JP2007306434A - Piezoelectric vibrator, and manufacturing method therefor - Google Patents

Piezoelectric vibrator, and manufacturing method therefor Download PDF

Info

Publication number
JP2007306434A
JP2007306434A JP2006134509A JP2006134509A JP2007306434A JP 2007306434 A JP2007306434 A JP 2007306434A JP 2006134509 A JP2006134509 A JP 2006134509A JP 2006134509 A JP2006134509 A JP 2006134509A JP 2007306434 A JP2007306434 A JP 2007306434A
Authority
JP
Japan
Prior art keywords
piezoelectric
crystal
substrate
bonding
outer frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006134509A
Other languages
Japanese (ja)
Inventor
Takahiro Kuroda
貴大 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006134509A priority Critical patent/JP2007306434A/en
Publication of JP2007306434A publication Critical patent/JP2007306434A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To assure high airtightness and high bonding strength and to attain high frequency precision in a piezoelectric vibrator in which upper and lower piezoelectric substrates are bonded on both surfaces of a piezoelectric substrate formed by integrating a piezoelectric vibration chip and an outer frame. <P>SOLUTION: A crystal oscillator 1 has an intermediate crystal plate 2 to which an AT cut crystal oscillation chip 5 and the outer frame 6 are integrally coupled, upper and lower crystal substrates 3, 4. Conductive films 10, 13 are formed on a lower surface of the outer frame of the intermediate crystal plate, metal thin films 16, 18 are formed on an upper surface of the lower crystal substrate and airtightly joined together by diffused junction after being mutually sanctified and activated by plasm processing. Frequency adjustment of the crystal oscillation chip is performed before joining the intermediate crystal plate and the upper crystal substrate after joining the intermediate crystal plate and the lower crystal substrate. The upper surface of the outer frame of the intermediate crystal plate and the lower surface of the upper crystal substrate consist of crystal element surfaces and airtightly joined by surface activated bonding using the plasma processing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、厚みすべり振動モード又は音叉型の圧電振動片をパッケージに気密に収容した圧電振動子及びその製造方法に関する。   The present invention relates to a piezoelectric vibrator in which a thickness-shear vibration mode or tuning-fork type piezoelectric vibrating piece is hermetically accommodated in a package, and a manufacturing method thereof.

従来水晶振動子などの圧電デバイスは、電子機器の小型化、薄型化に伴ってより一層の小型化・薄型化が要求され、回路基板等への実装に適した表面実装型のものが多用されている。一般に表面実装型の圧電デバイスは、セラミックなどの絶縁材料で形成したパッケージに圧電振動片を封止する構造が広く採用されている。従来のパッケージ構造は、低融点ガラスやシーム溶接などでベースとリッドとを接合するため、低融点ガラスから発生するガスやシーム溶接の高熱の影響で、水晶振動片の周波数特性を低下させたり劣化させる虞がある。また、低融点ガラスは鉛を含む場合が多く、環境に影響を及ぼす虞があることから好ましくない。   Conventionally, piezoelectric devices such as crystal resonators are required to be further reduced in size and thickness as electronic devices become smaller and thinner, and surface mount devices suitable for mounting on circuit boards and the like are often used. ing. In general, a surface-mount type piezoelectric device widely adopts a structure in which a piezoelectric vibrating piece is sealed in a package formed of an insulating material such as ceramic. In conventional package structures, the base and lid are joined by low-melting glass or seam welding, etc., so the frequency characteristics of the crystal resonator element are degraded or deteriorated due to the gas generated from the low-melting glass or the high heat of seam welding. There is a risk of causing it. Further, the low melting point glass is often not preferable because it often contains lead and may affect the environment.

そこで、かかる問題を解消するために、水晶振動子と一体に形成した外枠の上下面に金属層を設け、該金属層とガラスからなる蓋及びケースとを陽極接合した水晶振動子が提案されている(例えば、特許文献1,2を参照)。上記特許文献1に記載の水晶振動子は、水晶振動片の励振電極からその基端部又は外枠に引き出した電極とケース下面の外部電極とを、該ケースに形成したスルーホールを介して接続している。上記特許文献2記載の水晶振動子は、圧電振動片を一体に形成した圧電振動板の枠の上下面に接合膜を設け、かつ枠下面の接合膜が接合膜を有しない部分で分割されると共に、分割された接合膜がコンタクトホール即ちスルーホールを介して枠上面の接合膜と電気的に接続され、更にベースに形成したスルーホールを介してベース下面の外部電極と接続している。   Therefore, in order to solve such a problem, a crystal resonator is proposed in which a metal layer is provided on the upper and lower surfaces of an outer frame formed integrally with the crystal resonator, and the metal layer, a lid made of glass and a case are anodically bonded. (For example, see Patent Documents 1 and 2). The crystal resonator described in Patent Document 1 connects an electrode drawn from the excitation electrode of a crystal resonator element to the base end or outer frame thereof and an external electrode on the lower surface of the case through a through hole formed in the case. is doing. In the crystal resonator described in Patent Document 2, a bonding film is provided on the upper and lower surfaces of a frame of a piezoelectric diaphragm integrally formed with a piezoelectric vibrating piece, and the bonding film on the lower surface of the frame is divided at a portion having no bonding film. At the same time, the divided bonding film is electrically connected to the bonding film on the upper surface of the frame through a contact hole, that is, a through hole, and further connected to the external electrode on the lower surface of the base through a through hole formed in the base.

また、鏡面研磨した圧電板及び基板の相互接合面を、酸素含有雰囲気内での紫外線照射又は酸素プラズマへの曝露により汚れ等を原子レベルで除去して清浄化し、水分の吸着により形成される−OH基の水素結合により接合する圧電デバイスの製造方法が知られている(例えば、特許文献3を参照)。この親水化処理による接合方法では、水の沸点である100℃以上で接合体を熱処理することによって、強い接合力が得られるとしている。   Also, the mirror-polished piezoelectric plate and the substrate are cleaned by removing moisture at the atomic level by exposure to ultraviolet rays or exposure to oxygen plasma in an oxygen-containing atmosphere, and formed by adsorption of moisture. A method of manufacturing a piezoelectric device that joins by OH group hydrogen bonding is known (see, for example, Patent Document 3). In this joining method using a hydrophilic treatment, a strong joining force can be obtained by heat-treating the joined body at 100 ° C. or higher, which is the boiling point of water.

更に、水晶振動子において水晶材料とガラス材料のように熱膨張率が異なる材料同士を接合する場合には、接合後に反りを生じる虞がある。かかる反りを防止するために、第1の基板をそれと熱膨張率が異なりかつ互いに同程度の熱膨張率を有する第2,第3の基板でサンドイッチ構造に挟装して、反りを相殺する方法が知られている(例えば、特許文献4を参照)。   Furthermore, when materials having different coefficients of thermal expansion, such as a quartz crystal material and a glass material, are joined in a quartz resonator, warping may occur after joining. In order to prevent such warpage, a method of offsetting warpage by sandwiching a first substrate with a sandwich structure between second and third substrates having different thermal expansion coefficients and similar thermal expansion coefficients to each other. Is known (see, for example, Patent Document 4).

また、電極膜を形成した円形の水晶板である圧電基板と、その両面に同一の材質である水晶の保護基板とを、金と銀とを有する接合部で接合した水晶振動子などの圧電振動体が提案されている(例えば、特許文献5を参照)。両基板は、圧電基板のAu膜を形成した接合表面及び保護基板のAg膜を形成した接合表面をプラズマ処理した後、重ね合わせて均等に加圧し、真空炉により310℃の温度で1時間加熱することにより、拡散接合で気密に封止される。   Piezoelectric vibrations such as crystal resonators in which a piezoelectric substrate, which is a circular quartz plate with an electrode film, and a quartz protective substrate, which is the same material on both sides, are joined by joints having gold and silver A body has been proposed (see, for example, Patent Document 5). Both substrates are subjected to plasma treatment on the bonding surface of the piezoelectric substrate on which the Au film is formed and the bonding surface of the protective substrate on which the Ag film is formed, and then superposed and evenly pressurized, and heated in a vacuum furnace at a temperature of 310 ° C. for 1 hour. By doing so, it is hermetically sealed by diffusion bonding.

更に、IDT及び電極パッドを形成した圧電基板の主面上にIDTを取り囲む金属膜を形成し、該金属膜と位置合わせした金属膜をベース基板の主面上に形成し、これら金属膜を直接接合することにより両基板を貼り合わせた弾性表面波デバイスが知られている(例えば、特許文献6を参照)。この特許文献6によれば、両基板の金属膜は、接合前に常温でイオンビームやプラズマ等を照射することにより表面活性化の処理が施され、また100℃以下程度に加熱処理した条件下で両基板を加圧することにより、接合強度を向上させることができる。   Further, a metal film surrounding the IDT is formed on the main surface of the piezoelectric substrate on which the IDT and electrode pads are formed, and a metal film aligned with the metal film is formed on the main surface of the base substrate. A surface acoustic wave device in which both substrates are bonded together by bonding is known (see, for example, Patent Document 6). According to Patent Document 6, the metal films on both substrates are subjected to surface activation treatment by irradiation with an ion beam, plasma, or the like at room temperature before bonding, and are subjected to heat treatment at about 100 ° C. or less. Thus, the bonding strength can be improved by pressurizing both substrates.

特開2000−68780号公報JP 2000-68780 A 特開2002−76826号公報JP 2002-76826 A 特開平7−154177号公報JP 7-154177 A 特開平7−86106号公報JP-A-7-86106 国際公開番号WO00/76066号パンフレットInternational Publication Number WO00 / 76066 Pamphlet 特開2004−304622号公報JP 2004-304622 A

しかしながら、上述した従来の陽極接合による水晶振動子のパッケージ構造では、電圧の印加及び加熱が、水晶基板及びそれに接合する基板に悪い影響を与える虞がある。そのため、特に高精度の性能が要求される場合には、必ずしも好ましくない。また、低融点ガラスや金属接合などと同様に、アウタガスが発生して、水晶振動片の特性に影響したり劣化させたりする虞がある。   However, in the above-described conventional crystal resonator package structure by anodic bonding, voltage application and heating may adversely affect the crystal substrate and the substrate bonded thereto. Therefore, it is not necessarily preferable especially when high-precision performance is required. In addition, as in the case of low melting point glass and metal bonding, outer gas is generated, which may affect or deteriorate the characteristics of the quartz crystal vibrating piece.

更に、熱膨張率が異なる基板を互いに接合して多層のサンドイッチ構造にする場合、それら基板を同時に積層する必要がある。そのため、多層構造の各基板の位置合わせは作業が非常に煩雑で多大な手間を要し、実作業効果を低下させる虞がある。また、基板間の熱膨張率の差をサンドイッチ構造で吸収解消しようとしても、接合時に発生する熱や熱処理工程の影響で、熱膨張率に起因したクラックが中間層の基板に発生したり、構造全体に反りを生じる虞がある。その結果、基板の接合条件例えば接合温度が制約され、十分な接合強度、気密性を確保することが困難になる虞がある。   Furthermore, when substrates having different coefficients of thermal expansion are bonded to each other to form a multilayer sandwich structure, the substrates must be laminated simultaneously. Therefore, the alignment of each substrate having a multilayer structure is very complicated and requires a lot of labor, and there is a possibility that the actual working effect may be reduced. In addition, even when trying to absorb the difference in the coefficient of thermal expansion between the substrates with the sandwich structure, cracks due to the coefficient of thermal expansion occur in the substrate of the intermediate layer due to the heat generated during bonding and the effect of the heat treatment process, There is a risk of warping the whole. As a result, the bonding conditions of the substrates, such as the bonding temperature, are restricted, and it may be difficult to ensure sufficient bonding strength and airtightness.

また、特に厚みすべり振動モードまたは音叉型の圧電振動子は、低いCI値を確保維持して高品質及び高安定性を得るために、パッケージ内を高度の真空状態または不活性ガスの雰囲気に封止する必要がある。そのためには、各基板を高い気密性をもって接合してパッケージを封止しなければならない。更に、各基板の接合時に過度に加熱すると、圧電振動片の振動特性に影響を及ぼし、所望の性能を得られなくなる虞がある。   In particular, the thickness-shear vibration mode or tuning-fork type piezoelectric vibrator is sealed in a high vacuum state or inert gas atmosphere in order to secure and maintain a low CI value and to obtain high quality and high stability. It is necessary to stop. For this purpose, the packages must be sealed by bonding the substrates with high airtightness. Furthermore, excessive heating during bonding of the substrates may affect the vibration characteristics of the piezoelectric vibrating reed and prevent desired performance from being obtained.

しかしながら、上述したように接合面の金属膜同士を直接接合する従来の方法では、室温から180℃以下または100℃以下の低温での常温接合のため、音叉型または厚みすべり振動モードの圧電振動子に必要かつ十分な気密性が得られる程度の接合強度を確保するのに、比較的長時間を要するという問題を生じる。そのため、生産性が低く、工業的な実用化に適していない。逆に、上記従来技術のように300℃の加熱下で基板を接合した場合には、パッケージ内を十分な真空状態にするのに長時間を要し、同様に工業的に適していないという問題がある。   However, as described above, in the conventional method for directly joining metal films on the joining surfaces, a piezoelectric fork of a tuning fork type or a thickness-shear vibration mode is used for room temperature bonding from room temperature to a low temperature of 180 ° C. or lower or 100 ° C. or lower. Therefore, there is a problem that it takes a relatively long time to secure the bonding strength to such an extent that a necessary and sufficient hermeticity can be obtained. Therefore, productivity is low and it is not suitable for industrial practical use. On the other hand, when the substrates are bonded under heating at 300 ° C. as in the above-described prior art, it takes a long time to bring the inside of the package to a sufficient vacuum state, and is similarly not industrially suitable. There is.

また、上述したように圧電基板とその上下両面に保護基板とをそれぞれ金属同士の拡散接合又は常温接合で接合する従来の圧電振動体は、次の理由により3枚同時に接合する必要がある。即ち、これらを1枚ずつ接合した場合には、中間の圧電基板と一方の保護基板とを接合する際にそれらを加圧するため、他方の保護基板と接合するために圧電基板の表面に形成されている金属膜は、加圧手段によって拡散接合には不十分な表面粗さになり、また汚れてしまうことになる。そのため、後の工程で他方の保護基板を貼り合わせると、厚みすべり振動モードの水晶振動子や音叉型水晶振動子に必要かつ十分な気密性及び接合強度を確保することが困難になる、という問題を生じる。   In addition, as described above, it is necessary to bond three conventional piezoelectric vibrators for bonding the piezoelectric substrate and the protective substrate on both upper and lower surfaces thereof by diffusion bonding between metals or room temperature bonding for the following reason. That is, when these are bonded one by one, they are formed on the surface of the piezoelectric substrate so as to pressurize them when bonding the intermediate piezoelectric substrate and one protective substrate, and to bond to the other protective substrate. The metal film is made to have a surface roughness that is insufficient for diffusion bonding by the pressurizing means, and it becomes dirty. Therefore, if the other protective substrate is pasted together in a later process, it is difficult to ensure sufficient airtightness and bonding strength necessary for the thickness-shear vibration mode crystal unit and tuning-fork type crystal unit. Produce.

しかしながら、圧電基板とその上下両面に保護基板とを同時に接合することは、高い位置合わせ精度を得ることが比較的困難である。しかも、3枚の基板を同時に接合することは、圧電振動片をパッケージ化した状態で周波数調整することができない。そのため、高い周波数精度をもった高性能かつ高品質の圧電振動子を得ることができない。   However, it is relatively difficult to obtain high alignment accuracy by simultaneously bonding the piezoelectric substrate and the protective substrate to the upper and lower surfaces thereof. In addition, the simultaneous bonding of the three substrates cannot adjust the frequency in a state where the piezoelectric vibrating piece is packaged. Therefore, a high-performance and high-quality piezoelectric vibrator having high frequency accuracy cannot be obtained.

そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、水晶などの圧電振動片及び外枠を一体に形成した圧電基板と、その上下両面に接合した上下基板とからなり、小型化及び薄型化を可能にした圧電振動子において、単に従来のアウタガスの発生や水分による腐食、気密性、又は熱膨張率の差異による反りの問題などを解消するだけでなく、圧電基板と上下圧電基板との位置合わせを容易にかつ簡単にすることができ、しかも圧電振動子に必要かつ十分な気密性及び接合強度を確保することができる圧電振動子及びその製造方法を提供することにある。   Accordingly, the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a piezoelectric substrate integrally formed with a piezoelectric vibrating piece such as quartz and an outer frame, and an upper and lower substrate bonded to both upper and lower surfaces. In the piezoelectric vibrator that can be reduced in size and thickness, not only the conventional generation of outer gas, corrosion due to moisture, airtightness, or the problem of warping due to the difference in thermal expansion coefficient, etc. Provided is a piezoelectric vibrator capable of easily and easily aligning a piezoelectric substrate and upper and lower piezoelectric substrates, and capable of ensuring sufficient airtightness and bonding strength necessary for the piezoelectric vibrator, and a method for manufacturing the same. There is to do.

更に本発明の目的は、高い周波数精度をもった高性能かつ高品質の圧電振動子及びその製造方法を提供することにある。   A further object of the present invention is to provide a high-performance and high-quality piezoelectric vibrator having high frequency accuracy and a method for manufacturing the same.

本発明によれば、上記目的を達成するために、例えば厚みすべり振動モードを主振動とする圧電振動片及び、その上面が鏡面研磨加工した圧電材料の素面からなりかつ下面が鏡面研磨加工した圧電材料の表面に形成した導電膜を有する外枠を一体に結合した中間圧電基板と、該中間圧電基板と同一の圧電材料からなりかつ外枠上面との接合面が鏡面研磨加工した圧電材料の素面からなる上側圧電基板と、中間圧電基板と同一の圧電材料からなりかつ外枠下面との接合面が鏡面研磨加工した圧電材料の表面に形成した金属薄膜を有する下側圧電基板とを備え、外枠上面及び上側圧電基板の接合面が、例えばプラズマ処理やイオンビーム処理によりそれぞれ表面活性化した後に互いに圧電材料同士の表面活性化接合により気密に接合され、外枠下面及び下側圧電基板の接合面が、例えばプラズマ処理やイオンビーム処理によりそれぞれ表面活性化した後に互いに導電膜と金属薄膜との拡散接合により気密に接合され、それにより中間圧電基板と上側及び下側圧電基板との間に画定されかつ封止されるキャビティ内に圧電振動片が浮いた状態で保持された圧電振動子が提供される。   According to the present invention, in order to achieve the above object, for example, a piezoelectric vibrating piece having a thickness-shear vibration mode as a main vibration, and a piezoelectric material whose upper surface is made of a bare surface of a mirror-polished piezoelectric material and whose lower surface is mirror-polished. An intermediate piezoelectric substrate integrally bonded with an outer frame having a conductive film formed on the surface of the material, and a surface of the piezoelectric material made of the same piezoelectric material as the intermediate piezoelectric substrate and having a joint surface between the upper surface of the outer frame and mirror polished An upper piezoelectric substrate made of the same material as the intermediate piezoelectric substrate, and a lower piezoelectric substrate having a metal thin film formed on the surface of the piezoelectric material having a mirror-polished joint surface with the lower surface of the outer frame. After the surface of the upper surface of the frame and the upper piezoelectric substrate are surface-activated by, for example, plasma processing or ion beam processing, they are bonded hermetically by surface-activated bonding between the piezoelectric materials. And the bonding surfaces of the lower piezoelectric substrate are air-bonded to each other by diffusion bonding between the conductive film and the metal thin film after surface activation, for example, by plasma treatment or ion beam treatment, whereby the intermediate piezoelectric substrate and the upper and lower sides are joined together. There is provided a piezoelectric vibrator in which a piezoelectric vibrating piece is held in a floating state in a cavity defined and sealed with a piezoelectric substrate.

このように、例えば水晶である同一の圧電材料からなる上側、中間及び下側基板を表面活性化接合又は拡散接合により一体に接合することによって、従来の圧電振動子に比してより一層小型化及び薄型化でき、熱膨張率の差異による残存応力の問題を無くし、圧電振動片の特性を劣化させるアウタガスの発生や水分による腐食の問題を解消することに加え、接合強度を向上させることができる。   In this way, the upper, middle and lower substrates made of the same piezoelectric material, such as quartz, are joined together by surface activated bonding or diffusion bonding, thereby further reducing the size compared to conventional piezoelectric vibrators. In addition to eliminating the problem of residual stress due to the difference in coefficient of thermal expansion, eliminating the generation of outer gas that deteriorates the characteristics of the piezoelectric vibrating piece and the problem of corrosion due to moisture, it is possible to improve the bonding strength. .

特に、中間圧電基板と上側圧電基板、及び中間圧電基板と下側圧電基板は、それぞれ異なる条件で接合されるので、3枚の基板を同時に接合することは実際上困難であり、2段階に分けて1枚ずつ接合することになる。そして、中間圧電基板と上側圧電基板との表面活性化接合を後の工程で行えば、導電膜及び金属薄膜の表面が拡散接合に適した状態で中間圧電基板と下側圧電基板とを接合できるので、より強い接合強度及び高い気密性を得ることができる。   In particular, since the intermediate piezoelectric substrate and the upper piezoelectric substrate and the intermediate piezoelectric substrate and the lower piezoelectric substrate are bonded under different conditions, it is practically difficult to bond three substrates at the same time. Will be joined one by one. Then, if surface activated bonding between the intermediate piezoelectric substrate and the upper piezoelectric substrate is performed in a later step, the intermediate piezoelectric substrate and the lower piezoelectric substrate can be bonded in a state where the surfaces of the conductive film and the metal thin film are suitable for diffusion bonding. Therefore, stronger bonding strength and high airtightness can be obtained.

或る実施例では、上側、中間及び下側圧電基板がそれらの結晶面方位を合わせて接合されることにより、温度変化に対する各基板の傾向を同一にして、圧電振動子の温度特性をより向上させることができる。   In one embodiment, the upper, middle and lower piezoelectric substrates are joined with their crystal plane orientations aligned so that each substrate has the same tendency to temperature changes and the temperature characteristics of the piezoelectric vibrator are further improved. Can be made.

本発明の別の側面によれば、例えば厚みすべり振動モードを主振動とする圧電振動片及び、その上面が鏡面研磨加工した圧電材料の素面からなりかつ下面が鏡面研磨加工した圧電材料の表面に形成した導電膜を有する外枠を一体に結合した中間圧電基板を形成する工程と、該中間圧電基板と同一の圧電材料からなりかつ外枠上面との接合面が鏡面研磨加工した圧電材料の素面からなる上側圧電基板を形成する工程と、中間圧電基板と同一の圧電材料からなりかつ外枠下面との接合面が鏡面研磨加工した圧電材料の表面に形成した金属薄膜を有する下側圧電基板を形成する工程と、中間圧電基板の外枠上面及び下面、並びに上側及び下側圧電基板の各接合面を例えばプラズマ処理やイオンビーム処理により表面活性化する工程と、下側圧電基板の上に中間圧電基板を重ね合わせ、外枠下面及び下側圧電基板の接合面を互いに導電膜と金属薄膜との拡散接合により気密に接合する工程と、下側圧電基板と接合された中間圧電基板の上面に上側圧電基板を重ね合わせ、外枠上面及び上側圧電基板の接合面を互いに圧電材料同士の表面活性化接合により気密に接合する工程とを有し、中間圧電基板と上側及び下側圧電基板との間に画定されるキャビティ内に圧電振動片を浮いた状態で保持しかつ封止する圧電振動子の製造方法が提供される。   According to another aspect of the present invention, for example, a piezoelectric vibrating piece having a thickness-shear vibration mode as a main vibration and a piezoelectric material whose upper surface is mirror-polished and whose lower surface is mirror-polished. A step of forming an intermediate piezoelectric substrate in which the outer frame having the formed conductive film is integrally bonded, and a surface of the piezoelectric material made of the same piezoelectric material as the intermediate piezoelectric substrate and having a joint surface with the upper surface of the outer frame mirror-polished A lower piezoelectric substrate having a metal thin film formed on the surface of a piezoelectric material made of the same piezoelectric material as the intermediate piezoelectric substrate and having a joint surface with the lower surface of the outer frame mirror-polished. A step of forming, surface activating the upper and lower surfaces of the outer frame of the intermediate piezoelectric substrate, and the bonding surfaces of the upper and lower piezoelectric substrates by, for example, plasma treatment or ion beam treatment, and lower piezoelectric substrate An intermediate piezoelectric substrate is bonded to the lower piezoelectric substrate by superimposing the intermediate piezoelectric substrate thereon, and hermetically bonding the lower surface of the outer frame and the bonding surface of the lower piezoelectric substrate to each other by diffusion bonding of the conductive film and the metal thin film. The upper piezoelectric substrate is superposed on the upper surface of the outer frame, and the upper surface of the outer frame and the bonding surface of the upper piezoelectric substrate are hermetically bonded to each other by surface activation bonding of the piezoelectric materials. There is provided a method of manufacturing a piezoelectric vibrator that holds and seals a piezoelectric vibrating piece in a cavity defined between a substrate and a cavity.

このように、例えば水晶である同一の圧電材料からなる上側、中間及び下側基板を表面活性化接合又は拡散接合することによって、従来よりも小型化及び薄型化でき、熱膨張率の差異による残存応力の問題及びアウタガスの発生や水分による腐食の問題を解消するだけでなく、上側、中間及び下側基板を2段階に分けて、しかも中間圧電基板と上側圧電基板との表面活性化接合を後の工程で行うことによって、導電膜及び金属薄膜の表面が拡散接合に適した状態で中間圧電基板と下側圧電基板とを接合できるので、より強い接合強度及び高い気密性を得ることができる。   In this way, the upper, middle and lower substrates made of the same piezoelectric material, such as quartz, can be made smaller and thinner than before by surface activated bonding or diffusion bonding, and the residual due to the difference in thermal expansion coefficient. In addition to eliminating the problem of stress and the generation of outer gas and corrosion due to moisture, the upper, middle and lower substrates are divided into two stages, and surface activated bonding between the intermediate and upper piezoelectric substrates is performed later. By performing in this step, the intermediate piezoelectric substrate and the lower piezoelectric substrate can be bonded in a state where the surfaces of the conductive film and the metal thin film are suitable for diffusion bonding, so that stronger bonding strength and higher airtightness can be obtained.

或る実施例では、下側圧電基板と中間圧電基板とを接合した後、上側圧電基板を接合する前に、圧電振動片を周波数調整する工程を更に有することにより、高品質かつ高性能の圧電振動片を効率良く製造することができる。   In one embodiment, after the lower piezoelectric substrate and the intermediate piezoelectric substrate are bonded, the piezoelectric vibrating piece is further adjusted in frequency before the upper piezoelectric substrate is bonded. The resonator element can be manufactured efficiently.

別の実施例では、上側、中間及び下側圧電基板をそれらの結晶面方位を合わせて接合することにより、温度変化に対する各基板の傾向を同一にして、圧電振動子の温度特性をより向上させることができる。   In another embodiment, the upper, middle and lower piezoelectric substrates are joined with their crystal plane orientations aligned, so that the tendency of each substrate to temperature change is made the same, and the temperature characteristics of the piezoelectric vibrator are further improved. be able to.

別の実施例では、複数の中間圧電基板を有する中間圧電ウエハを形成する工程と、複数の上側基板を中間圧電ウエハの中間圧電基板に対応させて配設した上側圧電ウエハを形成する工程と、複数の下側基板を中間圧電ウエハの中間圧電基板に対応させて配設した下側圧電ウエハを形成する工程と、中間圧電ウエハの上面及び下面並びに上側及び下側圧電ウエハの各接合面を例えばプラズマ処理やイオンビーム処理により表面活性化する工程と、下側圧電ウエハの上に中間圧電ウエハを重ね合わせて一体に接合する工程と、下側圧電ウエハと接合した中間圧電ウエハの上に上側圧電ウエハを重ね合わせて一体に接合する工程と、接合した圧電ウエハの積層体を切断して圧電振動子を個片化する工程とを有する圧電振動子の製造方法が提供される。これにより、多数の圧電振動子を同時に製造することができ、生産性の向上及びコストの低下を図ることができる。   In another embodiment, forming an intermediate piezoelectric wafer having a plurality of intermediate piezoelectric substrates, forming an upper piezoelectric wafer having a plurality of upper substrates arranged corresponding to the intermediate piezoelectric substrates of the intermediate piezoelectric wafer, A step of forming a lower piezoelectric wafer in which a plurality of lower substrates are arranged corresponding to the intermediate piezoelectric substrate of the intermediate piezoelectric wafer, and upper and lower surfaces of the intermediate piezoelectric wafer and each bonding surface of the upper and lower piezoelectric wafers, for example, Surface activation by plasma treatment or ion beam treatment, step of superimposing an intermediate piezoelectric wafer on the lower piezoelectric wafer and bonding them together, and upper piezoelectric on the intermediate piezoelectric wafer bonded to the lower piezoelectric wafer There is provided a method of manufacturing a piezoelectric vibrator having a step of superimposing wafers and joining them together and a step of cutting a laminated body of joined piezoelectric wafers to separate the piezoelectric vibrators into individual pieces.As a result, a large number of piezoelectric vibrators can be manufactured at the same time, and productivity can be improved and costs can be reduced.

以下に、添付図面を参照しつつ、本発明の好適な実施例について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明による厚み滑り振動モードの水晶振動子の第1実施例を示している。水晶振動子1は、図1(A)、(B)に示すように、中間水晶板2の上面及び下面にそれぞれ上側水晶及び下側水晶基板3,4を一体に積層した構造を有する。中間水晶板2と上側及び下側水晶基板3,4とは、それぞれATカットの水晶板で形成され、かつ互いに気密に直接接合されている。これらのATカット水晶板は、その結晶面方位を合わせて接合することにより、水晶振動子1の温度変化に対する周波数変動即ち温度特性をより好適に向上させることができる。   FIG. 1 shows a first embodiment of a thickness-shear vibration mode crystal resonator according to the present invention. As shown in FIGS. 1A and 1B, the crystal resonator 1 has a structure in which an upper crystal and lower crystal substrates 3 and 4 are integrally laminated on an upper surface and a lower surface of an intermediate crystal plate 2, respectively. The intermediate crystal plate 2 and the upper and lower crystal substrates 3 and 4 are each formed of an AT-cut crystal plate and are directly joined to each other in an airtight manner. These AT-cut quartz plates can be more suitably improved in frequency fluctuation, that is, temperature characteristics with respect to temperature changes of the crystal unit 1 by joining the crystal plane orientations together.

中間水晶板2は、図2(A)、(B)に示すように、矩形の水晶振動片5とその一方の端部即ち基端部5aで一体に結合された外枠6とを有する。水晶振動片5の上面及び下面には、それぞれ励振電極7,8が形成されている。上面の励振電極7は、基端部5aから配線膜9により外枠6上面に引き出されている。下面の励振電極8は、同様に基端部5aから引き出されて、外枠6下面の全周に亘って形成された下側導電膜10と電気的に接続されている。水晶振動片の基端部5aを結合した外枠6の長手方向端部には、配線膜9の先端部分にスルーホール11が設けられている。この外枠6の長手方向端部の下面には、水晶素面の領域12により下側導電膜10から分離された引出導電膜13が形成され、スルーホール11内部の導電膜を介して配線膜9と電気的に接続されている。   As shown in FIGS. 2 (A) and 2 (B), the intermediate crystal plate 2 has a rectangular crystal vibrating piece 5 and an outer frame 6 integrally coupled at one end portion, that is, a base end portion 5a. Excitation electrodes 7 and 8 are formed on the upper and lower surfaces of the quartz crystal vibrating piece 5, respectively. The excitation electrode 7 on the upper surface is drawn from the base end portion 5 a to the upper surface of the outer frame 6 by the wiring film 9. Similarly, the excitation electrode 8 on the lower surface is pulled out from the base end portion 5 a and is electrically connected to the lower conductive film 10 formed over the entire circumference of the lower surface of the outer frame 6. A through hole 11 is provided at the distal end portion of the wiring film 9 at the longitudinal end portion of the outer frame 6 to which the base end portion 5 a of the crystal vibrating piece is coupled. A lead conductive film 13 separated from the lower conductive film 10 by the region 12 of the crystal element surface is formed on the lower surface of the longitudinal end portion of the outer frame 6, and the wiring film 9 is interposed through the conductive film inside the through hole 11. And are electrically connected.

上側水晶基板3には、図3に示すように、中間水晶板2との対向面即ち下面に凹部14が形成されている。上側水晶基板3下面の凹部14を囲繞する周辺部分は水晶素面からなり、中間水晶板2との接合面3aを構成する。下側水晶基板4には、図4に示すように、同様に中間水晶板2との対向面即ち上面に凹部15が形成されている。下側水晶基板4の凹部15を囲繞する周辺部分は、中間水晶板2との接合面4aを構成し、外枠6下面の下側導電膜10に対応する金属薄膜16と、該金属薄膜から水晶素面の領域17により分離された金属薄膜18とが形成されている。水晶振動片5は、前記中間水晶板と上側及び下側水晶基板との接合時に凹部14,15により画定されるキャビティ19内に、基端部5aで片持ちに浮いた状態で保持収容されている。   As shown in FIG. 3, the upper crystal substrate 3 has a recess 14 formed on the surface facing the intermediate crystal plate 2, that is, the lower surface. The peripheral portion surrounding the recess 14 on the lower surface of the upper crystal substrate 3 is composed of a crystal element surface, and constitutes a bonding surface 3 a with the intermediate crystal plate 2. As shown in FIG. 4, a concave portion 15 is similarly formed on the lower crystal substrate 4 on the surface facing the intermediate crystal plate 2, that is, the upper surface. A peripheral portion surrounding the concave portion 15 of the lower crystal substrate 4 constitutes a bonding surface 4a with the intermediate crystal plate 2, a metal thin film 16 corresponding to the lower conductive film 10 on the lower surface of the outer frame 6, and the metal thin film. A metal thin film 18 separated by the region 17 of the crystal face is formed. The crystal resonator element 5 is held and accommodated in a cantilevered state at the base end 5a in a cavity 19 defined by the recesses 14 and 15 when the intermediate crystal plate and the upper and lower crystal substrates are joined. Yes.

中間水晶板2と上側水晶基板3とは、水晶素面同士の表面活性化接合により接合されている。外枠6上面と上側水晶基板接合面3aとは、それぞれ後述するように公知のプラズマ処理やイオンビーム処理などで表面活性化した後、互いに位置合わせして重ね合わせ、所定の圧力を加えることにより、気密にかつ良好で安定した状態で接合される。このとき、配線膜9が水晶素面の接合面3aと接しないように、本実施例では、凹部14が前記配線膜の領域を含むように設けられている。   The intermediate crystal plate 2 and the upper crystal substrate 3 are bonded to each other by surface activation bonding between crystal surfaces. The upper surface of the outer frame 6 and the upper crystal substrate bonding surface 3a are activated by a known plasma process or ion beam process, as will be described later, and then aligned and overlapped with each other, and a predetermined pressure is applied. Bonded in an airtight, good and stable state. At this time, in this embodiment, the concave portion 14 is provided so as to include the region of the wiring film so that the wiring film 9 does not contact the bonding surface 3a of the crystal face.

これに対し、中間水晶板2と下側基板4とは、金属薄膜同士の拡散接合により接合されている。外枠6下面と下側基板接合面4aとは、同様にそれぞれプラズマ処理やイオンビーム処理などで表面活性化した後、互いに位置合わせして重ね合わせ、所定の圧力を加えることにより、気密にかつ良好で安定した状態で接合される。   On the other hand, the intermediate crystal plate 2 and the lower substrate 4 are bonded by diffusion bonding between metal thin films. Similarly, the lower surface of the outer frame 6 and the lower substrate bonding surface 4a are surface-activated by plasma processing, ion beam processing, etc., and then aligned and overlapped with each other, and by applying a predetermined pressure, Bonded in good and stable condition.

金属薄膜16,18は、例えばCr膜、Ni/Cr膜、Ti膜、又はNi−Cr膜を下地膜として、最上層をAu膜で形成するのが好ましい。これに対応して、中間水晶板2の外枠6下面に形成される下側導電膜10及び引出導電膜13も、同様にCr膜、Ni/Cr膜、Ti膜、Ni−Cr膜などを下地膜として、最上層をAu膜で形成するのが好ましい。特に、これらAu膜の膜厚を5000Å以上にした場合、Au膜同士の拡散接合により、比較的短時間で高い気密性をもって接合することができる。これらの金属薄膜は、スパッタリング、蒸着、めっき、ダイレクトめっきなどの公知の方法又はこれらの組合せにより容易に成膜される。   The metal thin films 16 and 18 are preferably formed of, for example, a Cr film, a Ni / Cr film, a Ti film, or a Ni—Cr film as a base film, and an uppermost layer of an Au film. Correspondingly, the lower conductive film 10 and the lead conductive film 13 formed on the lower surface of the outer frame 6 of the intermediate crystal plate 2 are similarly formed of a Cr film, a Ni / Cr film, a Ti film, a Ni—Cr film, or the like. The uppermost layer is preferably formed of an Au film as the base film. In particular, when the film thickness of these Au films is 5000 mm or more, bonding can be performed with high airtightness in a relatively short time by diffusion bonding between the Au films. These metal thin films are easily formed by a known method such as sputtering, vapor deposition, plating, direct plating, or a combination thereof.

下側基板4の下面には、図1(C)に示すように、各角部にそれぞれ外部電極20,21が設けられている。更に下側基板4には、各角部に1/4円形の欠け22,23が形成されている。この欠けは、例えばダイシングで大型の水晶板から個々の水晶板を分割する際に縦横切断線の交点に形成するキャスタレーション(円形貫通孔)が切断後に残ったものである。欠け22,23の内面にはそれぞれ導電膜が形成されており、それに隣接する外部電極20,21と前記各欠けから覗く中間水晶板2の下側導電膜10及び引出導電膜13とを電気的に接続している。   On the lower surface of the lower substrate 4, as shown in FIG. 1C, external electrodes 20 and 21 are provided at each corner. Further, the lower substrate 4 has quarter circular chips 22 and 23 formed at each corner. This chipping is caused by, for example, castellations (circular through holes) formed at the intersections of the vertical and horizontal cutting lines when individual crystal plates are divided from a large crystal plate by dicing. Conductive films are formed on the inner surfaces of the notches 22 and 23, respectively, and the external electrodes 20 and 21 adjacent thereto are electrically connected to the lower conductive film 10 and the lead conductive film 13 of the intermediate crystal plate 2 viewed from the respective chips. Connected to.

次に、本発明の方法により図1の水晶振動子を製造する工程を説明する。図5に示すように、図1の複数の水晶振動片5及び外枠6を縦及び横方向に連続して配置した大型の中間水晶ウエハ30を準備する。中間水晶ウエハ30は、その両面をそれぞれ表面粗さが好ましくは数nm〜数10nm程度となるように鏡面研磨加工する。水晶振動片5及び外枠6の外形は、フォトリソグラフィ技術を利用して水晶ウエハをエッチングすることにより形成する。各水晶振動片5及び外枠6の表面には、導電材料を蒸着、スパッタリングなどで成膜しかつパターニングすることにより、前記励振電極、配線膜及び導電膜を形成する。   Next, a process for manufacturing the crystal resonator of FIG. 1 by the method of the present invention will be described. As shown in FIG. 5, a large intermediate crystal wafer 30 is prepared in which the plurality of crystal vibrating pieces 5 and the outer frame 6 of FIG. 1 are continuously arranged in the vertical and horizontal directions. The intermediate crystal wafer 30 is mirror-polished on both surfaces so that the surface roughness is preferably about several nanometers to several tens of nanometers. The external shapes of the crystal vibrating piece 5 and the outer frame 6 are formed by etching a crystal wafer using a photolithography technique. The excitation electrode, the wiring film, and the conductive film are formed on the surfaces of the quartz crystal vibrating pieces 5 and the outer frame 6 by depositing and patterning a conductive material by vapor deposition, sputtering, or the like.

これと並行して、複数の上側基板3を縦及び横方向に連続して配置した大型の上側水晶ウエハ31を準備する。上側水晶ウエハ31は、少なくとも中間水晶ウエハ30と接合する下面を、その表面粗さが好ましくは数nm〜数10nm程度となるように鏡面研磨加工する。上側水晶ウエハ31には、複数の凹部14が中間水晶ウエハ30との対向面に、該中間水晶ウエハの各水晶振動片5及び外枠6に対応させて形成される。これらの凹部は、例えば水晶ウエハ表面をエッチングまたはサンドブラスト加工することにより、容易に形成することができる。   In parallel with this, a large upper crystal wafer 31 in which a plurality of upper substrates 3 are continuously arranged in the vertical and horizontal directions is prepared. The upper crystal wafer 31 is subjected to mirror polishing so that at least the lower surface bonded to the intermediate crystal wafer 30 has a surface roughness of preferably about several nanometers to several tens of nanometers. In the upper crystal wafer 31, a plurality of recesses 14 are formed on the surface facing the intermediate crystal wafer 30 so as to correspond to the crystal vibrating pieces 5 and the outer frame 6 of the intermediate crystal wafer. These recesses can be easily formed, for example, by etching or sandblasting the quartz wafer surface.

同様にして、複数の下側基板4を縦及び横方向に連続して配置した大型の上側水晶ウエハ32を準備する。下側水晶ウエハ32は、少なくとも中間水晶ウエハ30と接合する上面を、同様にその表面粗さが好ましくは数nm〜数10nm程度となるように鏡面研磨加工する。下側水晶ウエハ32には、複数の凹部15が中間水晶ウエハ30との対向面に、エッチングまたはサンドブラスト加工などにより中間水晶ウエハの各水晶振動片5及び外枠6に対応させて形成される。また、下側水晶ウエハ32には、縦及び横方向に直交する下側基板4の外郭線の交点にそれぞれ円形貫通孔33が形成される。更に、下側水晶ウエハ32の上面には、導電材料を成膜しかつパターニングすることにより、下側基板4上面の前記金属薄膜を形成する。下側水晶ウエハ32の下面には、導電材料を成膜しかつパターニングすることにより、下側基板4下面の外部電極20,21を形成する。   Similarly, a large upper crystal wafer 32 in which a plurality of lower substrates 4 are continuously arranged in the vertical and horizontal directions is prepared. The lower crystal wafer 32 is mirror-polished so that at least the upper surface bonded to the intermediate crystal wafer 30 has a surface roughness of preferably several nanometers to several tens of nanometers. In the lower crystal wafer 32, a plurality of recesses 15 are formed on the surface facing the intermediate crystal wafer 30 so as to correspond to the crystal vibrating pieces 5 and the outer frame 6 of the intermediate crystal wafer by etching or sandblasting. In addition, circular through-holes 33 are formed in the lower crystal wafer 32 at the intersections of the outlines of the lower substrate 4 orthogonal to the vertical and horizontal directions. Further, the metal thin film on the upper surface of the lower substrate 4 is formed on the upper surface of the lower crystal wafer 32 by depositing and patterning a conductive material. External electrodes 20 and 21 on the lower surface of the lower substrate 4 are formed on the lower surface of the lower crystal wafer 32 by depositing and patterning a conductive material.

次に、上側、中間及び下側水晶ウエハ30〜32の前記各接合面をプラズマ処理して表面活性化する。プラズマ処理は、例えばウエハなどの大面積を処理するのに適した公知のSWP型RIE方式のプラズマ処理装置を用いて行う。このプラズマ処理装置により、例えば13.56MHz〜2.45GHzのマイクロ波を用いてプラズマを生成し、処理チャンバ内に導入した反応ガスを励起して、該反応ガスのイオン、励起種などの活性種を生成する。本実施例では、反応ガスとしてAr単体、CF、N単体、O単体、OとNとの混合ガスなどを使用する。また、前記プラズマ処理は、上述したスSWP型RIE方式以外に、大気圧プラズマ法などにより行うこともできる。 Next, the respective bonding surfaces of the upper, middle and lower crystal wafers 30 to 32 are subjected to plasma treatment to be surface activated. The plasma processing is performed using a known SWP type RIE plasma processing apparatus suitable for processing a large area such as a wafer. With this plasma processing apparatus, plasma is generated using, for example, microwaves of 13.56 MHz to 2.45 GHz, the reaction gas introduced into the processing chamber is excited, and active species such as ions and excited species of the reaction gas Is generated. In this embodiment, Ar alone, CF 4 , N 2 alone, O 2 alone, a mixed gas of O 2 and N 2 or the like is used as the reaction gas. In addition to the above-described SWP type RIE method, the plasma treatment can also be performed by an atmospheric pressure plasma method or the like.

このプラズマ処理により、前記各ウエハの表面は、前記反応ガス活性種に曝露されて一様に活性化される。即ち、水晶ウエハ30〜32の各接合面は、その表面から有機物、汚染物やゴミなどがプラズマ中に含まれるイオンによりエッチングされて除去され、更にプラズマ中のラジカルによって直接接合しやすい表面状態に改質される。上述したSWP型RIE方式のプラズマ処理装置は、このような2段階のプラズマ処理を1台の装置の同一チャンバ内で連続して行うことができる。   By this plasma treatment, the surface of each wafer is exposed to the reactive gas active species and uniformly activated. That is, the bonding surfaces of the quartz wafers 30 to 32 are removed from the surface by etching organic substances, contaminants, dust, and the like with ions contained in the plasma, and are easily bonded directly by radicals in the plasma. Reformed. The SWP-type RIE plasma processing apparatus described above can perform such two-stage plasma processing continuously in the same chamber of one apparatus.

別の実施例では、プラズマ処理に代えて、イオンビームを照射することにより前記各接合面を表面活性化することができる。このイオンビーム処理は、Arなどの不活性ガスを用いた公知の方法で行われ、例えば1.33×10−6Pa程度の真空雰囲気内でArイオンビームを前記接合面に照射する。 In another embodiment, instead of plasma treatment, each of the bonding surfaces can be surface activated by irradiating with an ion beam. This ion beam treatment is performed by a known method using an inert gas such as Ar, and the bonding surface is irradiated with an Ar + ion beam in a vacuum atmosphere of about 1.33 × 10 −6 Pa, for example.

表面活性化処理後、図6(A)に示すように、中間水晶ウエハ30と下側水晶ウエハ32とを貼り合わせて仮接合する。この仮接合は、これらのウエハを単に貼り合わせるだけでも良く、又は後の工程で上側水晶ウエハ31を接合するときよりも弱い力で加圧する。次に、図6(B)に示すように、中間水晶ウエハ30の上面に上側水晶ウエハ31を位置合わせして重ね合わせて仮接合する。この仮接合した水晶ウエハ積層体34は、その上下面に最大20kg程度の押圧力を一様に加えて、接合面間を強固にかつ気密に接合する。本実施例では、この本接合を常温で行うが、別の実施例では、約200℃程度の比較的低温に加熱した状態で行うことにより、更に良好に接合することができる。また、前記水晶ウエハの仮接合、本接合は、大気圧雰囲気内でも真空内でも同様に行うことができる。   After the surface activation process, as shown in FIG. 6A, the intermediate crystal wafer 30 and the lower crystal wafer 32 are bonded and temporarily bonded. In this temporary bonding, these wafers may be simply bonded together, or pressure is applied with a weaker force than when the upper crystal wafer 31 is bonded in a later process. Next, as shown in FIG. 6 (B), the upper crystal wafer 31 is aligned and superposed on the upper surface of the intermediate crystal wafer 30 for temporary bonding. The temporarily bonded crystal wafer laminated body 34 applies a pressing force of up to about 20 kg uniformly to the upper and lower surfaces thereof to bond the bonded surfaces firmly and airtightly. In this embodiment, this main bonding is performed at room temperature, but in another embodiment, bonding can be performed more satisfactorily by performing heating at a relatively low temperature of about 200 ° C. Further, the temporary bonding and the main bonding of the quartz wafer can be similarly performed in an atmospheric pressure atmosphere or in a vacuum.

本実施例では、2枚の水晶ウエハを接合した図6(A)の状態で、各水晶振動片の周波数を調整することができる。その場合、中間水晶ウエハ30は、予め各水晶振動子の下側導電膜10及び引出導電膜13を形成する導電材料を、水晶振動子の外郭線35に沿ってダイシングする線幅分だけ除くようにパターニングする。下側水晶ウエハ32は、各水晶振動子の金属薄膜16,18を形成する導電材料を、同様に水晶振動子の外郭線35に沿ってダイシングする線幅分だけ除くようにパターニングする。ウエハの状態で各水晶振動子1の励振電極が隣接する水晶振動子の励振電極から電気的に分離独立しているので、その状態のままで水晶振動子毎にその特性試験及び周波数の測定・調整を行うことができる。周波数調整は、レーザ光などの照射により行うことができ、又は上述したプラズマ処理装置を用いたプラズマ処理により、中間水晶ウエハ30上面の接合面のプラズマ処理と同時に行うことができる。   In the present embodiment, the frequency of each crystal vibrating piece can be adjusted in the state of FIG. 6A in which two crystal wafers are bonded. In that case, the intermediate crystal wafer 30 is previously removed from the conductive material that forms the lower conductive film 10 and the lead conductive film 13 of each crystal resonator by the line width that is diced along the outline 35 of the crystal resonator. To pattern. The lower crystal wafer 32 is patterned so that the conductive material forming the metal thin films 16 and 18 of each crystal resonator is similarly removed by the line width that is diced along the outline 35 of the crystal resonator. Since the excitation electrode of each crystal resonator 1 is electrically separated and independent from the excitation electrode of the adjacent crystal resonator in the state of the wafer, the characteristic test and the frequency measurement / Adjustments can be made. The frequency adjustment can be performed by irradiation with a laser beam or the like, or can be performed simultaneously with the plasma processing of the bonding surface on the upper surface of the intermediate crystal wafer 30 by the plasma processing using the plasma processing apparatus described above.

最後に、水晶ウエハ積層体34を、図6(C)に示すように縦横に直交する水晶振動子の外郭線35に沿って、ダイシングなどにより切断分割して個片化する。これにより、図1に示す水晶振動子1が完成する。別の実施例では、下側基板4底面の前記外部電極を、ダイシング前にウエハ積層体の状態でスパッタなどにより形成でき、それにより工程を簡単化することができる。   Finally, as shown in FIG. 6C, the crystal wafer laminate 34 is cut and divided by dicing or the like along the outline 35 of the crystal resonator orthogonal to the vertical and horizontal directions. Thereby, the crystal unit 1 shown in FIG. 1 is completed. In another embodiment, the external electrodes on the bottom surface of the lower substrate 4 can be formed by sputtering or the like in a wafer laminated body state before dicing, thereby simplifying the process.

図7は、本発明による水晶振動子の第2実施例を示している。図1の第1実施例と同様に、本実施例の水晶振動子41は、中間水晶板42を挟んで上側及び下側水晶基板43,44が一体に積層されている。中間水晶板42は、図8(A)、(B)に示すように、ATカット水晶振動片45と外枠46とが一体に形成され、かつ該水晶振動片の両面にそれぞれ励振電極47,48が成膜されているが、次の点において第1実施例と異なる。   FIG. 7 shows a second embodiment of a crystal resonator according to the present invention. As in the first embodiment of FIG. 1, in the crystal resonator 41 of the present embodiment, upper and lower crystal substrates 43 and 44 are integrally laminated with an intermediate crystal plate 42 interposed therebetween. As shown in FIGS. 8A and 8B, the intermediate crystal plate 42 is formed by integrally forming an AT-cut crystal vibrating piece 45 and an outer frame 46, and excitation electrodes 47, 48 is formed, but differs from the first embodiment in the following points.

本実施例では、外枠46の板厚をその厚み方向上下双方に等しく水晶振動片45よりも厚く形成し、水晶振動片45と外枠46とが上下両面においてそれぞれ段差49,50を介して結合されている。特に本実施例の場合、外枠46の上面は、段差49が水晶振動片基端部45aとの境界よりも内側に設けられており、励振電極47から引き出された配線膜51が、段差49より内側の水晶振動片45と同一平面をなす領域に形成されている。外枠46の下面は、水晶振動片基端部45aとの境界に段差50が設けられ、外枠の全周に亘って形成された下側導電膜52が、段差50を介して引き出された励振電極48と電気的に接続されている。   In the present embodiment, the plate thickness of the outer frame 46 is formed to be equal to both the upper and lower sides in the thickness direction and thicker than the crystal vibrating piece 45, and the crystal vibrating piece 45 and the outer frame 46 are respectively provided on the upper and lower surfaces via steps 49 and 50. Are combined. In particular, in the case of this embodiment, the step 49 is provided on the upper surface of the outer frame 46 on the inner side of the boundary with the crystal vibrating piece base end portion 45 a, and the wiring film 51 drawn out from the excitation electrode 47 has the step 49. It is formed in a region that is flush with the inner quartz crystal vibrating piece 45. The lower surface of the outer frame 46 is provided with a step 50 at the boundary with the crystal vibrating piece base end 45 a, and the lower conductive film 52 formed over the entire circumference of the outer frame is drawn through the step 50. The excitation electrode 48 is electrically connected.

図1の第1実施例と同様に、水晶振動片基端部45aに結合した外枠46の長手方向端部には、配線膜51の先端部分にスルーホール53が形成されている。この外枠46の長手方向端部下面には、水晶素面の領域54により下側導電膜52から分離された引出導電膜55が形成され、スルーホール53内部の導電膜を介して配線膜51と電気的に接続されている。   As in the first embodiment of FIG. 1, a through hole 53 is formed at the distal end portion of the wiring film 51 at the longitudinal end portion of the outer frame 46 coupled to the crystal vibrating piece base end portion 45a. A lead conductive film 55 separated from the lower conductive film 52 by a crystal element surface region 54 is formed on the lower surface of the outer edge 46 in the longitudinal direction. The lead conductive film 55 is separated from the wiring film 51 via the conductive film inside the through hole 53. Electrically connected.

更に本実施例は、上側及び下側水晶基板43,44がそれぞれ中間水晶板42との対向面を平坦にした平板である点において、上記第1実施例と異なる。上側水晶基板43の下面はその全面が水晶素面からなる。これに対し、下側水晶基板44の上面には、図9に示すように、中間水晶板42の外枠46下面の下側導電膜52及び引出導電膜55に対応して、金属薄膜56と水晶素面の領域57により電気的に分離された金属薄膜58とが形成されている。   Further, the present embodiment is different from the first embodiment in that the upper and lower crystal substrates 43 and 44 are flat plates each having a flat surface facing the intermediate crystal plate 42. The entire lower surface of the upper crystal substrate 43 is made of a crystal element surface. On the other hand, on the upper surface of the lower crystal substrate 44, as shown in FIG. 9, the metal thin film 56 and the lower conductive film 52 and the lead conductive film 55 on the lower surface of the outer frame 46 of the intermediate crystal plate 42 are formed. A metal thin film 58 is formed which is electrically separated by the region 57 of the crystal face.

中間水晶板42と上側水晶基板43とは、それぞれ接合面を例えば公知のプラズマ処理又はイオンビーム処理で表面活性化した後、互いに位置合わせして重ね合わせ、所定の圧力を加えることによって、水晶素面同士の表面活性化接合により気密にかつ良好に接合されている。中間水晶板42と下側水晶基板44とは、同様にそれぞれ接合面をプラズマ処理又はイオンビーム処理で表面活性化した後、互いに位置合わせして重ね合わせ、所定の圧力を加えることによって、金属薄膜同士の拡散接合により気密にかつ良好に接合されている。水晶振動片45は、中間水晶板42の外枠46を水晶振動片45よりも厚くしたことにより水晶振動子41内部に画定されるキャビティ59内に、同様に基端部45aにおいて片持ちに浮いた状態で保持される。   The intermediate crystal plate 42 and the upper crystal substrate 43 are bonded to each other after the surface of the joint is activated by, for example, a known plasma treatment or ion beam treatment, and are superposed in alignment with each other. It is airtightly and satisfactorily joined by surface activated joining. Similarly, the intermediate crystal plate 42 and the lower crystal substrate 44 are each made of a metal thin film by applying a predetermined pressure after aligning and joining each other after surface activation by plasma treatment or ion beam treatment. It is joined airtightly and satisfactorily by diffusion bonding between them. The crystal vibrating piece 45 floats in a cantilever manner at the base end portion 45a in the cavity 59 defined inside the crystal resonator 41 by making the outer frame 46 of the intermediate crystal plate 42 thicker than the crystal vibrating piece 45. It is held in the state.

第2実施例の水晶振動子41も、同様に図6に示す工程に従って本発明の方法により製造することができる。このとき、多数の上側及び下側水晶基板43,44を構成する上側及び下側水晶ウエハは、それぞれ両面共平坦なウエハで形成できるので、有利である。   Similarly, the crystal resonator 41 of the second embodiment can be manufactured by the method of the present invention according to the steps shown in FIG. At this time, the upper and lower crystal wafers constituting the large number of upper and lower crystal substrates 43 and 44 can be advantageously formed of wafers that are flat on both sides.

図10は、本発明による水晶振動子の第3実施例を示している。図1の第1実施例と同様に、本実施例の水晶振動子61は、中間水晶板62を挟んで上側及び下側基板63,64が一体に積層されている。中間水晶板62は、図11(A)、(B)に示すように、ATカット水晶振動片65と外枠66とが一体に形成され、かつ該水晶振動片の両面にそれぞれ励振電極67,68が成膜されているが、次の点において第1実施例とは異なる。   FIG. 10 shows a third embodiment of a crystal resonator according to the present invention. As in the first embodiment of FIG. 1, in the crystal resonator 61 of this embodiment, upper and lower substrates 63 and 64 are integrally laminated with an intermediate crystal plate 62 interposed therebetween. As shown in FIGS. 11A and 11B, the intermediate crystal plate 62 has an AT-cut crystal vibrating piece 65 and an outer frame 66 integrally formed, and excitation electrodes 67, 68 is formed, but differs from the first embodiment in the following points.

本実施例では、外枠66の下面を水晶振動片65の下面と同一平面に配置して、その板厚を厚み方向上方にのみ厚く形成し、水晶振動片基端部65aに結合された外枠66の長手方向端部の上面側に水晶振動片65との段差69が形成されている。上記第2実施例と同様に、段差69が水晶振動片基端部65aとの境界よりも内側に設けられており、励振電極67から引き出された配線膜70が、段差69より内側の水晶振動片65と同一平面をなす領域に形成されている。外枠66の下面は、その全周に亘って形成された下側導電膜71が、基端部65aから引き出された励振電極68と電気的に接続されている。   In the present embodiment, the lower surface of the outer frame 66 is arranged in the same plane as the lower surface of the crystal vibrating piece 65, and the thickness thereof is increased only upward in the thickness direction, and the outer frame 66 is coupled to the crystal vibrating piece base end 65a. A step 69 with respect to the crystal vibrating piece 65 is formed on the upper surface side of the end portion in the longitudinal direction of the frame 66. Similar to the second embodiment, the step 69 is provided on the inner side of the boundary with the crystal vibrating piece base end portion 65 a, and the wiring film 70 drawn out from the excitation electrode 67 is disposed inside the step 69. It is formed in a region that is flush with the piece 65. A lower conductive film 71 formed over the entire circumference of the lower surface of the outer frame 66 is electrically connected to the excitation electrode 68 drawn from the base end portion 65a.

図1の第1実施例と同様に、水晶振動片基端部65aに結合した外枠66の長手方向端部には、配線膜70の先端部分にスルーホール72が形成されている。この外枠66の長手方向端部下面には、水晶素面の領域73により下側導電膜71から分離された引出導電膜74が形成され、スルーホール72内部の導電膜を介して配線膜70と電気的に接続されている。   As in the first embodiment of FIG. 1, a through hole 72 is formed at the distal end portion of the wiring film 70 at the longitudinal end portion of the outer frame 66 coupled to the crystal vibrating piece base end portion 65a. A lead conductive film 74 separated from the lower conductive film 71 by a crystal element surface region 73 is formed on the lower surface of the end portion in the longitudinal direction of the outer frame 66, and the wiring film 70 and the conductive film inside the through hole 72 are interposed therebetween. Electrically connected.

更に本実施例は、上側水晶基板63が中間水晶板62との対向面を平坦にした平板である点において、上記第1実施例と異なる。下側水晶基板64は、第1実施例の下側水晶基板4と同一の構成を有する。即ち、下側水晶基板64には、図12に示すように、中間水晶板62との対向面即ち上面に凹部75が形成されている。下側水晶基板4の凹部75を囲繞する周辺部分は、中間水晶板2との接合面を構成し、外枠66下面の下側導電膜71に対応する金属薄膜76と、該金属薄膜から水晶素面の領域77により分離された金属薄膜78とが形成されている。   Further, the present embodiment is different from the first embodiment in that the upper crystal substrate 63 is a flat plate having a flat surface facing the intermediate crystal plate 62. The lower crystal substrate 64 has the same configuration as the lower crystal substrate 4 of the first embodiment. That is, as shown in FIG. 12, the lower crystal substrate 64 has a recess 75 formed on the surface facing the intermediate crystal plate 62, that is, the upper surface. A peripheral portion surrounding the concave portion 75 of the lower crystal substrate 4 constitutes a bonding surface with the intermediate crystal plate 2, a metal thin film 76 corresponding to the lower conductive film 71 on the lower surface of the outer frame 66, and a crystal formed from the metal thin film. A metal thin film 78 separated by a bare surface region 77 is formed.

中間水晶板62と上側水晶基板63とは、それぞれ接合面を例えば公知のプラズマ処理又はイオンビーム処理で表面活性化した後、互いに位置合わせして重ね合わせ、所定の圧力を加えることによって、水晶素面同士の表面活性化接合により気密にかつ良好に接合されている。中間水晶板62と下側水晶基板64とは、同様にそれぞれ接合面をプラズマ処理又はイオンビーム処理で表面活性化した後、互いに位置合わせして重ね合わせ、所定の圧力を加えることによって、金属薄膜同士の拡散接合により気密にかつ良好に接合されている。水晶振動片65は、中間水晶板62の外枠66を水晶振動片65よりも厚くしたことにより水晶振動子61内部に画定されるキャビティ79内に、同様に基端部65aにおいて片持ちに浮いた状態で保持される。   The intermediate crystal plate 62 and the upper crystal substrate 63 are obtained by crystallizing the crystal surfaces by applying a predetermined pressure to each other after the surface of each of the intermediate crystal plates 62 and the upper crystal substrate 63 is surface-activated by, for example, known plasma processing or ion beam processing. It is airtightly and satisfactorily joined by surface activated joining. Similarly, the intermediate crystal plate 62 and the lower crystal substrate 64 are obtained by subjecting the joint surfaces to surface activation by plasma processing or ion beam processing, aligning them with each other, and applying a predetermined pressure. It is joined airtightly and satisfactorily by diffusion bonding between them. The crystal vibrating piece 65 floats in a cantilever manner at the base end portion 65a in the cavity 79 defined inside the crystal resonator 61 by making the outer frame 66 of the intermediate crystal plate 62 thicker than the crystal vibrating piece 65. It is held in the state.

以上、本発明の好適実施例について詳細に説明したが、当業者に明らかなように、本発明はその技術的範囲内において上記各実施例に様々な変更・変形を加えて実施することができる。例えば、前記中間水晶板、上側水晶及び下側水晶基板は、タンタル酸リチウム、ニオブ酸リチウムなどの他の様々な公知の圧電材料で形成することができる。その場合にも、各圧電板を同一の圧電材料で形成しかつその結晶面方位を合わせて接合することによって、圧電振動子の温度特性をより好適に向上させることができる。また、本発明は、音叉型圧電振動子についても、同様に適用することができる。   The preferred embodiments of the present invention have been described in detail above. However, as will be apparent to those skilled in the art, the present invention can be carried out with various modifications and changes made to the above embodiments within the technical scope thereof. . For example, the intermediate crystal plate, the upper crystal substrate, and the lower crystal substrate can be formed of various other known piezoelectric materials such as lithium tantalate and lithium niobate. Even in that case, the temperature characteristics of the piezoelectric vibrator can be improved more favorably by forming each piezoelectric plate with the same piezoelectric material and bonding the crystal plane orientations. Further, the present invention can be similarly applied to a tuning fork type piezoelectric vibrator.

(A)図は本発明による水晶振動子の第1実施例の側面図、(B)図はその縦断面図、(C)図はその底面図。(A) is a side view of a first embodiment of a crystal resonator according to the present invention, (B) is a longitudinal sectional view thereof, and (C) is a bottom view thereof. (A)図は図1に示す中間水晶板の上面図、(B)図はその下面図。(A) is a top view of the intermediate crystal plate shown in FIG. 1, and (B) is a bottom view thereof. 図1に示す上側水晶基板の下面図。The bottom view of the upper side crystal substrate shown in FIG. 図1に示す下側水晶基板の上面図。FIG. 2 is a top view of the lower crystal substrate shown in FIG. 1. 本発明の方法による水晶振動子の製造工程において、一体に貼り合わせる3枚の水晶ウエハを示す概略斜視図。4 is a schematic perspective view showing three crystal wafers bonded together in the manufacturing process of the crystal resonator according to the method of the present invention. FIG. (A)図は中間及び下側水晶ウエハを接合する要領を示す説明図、(B)図は更に上側水晶ウエハを接合する要領を示す説明図、(C)図は3枚の水晶ウエハの接合体を示す概略斜視図。(A) is an explanatory view showing the procedure for bonding the middle and lower crystal wafers, (B) is an explanatory diagram showing the procedure for bonding the upper crystal wafer, and (C) is a bond of three crystal wafers. The schematic perspective view which shows a body. 本発明による水晶振動子の第2実施例の縦断面図。The longitudinal cross-sectional view of 2nd Example of the crystal oscillator by this invention. (A)図は図7に示す中間水晶板の上面図、(B)図はその下面図。(A) is a top view of the intermediate crystal plate shown in FIG. 7, and (B) is a bottom view thereof. 図7に示す下側水晶基板の上面図。FIG. 8 is a top view of the lower crystal substrate shown in FIG. 7. 本発明による水晶振動子の第3実施例の縦断面図。The longitudinal cross-sectional view of 3rd Example of the crystal oscillator by this invention. (A)図は図10に示す中間水晶板の上面図、(B)図はその下面図。(A) is a top view of the intermediate crystal plate shown in FIG. 10, and (B) is a bottom view thereof. 図10に示す下側水晶基板の上面図。FIG. 11 is a top view of the lower crystal substrate shown in FIG. 10.

符号の説明Explanation of symbols

1,41,61…水晶振動子、2,42,62…中間水晶板、3,43,63…上側水晶基板、3a,4a…接合面、4,44,64…下側水晶基板、5,45,65…水晶振動片、5a,45a,65a…基端部、6,46,66…外枠、7,8,47,48,67,68…励振電極、9,51,70…配線膜、10,52,71…下側導電膜、11,53,72…スルーホール、12,17,54,57,73,77…領域、13,55,74…引出導電膜、14,15,75…凹部、16,18,56,58,76,78…金属薄膜、19,59,79…キャビティ、20,21…外部電極、22,23…欠け、30…中間水晶ウエハ、31…上側水晶ウエハ、32…下側水晶ウエハ、33…貫通孔、34…ウエハ積層体、35…外郭線、49,50,69…段差。 DESCRIPTION OF SYMBOLS 1,41,61 ... Crystal oscillator, 2, 42, 62 ... Intermediate crystal plate, 3, 43, 63 ... Upper crystal substrate, 3a, 4a ... Bonding surface, 4, 44, 64 ... Lower crystal substrate, 5, 45, 65 ... crystal resonator element, 5a, 45a, 65a ... base end, 6, 46, 66 ... outer frame, 7, 8, 47, 48, 67, 68 ... excitation electrode, 9, 51, 70 ... wiring film DESCRIPTION OF SYMBOLS 10,52,71 ... Lower conductive film 11, 53, 72 ... Through hole, 12, 17, 54, 57, 73, 77 ... Area, 13, 55, 74 ... Lead conductive film, 14, 15, 75 Recess, 16, 18, 56, 58, 76, 78 ... Metal thin film, 19, 59, 79 ... Cavity, 20, 21 ... External electrode, 22, 23 ... Chip, 30 ... Intermediate crystal wafer, 31 ... Upper crystal wafer 32 ... Lower crystal wafer, 33 ... Through hole, 34 ... Wafer stack, 35 ... Outer shell , 49,50,69 ... step.

Claims (10)

圧電振動片と、その上面が鏡面研磨加工した圧電材料の素面からなりかつ下面が鏡面研磨加工した前記圧電材料の表面に形成した導電膜を有する外枠とを一体に結合した中間圧電基板と、
前記中間圧電基板と同一の圧電材料からなり、かつ前記外枠上面との接合面が鏡面研磨加工した前記圧電材料の素面からなる上側圧電基板と、
前記中間圧電基板と同一の圧電材料からなり、かつ前記外枠下面との接合面が鏡面研磨加工した前記圧電材料の表面に形成した金属薄膜を有する下側圧電基板とを備え、
前記外枠上面及び前記上側圧電基板の接合面が、それぞれ表面活性化した後に、互いに前記圧電材料同士の表面活性化接合により気密に接合され、
前記外枠下面及び前記下側圧電基板の接合面が、それぞれ表面活性化した後に、互いに前記導電膜と前記金属薄膜との拡散接合により気密に接合され、
それにより前記中間圧電基板と前記上側及び下側圧電基板との間に画定されかつ封止されるキャビティ内に前記圧電振動片が浮いた状態で保持されていることを特徴とする圧電振動子。
An intermediate piezoelectric substrate in which a piezoelectric vibrating piece and an outer frame having a conductive film formed on the surface of the piezoelectric material whose upper surface is made of a mirror-polished piezoelectric material and whose lower surface is mirror-polished are integrally coupled;
An upper piezoelectric substrate made of the same piezoelectric material as the intermediate piezoelectric substrate, and a bonding surface with the upper surface of the outer frame made of a material surface of the piezoelectric material that has been mirror-polished;
A lower piezoelectric substrate made of the same piezoelectric material as the intermediate piezoelectric substrate, and having a metal thin film formed on the surface of the piezoelectric material having a mirror-polished joint surface with the lower surface of the outer frame,
After the surface of the outer frame upper surface and the bonding surface of the upper piezoelectric substrate are each surface activated, they are bonded airtight by surface activated bonding between the piezoelectric materials,
The joint surfaces of the outer frame lower surface and the lower piezoelectric substrate are each surface-activated, and then are airtightly bonded to each other by diffusion bonding of the conductive film and the metal thin film,
Accordingly, the piezoelectric vibrator is held in a state of being floated in a cavity defined and sealed between the intermediate piezoelectric substrate and the upper and lower piezoelectric substrates.
前記圧電振動片が厚みすべり振動モードを主振動とすることを特徴とする請求項1に記載の圧電振動子。   The piezoelectric vibrator according to claim 1, wherein the piezoelectric vibrating piece has a thickness-shear vibration mode as a main vibration. 前記上側、中間及び下側圧電基板がそれらの結晶面方位を合わせて接合されていることを特徴とする請求項1又は2に記載の圧電振動子。   The piezoelectric vibrator according to claim 1 or 2, wherein the upper, middle and lower piezoelectric substrates are bonded with their crystal plane orientations aligned. 前記圧電材料が水晶であることを特徴とする請求項1乃至3のいずれかに記載の圧電振動子。   The piezoelectric vibrator according to claim 1, wherein the piezoelectric material is quartz. 圧電振動片と、その上面が鏡面研磨加工した圧電材料の素面からなりかつ下面が鏡面研磨加工した前記圧電材料の表面に形成した導電膜を有する外枠とを一体に結合した中間圧電基板を形成する工程と、
前記中間圧電基板と同一の圧電材料からなり、かつ前記外枠上面との接合面が鏡面研磨加工した前記圧電材料の素面からなる上側圧電基板を形成する工程と、
前記中間圧電基板と同一の圧電材料からなり、かつ前記外枠下面との接合面が鏡面研磨加工した前記圧電材料の表面に形成した金属薄膜を有する下側圧電基板を形成する工程と、
前記中間圧電基板の前記外枠上面及び下面、並びに前記上側及び下側圧電基板の各接合面を表面活性化する工程と、
前記下側圧電基板の上に前記中間圧電基板を重ね合わせ、前記外枠下面及び前記下側圧電基板の接合面を、互いに前記導電膜と前記金属薄膜との拡散接合により気密に接合する工程と、
前記下側圧電基板と接合された前記中間圧電基板の上面に前記上側圧電基板を重ね合わせ、前記外枠上面及び前記上側圧電基板の接合面を、互いに前記圧電材料同士の表面活性化接合により気密に接合する工程とを有し、
前記中間圧電基板と前記上側及び下側圧電基板との間に画定されるキャビティ内に前記圧電振動片を浮いた状態で保持しかつ封止することを特徴とする圧電振動子の製造方法。
An intermediate piezoelectric substrate is formed by integrally bonding a piezoelectric vibrating piece and an outer frame having a conductive film formed on the surface of the piezoelectric material whose upper surface is made of a mirror-polished piezoelectric material and whose lower surface is mirror-polished. And a process of
Forming an upper piezoelectric substrate made of the same piezoelectric material as that of the intermediate piezoelectric substrate and made of a material surface of the piezoelectric material having a mirror-polished joint surface with the outer frame upper surface;
Forming a lower piezoelectric substrate made of the same piezoelectric material as the intermediate piezoelectric substrate and having a metal thin film formed on the surface of the piezoelectric material having a mirror-polished bonding surface with the lower surface of the outer frame;
Surface activation of the upper and lower surfaces of the outer frame of the intermediate piezoelectric substrate and the bonding surfaces of the upper and lower piezoelectric substrates;
Overlaying the intermediate piezoelectric substrate on the lower piezoelectric substrate, and bonding the lower surface of the outer frame and the bonding surface of the lower piezoelectric substrate in an airtight manner by diffusion bonding of the conductive film and the metal thin film; ,
The upper piezoelectric substrate is superimposed on the upper surface of the intermediate piezoelectric substrate bonded to the lower piezoelectric substrate, and the upper surface of the outer frame and the bonding surface of the upper piezoelectric substrate are hermetically sealed by surface activated bonding between the piezoelectric materials. And a step of bonding to
A method for manufacturing a piezoelectric vibrator, comprising: holding and sealing the piezoelectric vibrating piece in a floating state in a cavity defined between the intermediate piezoelectric substrate and the upper and lower piezoelectric substrates.
前記下側圧電基板と前記中間圧電基板とを接合した後、前記上側圧電基板を接合する前に、前記圧電振動片を周波数調整する工程を更に有することを特徴とする請求項5に記載の圧電振動子の製造方法。   6. The piezoelectric device according to claim 5, further comprising a step of adjusting a frequency of the piezoelectric vibrating piece after joining the lower piezoelectric substrate and the intermediate piezoelectric substrate and before joining the upper piezoelectric substrate. A method for manufacturing a vibrator. 複数の前記中間圧電基板を有する中間圧電ウエハを形成する工程と、複数の前記上側基板を前記中間圧電ウエハの中間圧電基板に対応させて配設した上側圧電ウエハを形成する工程と、複数の前記下側基板を前記中間圧電ウエハの中間圧電基板に対応させて配設した下側圧電ウエハを形成する工程と、前記中間圧電ウエハの上面及び下面並びに前記上側及び下側圧電ウエハの各接合面を表面活性化する工程と、前記下側圧電ウエハの上に前記中間圧電ウエハを重ね合わせて一体に接合する工程と、前記下側圧電ウエハと接合した前記中間圧電ウエハの上に前記上側圧電ウエハを重ね合わせて一体に接合する工程と、接合した前記圧電ウエハの積層体を切断して圧電振動子を個片化する工程とを有することを特徴とする請求項5又は6に記載の圧電振動子の製造方法。   Forming an intermediate piezoelectric wafer having a plurality of the intermediate piezoelectric substrates, forming an upper piezoelectric wafer having the plurality of upper substrates arranged corresponding to the intermediate piezoelectric substrates of the intermediate piezoelectric wafer, and a plurality of the above Forming a lower piezoelectric wafer in which a lower substrate is disposed in correspondence with the intermediate piezoelectric substrate of the intermediate piezoelectric wafer; and upper and lower surfaces of the intermediate piezoelectric wafer and bonding surfaces of the upper and lower piezoelectric wafers. A step of surface activation, a step of superimposing the intermediate piezoelectric wafer on the lower piezoelectric wafer and integrally bonding the upper piezoelectric wafer, and an upper piezoelectric wafer on the intermediate piezoelectric wafer bonded to the lower piezoelectric wafer. 7. The method according to claim 5, further comprising a step of superimposing and integrally bonding, and a step of cutting the laminated body of the bonded piezoelectric wafers to divide the piezoelectric vibrator into individual pieces. Method of manufacturing the electric vibrator. 前記圧電振動片が厚みすべり振動モードを主振動とすることを特徴とする請求項5乃至7のいずれかに記載の圧電振動子。   The piezoelectric vibrator according to claim 5, wherein the piezoelectric vibrating piece has a thickness-shear vibration mode as a main vibration. 前記上側、中間及び下側圧電基板をそれらの結晶面方位を合わせて接合することを特徴とする請求項請求項5乃至8のいずれかに記載の圧電振動子。   9. The piezoelectric vibrator according to claim 5, wherein the upper, middle and lower piezoelectric substrates are joined with their crystal plane orientations aligned. 前記圧電材料が水晶であることを特徴とする請求項5乃至9のいずれかに記載の圧電振動子の製造方法。   The method for manufacturing a piezoelectric vibrator according to claim 5, wherein the piezoelectric material is quartz.
JP2006134509A 2006-05-12 2006-05-12 Piezoelectric vibrator, and manufacturing method therefor Withdrawn JP2007306434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134509A JP2007306434A (en) 2006-05-12 2006-05-12 Piezoelectric vibrator, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134509A JP2007306434A (en) 2006-05-12 2006-05-12 Piezoelectric vibrator, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007306434A true JP2007306434A (en) 2007-11-22

Family

ID=38839979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134509A Withdrawn JP2007306434A (en) 2006-05-12 2006-05-12 Piezoelectric vibrator, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007306434A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130665A (en) * 2007-11-26 2009-06-11 Epson Toyocom Corp Piezoelectric oscillator
JP2009246253A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Laminated piezoelectric element, and method for manufacturing the same
JP2010088064A (en) * 2008-10-02 2010-04-15 Kyocera Kinseki Corp Piezoelectric vibrator and piezoelectric oscillator
JP2010088065A (en) * 2008-10-02 2010-04-15 Kyocera Kinseki Corp Piezoelectric vibrator and piezoelectric oscillator
JP2010147824A (en) * 2008-12-19 2010-07-01 Kyocera Kinseki Corp Quartz vibrator
JP2012085253A (en) * 2010-03-25 2012-04-26 Nippon Dempa Kogyo Co Ltd Surface-mounted crystal device and method of manufacturing crystal device
US20140047687A1 (en) * 2008-12-24 2014-02-20 Daishinku Corporation Piezoelectric resonator device, manufacturing method for piezoelectric resonator device, and method for etching constituent member of piezoelectric resonator device
WO2020137265A1 (en) * 2018-12-25 2020-07-02 株式会社村田製作所 Vibrating structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130665A (en) * 2007-11-26 2009-06-11 Epson Toyocom Corp Piezoelectric oscillator
JP2009246253A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Laminated piezoelectric element, and method for manufacturing the same
JP2010088064A (en) * 2008-10-02 2010-04-15 Kyocera Kinseki Corp Piezoelectric vibrator and piezoelectric oscillator
JP2010088065A (en) * 2008-10-02 2010-04-15 Kyocera Kinseki Corp Piezoelectric vibrator and piezoelectric oscillator
JP2010147824A (en) * 2008-12-19 2010-07-01 Kyocera Kinseki Corp Quartz vibrator
US20140047687A1 (en) * 2008-12-24 2014-02-20 Daishinku Corporation Piezoelectric resonator device, manufacturing method for piezoelectric resonator device, and method for etching constituent member of piezoelectric resonator device
US9406868B2 (en) * 2008-12-24 2016-08-02 Daishinku Corporation Manufacturing method for piezoelectric resonator device
JP2012085253A (en) * 2010-03-25 2012-04-26 Nippon Dempa Kogyo Co Ltd Surface-mounted crystal device and method of manufacturing crystal device
WO2020137265A1 (en) * 2018-12-25 2020-07-02 株式会社村田製作所 Vibrating structure
US11600764B2 (en) 2018-12-25 2023-03-07 Murata Manufacturing Co., Ltd. Vibration structure

Similar Documents

Publication Publication Date Title
JP4993204B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP4978030B2 (en) Piezoelectric device
US8702891B2 (en) Method for manufacturing glass-sealed package, apparatus for manufacturing glass-sealed package, and oscillator
JP2007306434A (en) Piezoelectric vibrator, and manufacturing method therefor
JP2007258918A (en) Piezoelectric device
JP2007081867A (en) Method for forming conduction hole, process for fabricating piezoelectric device, and piezoelectric device
JP2007258917A (en) Piezoelectric device
US8269568B2 (en) Method for manufacturing piezoelectric vibrator, piezoelectric vibrator, and oscillator
KR20070005524A (en) Method for manufacturing a piezoelectric vibration device
JP2011087272A (en) Method for manufacturing piezoelectric device, and the piezoelectric device
US8319404B2 (en) Surface-mountable quartz-crystal devices and methods for manufacturing same
JP2006311393A (en) Method of manufacturing quartz resonator
JP2001230651A (en) Electrode structure for piezoelectric vibrator
JP5282392B2 (en) Direct bonding wafer
JP5051446B2 (en) Method for manufacturing piezoelectric vibrator
JP2012195711A (en) Crystal oscillator
JP2008039626A (en) Pressure detection device
WO2010061470A1 (en) Wafer and method for manufacturing package product
JP5573991B2 (en) Bonding wafer
JP2008160603A (en) Method of manufacturing piezoelectric vibrator
JP2006094372A (en) Crystal oscillator and manufacturing method thereof
TW201250810A (en) Wafer and method of manufacturing package product
JP2008211543A (en) Crystal resonator and method of manufacturing crystal resonator
CN114208027A (en) Piezoelectric vibrating plate, piezoelectric vibrating device, and method for manufacturing piezoelectric vibrating device
JP2011151857A (en) Piezoelectric vibrator, electronic device, and electronic equipment

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090804