JP2007313286A - Method and apparatus for measurement of optical organism information - Google Patents

Method and apparatus for measurement of optical organism information Download PDF

Info

Publication number
JP2007313286A
JP2007313286A JP2006259557A JP2006259557A JP2007313286A JP 2007313286 A JP2007313286 A JP 2007313286A JP 2006259557 A JP2006259557 A JP 2006259557A JP 2006259557 A JP2006259557 A JP 2006259557A JP 2007313286 A JP2007313286 A JP 2007313286A
Authority
JP
Japan
Prior art keywords
light
biological information
polarizing plate
spectral
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006259557A
Other languages
Japanese (ja)
Other versions
JP4925278B2 (en
Inventor
Masato Kinoshita
雅登 木下
長生 ▲濱▼田
Osao Hamada
Junji Ikeda
順治 池田
Kensho Saiga
憲昭 雑賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Matsushita Electric Works Ltd filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006259557A priority Critical patent/JP4925278B2/en
Publication of JP2007313286A publication Critical patent/JP2007313286A/en
Application granted granted Critical
Publication of JP4925278B2 publication Critical patent/JP4925278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for easy and precise measurement of organism information from a desired part in skin tissue. <P>SOLUTION: When a superficial tissue surface is irradiated with light to receive reflected light from the superficial tissue and obtain organism information by spectrometric analysis of received light, linearly polarized light is used as the light for irradiating the superficial tissue surface of the organism, light receiving of the reflected light is carried out via a polarizing angle variable polarizing plate to obtain spectral distribution, the ultimate depth of the light to the superficial tissue is analyzed based on spectral distribution of different polarizing angle, and a polarizing angle of the polarizing plate is set according to the analysis result to receive the light for spectral analysis. Organism information is measured by spectral analysis in a condition that the polarizing plate is set at a polarizing angle capable of obtaining reflected light from suitable depth. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、近赤外光などの光を用いて血中成分濃度などの生体情報を測定する光学的生体情報測定方法及びその装置に関するものである。   The present invention relates to an optical biological information measuring method and apparatus for measuring biological information such as blood component concentration using light such as near infrared light.

近赤外光を物質に照射し、透過あるいは反射した光のスペクトルより分析を行う近赤外分光分析法は、近年、農業分野をはじめ様々な分野で利用されはじめており、最近では生体分野において非侵襲、無害の分析手法として注目されている。この近赤外分光分析法は、エネルギーの低い電磁波を用いるので試料を損傷することがない固体、粉体、繊維、液体、気体など様々な状態の試料への適用が可である上に、赤外光にくらべ近赤外光では水の吸収強度が弱くなるので、水溶液での分析が可などの利点を有しており、グルコースといった血液成分濃度等の生体情報の定量・定性分析を非侵襲で行うことが可能である。   Near-infrared spectroscopy, which irradiates a substance with near-infrared light and analyzes it from the spectrum of transmitted or reflected light, has recently begun to be used in various fields including the agricultural field. It is attracting attention as an invasive and harmless analytical technique. This near-infrared spectroscopic analysis method can be applied to samples in various states such as solids, powders, fibers, liquids, and gases that do not damage the sample because it uses electromagnetic waves with low energy. Near-infrared light absorbs less water than external light, so it has the advantage that analysis in aqueous solution is possible, and non-invasive quantitative and qualitative analysis of biological information such as blood component concentration such as glucose Can be done.

ただし、近赤外光を用いる場合、吸収シグナルは高調波をあつかうために赤外光に比較して非常に微弱である上、バンドの帰属が明確でないという欠点を有しており、このために近赤外分光分析にはその定量・定性のためにいわゆる“ケモメトリクス”と呼ばれる手法が用いられる。これは、多変量解析手法や統計解析手法を用いて化学分析を行う手法で、コンピュータの発達とともに発展し、最近の近赤外分光分析では主成分回帰分析あるいはPLS回帰分析といった多変量解析手法を用いて行われることが多い。    However, when using near-infrared light, the absorption signal is very weak compared to infrared light in order to deal with harmonics, and the band assignment is not clear. In the near-infrared spectroscopic analysis, a technique called “chemometrics” is used for quantification and qualification. This is a method of performing chemical analysis using multivariate analysis methods and statistical analysis methods, and has evolved with the development of computers. In recent near infrared spectroscopy, multivariate analysis methods such as principal component regression analysis or PLS regression analysis are used. Often used.

ところで生体組織における皮膚組織は100μm程度の厚さの表皮と,その下層の厚さ1mm程度の真皮、さらにその下層の多量の脂肪細胞を含む皮下組織で構成されている。そして生体情報の中でもグルコースといった血液成分濃度を近赤外分光分析法で定量・定性分析しようとする場合、近赤外光を真皮部分に選択的に透過させたり真皮部分で選択的に拡散反射させたりすることが必要となる。   By the way, the skin tissue in the living tissue is composed of an epidermis having a thickness of about 100 μm, a dermis having a thickness of about 1 mm under the epidermis, and a subcutaneous tissue containing a large amount of fat cells in the lower layer. And, when trying to quantitatively and qualitatively analyze blood component concentrations such as glucose in biological information using near-infrared spectroscopy, the near-infrared light is selectively transmitted through the dermis or selectively diffusely reflected at the dermis. It is necessary to do.

ここにおいて、特許文献1(特開平11−70101号公報)には生体の皮膚組織表面に近赤外光を導く光投射点と、皮膚組織内部で透過乃至拡散反射して皮膚組織表面から出てくる近赤外光を検出する光検出点との間隔を2mm以下とすることにより、真皮部分で選択的に拡散反射させた光を取り出すようにしたものが示されている。この場合、光投射点及び光検出点は皮膚組織表面に接触させるプローブの先端面に臨ませたものとして構成する必要があるとともに、プローブと皮膚組織表面との接触圧を適切に管理できるようにしなくては、光検出点で検出される光強度のばらつきが大きくて高精度の測定は難しい。   Here, Patent Document 1 (Japanese Patent Laid-Open No. 11-70101) discloses a light projection point for guiding near-infrared light to the skin tissue surface of a living body, and transmission or diffuse reflection inside the skin tissue to exit from the skin tissue surface. It is shown that light that is selectively diffusely reflected at the dermis is taken out by setting the distance from the light detection point for detecting near-infrared light to 2 mm or less. In this case, the light projection point and the light detection point must be configured to face the tip surface of the probe to be brought into contact with the skin tissue surface, and the contact pressure between the probe and the skin tissue surface can be appropriately managed. Without it, the variation in light intensity detected at the light detection point is large, and it is difficult to measure with high accuracy.

ここにおいて、皮膚組織表面に接触させなくても単に光を当てるだけでよいものが測定の手軽さという点で望まれるが、この場合、皮膚組織表面での反射光が皮膚組織内の真皮部分で反射した光をマスキングしてしまうことになるとともに、両者を分離することができないために、真皮部分での測定ができない。
特開平11−70101号公報
Here, it is desirable from the viewpoint of ease of measurement that light is simply applied without contacting the skin tissue surface. In this case, the reflected light from the skin tissue surface is reflected at the dermis part in the skin tissue. The reflected light will be masked and the two cannot be separated, so that measurement at the dermis cannot be performed.
Japanese Patent Application Laid-Open No. 11-70101

本発明は上記の点に鑑みて発明したものであって、簡便に且つ的確に皮膚組織中の求める部分からの生体情報測定を行うことができる光学的生体情報測定方法及びその装置を提供することを課題とするものである。   The present invention was invented in view of the above points, and provides an optical biological information measuring method and apparatus capable of measuring biological information from a desired portion in skin tissue simply and accurately. Is an issue.

上記課題を解決するために本発明に係る光学的生体情報測定方法は、生体の表層組織表面に光を照射して表層組織からの反射光を分光手段を介して受光して分光分析によって生体情報を得るにあたり、生体の表層組織表面に照射する光として直線偏光の光を用いるとともに、偏光角可変とした偏光板を介して上記反射光の受光を行ってスペクトル分布を求め、該偏光角が異なるスペクトル分布に基づいて上記表層組織への上記光の到達深度を解析し、この解析結果に応じて上記偏光板の偏光角を設定して分光分析のための光を受光することに特徴を有している。偏光角が異なるスペクトル分布に基づいて表層組織への光の到達深度を解析し、適切な深度となる偏光角に偏光板をセットした状態で分光分析することで、求める深度からの反射光を元に生体情報を測定するものである。   In order to solve the above problems, an optical biological information measuring method according to the present invention irradiates light on a surface tissue of a living body, receives reflected light from the surface tissue through a spectroscopic means, and performs biological information by spectroscopic analysis. In order to obtain the above, a linearly polarized light is used as a light to irradiate the surface tissue of the living body, and the reflected light is received through a polarizing plate having a variable polarization angle to obtain a spectrum distribution, and the polarization angles are different. Based on the spectral distribution, the depth of light reaching the surface tissue is analyzed, and the polarization angle of the polarizing plate is set according to the analysis result to receive light for spectroscopic analysis. ing. Based on spectral distributions with different polarization angles, the depth of light reaching the surface tissue is analyzed, and by performing spectroscopic analysis with the polarizing plate set at the appropriate polarization angle, the reflected light from the desired depth is derived. It measures biological information.

目的とする生体情報が血液成分中のグルコース濃度がである場合、本発明を好適に用いていることができるが、他の生体情報においても本発明を適用することができる。   When the target biological information is the glucose concentration in the blood component, the present invention can be suitably used, but the present invention can also be applied to other biological information.

また、光を照射する部分としては、人体の手の内側、特に指の内側で且つ第1関節と第2関節との間の部分が好ましい。   Moreover, as a part which irradiates light, the part inside a human hand, especially the inner side of a finger | toe, and between a 1st joint and a 2nd joint is preferable.

特に生体の表層組織表面に光を斜め方向から照射するとともに、生体の表層組織表面に照射する光としてs偏光の光を用いることが好ましい。表層組織内の情報を多く含んだ反射光を得ることができ、より精度が高く且つ安定した生体情報測定を行うことができる。   In particular, it is preferable to irradiate light on the surface tissue of the living body from an oblique direction and to use s-polarized light as light to irradiate the surface tissue of the living body. Reflected light containing a large amount of information in the surface tissue can be obtained, and more accurate and stable biological information measurement can be performed.

そして本発明に係る光学的生体情報測定装置は、生体の表層組織表面に光を照射する光照射手段と、表層組織からの反射光を分光して受光する分光受光手段と、分光分析によって生体情報を測定する測定手段とを備えた光学的生体情報測定装置であって、上記光照射手段は直線偏光の光を照射するものであるとともに、上記分光受光手段は偏光角を可変とした偏光板を介して上記反射光を受光するものであり、さらに偏光板を介した上記受光から求めた偏光角が異なるスペクトル分布に基づいて上記表層組織への上記光の到達深度を解析するとともにこの解析結果に応じて分光分析のための上記偏光板の偏光角を設定もしくは偏光角を指示する解析手段を備えていることに特徴を有している。   The optical biological information measuring apparatus according to the present invention includes a light irradiating unit that irradiates light on a surface tissue of a living body, a spectral light receiving unit that spectrally receives reflected light from the surface tissue, and biological information by spectroscopic analysis. An optical biological information measuring device comprising: a measuring means for measuring the light, wherein the light irradiating means irradiates linearly polarized light, and the spectral light receiving means comprises a polarizing plate having a variable polarization angle. In addition to analyzing the depth of arrival of the light to the surface tissue based on the spectral distribution with different polarization angles obtained from the light reception via the polarizing plate, Accordingly, the present invention is characterized in that an analysis means for setting or indicating the polarization angle of the polarizing plate for spectroscopic analysis is provided.

上記光照射手段としては、生体の表層組織表面にその被照射面に対してs偏光の光を照射するものを好適に用いることができる。   As said light irradiation means, what irradiates s-polarized light with respect to the to-be-irradiated surface can be used suitably for the surface tissue surface of a living body.

本発明に係る光学的生体情報測定方法は、偏光角が異なるスペクトル分布に基づいて表層組織への光の到達深度を解析するものであり、この解析結果から適切な深度からの反射光(透過光)を得られる偏光角に偏光板をセットした状態で分光分析することから、求める深度からの反射光を基にした生体情報の測定を行うことができる。しかも、生体に対しては単に光の照射と反射光の受光を行うだけで人体に対して非接触で構成することができ、接触圧等の影響を受けることがない。   The optical biological information measuring method according to the present invention analyzes the depth of light reaching the surface tissue based on the spectral distributions having different polarization angles. From this analysis result, the reflected light (transmitted light) from an appropriate depth is analyzed. ), The biological information can be measured based on the reflected light from the desired depth. Moreover, the living body can be configured to be non-contact with the human body simply by irradiating light and receiving reflected light, and is not affected by contact pressure or the like.

そして本発明に係る光学的生体情報測定装置では、上記測定方法による測定を簡便に行うことができる。   In the optical biological information measuring device according to the present invention, the measurement by the measurement method can be easily performed.

以下、本発明を添付図面に示す実施形態に基いて説明すると、図1において、照射時間制御が可能な光源1と、光源1から出る光を直線偏光の光とする偏光板2と、偏光板2を経ることで直線偏光となった光を人体9の表層組織表面に照射した際の反射光もしくは透過光を分光して受光する分光受光手段4と、該分光受光手段4の直前に配した偏光板3と、この偏光板3をモータ駆動で光軸まわりに回転させる回転ステージ5、そして分光受光手段4から得られるスペクトル分布データと回転ステージ5によって偏光板3を回転させる際の偏光角度制御データとで構成される偏光角毎のスペクトル分布データを基に解析を行う解析手段6、そして上記分光受光手段4から得られるスペクトル分布データから多変量解析手法によって生体情報、たとえば血液中のグルコース濃度を演算する測定手段7を備えている。   Hereinafter, the present invention will be described based on an embodiment shown in the accompanying drawings. In FIG. 1, a light source 1 capable of irradiation time control, a polarizing plate 2 using light emitted from the light source 1 as linearly polarized light, and a polarizing plate Spectral light receiving means 4 for spectrally receiving and receiving reflected or transmitted light when the surface tissue surface of the human body 9 is irradiated with light that has been linearly polarized through 2 and disposed immediately in front of the spectral light receiving means 4 Polarizing angle control when rotating the polarizing plate 3 by the rotating stage 5 that rotates the polarizing plate 3, the rotating stage 5 that rotates the polarizing plate 3 around the optical axis by driving the motor, and the spectral distribution data obtained from the spectral light receiving means 4. Analysis means 6 for performing analysis on the basis of spectrum distribution data for each polarization angle composed of data, and biological information from the spectrum distribution data obtained from the spectral light receiving means 4 by a multivariate analysis technique, And a measuring means 7 for calculating the glucose concentration in blood For example.

多変量解析手法によって生体情報を演算する測定手段7については、前記公報などにも示されているように公知のものであるから、ここでは偏光を用いることと上記解析手段6とについて説明する。   Since the measuring means 7 for calculating biological information by the multivariate analysis method is known as shown in the above publications, the use of polarized light and the analyzing means 6 will be described here.

偏光板2を用いることで直線偏光とした光を生体9、たとえば指の腹に入射角45°で当てて、反射角45°の反射光を分光受光手段4で受光する時、偏光板3を回転させることで偏光角を変化させてスペクトル分布を観測すると、偏光角0°(受光する反射光の偏光方向が入射光と同じ)の場合イと、偏光角90°(受光する反射光の偏光方向が入射光に対して直交)の場合ロとにおいて図2に示すように相違が見られた。   When light that has been linearly polarized by using the polarizing plate 2 is applied to the living body 9, for example, the belly of a finger at an incident angle of 45 °, and the reflected light having a reflection angle of 45 ° is received by the spectral light receiving means 4, the polarizing plate 3 is When the spectral distribution is observed by changing the polarization angle by rotating, the polarization angle is 0 ° (the polarization direction of the received reflected light is the same as the incident light) and the polarization angle is 90 ° (the polarization of the received reflected light). When the direction is orthogonal to the incident light), a difference was observed as shown in FIG.

ここで、図中のαは脂肪の吸収ピーク、βは水の吸収ピーク、γは蛋白質の吸収ピークである。そして人体の皮膚組織は、前述のように表皮と真皮と皮下組織で構成されるが、真皮は蛋白質(コラーゲン)が多い層、皮下組織は脂肪が多い層であり、また表皮で反射した光はその偏光角が0°となる。   In the figure, α is a fat absorption peak, β is a water absorption peak, and γ is a protein absorption peak. The human skin tissue is composed of the epidermis, dermis and subcutaneous tissue as described above. The dermis is a layer rich in protein (collagen), the subcutaneous tissue is a layer rich in fat, and the light reflected by the epidermis is The polarization angle is 0 °.

この点を踏まえて上記図2に示すスペクトル分布を観察すると、偏光角90°の場合は偏光角0°の場合よりも脂肪による吸光が増加しているために脂肪のある層を透過していることがわかる。また、偏光角90°の場合は偏光角0°の場合よりも蛋白質による吸光が増加していることから、偏光角90°の反射光は蛋白質を含む層をより多く透過していることがわかる。   When the spectral distribution shown in FIG. 2 is observed based on this point, when the polarization angle is 90 °, the absorption by fat is increased compared to the case where the polarization angle is 0 °, and thus the fat-containing layer is transmitted. I understand that. In addition, since the light absorption by the protein increases when the polarization angle is 90 ° than when the polarization angle is 0 °, it can be seen that the reflected light having the polarization angle of 90 ° is transmitted more through the layer containing the protein. .

偏光角の変化は生体組織による散乱現象と偏光現象によって起きるものであるために、偏光角によって表層組織に対する光の到達深度が変化していることになる。本発明はこのような知見に基づき、反射光の受光を偏光角可変とした偏光板3を介して受光することで偏光角が異なる状態での反射光スペクトル分布から上記表層組織への上記光の到達深度を解析する解析手段6を設けたものであり、偏光角に変化に伴う上記脂肪による吸光度の変化と蛋白質による吸光度の変化とから上記解析手段6は光の到達深度が表皮になっているか真皮部分になっているか皮下組織になっているかを解析し、その解析結果として真皮部分に相当する偏光角を出力する。   Since the change in the polarization angle is caused by the scattering phenomenon and the polarization phenomenon by the biological tissue, the arrival depth of light with respect to the surface tissue is changed by the polarization angle. Based on such knowledge, the present invention receives the reflected light from the reflected light spectrum distribution in a state where the polarization angle is different by receiving the light through the polarizing plate 3 having a variable polarization angle. Analyzing means 6 for analyzing the depth of arrival is provided. Whether the depth of light reaches the epidermis is determined based on the change in absorbance due to fat and the change in absorbance due to protein due to the change in polarization angle. It analyzes whether it is a dermis part or a subcutaneous tissue, and outputs a polarization angle corresponding to the dermis part as an analysis result.

そして上記測定手段7は解析手段6から出力された偏光角を受けて偏光板3がその偏光角となるように回転ステージ5を回転させ、この状態での生体情報の分光分析のための受光データから前述のような生体情報を求める演算を行うのである。   The measuring means 7 receives the polarization angle output from the analyzing means 6 and rotates the rotating stage 5 so that the polarizing plate 3 has the polarization angle. In this state, the received light data for the spectral analysis of biological information. Thus, the calculation for obtaining the biological information as described above is performed.

従ってこの光学的生体情報測定装置においては、測定のための部材を生体に接触させなくても、生体の表層組織(皮膚組織)における求める深さの部分から生体情報を得ることができるものであり、血液成分濃度等の生体情報を得るにあたり、より正確な情報を得ることができる。   Therefore, in this optical biological information measuring apparatus, biological information can be obtained from a desired depth in the surface tissue (skin tissue) of the living body without bringing a member for measurement into contact with the living body. In obtaining biological information such as blood component concentration, more accurate information can be obtained.

ここにおいて、上記光としては波長400nm付近と500nm〜600nm付近とで高い吸収度を有している酸化ヘモグロビンの吸光の影響を除去するために、600nm〜2000nmの波長の光を使用することが有効である。   Here, as the light, it is effective to use light having a wavelength of 600 nm to 2000 nm in order to eliminate the influence of light absorption of oxyhemoglobin having a high absorbance around 400 nm and around 500 nm to 600 nm. It is.

また、ここでは解析手段6の出力によって分光分析の際の偏光板3の偏光角設定が自動でなされるものを示したが、解析手段6の解析結果による偏光角を表示部において表示し、この表示に基づいて測定に従事する者、もしくは被測定者が偏光板3の偏光角を手動設定するものであってもよい。   In addition, here, the polarization angle of the polarizing plate 3 at the time of spectroscopic analysis is automatically set by the output of the analysis means 6, but the polarization angle based on the analysis result of the analysis means 6 is displayed on the display unit, The person engaged in the measurement based on the display or the person to be measured may manually set the polarization angle of the polarizing plate 3.

光を照射する被測定箇所としては、皮膚表面での乱反射の原因となる皮溝が少ない手の内側(掌)が好適であり、殊に人体の指の内側(腹)における第1関節と第2関節との間の部分が好ましい。人体の各部に実際に光を照射してその反射光を観察したところ、上記関節間の部分で得たデータが最も安定性が高かったからである。   The measurement site to be irradiated with light is preferably the inner side (palm) of the hand having few skin grooves that cause irregular reflection on the skin surface, and particularly the first joint and the inner side of the human finger (abdomen). The part between the two joints is preferred. This is because when data was actually irradiated on each part of the human body and the reflected light was observed, the data obtained in the part between the joints had the highest stability.

ところで、直線偏光とした光を対象物に照射するに際して斜め方向から照射する場合、照射する光の偏光方向が対象物の被照射面に対してs偏光であるかp偏光であるかによって異なる結果が得られることが多々あるのはよく知られたことであり、このためにここでも図4に示すように食用のハムをサンプル90とし、このサンプル90にp偏光の光とs偏光の光とを入射角45°で照射し、その反射光を集光レンズ8及び偏光板3を介して分光・受光手段4で受光した。ちなみに用いた分光・受光手段4は、透過型石英回折格子と512画素のCCD素子からなり、900nm〜1700nmの波長範囲の測定ができるものを用いた。また光源1としてはハロゲンランプを用いた。   By the way, when irradiating an object with linearly polarized light from an oblique direction, the result varies depending on whether the polarization direction of the irradiated light is s-polarized light or p-polarized light with respect to the irradiated surface of the object. It is well known that, for this reason, edible ham is also used as sample 90 as shown in FIG. 4, and p-polarized light, s-polarized light, and Was incident at an incident angle of 45 °, and the reflected light was received by the spectroscopic / light receiving means 4 via the condenser lens 8 and the polarizing plate 3. Incidentally, the spectroscopic / light receiving means 4 used was composed of a transmissive quartz diffraction grating and a 512-pixel CCD element and capable of measuring in the wavelength range of 900 nm to 1700 nm. As the light source 1, a halogen lamp was used.

上記光源1からの光を偏光板2によってp偏光とした場合と、s偏光とした場合とで夫々偏光板3を回転させて偏光角を変えることで平行成分や垂直成分を取り出して分光した結果を図5,図6に示す。図5がp偏光の場合、図6がs偏光の場合を示しており、図中ホは偏光板3を通さずに受光した場合を、ヘは偏光角0°の場合を、トは偏光角90°の直交検出の場合を示しており、更に図中のチはサンプル90を透過した透過光を偏光板3を通さずに受光した場合を示している。   The result of taking out and separating the parallel component and the vertical component by rotating the polarizing plate 3 and changing the polarization angle in the case where the light from the light source 1 is converted into p-polarized light by the polarizing plate 2 and in the case where the light is converted into s-polarized light. Are shown in FIGS. FIG. 5 shows the case of p-polarized light, FIG. 6 shows the case of s-polarized light. In the figure, “e” indicates that the light is received without passing through the polarizing plate 3, “f” indicates the case where the polarization angle is 0 °, The case of 90 ° orthogonal detection is shown, and H in the figure shows the case where the transmitted light transmitted through the sample 90 is received without passing through the polarizing plate 3.

両偏光の吸光スペクトルは、サンプル90を透過させた場合(図中チ)については類似しているとともに水単体のスペクトルに近い。そしてp偏光入射時の反射スペクトルで偏光角90°の直交検出(図中ト)では図5に示すように1500〜1650nm辺りで蛋白質関連の吸収、散乱が効いてくること、深部の水の吸収がみられないことが分かる。これに対して、図6に示すs偏光入射の場合、p偏光の場合とかなり異なるスペクトルを呈しており、水スペクトルに近づく吸収が見られ、透過光検出結果(チ)と同様の結果がでている。   The absorption spectra of both polarized lights are similar when the sample 90 is transmitted (h in the figure) and close to the spectrum of water alone. In the orthogonal detection (G in the figure) of the reflection spectrum at the time of incidence of p-polarized light, the protein-related absorption and scattering are effective around 1500 to 1650 nm, as shown in FIG. It can be seen that is not seen. On the other hand, in the case of s-polarized light incidence shown in FIG. 6, the spectrum is considerably different from that of p-polarized light, absorption close to the water spectrum is observed, and the same result as the transmitted light detection result (h) is obtained. ing.

これはs偏光であればp偏光の場合よりもサンプル90内のより深い位置からの反射があることを示しており、これ故にs偏光であればp偏光の場合よりもサンプル90の内部の情報を得ることができ、図6中のトを見ればわかるように、入射と垂直方向成分の拡散光を捕らえることで更に水の成分が顕著になっている。   This indicates that there is reflection from a deeper position in the sample 90 in the case of s-polarized light than in the case of p-polarized light. Therefore, in the case of s-polarized light, information inside the sample 90 is more than in the case of p-polarized light. As can be seen from FIG. 6, the water component becomes more prominent by capturing the diffused light of the incident and vertical components.

一方、図7は人体の掌にs偏光の光を照射して偏光角を0°(図中deg0)から90°(図中deg90)まで10°置きに変えて反射光のスペクトルを測定した結果を示している。直交deg90に近づくにつれてプロファイルがシャープになって行くことが分かる。特に80°(deg80)、90°(deg90)では970nmにおける水スペクトル、また1200nm付近の生命体の炭素化合物のスペクトルが顕著となっている。このことから、皮膚構造における層と平行方向の偏光であるs偏光の光を用いることで皮膚内の組織で吸収された光を精度よく計測することができるものであり、これに伴って血糖値の推測精度が向上する。   On the other hand, FIG. 7 shows the result of measuring the spectrum of reflected light by irradiating the palm of the human body with s-polarized light and changing the polarization angle from 0 ° (deg0 in the figure) to 90 ° (deg90 in the figure) every 10 °. Is shown. It can be seen that the profile becomes sharper as it approaches the orthogonal deg 90. In particular, at 80 ° (deg 80) and 90 ° (deg 90), the water spectrum at 970 nm and the spectrum of the carbon compound of the living organism near 1200 nm are prominent. From this, it is possible to accurately measure the light absorbed by the tissue in the skin by using s-polarized light which is polarized in the direction parallel to the layers in the skin structure. The estimation accuracy of is improved.

本発明の実施の形態の一例のブロック図である。It is a block diagram of an example of an embodiment of the invention. 偏光角と吸収度についてのデータの一例の説明図である。It is explanatory drawing of an example of the data about a polarization angle and an absorbance. 酸化ヘモグロビンの吸光度のデータの説明図である。It is explanatory drawing of the data of the light absorbency of oxyhemoglobin. 試験状態を示す概略斜視図である。It is a schematic perspective view which shows a test state. p偏光の場合の近赤外吸収スペクトルの説明図である。It is explanatory drawing of the near-infrared absorption spectrum in the case of p polarization | polarized-light. s偏光の場合の近赤外吸収スペクトルの説明図である。It is explanatory drawing of the near-infrared absorption spectrum in the case of s polarization | polarized-light. s偏光を掌に照射した際の分光反射スペクトルの偏光角依存性を示す説明図である。It is explanatory drawing which shows the polarization angle dependence of the spectral reflection spectrum when s-polarized light is irradiated to the palm.

符号の説明Explanation of symbols

1 光源
2 偏光板
3 偏光板
4 分光受光素子
6 解析手段
7 測定手段
9 人体
DESCRIPTION OF SYMBOLS 1 Light source 2 Polarizing plate 3 Polarizing plate 4 Spectral light receiving element 6 Analyzing means 7 Measuring means 9 Human body

Claims (6)

生体の表層組織表面に光を照射して表層組織からの反射光を分光手段を介して受光して分光分析によって生体情報を得るにあたり、生体の表層組織表面に照射する光として直線偏光の光を用いるとともに、偏光角可変とした偏光板を介して上記反射光の受光を行ってスペクトル分布を求め、該偏光角が異なるスペクトル分布に基づいて上記表層組織への上記光の到達深度を解析し、この解析結果に応じて上記偏光板の偏光角を設定して分光分析のための光を受光することを特徴とする光学的生体情報測定方法。   In order to obtain biological information by spectroscopic analysis by irradiating light on the surface tissue of the living body and receiving reflected light from the surface tissue through the spectroscopic means, linearly polarized light is irradiated as light to irradiate the surface tissue of the living body. Using and receiving the reflected light through a polarizing plate with a variable polarization angle to obtain a spectral distribution, analyzing the depth of arrival of the light to the surface tissue based on the spectral distribution having a different polarization angle, An optical biological information measuring method, wherein the light for spectral analysis is received by setting the polarization angle of the polarizing plate according to the analysis result. 目的とする生体情報が血液成分中のグルコース濃度であることを特徴する請求項1記載の光学的生体情報測定方法。   2. The optical biological information measuring method according to claim 1, wherein the target biological information is a glucose concentration in a blood component. 人体の指の内側で且つ第1関節と第2関節との間の部分に光を照射することを特徴とする請求項1または2記載の光学的生体情報測定方法。   3. The optical biological information measuring method according to claim 1, wherein light is irradiated to a portion inside the finger of the human body and between the first joint and the second joint. 生体の表層組織表面に光を斜め方向から照射するとともに、生体の表層組織表面に照射する光としてs偏光の光を用いることを特徴とする請求項1〜3のいずれか1項に記載の光学的生体情報測定方法。   The light according to any one of claims 1 to 3, wherein the surface of the living body tissue is irradiated with light from an oblique direction, and s-polarized light is used as the light applied to the surface of the living body surface tissue. Biological information measurement method. 生体の表層組織表面に光を照射する光照射手段と、表層組織からの反射光を分光して受光する分光受光手段と、分光分析によって生体情報を測定する測定手段とを備えた光学的生体情報測定装置であって、上記光照射手段は直線偏光の光を照射するものであるとともに、上記分光受光手段は偏光角を可変とした偏光板を介して上記反射光を受光するものであり、さらに偏光板を介した上記受光から求めた偏光角が異なるスペクトル分布に基づいて上記表層組織への上記光の到達深度を解析するとともにこの解析結果に応じて分光分析のための上記偏光板の偏光角を設定もしくは偏光角を指示する解析手段を備えていることを特徴とする光学的生体情報測定装置。   Optical biological information comprising light irradiating means for irradiating light on the surface tissue of a living body, spectral light receiving means for spectrally receiving reflected light from the surface tissue, and measuring means for measuring biological information by spectroscopic analysis In the measuring apparatus, the light irradiating means irradiates linearly polarized light, and the spectral light receiving means receives the reflected light through a polarizing plate having a variable polarization angle. Analyzing the depth of arrival of the light to the surface layer structure based on spectral distributions with different polarization angles obtained from the light received through the polarizing plate, and depending on the analysis result, the polarizing angle of the polarizing plate for spectroscopic analysis An optical biological information measuring device comprising an analyzing means for setting or indicating a polarization angle. 上記光照射手段は生体の表層組織表面にその被照射面に対してs偏光の光を照射するものであることを特徴とする請求項5記載の光学的生体情報測定装置。   6. The optical biological information measuring device according to claim 5, wherein the light irradiating means irradiates the surface of the living body with s-polarized light on the surface to be irradiated.
JP2006259557A 2006-04-25 2006-09-25 Optical biological information measuring method and apparatus Active JP4925278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006259557A JP4925278B2 (en) 2006-04-25 2006-09-25 Optical biological information measuring method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006121094 2006-04-25
JP2006121094 2006-04-25
JP2006259557A JP4925278B2 (en) 2006-04-25 2006-09-25 Optical biological information measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2007313286A true JP2007313286A (en) 2007-12-06
JP4925278B2 JP4925278B2 (en) 2012-04-25

Family

ID=38847683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259557A Active JP4925278B2 (en) 2006-04-25 2006-09-25 Optical biological information measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4925278B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109030A1 (en) * 2009-03-24 2010-09-30 Hanscan Ip B.V. Life detector device
JP2011092613A (en) * 2009-11-02 2011-05-12 Hog Japan:Kk Method for obtaining information about blood glucose level
JP2013523362A (en) * 2010-04-13 2013-06-17 ヴィヴァンタム ゲーエムベーハー Apparatus and method for determining biological, chemical and / or physiological parameters in biological tissue
WO2020019473A1 (en) * 2018-07-26 2020-01-30 中国科学院苏州生物医学工程技术研究所 Device and method for high-throughput polarization imaging of zebrafish

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001046348A (en) * 1999-08-10 2001-02-20 Omega Wave Kk Probe for blood flow meter
JP2003121347A (en) * 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd Method and apparatus for measuring glucose concentration
WO2005001522A2 (en) * 2003-06-04 2005-01-06 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
JP2007524441A (en) * 2003-04-04 2007-08-30 ルミディム インコーポレイテッド Multispectral biometric sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001046348A (en) * 1999-08-10 2001-02-20 Omega Wave Kk Probe for blood flow meter
JP2003121347A (en) * 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd Method and apparatus for measuring glucose concentration
JP2007524441A (en) * 2003-04-04 2007-08-30 ルミディム インコーポレイテッド Multispectral biometric sensor
WO2005001522A2 (en) * 2003-06-04 2005-01-06 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
JP2006526790A (en) * 2003-06-04 2006-11-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109030A1 (en) * 2009-03-24 2010-09-30 Hanscan Ip B.V. Life detector device
ES2377896A1 (en) * 2009-03-24 2012-04-03 Hanscan Ip B.V. Life detector device
JP2011092613A (en) * 2009-11-02 2011-05-12 Hog Japan:Kk Method for obtaining information about blood glucose level
JP2013523362A (en) * 2010-04-13 2013-06-17 ヴィヴァンタム ゲーエムベーハー Apparatus and method for determining biological, chemical and / or physiological parameters in biological tissue
WO2020019473A1 (en) * 2018-07-26 2020-01-30 中国科学院苏州生物医学工程技术研究所 Device and method for high-throughput polarization imaging of zebrafish

Also Published As

Publication number Publication date
JP4925278B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US11412963B2 (en) Method for measuring concentration of substance in blood
US5372135A (en) Blood constituent determination based on differential spectral analysis
JP3931638B2 (en) Biological component determination device
RU2453266C2 (en) Measurement of glucose concentration in pulsing blood
CN101151513A (en) Methods and apparatus for noninvasive determinations of analytes
JP2010066280A (en) Quantification device of glucose concentration
WO2002026152A8 (en) A method for quantification of stratum corneum hydration using diffuse reflectance spectroscopy
JP4472794B2 (en) Glucose concentration determination device
US20160045143A1 (en) Apparatus for noninvasively measuring bio-analyte and method of noninvasively measuring bio-analyte
JP4925278B2 (en) Optical biological information measuring method and apparatus
Uwadaira et al. Noninvasive blood glucose measurement
JP4329360B2 (en) Glucose concentration determination device
US20090198113A1 (en) Dedicated spectral illumination spectroscopy
Saptari A spectroscopic system for near infrared glucose measurement
JP2010281747A (en) Component concentration analyzer and component concentration analysis method
JP5360718B2 (en) Method for obtaining blood glucose concentration information
JP2011167257A (en) Chiral material detector and method of detecting chiral material
Zain et al. Photon counting polarimetry measurement towards non-invasive biomedical glucose monitoring
JP2006527018A (en) Apparatus and method for blood pH identification
JP2007187583A (en) Optical path length measuring device and specific component measuring device using it
JP2007252420A (en) Human body muscle evaluation device
JP2003149145A (en) Non-invasive glucose level measuring device
RU2782327C1 (en) Method for non-invasive determination of the content of water in blood and biological media
JP6832782B2 (en) Spectral analysis method, spectroscopic analyzer
KR102290278B1 (en) Noninvasive apparatus for testing liver function and noninvasive method for testing liver function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3