とし、あるいは、突起を外管の内周面上及び又は内管の外周面上に軸方向に間隔を設けて連続的に配設し、又は、外管と内管との間に熱媒体を流通可能に架設された孔空き部材を、隙間内に軸方向に間隔を設けて連続的に配設するものである。要するに、外管と内管との間の流路内を熱媒体が流れにくいようにし、そこにポンプで圧力をかけて速く流すことにより熱媒体の見かけのレイノルズ数を高くし、それによって熱媒体の熱伝達係数を大きくするというものである。   Furthermore, in order to solve such problems, underground heat exchangers (pile) have been proposed that increase the efficiency of heat exchange, shorten the overall length of the heat exchanger (pile), and reduce the installation cost. (See Patent Document 3). In the underground heat exchanger described in Patent Document 3, the ratio of the outer diameter of the inner tube to the inner diameter of the outer tube is 0.70 or more and 0.95 or less, or the inner peripheral surface and / or the inner tube of the outer tube. The surface roughness Ra of the outer peripheral surface of the tube is set to 10 μm or more and 1 mm or less, or the protrusions are continuously disposed on the inner peripheral surface of the outer tube and / or the outer peripheral surface of the inner tube with an interval in the axial direction. Alternatively, a perforated member constructed so as to allow a heat medium to flow between the outer tube and the inner tube is continuously disposed in the gap with an interval in the axial direction. In short, the heat medium is made difficult to flow in the flow path between the outer tube and the inner tube, and the apparent Reynolds number of the heat medium is increased by flowing pressure quickly with a pump therethrough, thereby increasing the heat medium. The heat transfer coefficient is increased.

しかし、このような地中熱交換器では、熱媒体の熱伝達係数自体は上がるものの、そのためには高圧力をかける必要があり、ポンプを大型化しなければならず、設置コスト及びポンプの作動費用などのランニングコストが嵩むという問題点がある。
また、このような地中熱交換器は、熱媒体の熱伝達係数を上げることのみを念頭においているため、地中の地盤と熱媒体との間の熱交換だけでなく、内管内を流れる熱媒体と、外管と内管の間の流路を流れる熱媒体との間にも熱交換が行われることにあまり配慮がなされていない。そのため、熱交換器全体の熱交換の総量を高めるには不十分である。また、熱交換器を小口径化することは考慮されていないため、掘削機械を小型化するには至らず、大型の掘削機械が搬入できないような狭小地では施工できないし、初期費用の大部分を占める熱交換器(杭)の施工費を削減するにも不十分であるという問題点がある。
However, in such underground heat exchangers, although the heat transfer coefficient of the heat medium itself increases, it is necessary to apply high pressure for that purpose, and the pump must be enlarged, and the installation cost and operating cost of the pump must be increased. There is a problem that the running cost increases.
In addition, since such underground heat exchangers are only intended to increase the heat transfer coefficient of the heat medium, not only heat exchange between the underground ground and the heat medium but also the heat flowing in the inner pipe. Less consideration is given to heat exchange between the medium and the heat medium flowing through the flow path between the outer tube and the inner tube. Therefore, it is insufficient to increase the total amount of heat exchange of the entire heat exchanger. In addition, since it is not considered to reduce the diameter of the heat exchanger, the excavating machine cannot be reduced in size, it cannot be constructed in a narrow area where a large excavating machine cannot be carried in, and most of the initial cost is There is also a problem that it is insufficient to reduce the construction cost of the heat exchanger (pile) occupying.

特開2003−206528号公報JP 2003-206528 A 特開2003−301409号公報JP 2003-301409 A 特開2004−309124号公報JP 2004-309124 A

そこでこの発明は、前記従来の技術の問題点を解決し、狭小地でも施工可能であり、且つ、熱交換効率を落とさずに施工費を抑制することができる熱交換掘削杭、及びランニングコストを低減することのできる地中熱利用消融雪装置を提供することを目的とする。   Accordingly, the present invention solves the problems of the conventional technology, can be constructed even in a small area, and can reduce the construction cost without reducing the heat exchange efficiency, An object of the present invention is to provide a ground heat-utilizing snow melting device that can be reduced.

前記課題を解決するために、請求項1に記載の発明に係る熱交換掘削杭は、所定深さの掘削孔に管状の本体が埋設され、該本体は、地上から地中に向けて熱媒体を送給する第1の流路と、地中の温度が略一定であることを利用して該熱媒体を温め又は冷やして地上に返送する第2の流路とを有する熱交換掘削杭であって、第1の流路の断面積は、第2の流路の断面積の1/2以下に設定されていることを特徴とする。   In order to solve the above-described problem, in the heat excavation pile according to the first aspect of the present invention, a tubular main body is embedded in an excavation hole having a predetermined depth, and the main body is heated from the ground toward the ground. A heat exchange excavation pile having a first flow path for feeding and a second flow path for warming or cooling the heat medium and returning it to the ground by utilizing the fact that the temperature in the ground is substantially constant The cross-sectional area of the first flow path is set to ½ or less of the cross-sectional area of the second flow path.

請求項2に記載の発明に係る熱交換掘削杭は、請求項1に記載の発明において、本体は、少なくとも外管と内管の二重管から構成され、内管内が第1の流路となり、外管と内管間に形成された環状空間が第2の流路となっていると共に、内管の外径と外管の外径との比率が0.2〜0.6に設定されていることを特徴とする。   The heat excavation pile according to the invention of claim 2 is the invention according to claim 1, wherein the main body is composed of at least a double pipe of an outer pipe and an inner pipe, and the inside of the inner pipe serves as the first flow path. The annular space formed between the outer tube and the inner tube serves as the second flow path, and the ratio of the outer diameter of the inner tube to the outer diameter of the outer tube is set to 0.2 to 0.6. It is characterized by.

請求項3に記載の発明に係る熱交換掘削杭は、請求項2に記載の発明において、外管の外径は、熱媒体に乱流が発生し易いように80mm未満となっていることを特徴とする。   The heat excavation pile according to the invention described in claim 3 is the invention according to claim 2, wherein the outer diameter of the outer pipe is less than 80 mm so that turbulent flow is easily generated in the heat medium. Features.

請求項4に記載の発明に係る熱交換掘削杭は、請求項2又は3に記載の発明において、外管は、第2の流路を流れる熱媒体と接触する表面積を増大させて熱交換効率を向上させるために外面及び/又は内面の形状が波形状、凹凸状に形成されているを特徴とする。   The heat excavation pile according to the invention of claim 4 is the invention according to claim 2 or 3, wherein the outer pipe increases the surface area in contact with the heat medium flowing through the second flow path to increase the heat exchange efficiency. In order to improve the above, the outer surface and / or the inner surface is formed into a wave shape or an uneven shape.

請求項5に記載の発明に係る熱交換掘削杭は、請求項2ないし4のいずれかに記載の発明において、外管の内面及び/又は内管の外面に第2の流路を流れる熱媒体に乱流を生じさせて熱交換効率を向上させるための突起が設けられていることを特徴とする。   The heat excavation pile according to the invention of claim 5 is the heat medium flowing in the second flow path on the inner surface of the outer tube and / or the outer surface of the inner tube in the invention of any one of claims 2 to 4. Protrusions for generating turbulent flow to improve heat exchange efficiency are provided.

請求項6に記載の発明に係る熱交換掘削杭は、請求項2ないし5のいずれかに記載の発明において、本体には、内管を外管内の所定位置に固定する複数のスペーサが長手方向に所定間隔をおいて設けられ、該スペーサは、第2の流路を流れる熱媒体を乱流化するために螺旋板状に形成されていることを特徴とする。   The heat excavation pile according to the invention of claim 6 is the invention according to any one of claims 2 to 5, wherein the main body has a plurality of spacers for fixing the inner pipe in a predetermined position in the outer pipe in the longitudinal direction. The spacer is formed in a spiral plate shape so as to turbulently flow the heat medium flowing through the second flow path.

請求項7に記載の発明に係る消融雪装置は、請求項1ないし6のいずれかに記載の熱交換掘削杭を具えたことを特徴とする。   A snow-melting snow device according to a seventh aspect of the present invention includes the heat exchange excavation pile according to any one of the first to sixth aspects.

請求項8に記載の発明に係る消融雪装置は、請求項1ないし6のいずれかに記載の熱交換掘削杭と、地表の融雪舗装体にへアピンカーブ状に埋設された熱交換パイプと、該パイプの一端と前記掘削杭の第1の流路が連通するように接続された第1の連通路と、前記パイプの他端と前記掘削杭の第2の流路が連通するように接続された第2の連通路と、前記熱交換パイプで冷やされた熱媒体を第1の流路へ送給し、かつ地中で温められた熱媒体を第2の流路から熱交換パイプに戻すように作動するポンプとを具えたことを特徴とする。   A snow-melting snow device according to an eighth aspect of the present invention is a heat exchange excavation pile according to any one of the first to sixth aspects, a heat exchange pipe embedded in a snow pin pavement in a snow melting pavement on the surface, A first communication path connected so that one end of the pipe and the first flow path of the excavation pile communicate with each other; a second communication path connected so that the other end of the pipe communicates with the second flow path of the excavation pile; The second communication path and the heat medium cooled by the heat exchange pipe are supplied to the first flow path, and the heat medium heated in the ground is returned from the second flow path to the heat exchange pipe. And a pump that operates as described above.

この発明は前記のようであって、請求項1に記載の発明に係る熱交換掘削杭によれば、第1の流路の断面積は、第2の流路の断面積の1/2以下に設定されているので、言い換えると、第1の流路の断面積と比べて第2の流路の断面積は大きく設定されているので、第1の流路の流速と比べて地中の地盤と接する第2の流路の流速を半分以下にして地中の地盤と熱媒体との熱交換の時間をゆっくりとることができると共に、断面積の比が1/2以下なので当然その表面積も少なくなり、地中の地盤との熱交換があまり行われていない第1の流路内を流れる熱媒体と、地中の地盤との熱交換の行われた第2の流路内の熱媒体との間の接触面積を少なくでき、その間の熱損失を少なく抑えることができるという優れた効果がある。そのため、熱交換効率を落とさずに熱交換掘削杭を小口径化することができ、狭小地でも施工可能であると共に、杭の施工費を低減することができる。   This invention is as described above. According to the heat excavation pile according to the invention of claim 1, the cross-sectional area of the first flow path is ½ or less of the cross-sectional area of the second flow path. In other words, since the cross-sectional area of the second flow channel is set to be larger than the cross-sectional area of the first flow channel, The flow rate of the second flow path in contact with the ground can be reduced to less than half, and the time for heat exchange between the ground and the heat medium in the ground can be taken slowly. The heat medium flowing in the first flow path that is less and does not exchange much heat with the ground in the ground, and the heat medium in the second flow path that is heat exchanged with the ground in the ground There is an excellent effect that the contact area between and can be reduced, and the heat loss between them can be reduced. Therefore, the diameter of the heat excavation excavation pile can be reduced without reducing the heat exchange efficiency, and the construction cost can be reduced while being able to be constructed even in a narrow area.

請求項2に記載の発明に係る熱交換掘削杭によれば、本体は、少なくとも外管と内管の二重管から構成され、内管内が第1の流路となり、外管と内管間に形成された環状空間が第2の流路となっていると共に、内管の外径と外管の外径との比率が0.2〜0.6に設定されているので、熱交換掘削杭の2つの流路を1本の二重管から構成できると共に、熱交換掘削杭を熱交換の効率を落とさずに小口径化することができる。そのため、狭小地でも施工可能であると共に杭の施工費を低減することができる。   According to the heat excavation pile according to the invention described in claim 2, the main body is composed of at least a double pipe of the outer pipe and the inner pipe, the inside of the inner pipe becomes the first flow path, and the space between the outer pipe and the inner pipe. The annular space formed in the second channel is the second flow path, and the ratio between the outer diameter of the inner pipe and the outer diameter of the outer pipe is set to 0.2 to 0.6. The two flow paths of the pile can be configured from a single double pipe, and the heat excavation pile can be reduced in diameter without reducing the efficiency of heat exchange. Therefore, it can be constructed even in a narrow area, and the construction cost of the pile can be reduced.

請求項3に記載の発明に係る熱交換掘削杭によれば、外管の外径は、熱媒体に乱流が発生し易いように80mm未満となっているので、熱交換掘削杭は熱交換の効率を落とさずに小口径化されており、初期費用の大部分を占める熱交換掘削杭の施工費を低減することができる。   According to the heat excavation pile according to the invention of claim 3, the outer diameter of the outer pipe is less than 80 mm so that turbulent flow is easily generated in the heat medium. Therefore, the construction cost of the heat excavation excavation pile, which occupies most of the initial cost, can be reduced.

請求項4に記載の発明に係る熱交換掘削杭によれば、外管は、第2の流路を流れる熱媒体と接触する表面積を増大させて熱交換効率を向上させるために外面及び/又は内面の形状が波形状、凹凸状に形成されているので、第2の流路を流れる熱媒体と接触する表面積が増大し、地中の地盤と熱媒体との間の熱交換の効率が向上する。   According to the heat excavation pile according to the invention of claim 4, the outer pipe has an outer surface and / or an outer surface in order to increase the surface area in contact with the heat medium flowing through the second flow path and improve the heat exchange efficiency. Since the inner surface is formed into a wave shape and irregularities, the surface area in contact with the heat medium flowing through the second flow path is increased, and the efficiency of heat exchange between the ground and the heat medium is improved. To do.

請求項5に記載の発明に係る熱交換掘削杭によれば、外管の内面及び/又は内管の外面に第2の流路を流れる熱媒体に乱流を生じさせて熱交換効率を向上させるための突起が設けられているので、第2の流路の熱媒体の流れを乱流化することができ、熱媒体の熱伝達率が高くなり、地中の地盤と熱媒体との熱交換効率を向上させることができる。   According to the heat excavation pile according to the invention described in claim 5, heat exchange efficiency is improved by generating turbulent flow in the heat medium flowing through the second flow path on the inner surface of the outer tube and / or the outer surface of the inner tube. Therefore, the flow of the heat medium in the second flow path can be turbulent, the heat transfer rate of the heat medium is increased, and the heat between the ground and the heat medium in the ground is increased. Exchange efficiency can be improved.

請求項6に記載の発明に係る熱交換掘削杭によれば、本体には、内管を外管内の所定位置に固定する複数のスペーサが長手方向に所定間隔をおいて設けられ、該スペーサは、第2の流路を流れる熱媒体を乱流化するために螺旋板状に形成されているので、第2の流路の熱媒体の流れを乱流化することができ、熱媒体の熱伝達率が高くなり、地中の地盤と熱媒体との熱交換効率を向上させることができる。   According to the heat excavation pile according to the invention described in claim 6, the main body is provided with a plurality of spacers at predetermined intervals in the longitudinal direction for fixing the inner pipe to a predetermined position in the outer pipe. Since the heat medium flowing in the second flow path is formed in a spiral plate shape to turbulently flow, the flow of the heat medium in the second flow path can be turbulent and the heat of the heat medium The transmission rate is increased, and the efficiency of heat exchange between the underground ground and the heat medium can be improved.

請求項7に記載の発明に係る消融雪装置によれば、請求項1ないし6のいずれかに記載の熱交換掘削杭を具えているので、また、請求項8に記載の発明に係る消融雪装置によれば、請求項1ないし6のいずれかに記載の熱交換掘削杭と、地表の融雪舗装体にへアピンカーブ状に埋設された熱交換パイプと、該パイプの一端と前記掘削杭の第1の流路が連通するように接続された第1の連通路と、前記パイプの他端と前記掘削杭の第2の流路が連通するように接続された第2の連通路と、前記熱交換パイプで冷やされた熱媒体を第1の流路へ送給し、かつ地中で温められた熱媒体を第2の流路から熱交換パイプに戻すように作動するポンプとを具えているので、請求項1ないし6のいずれかに記載の熱交換掘削杭を消融雪装置として利用することができる。   According to the snow-melting snow device according to the invention described in claim 7, since the heat excavation pile according to any one of claims 1 to 6 is provided, the snow-melting snow according to the invention according to claim 8 is also provided. According to the apparatus, the heat exchanging excavation pile according to any one of claims 1 to 6, a heat exchanging pipe embedded in a snow-covered pavement on the ground surface, and one end of the pipe and the excavation pile A first communication path connected so that one flow path communicates, a second communication path connected so that the other end of the pipe communicates with a second flow path of the excavation pile, and A pump that feeds the heat medium cooled by the heat exchange pipe to the first flow path and operates to return the heat medium warmed in the ground from the second flow path to the heat exchange pipe; Therefore, the heat excavation pile according to any one of claims 1 to 6 can be used as a snow melting device. Can.

この発明の一実施の形態を、図面を参照して説明する。この実施の形態は、熱交換掘削杭を冬季に無散水の消融雪装置として利用する場合を例として示す。   An embodiment of the present invention will be described with reference to the drawings. This embodiment shows the case where a heat exchange excavation pile is used as a non-sprinkling snow-melting device in winter.

図1は、実施の形態に係る熱交換掘削杭を具えた消融雪装置の全体の概要を示す概要図である。1は消融雪装置で、2は熱交換掘削杭である。消融雪装置1は、熱交換掘削杭2により、杭内を流れる熱媒体と地中の周辺地盤との間で熱交換を行い、地表に設置された融雪舗装体3に該熱媒体で熱エネルギーを運搬し、融雪舗装体3の凍結・積雪時にその消融雪を行う装置であり、トンネルの出口やチェーン脱着場などの路面、駅などの公共施設、スーパーなどの商業施設等に利用される。   Drawing 1 is an outline figure showing the outline of the whole snow melting apparatus provided with the heat exchange excavation pile concerning an embodiment. 1 is a snow-melting snow device, and 2 is a heat excavation pile. The snow-melting snow device 1 exchanges heat between the heat medium flowing in the pile and the surrounding ground in the heat excavation pile 2 and heat energy is applied to the snow-melting pavement 3 installed on the ground surface with the heat medium. This is a device that melts and melts snow when the snowmelt pavement 3 freezes and accumulates snow, and is used for road surfaces such as tunnel exits and chain desorption places, public facilities such as stations, and commercial facilities such as supermarkets.

消融雪装置1は、内管21と外管22とからなるいわゆる同軸二重管方式の熱交換掘削杭2と、消融雪を行う融雪舗装体3に埋設されたヘアピンカーブ状に形成されている熱交換パイプ4とを有している。内管21と熱交換パイプ4の一端とが第1の連通路であるパイプ5で連通するように、また外管22と同他端とが第2の連通路であるパイプ6で連通するようにそれぞれ連結され、内管21内が第1の流路、外管22と内管21間に形成された環状空間が第2の流路となっており、ポンプ7で図中の矢印方向へ熱媒体を圧送循環させている。また、この実施の形態に係る熱媒体には、循環水が使用されている。しかし、熱媒体は流体であればよく、一般的には、水、不凍液などの液体や、空気などの気体が使用される。尚、融雪舗装体3に埋設するパイプとして、ここでは熱交換パイプ4を使用したが、ヒートパイプを使用することも可能である。   The snow melting device 1 is formed in a hairpin curve shape embedded in a so-called coaxial double tube heat exchange excavation pile 2 composed of an inner tube 21 and an outer tube 22 and a snow melting pavement 3 that performs snow melting. It has a heat exchange pipe 4. The inner pipe 21 and one end of the heat exchange pipe 4 communicate with each other through the pipe 5 that is the first communication path, and the outer pipe 22 and the other end communicate with each other through the pipe 6 that is the second communication path. The annular space formed between the outer tube 22 and the inner tube 21 is the second channel, and the inner space of the inner tube 21 is formed in the direction of the arrow in the figure. The heat medium is circulated by pressure. In addition, circulating water is used as the heat medium according to this embodiment. However, the heat medium may be a fluid, and generally, a liquid such as water or an antifreeze liquid or a gas such as air is used. In addition, although the heat exchange pipe 4 was used here as a pipe embed | buried in the snowmelt pavement 3, a heat pipe can also be used.

図1で矢印で示すように、熱交換掘削杭2で地中の周辺地盤と熱交換されて温められた循環水は温水となってポンプ7で圧送され、パイプ6を通過し、熱交換パイプ4に到達して融雪舗装体3と熱交換を行って融雪舗装体3を温め消融雪を行う。そして、融雪舗装体3との熱交換で冷やされた循環水は、パイプ5を通過して熱交換掘削杭2の内管21に戻り、熱交換掘削杭2により再び地中の地盤と熱交換が行われ温められてゆく。つまり、第1の流路(内管21内)→第2の流路(外管と内管間に形成された環状空間)→第2の連通路(パイプ6)→第1の連通路(パイプ5)→第1の流路の順番で繰り返し密閉された管内を循環水が循環するように構成されている。このように、循環水は循環使用されるため必要なランニングコストはポンプの電気代ぐらいであり、散水式の消融雪装置と比べて極めて経済的である。また、噴出ノズルの点検が不要である点などメンテナンス的にも優れている。   As shown by the arrows in FIG. 1, the circulating water heated by exchanging heat with the surrounding ground in the heat excavation pile 2 is heated and pumped by the pump 7, passes through the pipe 6, and passes through the heat exchange pipe. 4 is reached, heat exchange with the snowmelt pavement 3 is performed, and the snowmelt pavement 3 is warmed to perform snow melting. Then, the circulating water cooled by heat exchange with the snow melting pavement 3 passes through the pipe 5 and returns to the inner pipe 21 of the heat exchange excavation pile 2, and heat exchange with the underground ground again by the heat exchange excavation pile 2. Is done and warmed up. That is, the first flow path (inner pipe 21) → second flow path (annular space formed between the outer pipe and the inner pipe) → second communication path (pipe 6) → first communication path ( Pipe 5) is configured so that the circulating water circulates in the sealed tube in the order of the first flow path. Thus, since the circulating water is circulated and used, the necessary running cost is about the electricity cost of the pump, which is extremely economical as compared to the watering type snow melting device. Moreover, it is excellent also in terms of maintenance, such as that inspection of the ejection nozzle is unnecessary.

前記の消融雪装置1は、あくまでも好ましい一例を示すものであり、一種類の熱媒体を循環させて使用する場合に限らず、途中に蓄熱装置(ヒートポンプ)などを介在させて別の熱媒体で融雪舗装体を温めてもかまわない。このようにすると、熱を蓄熱して使用できるので地中熱を更に効果的に利用することができる。   The snow-melting device 1 described above is only a preferable example, and is not limited to the case of using one type of heat medium in a circulating manner, but with another heat medium by interposing a heat storage device (heat pump) or the like in the middle. The snow melting pavement may be warmed. If it does in this way, since heat can be stored and used, underground heat can be used more effectively.

図2に示すように、熱交換掘削杭2は、内管21を外管22内の同軸上に配した二重管20を有するいわゆる同軸二重管方式の熱交換杭であり、新たに掘削孔を掘削して、そこに管状の本体である二重管20を設置するタイプの掘削杭である。この掘削孔は、消融雪を行うべき融雪舗装体3の面積によるが、一般的には40m〜100m程度の深さにまで鉛直に掘削される。また、熱交換掘削杭2の本体である二重管20は、掘削孔の深さに合わせた長さに設定され、掘削孔内に管の外周をグラウト材等で固めることにより鉛直に固定・埋設されている。そして、二重管20は、底としてのエンドキャップ22aが下端に設けられた外管22内に開底管である内管21がスペーサ23で外管22と同軸となるように設置されている。スペーサ23は、二重管20の長手方向に所定間隔をおいて複数設けられており、内管21を外管22内にその間隔を保持して固定すると共に、不凍液が流通可能に構成されている。不凍液が流通可能であれば、スペーサ23の構造は任意のものとすることができる。   As shown in FIG. 2, the heat exchange excavation pile 2 is a so-called coaxial double pipe type heat exchange pile having a double pipe 20 in which an inner pipe 21 is arranged coaxially in an outer pipe 22, and newly excavated. It is a type of excavation pile that excavates a hole and installs a double pipe 20 as a tubular main body there. This excavation hole is generally excavated vertically to a depth of about 40 m to 100 m, depending on the area of the snow melting pavement 3 where snow melting should be performed. Moreover, the double pipe 20 which is the main body of the heat excavation pile 2 is set to a length according to the depth of the excavation hole, and is fixed vertically by hardening the outer periphery of the pipe with a grout material or the like in the excavation hole. Buried. The double pipe 20 is installed in an outer pipe 22 having a bottom end cap 22a provided at the lower end so that an inner pipe 21 as an open bottom pipe is coaxial with the outer pipe 22 by a spacer 23. . A plurality of spacers 23 are provided at a predetermined interval in the longitudinal direction of the double tube 20, and the inner tube 21 is fixed in the outer tube 22 while maintaining the interval, and an antifreeze liquid can be circulated. Yes. As long as the antifreeze can be circulated, the structure of the spacer 23 can be arbitrary.

図3に示すように、外管22は、その外径が60mmの塩化ビニルパイプ(呼び径50のVP管)からなり、内管21は、その外径が32mmの塩化ビニルパイプ(呼び径25のVP管)からなっている。つまり、第1の流路である内管21の断面積2aと、第2の流路である内管21と外管22との間の環状空間の断面積2bとの比率(2a/2b)は、略0.4の半分以下の比率となっていると共に、内管の外径と外管の外径との比率は、0.53即ち0.2〜0.6に設定されている(断面積2a,2bを図3ではハッチングで示す)。また、熱交換掘削杭2の本体である二重管の外径は、即ち外管22の外径は、80mm未満に設定されている。   As shown in FIG. 3, the outer tube 22 is composed of a vinyl chloride pipe (VP tube having a nominal diameter of 50) having an outer diameter of 60 mm, and the inner tube 21 is a vinyl chloride pipe (nominal diameter of 25 mm) having an outer diameter of 32 mm. VP tube). That is, the ratio (2a / 2b) between the cross-sectional area 2a of the inner pipe 21 serving as the first flow path and the cross-sectional area 2b of the annular space between the inner pipe 21 and the outer pipe 22 serving as the second flow path. The ratio of the outer diameter of the inner pipe to the outer diameter of the outer pipe is set to 0.53, that is, 0.2 to 0.6. (The cross-sectional areas 2a and 2b are indicated by hatching in FIG. 3). Moreover, the outer diameter of the double pipe which is the main body of the heat excavation pile 2, that is, the outer diameter of the outer pipe 22 is set to be less than 80 mm.

このように、断面積2aと断面積2bとの比率を1/2以下とすることで、第2の流路の流速を第1の流路の流速と比べて2倍程遅くして、地中の地盤と熱媒体との熱交換の時間をゆっくり(倍以上)とることができる。このため、熱媒体と地中の地盤との熱交換の総量を上げることができ、換言すると単位時間あたりの熱媒体の温度上昇を大きくすることができ、熱交換掘削杭2全体としての熱交換の効率を高めることができる。また、地中の地盤との熱交換があまり行われていない第1の流路内を流れる熱媒体と、地中の地盤との熱交換の行われた第2の流路内の熱媒体との間の接触面積を少なくできるので、その間の熱交換を低減し、熱損失を少なく抑えることができる。
そして、熱交換掘削杭2の管径を80mm未満の小口径とすることで、熱媒体に乱流が発生し易くなり、このような乱流が発生することによって熱交換の効率が向上する。
Thus, by setting the ratio of the cross-sectional area 2a and the cross-sectional area 2b to ½ or less, the flow rate of the second flow path is reduced by about twice as much as the flow speed of the first flow path. Heat exchange time between the ground and the heat medium can be taken slowly (more than twice). For this reason, the total amount of heat exchange between the heat medium and the underground ground can be increased, in other words, the temperature increase of the heat medium per unit time can be increased, and the heat exchange as a whole of the heat excavation pile 2 Can increase the efficiency. In addition, a heat medium flowing in the first flow path in which heat exchange with the underground ground is not performed, and a heat medium in the second flow path in which heat exchange with the underground ground is performed Since the contact area between the two can be reduced, the heat exchange between them can be reduced, and the heat loss can be reduced.
And by making the pipe diameter of the heat excavation pile 2 small diameter less than 80 mm, it becomes easy to generate | occur | produce a turbulent flow in a heat medium, and the efficiency of heat exchange improves by generating such a turbulent flow.

また、内管の外径と外管の外径との比率を0.6以下とすることで、前記断面積2aと断面積2bとの比率を1/2以下とすることと同様の効果が得られる。ここで、内管の外径と外管の外径との比率を0.2未満の小径とすると、外管の外径を管径を80mm未満とする兼ね合いから、内管径が小さくなりすぎ内管内の流れ、つまり、第2の流路の流れに支障をきたすおそれがある。このため、内管の外径と外管の外径との比率は、0.2〜0.6が好ましい。   Further, by setting the ratio of the outer diameter of the inner tube and the outer diameter of the outer tube to 0.6 or less, the same effect as making the ratio of the cross-sectional area 2a and the cross-sectional area 2b to 1/2 or less is obtained. can get. Here, if the ratio of the outer diameter of the inner tube to the outer diameter of the outer tube is a small diameter of less than 0.2, the inner tube diameter becomes too small because the outer diameter of the outer tube is less than 80 mm. There is a possibility that the flow in the inner pipe, that is, the flow of the second flow path may be hindered. For this reason, the ratio between the outer diameter of the inner tube and the outer diameter of the outer tube is preferably 0.2 to 0.6.

尚、前記のように、二重管20を、塩化ビニルパイプで構成する例を示したが、二重管20は、ポリエチレン管などの他の樹脂管や、鉄管・銅管などの金属管でも構わない、つまり、丈夫な管状体から構成されていればよい。また、内管21を熱伝導率の低い管とし、外管22を熱伝導率の高い管とすることで、地中の地盤と熱媒体との熱交換の効率を高めると共に、第1の流路と第2の流路との熱交換による熱損失を抑えることができるので、熱交換掘削杭2全体としての熱交換の効率をより一層向上させることができる。   In addition, although the example which comprises the double pipe 20 by a vinyl chloride pipe was shown as mentioned above, the double pipe 20 may be other resin pipes, such as a polyethylene pipe, and metal pipes, such as an iron pipe and a copper pipe. It does not matter, that is, it should just be comprised from the strong tubular body. Further, by making the inner tube 21 a tube having a low thermal conductivity and the outer tube 22 a tube having a high thermal conductivity, the efficiency of heat exchange between the underground ground and the heat medium is increased and the first flow is improved. Since heat loss due to heat exchange between the path and the second flow path can be suppressed, the heat exchange efficiency of the heat excavation pile 2 as a whole can be further improved.

図4は、熱交換掘削杭の変形例を示す横断平面図である。図3で示した熱交換掘削杭2とその構成上相違する点は、外管22’のみである。そのため外管22’以外の説明は省略する。図に示すように、外管22’は、第2の流路を流れる熱媒体と接触する表面積を増大させるように、その外周面及び内周面が周方向に沿って波形に形成された異形管となっている。このため、第2の流路を流れる熱媒体と接触する表面積を増大すると共に、熱源である地中の地盤側の外管22’の表面積を大きくすることができ、第2の流路内を流れる熱媒体と地中の地盤との熱交換の効率が更に向上する。   FIG. 4 is a cross-sectional plan view showing a modification of the heat exchange excavation pile. The heat excavation pile 2 shown in FIG. 3 is different from the heat excavation pile 2 only in the outer tube 22 '. Therefore, explanations other than the outer tube 22 'are omitted. As shown in the figure, the outer tube 22 'has a deformed shape whose outer peripheral surface and inner peripheral surface are formed in a corrugated shape along the circumferential direction so as to increase the surface area in contact with the heat medium flowing through the second flow path. It is a tube. For this reason, while increasing the surface area which contacts the heat medium which flows through a 2nd flow path, the surface area of outer pipe 22 'by the side of the ground which is a heat source can be enlarged, and the inside of a 2nd flow path can be increased. The efficiency of heat exchange between the flowing heat medium and the ground in the ground is further improved.

図5は、熱交換掘削杭のさらに別の変形例を示す横断平面図である。図3で示した熱交換掘削杭2とその構成上相違する点は、外管22に突起22bが設けられている点のみである。そのためそれ以外の説明は省略する。図に示すように、外管22の内周面に突起22bが周方向及び長手方向に所定間隔をおいて複数個固着されている。そのため、第2の流路を流れる熱媒体は、流れる方向に対して略垂直に張り出した突起22bにぶつかりながらに流れるため乱流化する。すると熱媒体の熱伝達係数は上昇し、熱交換掘削杭2全体の熱交換効率を向上させることになる。   FIG. 5 is a cross-sectional plan view showing still another modification of the heat excavation pile. The only difference from the heat excavation pile 2 shown in FIG. 3 in terms of its configuration is that the outer tube 22 is provided with a protrusion 22b. Therefore, other explanations are omitted. As shown in the figure, a plurality of protrusions 22b are fixed to the inner peripheral surface of the outer tube 22 at predetermined intervals in the circumferential direction and the longitudinal direction. For this reason, the heat medium flowing through the second flow path flows while colliding with the protrusions 22b protruding substantially perpendicular to the flowing direction, and thus becomes turbulent. Then, the heat transfer coefficient of the heat medium increases, and the heat exchange efficiency of the heat excavation pile 2 as a whole is improved.

図6は、スペーサの変形例を示す斜視図である。図に示すように、スペーサ23’は、内管21の外周面と内接する軸部23a’と、外管22の内周面と外接する外周部23b’と、その軸部23a’と外周部23b’との間に板状体を掛け渡して螺旋状に配置した形状に形成された螺旋板部23c’と、から構成されている。このため、内管21を軸部23a’内に嵌着して外管22内に外周部23b’でしっかり支持することができると共に、第2の流路内を流れる熱媒体を螺旋板部23c’に沿って強制的に乱流化することができ、熱交換掘削杭2の熱交換の効率を更に向上することができる。   FIG. 6 is a perspective view showing a modified example of the spacer. As shown in the drawing, the spacer 23 ′ includes a shaft portion 23 a ′ inscribed in the outer peripheral surface of the inner tube 21, an outer peripheral portion 23 b ′ in contact with the inner peripheral surface of the outer tube 22, and the shaft portion 23 a ′ and the outer peripheral portion. And a spiral plate portion 23c ′ formed in a spiral shape with a plate-like body spanned between 23b ′. For this reason, the inner tube 21 can be fitted into the shaft portion 23a ′ and firmly supported by the outer peripheral portion 23b ′ in the outer tube 22, and the heat medium flowing in the second flow path can be guided by the spiral plate portion 23c. It is possible to forcibly turbulently flow along 'and further improve the efficiency of heat exchange of the heat excavation pile 2.

以上のように、熱交換掘削杭2を冬季に消融雪装置1として利用する場合を例として示して説明したが、ヒートアイランド対策などとして、夏季に舗装体等を冷却する装置として利用してもよい。この場合も、消融雪装置1として示した構成と全く同じとしてよく、熱媒体の流れも同じとなる。しかし、夏季には地表の融雪舗装体3として示した舗装体の地表面温度が冬季と逆転して地中の地盤温度より高くなっているため、地中の地盤で熱媒体を介して該舗装体を冷却することができることとなる。
ところで、熱交換掘削杭2を消融雪装置1として冬季のみ継続的に使用し続けると、地表と熱交換した冷気が地中に蓄積されてゆき、杭周辺の地中の地盤温度が経年的に徐々に低下するという現象が起こる。しかし、前記のように夏季に熱交換掘削杭2を冷却装置として利用することにより、上記のような杭周辺の地盤温度の経年的な低温化を低減又は解消することができる。
As described above, the case where the heat excavation pile 2 is used as the snow-melting snow device 1 in winter has been described as an example. However, as a heat island countermeasure, the heat excavation pile 2 may be used as a device for cooling a pavement or the like in summer. . In this case as well, the configuration shown as the snow-melting snow device 1 may be exactly the same, and the flow of the heat medium is also the same. However, in the summer, the surface temperature of the pavement shown as the snow melting pavement 3 on the surface is higher than the underground ground temperature in reverse with the winter season, so the pavement is heated via the heat medium in the underground ground. The body can be cooled.
By the way, if the heat exchanging excavation pile 2 is continuously used as a snow melting device 1 only in winter, the cold air exchanging heat with the ground surface will accumulate in the ground, and the ground temperature around the pile will change over time. A phenomenon of gradual decrease occurs. However, by using the heat excavation pile 2 as a cooling device in the summer as described above, it is possible to reduce or eliminate the aging of the ground temperature around the pile as described above.

尚、前記実施の形態において、図面等で示した熱交換掘削杭2、該杭の構成部材としての二重管20、スペーサ23,23’などの部材の形状や構造等は、あくまでも好ましい一例を示すものであり、その実施に際しては特許請求の範囲に記載した範囲内で任意に設計変更・修正ができるものである。   In addition, in the said embodiment, the shape, structure, etc. of members, such as the heat exchange excavation pile 2 shown by drawing etc., the double pipe 20 as a structural member of this pile, and spacers 23 and 23 ', are a preferable example to the last. In the implementation, design changes and modifications can be arbitrarily made within the scope of the claims.

この発明の一実施の形態である消融雪装置を示す全体概要図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic diagram which shows the snow-melting snow apparatus which is one embodiment of this invention. 同上の熱交換掘削杭の縦断正面図である。It is a longitudinal front view of a heat exchange excavation pile same as the above. 同上の熱交換掘削杭の拡大横断平面図で、第1の流路の断面積と第2の流路の断面積を示すものである。It is an expansion cross-sectional top view of a heat excavation excavation pile same as the above, and shows the cross-sectional area of a 1st flow path, and the cross-sectional area of a 2nd flow path. 熱交換掘削杭の変形例を示す図3と同様の拡大横断平面図である。It is an expansion cross-sectional top view similar to FIG. 3 which shows the modification of a heat excavation pile. 熱交換掘削杭のさらに別の変形例を示す図3と同様の拡大横断平面図である。It is an expanded transverse plan view similar to FIG. 3 which shows another modification of a heat excavation pile. スペーサの変形例を示す斜視図である。It is a perspective view which shows the modification of a spacer.

符号の説明Explanation of symbols

1 消融雪装置
2 熱交換掘削杭
3 融雪舗装体
4 熱交換パイプ
7 ポンプ
20 二重管
21 内管
22 外管
23,23’ スペーサ
DESCRIPTION OF SYMBOLS 1 Snow-melting apparatus 2 Heat exchange excavation pile 3 Snow melting pavement 4 Heat exchange pipe 7 Pump 20 Double pipe 21 Inner pipe 22 Outer pipe 23,23 'Spacer

Claims (8)

所定深さの掘削孔に管状の本体が埋設され、該本体は、地上から地中に向けて熱媒体を送給する第1の流路と、地中の温度が略一定であることを利用して該熱媒体を温め又は冷やして地上に返送する第2の流路とを有する熱交換掘削杭であって、
第1の流路の断面積は、第2の流路の断面積の1/2以下に設定されていることを特徴とする熱交換掘削杭。
A tubular main body is embedded in an excavation hole of a predetermined depth, and the main body utilizes the first flow path for supplying the heat medium from the ground to the ground and the temperature in the ground is substantially constant. A heat excavation pile having a second flow path for heating or cooling the heat medium and returning it to the ground,
The heat exchange excavation pile, wherein the cross-sectional area of the first flow path is set to ½ or less of the cross-sectional area of the second flow path.
前記本体は、少なくとも外管と内管の二重管から構成され、内管内が第1の流路となり、外管と内管間に形成された環状空間が第2の流路となっていると共に、内管の外径と外管の外径との比率が0.2〜0.6に設定されている請求項1記載の熱交換掘削杭。   The main body is composed of at least a double tube of an outer tube and an inner tube, the inner tube serves as a first flow path, and the annular space formed between the outer tube and the inner tube serves as a second flow path. A heat excavation pile according to claim 1, wherein the ratio of the outer diameter of the inner pipe to the outer diameter of the outer pipe is set to 0.2 to 0.6. 前記外管の外径は、熱媒体に乱流が発生し易いように80mm未満となっている請求項2に記載の熱交換掘削杭。   The heat exchange excavation pile according to claim 2, wherein an outer diameter of the outer pipe is less than 80 mm so that a turbulent flow is easily generated in the heat medium. 前記外管は、第2の流路を流れる熱媒体と接触する表面積を増大させて熱交換効率を向上させるために外面及び/又は内面の形状が波形状、凹凸状に形成されている請求項2又は3に記載の熱交換掘削杭。   The outer tube is formed in a wave shape or an uneven shape on the outer surface and / or the inner surface in order to increase the surface area in contact with the heat medium flowing through the second flow path and improve the heat exchange efficiency. The heat excavation pile as described in 2 or 3. 外管の内面及び/又は内管の外面に第2の流路を流れる熱媒体に乱流を生じさせて熱交換効率を向上させるための突起が設けられている請求項2ないし4のいずれかに記載の熱交換掘削杭。   5. A projection for improving heat exchange efficiency by generating turbulent flow in the heat medium flowing through the second flow path on the inner surface of the outer tube and / or the outer surface of the inner tube. Heat exchange excavation pile as described in. 前記本体には、前記内管を前記外管内の所定位置に固定する複数のスペーサが長手方向に所定間隔をおいて設けられ、該スペーサは、第2の流路を流れる熱媒体を乱流化するために螺旋板状に形成されている請求項2ないし5のいずれかに記載の熱交換掘削杭。   The main body is provided with a plurality of spacers at predetermined intervals in the longitudinal direction for fixing the inner tube at a predetermined position in the outer tube, and the spacer turbulently heats the heat medium flowing through the second flow path. The heat excavation pile according to any one of claims 2 to 5, wherein the pile is formed in a spiral plate shape. 請求項1ないし6のいずれかに記載の熱交換掘削杭を具えた地中熱利用消融雪装置。   A ground heat-utilizing snow melting device comprising the heat excavation pile according to any one of claims 1 to 6. 請求項1ないし6のいずれかに記載の熱交換掘削杭と、地表の融雪舗装体にへアピンカーブ状に埋設された熱交換パイプと、該パイプの一端と前記掘削杭の第1の流路が連通するように接続された第1の連通路と、前記パイプの他端と前記掘削杭の第2の流路が連通するように接続された第2の連通路と、前記熱交換パイプで冷やされた熱媒体を第1の流路へ送給し、かつ地中で温められた熱媒体を第2の流路から熱交換パイプに戻すように作動するポンプとを具えたことを特徴とする地中熱利用消融雪装置。   A heat exchange excavation pile according to any one of claims 1 to 6, a heat exchange pipe embedded in a snowpin pavement on the surface of the snow melting pavement, an end of the pipe, and a first flow path of the excavation pile The first communication passage connected so as to communicate, the second communication passage connected so that the other end of the pipe and the second flow path of the excavation pile communicate, and cooling with the heat exchange pipe And a pump that operates to send the heated heat medium to the first flow path and return the heat medium heated in the ground from the second flow path to the heat exchange pipe. Ground-melting snow melting equipment.
JP2006150949A 2006-05-31 2006-05-31 Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat Pending JP2007321383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006150949A JP2007321383A (en) 2006-05-31 2006-05-31 Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150949A JP2007321383A (en) 2006-05-31 2006-05-31 Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat

Publications (1)

Publication Number Publication Date
JP2007321383A true JP2007321383A (en) 2007-12-13

Family

ID=38854440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150949A Pending JP2007321383A (en) 2006-05-31 2006-05-31 Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat

Country Status (1)

Country Link
JP (1) JP2007321383A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270003A1 (en) * 2009-04-27 2010-10-28 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
JP2011141107A (en) * 2010-01-06 2011-07-21 Norimasa Sasaki Underground heat utilization device
EP2093521A3 (en) * 2008-02-19 2013-08-21 Jürgen Strebe Pipe Collector
JP2015010821A (en) * 2013-06-26 2015-01-19 楊 泰和 Heat radiator
WO2015044142A1 (en) * 2013-09-24 2015-04-02 Dynamic Blue Holding Gmbh Geothermal probe with mixing elements
WO2016010308A1 (en) * 2014-07-15 2016-01-21 비티이엔씨 주식회사 Method and apparatus for curing cement milk on circumferential surface of pile at high speed
JP2016164396A (en) * 2015-03-06 2016-09-08 ジャパン・ニュー・エナジー株式会社 Medium transfer pipe, geothermal power generator and geothermal power generation method using medium transfer pipe
JP2017049004A (en) * 2016-08-09 2017-03-09 元延 深瀬 Finned pile-like pipe heat exchanger utilizing underground heat
JP2019526022A (en) * 2016-06-15 2019-09-12 デ ルカ、ウンベルト Geothermal well with communication pipe
CN111636416A (en) * 2020-05-27 2020-09-08 中铁大桥勘测设计院集团有限公司 Hydration heat cooling system and method for oversized-diameter cast-in-place pile
CN111798144A (en) * 2020-07-08 2020-10-20 大连海事大学 Energy pile bridge deck deicing system evaluation method based on body
CN114962841A (en) * 2021-03-08 2022-08-30 华北水利水电大学 Self-heating underground pipeline

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126656A (en) * 1982-01-22 1983-07-28 Jeol Ltd Ion analyzer
JPS59157442A (en) * 1983-02-22 1984-09-06 Air Cycle Sangyo Kk Geothermal system
JP2000161198A (en) * 1998-11-25 2000-06-13 Keiji Sugano Sealed fluid circulation device for collecting steam utilizing geothermal energy
JP2001147056A (en) * 1999-11-19 2001-05-29 Unicom Kikaku Sekkei:Kk Soil heat utilization system by foundation pillar
JP2001280711A (en) * 2000-03-30 2001-10-10 Kobe Steel Ltd Pipe material for absorbing geothermic heat
JP2003206528A (en) * 2002-01-10 2003-07-25 Kubota Corp Civil engineering-construction pile for constructing ground heat exchange equipment and its construction method
JP2003301409A (en) * 2002-04-12 2003-10-24 Misawa Kankyo Gijutsu Kk Terrestrial heat-utilizing snow-melting device
JP2003307352A (en) * 2002-04-15 2003-10-31 Misawa Kankyo Gijutsu Kk Underground heat exchanger
JP2004309124A (en) * 2003-03-25 2004-11-04 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
JP2004340463A (en) * 2003-05-15 2004-12-02 K & S Japan Kk Air conditioner utilizing geothermal heat
JP2005326128A (en) * 2004-05-17 2005-11-24 Kobayashi Shigeru Heat exchanger using ground heat and air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126656A (en) * 1982-01-22 1983-07-28 Jeol Ltd Ion analyzer
JPS59157442A (en) * 1983-02-22 1984-09-06 Air Cycle Sangyo Kk Geothermal system
JP2000161198A (en) * 1998-11-25 2000-06-13 Keiji Sugano Sealed fluid circulation device for collecting steam utilizing geothermal energy
JP2001147056A (en) * 1999-11-19 2001-05-29 Unicom Kikaku Sekkei:Kk Soil heat utilization system by foundation pillar
JP2001280711A (en) * 2000-03-30 2001-10-10 Kobe Steel Ltd Pipe material for absorbing geothermic heat
JP2003206528A (en) * 2002-01-10 2003-07-25 Kubota Corp Civil engineering-construction pile for constructing ground heat exchange equipment and its construction method
JP2003301409A (en) * 2002-04-12 2003-10-24 Misawa Kankyo Gijutsu Kk Terrestrial heat-utilizing snow-melting device
JP2003307352A (en) * 2002-04-15 2003-10-31 Misawa Kankyo Gijutsu Kk Underground heat exchanger
JP2004309124A (en) * 2003-03-25 2004-11-04 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
JP2004340463A (en) * 2003-05-15 2004-12-02 K & S Japan Kk Air conditioner utilizing geothermal heat
JP2005326128A (en) * 2004-05-17 2005-11-24 Kobayashi Shigeru Heat exchanger using ground heat and air conditioner

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2093521A3 (en) * 2008-02-19 2013-08-21 Jürgen Strebe Pipe Collector
US8307896B2 (en) * 2009-04-27 2012-11-13 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
US20100270003A1 (en) * 2009-04-27 2010-10-28 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
JP2011141107A (en) * 2010-01-06 2011-07-21 Norimasa Sasaki Underground heat utilization device
JP2015010821A (en) * 2013-06-26 2015-01-19 楊 泰和 Heat radiator
DE102014113750B4 (en) 2013-09-24 2022-09-29 Dynamic Blue Holding Gmbh Storage probe with mixed bodies
WO2015044142A1 (en) * 2013-09-24 2015-04-02 Dynamic Blue Holding Gmbh Geothermal probe with mixing elements
US10113773B2 (en) 2013-09-24 2018-10-30 Dynamic Blue Holding Gmbh Geothermal probe with mixing elements
WO2016010308A1 (en) * 2014-07-15 2016-01-21 비티이엔씨 주식회사 Method and apparatus for curing cement milk on circumferential surface of pile at high speed
JP2016164396A (en) * 2015-03-06 2016-09-08 ジャパン・ニュー・エナジー株式会社 Medium transfer pipe, geothermal power generator and geothermal power generation method using medium transfer pipe
JP2019526022A (en) * 2016-06-15 2019-09-12 デ ルカ、ウンベルト Geothermal well with communication pipe
JP2017049004A (en) * 2016-08-09 2017-03-09 元延 深瀬 Finned pile-like pipe heat exchanger utilizing underground heat
CN111636416A (en) * 2020-05-27 2020-09-08 中铁大桥勘测设计院集团有限公司 Hydration heat cooling system and method for oversized-diameter cast-in-place pile
CN111798144A (en) * 2020-07-08 2020-10-20 大连海事大学 Energy pile bridge deck deicing system evaluation method based on body
CN111798144B (en) * 2020-07-08 2023-12-05 大连海事大学 Body-based energy pile bridge surface deicing system evaluation method
CN114962841A (en) * 2021-03-08 2022-08-30 华北水利水电大学 Self-heating underground pipeline

Similar Documents

Publication Publication Date Title
JP2007321383A (en) Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
JP4535981B2 (en) Tunnel heat exchange panel and tunnel heat utilization heat exchange system
JP4966330B2 (en) Geothermal heat pump system
JP3143619B1 (en) Underground heat utilization system with foundation pile
KR100824419B1 (en) Structure for establishment in-case of heating exchange system using the geothermal
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2003148079A (en) Manufacturing method for equipment for exchanging heat with ground, and pile for civil engineering and construction, used for the manufacturing method
JP6383339B2 (en) Heat exchange segment and tunnel heat exchange system
JP2004309124A (en) Underground heat exchanger
JP2005090902A (en) Geothermal heat pump structure
JP2003262430A (en) Heat pump using underground heat
JP4136847B2 (en) Buried pipe for heat exchange
JP2008304141A (en) Heat storage snow melting system using solar heat
JP5921891B2 (en) Panel heat exchanger for underground heat source heat pump
JP6089472B2 (en) Holding member and underground heat exchanger
CN110359334A (en) The ice melting system of tunnel road surface
JP2008292056A (en) Heat exchanger, heat exchange system, manufacturing method of heat exchanger and construction method of heat exchange system
JP2014185822A (en) Geothermal heat utilization heat exchanger and heat pump system using the same
KR20070003504A (en) Geothermal heat exchanger and heat pump type air conditioner utilizing geothermal heat
JP2007010276A (en) Underground heat exchanger
KR101189079B1 (en) Geothermal exchanging pile
KR101044737B1 (en) Heat transfer pipe for ground heat exchanger
JP4859871B2 (en) Buried pipe for heat exchange
JPH11336008A (en) Heat exchanging pile and heater
JP2006029627A (en) Terrestrial heat exchanging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025