JP2007303021A - Density gradient type nonwoven fabric and method for producing the same - Google Patents

Density gradient type nonwoven fabric and method for producing the same Download PDF

Info

Publication number
JP2007303021A
JP2007303021A JP2006132445A JP2006132445A JP2007303021A JP 2007303021 A JP2007303021 A JP 2007303021A JP 2006132445 A JP2006132445 A JP 2006132445A JP 2006132445 A JP2006132445 A JP 2006132445A JP 2007303021 A JP2007303021 A JP 2007303021A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
density gradient
density
conductor
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006132445A
Other languages
Japanese (ja)
Other versions
JP4979264B2 (en
Inventor
Yoshiyuki Nakano
恵之 中野
Kazuyuki Ichimori
和之 一森
Minoru Kuwata
実 桑田
Hideo Niwa
英夫 丹羽
Hideo Kondo
秀雄 近藤
Taizo Aoyama
泰三 青山
Koichiro Nakajima
琥一郎 中島
Kenji Watanabe
健次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOSHIEN KINZOKU KK
Hyogo Prefectural Government
Kaneka Corp
Original Assignee
KOSHIEN KINZOKU KK
Hyogo Prefectural Government
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOSHIEN KINZOKU KK, Hyogo Prefectural Government, Kaneka Corp filed Critical KOSHIEN KINZOKU KK
Priority to JP2006132445A priority Critical patent/JP4979264B2/en
Publication of JP2007303021A publication Critical patent/JP2007303021A/en
Application granted granted Critical
Publication of JP4979264B2 publication Critical patent/JP4979264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Filtering Materials (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonwoven fabric which is formed from only one kind of superfine fibers, has high fiber density portions and low fiber density portions, has regular fiber density gradients, and is suitable for cell cultures and the like, and to provide a method for producing such the nonwoven fabric. <P>SOLUTION: This method for producing the density gradient type nonwoven fabric comprises a preparation process for preparing a spinning solution prepared by dissolving an organic polymerizing substance in an organic solvent, and an electrostatic spraying process for rotating a cylindrical accumulation conductor having grid type openings, applying a high voltage to the spinning solution to electrostatically spray the spinning solution on the earthed accumulation conductor, and forming the electrostatically spun organic fibers as the nonwoven fabric on the outer surface of the accumulation conductor, wherein the nonwoven fabric has grid-like high density portions and web-like low density portions surrounded with the high density portions. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、細胞培養等に適した有機繊維から構成される不織布であって、高密度部分とウェブ状の低密度部分という2つの密度部分を有する密度勾配不織布及びその製造方法に関する。   The present invention relates to a non-woven fabric composed of organic fibers suitable for cell culture and the like, and to a density gradient nonwoven fabric having two density portions, a high-density portion and a web-like low-density portion, and a method for producing the same.

極細繊維を用いた不織布は、主に自動車用吸気フィルターとして利用される。そして、高い清浄効果を維持しつつ、フィルター寿命を長くするための手段としては、各種密度勾配型不織布が利用されている。   Nonwoven fabrics using extra fine fibers are mainly used as an air intake filter for automobiles. Various density gradient nonwoven fabrics are used as means for extending the filter life while maintaining a high cleaning effect.

例えば、特許文献1には、平均デニールが大から小になるように2槽以上の繊維層を積層し、細い繊維層側からニードルパンチを施し、構成繊維を互いに絡着させたフィルター用密度勾配型不織布が開示されている。   For example, Patent Document 1 discloses a density gradient for a filter in which two or more tanks are laminated so that the average denier is large to small, needle punching is performed from the thin fiber layer side, and constituent fibers are entangled with each other. A mold nonwoven fabric is disclosed.

また、特許文献2には、外側層が撥水処理されたスパンボンド不織布であり、中間層が疎水性繊維と親水性繊維からなる繊維層で、内側層が疎水性繊維と親水性繊維と熱融着性繊維からなる繊維層である三層構造繊維積層体を内側層から外側層方向に向けて物理的交絡処理を行って、一体化してなると共に、該三層構造繊維積層体全体を樹脂ボンディングし、かつさらに、波形加工処理を施すことにより密度勾配型としたことを特徴とする薄型フィルターが開示されている。   Patent Document 2 discloses a spunbonded nonwoven fabric in which the outer layer is treated with water repellency, the intermediate layer is a fiber layer made of hydrophobic fibers and hydrophilic fibers, and the inner layer is made of hydrophobic fibers, hydrophilic fibers, and heat. The three-layer structure fiber laminate, which is a fiber layer composed of fusible fibers, is integrated by performing physical entanglement processing from the inner layer toward the outer layer, and the entire three-layer structure fiber laminate is resin. A thin filter is disclosed which is formed into a density gradient type by bonding and further performing waveform processing.

また、特許文献3には、ある特定以下の細い繊度の繊維を、枠体をメッシュシートで補強したフィルター構造が開示されている。   Patent Document 3 discloses a filter structure in which fibers having fine fineness below a specific value are reinforced with a mesh sheet of a frame body.

また、特許文献4には、海島構造の分割繊維により不織布を作製した後に分割処理を行い、極細繊維として分散させる不織布の製造方法が開示されている。   Further, Patent Document 4 discloses a method for producing a nonwoven fabric in which a nonwoven fabric is prepared using sea-island-structured split fibers, and then subjected to split processing to be dispersed as ultrafine fibers.

さらに、分割繊維で編物又は織物を作製し、その後分割処理することにより、極細繊維に方向性を持たせるクロスの製造方法が、それぞれ特許文献5と特許文献6に開示されている。   Further, Patent Document 5 and Patent Document 6 disclose a method of manufacturing a cloth in which a knitted fabric or a woven fabric is produced with divided fibers and then divided, thereby giving directionality to the ultrafine fibers.

なお、合成樹脂を原料とした一般的なウェブ状加工品及びその製造方法は、非特許文献1及び非特許文献2に開示されている。   Non-patent literature 1 and non-patent literature 2 disclose general web-like processed products using synthetic resin as a raw material and a method for producing the same.

一方、細胞培養の分野においては、培養細胞を増殖させる際に、細胞の支持体が必要な場合があり、皮膚細胞等の培養ではコラーゲン多孔質ゲルが使用される。   On the other hand, in the field of cell culture, a cell support may be required for growing cultured cells, and a collagen porous gel is used for culturing skin cells and the like.

ここで、細胞培養においては、細胞に適当な刺激を与えることも重要とされているが、培養細胞の支持体として高分子フィルムやゲルを使用した場合には、培養細胞が「面」で支えられることになり、細胞に十分な刺激を与えることができない。
特開平10−180023号公報 特開2003−210921号公報 特開平11−179121号公報 特開平9−302563号公報 特開2000−265343号公報 特開2000−342501号公報 http://www.daikin.co.jp/chm/pro/fluoro/polyflonweb/ http://www.asahi-kasei.co.jp/eltas/seizo.htm
Here, in cell culture, it is also important to give appropriate stimulation to the cells. However, when a polymer film or gel is used as a support for the cultured cells, the cultured cells are supported by the “surface”. Will not give enough stimulation to the cells.
Japanese Patent Laid-Open No. 10-180023 JP 2003-210921 A Japanese Patent Laid-Open No. 11-179121 Japanese Patent Laid-Open No. 9-302563 JP 2000-265343 A JP 2000-342501 A http://www.daikin.co.jp/chm/pro/fluoro/polyflonweb/ http://www.asahi-kasei.co.jp/eltas/seizo.htm

細胞培養においても極細繊維から構成される不織布を、培養細胞の支持体として利用する場合、繊維が密集していると不織布表面の凹凸に細胞が載るだけであるが、繊維密度を下げれば奥行き方向にも細胞が入り込むと考えられるため、強度を維持しつつ、部分的に繊維密度の低い領域を有する不織布があれば理想的といえる。   When using non-woven fabrics composed of ultrafine fibers in cell culture as a support for cultured cells, if the fibers are dense, cells will only be placed on the uneven surface of the non-woven fabric, but if the fiber density is lowered, the depth direction It is considered that it would be ideal if there is a non-woven fabric partially having a low fiber density while maintaining strength.

しかし、特許文献1又は特許文献2に開示されている不織布は、異なる繊維径の繊維層を積層する必要があるため、製造工程が複雑である。また、繊維密度を厚み方向にしか制御することができない。   However, since the nonwoven fabric currently disclosed by patent document 1 or patent document 2 needs to laminate | stack the fiber layer of a different fiber diameter, a manufacturing process is complicated. Further, the fiber density can be controlled only in the thickness direction.

また、特許文献3に開示されているフィルターは、材質がポリエステルであり、バインダーも使用するために、細胞培養の用途には不適当という問題がある。   Further, the filter disclosed in Patent Document 3 is made of polyester and uses a binder, so that it has a problem that it is not suitable for cell culture.

さらに、特許文献4に開示されている不織布では、分割前の繊維が持つ規則性(方向性)を、分割処理後にもある程度残すことは可能であるが、高度な規則性を不織布に持たせることはできない。特許文献5及び特許文献6に開示されているクロス製造方法も、編み方や織り方に方向性付与が限定されるため、細胞培養にとって理想的な密度勾配型不織布の製造方法とはなり得ない。   Furthermore, in the nonwoven fabric disclosed in Patent Document 4, it is possible to leave the regularity (direction) of the fibers before division to some extent even after the division treatment, but to give the nonwoven fabric a high degree of regularity. I can't. The cloth manufacturing methods disclosed in Patent Document 5 and Patent Document 6 also cannot be an ideal density gradient nonwoven fabric manufacturing method for cell culture because directionality is limited in the knitting method and weaving method. .

本発明は、一種類の極細繊維のみから構成され、繊維密度の高い部分と低い部分をと有し、繊維密度が規則的に勾配する細胞培養等に適した不織布、及びそのような不織布の製造方法の提供を目的とする。   The present invention consists of only one type of ultrafine fiber, has a high fiber density portion and a low fiber density portion, and is suitable for cell culture etc. in which the fiber density is regularly gradient, and the production of such a nonwoven fabric The purpose is to provide a method.

本発明は、有機重合性物質からなる紡績液に高電圧を印可し、表面に複数の開口部を有する集積用導電体に静電噴霧することにより、直径が0.1〜20μm以下の極細繊維を、繊維密度の高い部分と、繊維密度の低いウェブ状の部分とを有する不織布として形成させる密度勾配型不織布の製造方法に関する。   The present invention applies a high voltage to a spinning solution made of an organic polymerizable substance, and electrostatically sprays it on an electric conductor for integration having a plurality of openings on the surface, thereby producing ultrafine fibers having a diameter of 0.1 to 20 μm or less. The present invention relates to a method for producing a density gradient nonwoven fabric having a portion having a high fiber density and a web-like portion having a low fiber density.

具体的に、本発明は、
有機重合性物質を有機溶媒に溶解させた紡績液を調製する調製工程と、
複数の開口部を有する円筒状の集積用導電体を回転させながら、前記紡績液に高電圧を印加して前記集積用導電体に向かって静電噴霧することにより、静電紡糸有機性繊維を前記集積用導電体の外表面上に不織布として形成させる静電噴霧工程とを含み、
前記不織布が、高密度部分と、高密度部分に取り囲まれたウェブ状の低密度部分とを有することを特徴とする密度勾配型不織布の製造方法に関する(請求項1)。
Specifically, the present invention
A preparation step of preparing a spinning solution in which an organic polymerizable substance is dissolved in an organic solvent;
While rotating a cylindrical accumulating conductor having a plurality of openings, a high voltage is applied to the spinning solution and electrostatic spraying is performed toward the accumulating conductor, thereby producing an electrospun organic fiber. Including an electrostatic spraying step formed as a non-woven fabric on the outer surface of the electric conductor for integration,
The non-woven fabric has a high-density portion and a web-shaped low-density portion surrounded by the high-density portion.

また、本発明は、
有機重合性物質を静電紡糸した有機性繊維から構成される不織布であって、
高密度部分と、
高密度部分に取り囲まれたウェブ状の低密度部分とを有する密度勾配型不織布に関する(請求項6)。
The present invention also provides:
A non-woven fabric composed of organic fibers obtained by electrostatic spinning of an organic polymerizable material,
With high density parts,
The present invention relates to a density gradient nonwoven fabric having a web-like low-density portion surrounded by a high-density portion (Claim 6).

有機重合性物質は、ポリカプロラクトン、ヒドロキシアルカノエートの単重合体又は共重合体、コラーゲン又は乳酸/グリコール酸共重合体といった生分解性有機物であることが好ましい(請求項2,7)。静電紡糸有機性繊維が生分解性であれば、細胞培養等において不織布を後で取り除く必要がないためである。   The organic polymerizable substance is preferably a biodegradable organic substance such as polycaprolactone, a hydroxyalkanoate homopolymer or copolymer, collagen, or a lactic acid / glycolic acid copolymer (claims 2 and 7). This is because if the electrospun organic fiber is biodegradable, it is not necessary to remove the nonwoven fabric later in cell culture or the like.

ヒドロキシアルカノエートの単重合体としては、ポリ(3-ヒドロキシブチレート)、ポリ(4-ヒドロキシブチレート)、ポリ(3-ヒドロキシバリレート)、ポリ(3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシオクタデカノエート)等が挙げられる。この中でも、ポリ(3-ヒドロキシブチレート)が好ましい。   Hydroxyalkanoate homopolymers include poly (3-hydroxybutyrate), poly (4-hydroxybutyrate), poly (3-hydroxyvalerate), poly (3-hydroxyhexanoate), poly (3 -Hydroxyoctanoate), poly (3-hydroxyoctadecanoate) and the like. Among these, poly (3-hydroxybutyrate) is preferable.

ヒドロキシアルカノエートの共重合体としては、3-ヒドロキシブチレート/3-ヒドロキシヘキサノエート共重合体が好ましい。   The hydroxyalkanoate copolymer is preferably a 3-hydroxybutyrate / 3-hydroxyhexanoate copolymer.

紡績液への印加電圧は、5kV以上40kV以下であることが好ましい(請求項3)。   The applied voltage to the spinning solution is preferably 5 kV or more and 40 kV or less (Claim 3).

不織布の高密度部分の厚みは、0.1mm以上2mm以下であることが好ましい(請求項4,8)。0.1mm未満では不織布としての強度が不足するためであり、一方、2mmを超えると密度勾配効果を得にくいからである。   The thickness of the high density portion of the nonwoven fabric is preferably 0.1 mm or more and 2 mm or less (claims 4 and 8). This is because when the thickness is less than 0.1 mm, the strength as a non-woven fabric is insufficient, while when it exceeds 2 mm, it is difficult to obtain a density gradient effect.

不織布の繊維径は、0.1μm以上20μm以下であることが好ましい(請求項5,9)。0.1μm未満では不織布としての強度が不足することになり、一方、20μmを超えると密度勾配材料としての効果が得られないという問題が生じるためである。   The fiber diameter of the nonwoven fabric is preferably 0.1 μm or more and 20 μm or less (Claims 5 and 9). If the thickness is less than 0.1 μm, the strength as a non-woven fabric will be insufficient. On the other hand, if the thickness exceeds 20 μm, the effect as a density gradient material cannot be obtained.

本発明の密度勾配型不織布は、一種類の極細繊維から構成されるにもかかわらず、高密度部分と低密度部分とを規則的に制御されており、かつ、格子状の高密度部分によって低密度部分が囲まれているという従来にない形態を有する。また、格子状の高密度部分を有するために、機械的強度もあり、繊維径も非常に均一である。   Although the density gradient nonwoven fabric of the present invention is composed of one kind of ultrafine fiber, the high density portion and the low density portion are regularly controlled, and the density is reduced by the lattice-like high density portion. It has an unconventional form in which the density portion is surrounded. Moreover, since it has a grid-like high-density part, there is also mechanical strength and the fiber diameter is very uniform.

細胞培養部分と空間保持部分とが同一であり、また、織物では不可能な小さなメッシュサイズと低密度部分を有することにより、3次元細胞培養に適している。   The cell culture part and the space holding part are the same, and have a small mesh size and a low-density part that are impossible with a fabric, making it suitable for three-dimensional cell culture.

また、本発明の密度勾配型不織布の製造方法は、静電噴霧法と特殊形状の集積用導電体とを組み合わせることにより、繊維化と密度勾配化をひとつの単純な製造工程によって、密度勾配型不織布を製造することができる。繊維の「織り」工程又は「編み」工程も、「融着」工程も不要である。   In addition, the density gradient nonwoven fabric manufacturing method of the present invention combines the electrostatic spraying method with a specially shaped integration conductor, so that the fiberization and the density gradient can be performed by one simple manufacturing process. Nonwoven fabrics can be manufactured. There is no need for a “weaving” or “knitting” process or a “fusion” process for the fibers.

さらに、メッシュ構造の形を、集積用導電体の形状によって制御することが可能であり、繊維を交差させるのではなく堆積させて不織布とするため、繊維の太さによる凹凸もできない。   Furthermore, the shape of the mesh structure can be controlled by the shape of the conductors for integration, and the fibers are deposited rather than crossed to form a nonwoven fabric, so that unevenness due to the thickness of the fibers cannot be achieved.

以下に、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、本発明は、これらに限定されない。   Embodiments of the present invention will be described below with reference to the drawings as appropriate. The present invention is not limited to these.

本発明の密度勾配型不織布の製造方法において使用する静電噴霧装置の一例を、図1に示す。静電噴霧装置1は、密閉容器2の上部に絶縁板3を備えている。絶縁板3には金属製ホルダー4に接続された金属製ノズル5が固定されている。金属製ホルダー4には、金属製ノズル5の反対側に送液配管7が接続されると共に、高圧電源6が接続されている。   An example of the electrostatic spraying apparatus used in the manufacturing method of the density gradient type nonwoven fabric of this invention is shown in FIG. The electrostatic spraying device 1 includes an insulating plate 3 on the top of the sealed container 2. A metal nozzle 5 connected to a metal holder 4 is fixed to the insulating plate 3. A liquid feed pipe 7 is connected to the metal holder 4 on the opposite side of the metal nozzle 5, and a high voltage power source 6 is connected to the metal holder 4.

送液配管7は、別の密閉容器8の内部に収容されている容器9へと通じており、容器9内には紡績液10として生分解性有機重合性繊維の有機溶媒溶液が満たされている。さらに、密閉容器8は、コンプレッサー11と接続しており、内部を加圧状態にすることができる。   The liquid feeding pipe 7 leads to a container 9 accommodated in another sealed container 8, and the container 9 is filled with an organic solvent solution of biodegradable organic polymerizable fibers as a spinning liquid 10. Yes. Furthermore, the sealed container 8 is connected to the compressor 11 so that the inside can be in a pressurized state.

コンプレッサー11をONにすると、密閉容器8の内部が加圧され、容器9内の紡績液10は、送液配管7を通って金属製ノズル3へと送液される。   When the compressor 11 is turned ON, the inside of the sealed container 8 is pressurized, and the spinning liquid 10 in the container 9 is fed to the metal nozzle 3 through the liquid feeding pipe 7.

密閉容器2の内部には、集積用導電体12が設置される。集積用導電体12の内孔には、導電性の支柱17が挿入されている。この支柱17には、アース14が設置されている。   An accumulation conductor 12 is installed inside the sealed container 2. Conductive struts 17 are inserted into the inner holes of the integration conductor 12. An earth 14 is installed on the support column 17.

また、支柱17は、モーター13に接続しており、モーター13を起動させることにより、中心軸を回転中心として回転させることができる。   Moreover, the support | pillar 17 is connected to the motor 13 and can be rotated centering | focusing on a center axis | shaft by starting the motor 13. FIG.

モーター13の上部には、静電噴霧された有機重合性繊維がモーター13に付着することを防止するために、カバー16が設置されている。   A cover 16 is installed on the top of the motor 13 in order to prevent the electrostatically sprayed organic polymerizable fibers from adhering to the motor 13.

次に、集積用導電体12について、図2を参照しながら説明する。集積用導電体12は、例えば、図2(a)に示すような金属、炭素繊維等の導電性物質から構成され、複数の開口部を有する導電板21を、図2(b)に示すような円筒状に丸めた状態となっている。導電板21には、格子部22と開口部23とが存在しており、集積用導電体12として形成された後には、開口部23と内孔24とが通じている。   Next, the integration conductor 12 will be described with reference to FIG. The integration conductor 12 is made of, for example, a conductive material such as metal or carbon fiber as shown in FIG. 2A, and a conductive plate 21 having a plurality of openings is shown in FIG. 2B. It is in a state of being rounded into a cylindrical shape. The conductive plate 21 includes a lattice portion 22 and an opening portion 23, and the opening portion 23 and the inner hole 24 communicate with each other after being formed as the integration conductor 12.

なお、図2では導電板21及び集積用導電体の開口部形状が正方形の一例を示したが、これに限らず長方形、円形、楕円形、多角形、平行四辺形等であってもよい。ただし、開口部の面積が大きすぎると、紡績液を静電噴霧しても開口部に有機性繊維が集積しない。このため、開口部形状が正方形の場合には1辺の長さを20mm以下にすることが好ましい。   In FIG. 2, the opening shape of the conductive plate 21 and the integration conductor is an example of a square. However, the shape is not limited to this and may be a rectangle, a circle, an ellipse, a polygon, a parallelogram, or the like. However, if the area of the opening is too large, organic fibers will not accumulate in the opening even if the spinning solution is electrostatically sprayed. For this reason, when the shape of the opening is a square, the length of one side is preferably 20 mm or less.

一方、開口部の面積が小さすぎると、紡績液を静電噴霧すると格子部と開口部とに有機性繊維が同じように集積するため、密度勾配型不織布を製造できない。このため、開口部形状が正方形の場合には1辺の長さを0.25mm以上にすることが好ましい。   On the other hand, if the area of the opening is too small, when the spinning solution is electrostatically sprayed, organic fibers are accumulated in the same way in the lattice part and the opening, and thus a density gradient nonwoven fabric cannot be produced. For this reason, when the shape of the opening is a square, the length of one side is preferably 0.25 mm or more.

集積用導電体12は、内孔24に支柱17を挿入し、支柱17に取り付けた2個のゴムリング18に挟持させて固定する。   The integration conductor 12 is fixed by inserting a support column 17 into the inner hole 24 and sandwiching it between two rubber rings 18 attached to the support column 17.

ここで、高圧電源6をONにすると、金属製ホルダー4を通して金属製ノズル5に高電圧が印加される。このとき、図3に示すように、高電圧によって金属製ノズル5内を流れる紡績液10に電荷が誘発、蓄積される。金属製ノズル5から噴出された後、紡績液10は、プラスに帯電するために互いに反発する。   Here, when the high voltage power supply 6 is turned on, a high voltage is applied to the metal nozzle 5 through the metal holder 4. At this time, as shown in FIG. 3, charges are induced and accumulated in the spinning solution 10 flowing in the metal nozzle 5 by a high voltage. After being ejected from the metal nozzle 5, the spinning liquids 10 repel each other in order to be positively charged.

この反発力は、紡績液の表面張力に対抗し、荷電臨界を超えると(表面張力を超えると)、紡績液は帯電ミストになる。この帯電ミストの表面積は、体積に対して非常に大きいため、有機溶媒が効率良く蒸発し、さらに体積の減少により電荷密度が高くなるため、紡績液は帯電微少ミスト15へと分裂していく。   This repulsive force opposes the surface tension of the spinning liquid, and when the charge criticality is exceeded (when the surface tension is exceeded), the spinning liquid becomes charged mist. Since the surface area of the charged mist is very large with respect to the volume, the organic solvent is efficiently evaporated, and the charge density is increased due to the decrease in the volume, so that the spinning solution is split into the charged fine mist 15.

金属製ノズル5は高電圧を印加されているが、導電性の支柱17及び支柱17に固定されている集積用導電体12はアースされているので、金属製ノズル5と集積用導電体12との間には、強い電界が形成されている。帯電微少ミスト15は、互いに反発しながら、形成された電界により集積用導電体12に向かって進行するが、途中で溶媒が揮散し、繊維化した有機重合性繊維として、集積用導電体12上に捕集される。このとき、金属製ノズル5に付与された荷電と反対の符号を有する荷電を集積用導電体12に付与してもよい。   Although the metal nozzle 5 is applied with a high voltage, the conductive support column 17 and the integration conductor 12 fixed to the support column 17 are grounded. Therefore, the metal nozzle 5 and the integration conductor 12 A strong electric field is formed between them. The charged micro mist 15 proceeds toward the integration conductor 12 by the formed electric field while repelling each other, but the solvent is volatilized on the way, and the fiber is made into an organic polymerizable fiber on the integration conductor 12. To be collected. At this time, a charge having a sign opposite to the charge applied to the metal nozzle 5 may be applied to the integration conductor 12.

なお、金属製ノズル5の内径は、0.1 mm以上2.0 mm以下であることが好ましく、0.1 mm以上1.0 mm以下であることがより好ましい。   The inner diameter of the metal nozzle 5 is preferably 0.1 mm or more and 2.0 mm or less, and more preferably 0.1 mm or more and 1.0 mm or less.

金属製ホルダー4(及び金属製ノズル5)に印加する高電圧は、5 kV以上40 kV以下の直流電圧であることが好ましく、15 kV以上30 kV以下の直流電圧であることがより好ましい。   The high voltage applied to the metal holder 4 (and the metal nozzle 5) is preferably a DC voltage of 5 kV to 40 kV, more preferably a DC voltage of 15 kV to 30 kV.

金属製ノズル5からの紡績液の吐出速度は、0.01mL/分以上10mL/分以下であることが好ましい。この吐出速度は、密閉容器8内を加圧するコンプレッサー11の出力を制御することにより、調整することが可能である。   The discharge rate of the spinning liquid from the metal nozzle 5 is preferably 0.01 mL / min or more and 10 mL / min or less. This discharge speed can be adjusted by controlling the output of the compressor 11 that pressurizes the inside of the sealed container 8.

また、金属製ノズル5からの紡績液の押出圧力は、0.01MPa/分以上2MPa以下であることが好ましく、0.01MPa/分以上0.5MPa以下であることがより好ましい。この押出圧力も、密閉容器8内を加圧するコンプレッサー11の出力を制御することにより、調整することが可能である。   Further, the extrusion pressure of the spinning solution from the metal nozzle 5 is preferably 0.01 MPa / min to 2 MPa, and more preferably 0.01 MPa / min to 0.5 MPa. This extrusion pressure can also be adjusted by controlling the output of the compressor 11 that pressurizes the inside of the sealed container 8.

なお、ここでは、ホルダー及びノズルを金属製としたが、金属製に限らず導電性材料であればよい。また、密閉容器2を用いずに、開放系で紡績液を静電噴霧してもよい。   Here, the holder and the nozzle are made of metal. However, the holder and the nozzle are not limited to metal and may be made of a conductive material. Further, the spinning solution may be electrostatically sprayed in an open system without using the sealed container 2.

また、集積用導電体12と金属製ノズル5を水平に配置し、水平方向から静電噴霧を行ってもよい。   Further, the accumulation conductor 12 and the metal nozzle 5 may be arranged horizontally and electrostatic spraying may be performed from the horizontal direction.

静電噴霧により微細化し、正又は負の電荷を帯びた有機性繊維は、アース14を設置した集積用導電体12に引き寄せられて不織布として集積されるが、本発明の密度勾配型不織布の製造方法においては、この集積用導電体12に格子部22と開口部23とを設けることにより、アースにより引き寄せられる力に勾配を持たせ、集積される有機性繊維25の繊維密度を制御することが可能である。   Organic fibers refined by electrostatic spraying and charged with a positive or negative charge are attracted to the accumulation conductor 12 provided with the earth 14 and accumulated as a non-woven fabric. In the method, the grid portion 22 and the opening portion 23 are provided in the integration conductor 12, thereby giving a gradient to the force attracted by the ground and controlling the fiber density of the organic fibers 25 to be integrated. Is possible.

すなわち、図4に示すように、集積用導電体12の格子部22と開口部23とを比較すると、格子部22の方が電気的な吸引力が強いため、有機性繊維25は格子部22の上により多く集積し、高密度部分(繊維密度の高い部分)となる。その反対に、開口部23には有機性繊維25が集積しにくいため、低密度部分(繊維密度の低い部分)となる。   That is, as shown in FIG. 4, when the lattice portion 22 and the opening portion 23 of the conductor for accumulation 12 are compared, the lattice portion 22 has a stronger electrical attraction force, and therefore the organic fiber 25 has the lattice portion 22. It accumulates more on the top and becomes a high density part (part with high fiber density). On the other hand, since the organic fibers 25 are not easily accumulated in the opening 23, a low density portion (a portion having a low fiber density) is formed.

さらに、集積用導電体12を回転させることにより、繊維径及び分散状態が均一な密度勾配型不織布の製造が可能となる。   Further, by rotating the accumulation conductor 12, it is possible to manufacture a density gradient type nonwoven fabric having a uniform fiber diameter and dispersion state.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は、これらの実施例のみに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited only to these Examples.

[実施例1]
本発明の実施例1として、以下の製造方法により、ヒドロキシアルカノエートの単重合体又は共重合体の一種である3-ヒドロキシブチレート/3-ヒドロキシヘキサノエート共重合体(以下、PHBHという)繊維から構成される密度勾配型不織布を製造した。
[Example 1]
As Example 1 of the present invention, 3-hydroxybutyrate / 3-hydroxyhexanoate copolymer (hereinafter referred to as PHBH), which is a kind of hydroxyalkanoate homopolymer or copolymer, was produced by the following production method. A density gradient nonwoven fabric composed of fibers was produced.

1)調製工程
まず、PHBH(平均分子量77.2万、3-ヒドロキシブチレート:3-ヒドロキシヘキサノエート=93.9:6.1(モル比)、株式会社カネカ製)をジクロロメタンに溶解させた後、ろ過してPHBHジクロロメタン溶液(PHBH濃度:10重量%)を得た。なお、PHBH濃度は、5重量%以上15重量%以下であることが好ましい。
1) Preparation Step First, PHBH (average molecular weight 772,000, 3-hydroxybutyrate: 3-hydroxyhexanoate = 93.9: 6.1 (molar ratio), manufactured by Kaneka Corporation) was dissolved in dichloromethane and filtered. A PHBH dichloromethane solution (PHBH concentration: 10% by weight) was obtained. The PHBH concentration is preferably 5% by weight or more and 15% by weight or less.

2)静電噴霧工程
次に、上記調製工程で製造したPHBHジクロロメタン溶液を、図1に示す静電噴霧装置1を用いて繊維化し、集積用導電体12の表面にPHBH繊維として集積させた。ここでは、金属製ノズル5として内径0.32 mm、長さ1cmのステンレス製ノズルを使用し、金属製ノズル5の下端部から集積用導電体12までの距離を10cmとした。また、ステンレス製ホルダー(金属製ホルダー4)に可変電圧器(高圧電源6:パルス電子技術株式会社製)を接続し、15 kVの直流電圧を印加した。なお、PHBHジクロロメタン溶液の押出圧力は、0.02MPaとした。
2) Electrostatic spraying step Next, the PHBH dichloromethane solution produced in the above preparation step was made into fibers using the electrostatic spraying device 1 shown in FIG. 1 and accumulated as PHBH fibers on the surface of the accumulation conductor 12. Here, a stainless steel nozzle having an inner diameter of 0.32 mm and a length of 1 cm was used as the metal nozzle 5, and the distance from the lower end of the metal nozzle 5 to the collecting conductor 12 was 10 cm. Further, a variable voltage device (high voltage power supply 6: manufactured by Pulse Electronics Technology Co., Ltd.) was connected to a stainless steel holder (metal holder 4), and a DC voltage of 15 kV was applied. The extrusion pressure of the PHBH dichloromethane solution was 0.02 MPa.

集積用導電体12としては、150メッシュのステンレス網(2cm×3cmの長方形、材質SUS304、ステンレス線の直径0.05mm)を、円柱状に形成したものを使用した。支柱17としては、直径6 mmのステンレス製の円柱を使用し、集積用導電体12と支柱17は、図1に示すように、2個のゴムリング18を用いて固定した。   As the integration conductor 12, a 150 mesh stainless steel net (2 cm × 3 cm rectangle, material SUS304, stainless steel wire diameter 0.05 mm) formed in a cylindrical shape was used. A stainless steel column having a diameter of 6 mm was used as the support column 17, and the integration conductor 12 and the support column 17 were fixed using two rubber rings 18 as shown in FIG. 1.

支柱17は、モーター13によって毎分2625回転させた。なお、支柱17は、毎分200〜3000回転させることが好ましい。   The column 17 was rotated 2625 by the motor 13 per minute. In addition, it is preferable to rotate the support | pillar 17 200-3000 rotations per minute.

集積用導電体12を回転させながら紡績液を静電噴霧した結果、集積用導電体12の格子部22にはPHBH繊維の大部分が集積し、格子部22上の繊維は高密度となった。一方、開口部23にはPHBH繊維はあまり集積せず、開口部23内の繊維は低密度となった。   As a result of electrostatic spraying of the spinning solution while rotating the conductor for accumulation 12, most of the PHBH fibers were accumulated in the lattice portion 22 of the conductor for accumulation 12, and the fibers on the lattice portion 22 became dense. . On the other hand, PHBH fibers did not accumulate much in the openings 23, and the fibers in the openings 23 had a low density.

約10分間静電噴霧した後、支柱17からPHBH繊維が外表面に集積した集積用導電体12を取り外し、集積用導電体12の長軸に沿ってカッターナイフで切れ目をつけた。そして、集積用導電体12の外表面から概長方形で、格子状の高密度部分と、高密度部分に取り囲まれたウェブ状の低密度部分とを有する密度勾配型不織布を取り外した。その一部の拡大写真を、図5に示す。   After electrostatic spraying for about 10 minutes, the integration conductor 12 with PHBH fibers accumulated on the outer surface was removed from the support column 17, and a cut with a cutter knife was made along the long axis of the integration conductor 12. Then, the density gradient type non-woven fabric having a substantially rectangular lattice-like high density portion and a web-like low density portion surrounded by the high density portion was removed from the outer surface of the integration conductor 12. A partially enlarged photograph is shown in FIG.

実施例1の密度勾配型不織布は、電子顕微鏡写真を撮影した結果、平均繊維径が約5μmで、繊維径のバラツキは少なかった。繊維表面も非常に平滑であった。また、密度勾配型不織布全体としての形状は、集積用導電体12を形成するステンレスメッシュとほぼ同じであった。   As a result of taking an electron micrograph, the density gradient nonwoven fabric of Example 1 had an average fiber diameter of about 5 μm and a small variation in fiber diameter. The fiber surface was also very smooth. Further, the shape of the density gradient nonwoven fabric as a whole was substantially the same as the stainless steel mesh forming the accumulation conductor 12.

[実施例2]
次に、実施例2として、ポリカプロラクトン(以下、PCLという)(平均分子量7〜10万)をジクロロメタンに溶解させ、10重量%とした溶液を紡績液として使用した。なお、PCL濃度は、8重量%以上20重量%以下であることが好ましく、10重量%以上14重量%以下であることがより好ましい。
[Example 2]
Next, as Example 2, a solution in which polycaprolactone (hereinafter referred to as PCL) (average molecular weight 70 to 100,000) was dissolved in dichloromethane to a concentration of 10% by weight was used as the spinning solution. The PCL concentration is preferably 8% by weight or more and 20% by weight or less, and more preferably 10% by weight or more and 14% by weight or less.

集積用導電体12としては、格子部の幅0.1mm、開口部の1辺0.5mm、厚み0.1mmのステンレス板(材質SUS304)を、内径1cm×長さ2cmの円柱状に形成したものを使用した。それ以外は、すべて実施例1と同様にして、密度勾配型不織布を作製した。   As the integration conductor 12, a stainless steel plate (material SUS304) having a grid portion width of 0.1 mm, an opening portion side of 0.5 mm, and a thickness of 0.1 mm formed into a cylindrical shape having an inner diameter of 1 cm and a length of 2 cm is used. did. Except that, a density gradient nonwoven fabric was produced in the same manner as in Example 1.

図6(a)〜図6(d)は、静電噴霧時間をそれぞれ5分間、10分間、15分間及び20分間とした場合に作製された本実施例の密度勾配型不織布の一部を拡大した写真である。これらの図から明らかなように、静電噴霧時間を調整することによってウェブ状の低密度部分の密度や厚みを制御することが可能であった。   6 (a) to 6 (d) are enlarged views of a part of the density gradient type nonwoven fabric of this example produced when the electrostatic spraying time is 5 minutes, 10 minutes, 15 minutes and 20 minutes, respectively. It is a photograph. As is clear from these figures, it was possible to control the density and thickness of the low density portion of the web by adjusting the electrostatic spraying time.

実施例2の密度勾配型不織布(高密度部の厚み約1.2mm)は、電子顕微鏡写真を撮影した結果、平均繊維径が約5μmで、繊維径のバラツキは少なかった。繊維表面も非常に平滑であった。また、密度勾配型不織布全体としての形状は、集積用導電体12を形成するステンレスメッシュとほぼ同じであった。   The density-gradient nonwoven fabric of Example 2 (thickness of the high density portion: about 1.2 mm) was photographed with an electron microscope. As a result, the average fiber diameter was about 5 μm, and the fiber diameter variation was small. The fiber surface was also very smooth. Further, the shape of the density gradient nonwoven fabric as a whole was substantially the same as the stainless steel mesh forming the accumulation conductor 12.

また、実施例2の密度勾配型不織布は、使用した集積用導電体12の格子部が実施例1と比較すると平面的であったため、高密度部分の形状が実施例1の密度勾配型不織布よりも平面的であった。そして、機械的な強度も、実施例1の密度勾配型不織布よりも勝っていた。   In addition, the density gradient type nonwoven fabric of Example 2 was flat compared to Example 1 in the grid portion of the used accumulation conductor 12, so that the shape of the high density portion was higher than that of the density gradient type nonwoven fabric of Example 1. Was also flat. The mechanical strength was also superior to the density gradient nonwoven fabric of Example 1.

[実施例3]
次に、実施例3として、乳酸/グリコール酸共重合体(以下、PLGAという)(平均分子量22万、乳酸:グリコール酸=75:25(モル比))をジクロロメタンに溶解させ、15重量%とした溶液を紡績液として使用した。なお、PCL濃度は、10重量%以上30重量%以下であることが好ましく、12重量%以上20重量%以下であることがより好ましい。
[Example 3]
Next, as Example 3, a lactic acid / glycolic acid copolymer (hereinafter referred to as PLGA) (average molecular weight 220,000, lactic acid: glycolic acid = 75: 25 (molar ratio)) was dissolved in dichloromethane to obtain 15% by weight. The solution obtained was used as the spinning solution. The PCL concentration is preferably 10% by weight or more and 30% by weight or less, and more preferably 12% by weight or more and 20% by weight or less.

集積用導電体12は、実施例2と同じものを使用した。また、20 kVの直流電圧を印加し、PLGAジクロロメタン溶液の押出圧力を0.05MPaとしたこと以外、すべて実施例2と同様にして密度勾配型不織布を製造した(静電噴霧時間約10分間)。なお、実施例3の密度勾配型不織布の一部を拡大した写真を、図7に示す。   The same integration conductor 12 as that of Example 2 was used. A density gradient nonwoven fabric was produced in the same manner as in Example 2 except that a DC voltage of 20 kV was applied and the extrusion pressure of the PLGA dichloromethane solution was 0.05 MPa (electrostatic spraying time of about 10 minutes). In addition, the photograph which expanded a part of density gradient type nonwoven fabric of Example 3 is shown in FIG.

実施例3の密度勾配型不織布は、電子顕微鏡写真を撮影した結果、平均繊維径が約5μmで、繊維径のバラツキは少なかった。繊維表面も非常に平滑であった。また、密度勾配型不織布全体としての形状は、集積用導電体12を形成するステンレスメッシュとほぼ同じであった。   As a result of taking an electron micrograph, the density gradient nonwoven fabric of Example 3 had an average fiber diameter of about 5 μm and a small variation in fiber diameter. The fiber surface was also very smooth. Further, the shape of the density gradient nonwoven fabric as a whole was substantially the same as the stainless steel mesh forming the accumulation conductor 12.

[実施例4]
次に、実施例4として、コラーゲンを含む溶液を紡績液として使用した。まず、可溶性コラーゲンをpH2に調整した塩酸に溶解させた後、ろ過してコラーゲン水溶液を得た。次に、このコラーゲン水溶液に対して20重量%の割合でヘキサフルオロイソプロパノール(HFIP)を添加して、コラーゲン溶液を得た(20重量%HFIP溶液におけるコラーゲン濃度は6.5重量%)。
[Example 4]
Next, as Example 4, a solution containing collagen was used as a spinning solution. First, soluble collagen was dissolved in hydrochloric acid adjusted to pH 2 and then filtered to obtain an aqueous collagen solution. Next, hexafluoroisopropanol (HFIP) was added at a rate of 20% by weight to the collagen aqueous solution to obtain a collagen solution (collagen concentration in the 20% by weight HFIP solution was 6.5% by weight).

なお、コラーゲン溶液中の水とHFIPの重量比は、8:2〜5:5とすることが好ましく、コラーゲン溶液におけるコラーゲン含量は、5重量%以上10重量%以下であることが好ましい。   The weight ratio of water and HFIP in the collagen solution is preferably 8: 2 to 5: 5, and the collagen content in the collagen solution is preferably 5% by weight to 10% by weight.

コラーゲン水溶液は、粘度が高く、そのままの状態では静電噴霧によってコラーゲン繊維を製造することはできないが、HFIPを添加することにより、粘度が低下して静電噴霧によってコラーゲン繊維を製造することが可能となった。   Collagen aqueous solution has high viscosity, and collagen fibers cannot be produced by electrostatic spraying as it is, but by adding HFIP, it is possible to produce collagen fibers by electrostatic spraying with reduced viscosity. It became.

集積用導電体12は、20メッシュのステンレス網(2cm×3cmの長方形、材質SUS304、ステンレス線の直径0.2mm)を、円柱状に形成したものを使用した。また、25 kVの直流電圧を印加し、上記コラーゲン溶液の押出圧力を0.1MPaとしたこと以外、すべて実施例1と同様にして密度勾配型不織布を製造した。なお、実施例4の密度勾配型不織布の一部を拡大した写真を、図8に示す。   As the integration conductor 12, a 20 mesh stainless steel net (2 cm × 3 cm rectangle, material SUS304, stainless steel wire diameter 0.2 mm) formed in a cylindrical shape was used. A density gradient nonwoven fabric was produced in the same manner as in Example 1 except that a DC voltage of 25 kV was applied and the extrusion pressure of the collagen solution was 0.1 MPa. In addition, the photograph which expanded a part of density gradient type nonwoven fabric of Example 4 is shown in FIG.

実施例4の密度勾配型不織布は、電子顕微鏡写真を撮影した結果、平均繊維径が約5μmで、繊維径のバラツキは少なかった。繊維表面も非常に平滑であった。また、密度勾配型不織布全体としての形状は、集積用導電体12を形成するステンレスメッシュとほぼ同じであった。   As a result of taking an electron micrograph, the density gradient nonwoven fabric of Example 4 had an average fiber diameter of about 5 μm, and there was little variation in the fiber diameter. The fiber surface was also very smooth. Further, the shape of the density gradient nonwoven fabric as a whole was substantially the same as the stainless steel mesh forming the accumulation conductor 12.

なお、実施例2において、集積用導電体12の開口部(正方形の場合)の1辺が0.25mm以上20mm以下の範囲では、密度勾配型不織布が形成されるが、開口部の1辺が20mmを超えると、図9に示すような紐状不織布となる傾向が認められた。一方、開口部の1辺が0.25mm未満になると、高密度部分と低密度部分との区別ができなくなり、通常の不織布となる傾向が認められた。そして、このような現象は、実施例1、実施例3及び実施例4にも共通して確認された。   In Example 2, the density gradient nonwoven fabric is formed in the range where one side of the opening (in the case of a square) of the integrating conductor 12 is not less than 0.25 mm and not more than 20 mm, but one side of the opening is 20 mm. When it exceeded, the tendency which becomes a string-like nonwoven fabric as shown in FIG. 9 was recognized. On the other hand, when one side of the opening was less than 0.25 mm, the high density portion and the low density portion could not be distinguished, and a tendency to become a normal nonwoven fabric was recognized. Such a phenomenon was confirmed in common with Example 1, Example 3, and Example 4.

本発明の密度勾配型不織布及びその製造方法は、細胞培養等の生物関連分野だけでなく、不織布フィルターを使用する化学、機械等の幅広い産業分野において有用である。   The density gradient nonwoven fabric and the method for producing the same of the present invention are useful not only in biological fields such as cell culture, but also in a wide range of industrial fields such as chemistry and machinery using a nonwoven fabric filter.

本発明のコラーゲン繊維の製造方法において使用する静電噴霧装置の一例を示す概略図である。It is the schematic which shows an example of the electrostatic spray apparatus used in the manufacturing method of the collagen fiber of this invention. 集積用導電体の一例を説明する図であり、図2(a)は格子状の導電板、図2(b)はそれを形成した集積用導電体の外観図である。It is a figure explaining an example of the conductor for integration, FIG. 2 (a) is a grid | lattice-like electroconductive board, FIG.2 (b) is an external view of the conductor for integration which formed it. 静電噴霧装置を作動させた時の、金属製ノズル下端部付近の紡績液の状態を示す拡大概略図である。It is an enlarged schematic diagram which shows the state of the spinning liquid near a metal nozzle lower end part when operating an electrostatic spraying apparatus. 本発明の密度勾配型不織布の製造方法における集積用導電体への繊維集積状体を説明する概念図である。It is a conceptual diagram explaining the fiber integration | stacking body to the conductor for integration | stacking in the manufacturing method of the density gradient type nonwoven fabric of this invention. 実施例1の密度勾配型不織布の一部を拡大した写真である。2 is an enlarged photograph of a part of the density gradient nonwoven fabric of Example 1. 実施例2の密度勾配型不織布の一部を拡大した写真であり、図6(a)は5分間、図6(b)は10分間、図6(c)は15分間、図6(d)は20分間静電噴霧した場合の密度勾配型不織布である。It is the photograph which expanded a part of density gradient type nonwoven fabric of Example 2, FIG.6 (a) is 5 minutes, FIG.6 (b) is 10 minutes, FIG.6 (c) is 15 minutes, FIG.6 (d). Is a density gradient nonwoven fabric when sprayed for 20 minutes. 実施例3の密度勾配型不織布の一部を拡大した写真である。It is the photograph which expanded a part of density gradient type nonwoven fabric of Example 3. FIG. 実施例4の密度勾配型不織布の一部を拡大した写真である。It is the photograph which expanded a part of density gradient type nonwoven fabric of Example 4. FIG. 実施例2と同じ条件で、集積用導電体の開口部の1辺を、25mmとした場合に形成される紐状不織布の一部を拡大した写真である。It is the photograph which expanded a part of string-like nonwoven fabric formed on the same conditions as Example 2 when one side of the opening part of the conductor for integration is 25 mm.

符号の説明Explanation of symbols

1:静電噴霧装置
2:密閉容器
3:絶縁板
4:金属製ホルダー
5:金属製ノズル
6:高圧電源
7:送液配管
8:別の密閉容器
9:容器
10:紡績液
11:コンプレッサー
12:集積用導電体
13:モーター
14:アース
15:帯電微小ミスト
16:カバー
17:支柱
18:ゴムリング
21:導電板
22:格子部
23:開口部
24:内孔
25:有機性繊維
1: Electrostatic spraying device 2: Sealed container 3: Insulating plate 4: Metal holder 5: Metal nozzle 6: High-pressure power supply 7: Liquid supply pipe 8: Another sealed container 9: Container 10: Spinning liquid 11: Compressor 12 : Conductor for integration 13: Motor 14: Ground 15: Charged micro mist 16: Cover 17: Strut 18: Rubber ring 21: Conductive plate 22: Grid part 23: Opening part 24: Inner hole 25: Organic fiber

Claims (9)

有機重合性物質を有機溶媒に溶解させた紡績液を調製する調製工程と、
複数の開口部を有する円筒状の集積用導電体を回転させながら、前記紡績液に高電圧を印加して、アースを施した前記集積用導電体に向かって静電噴霧することにより、静電紡糸有機性繊維を前記集積用導電体の外表面上に不織布として形成させる静電噴霧工程とを含み、
前記不織布が、高密度部分と、高密度部分に取り囲まれたウェブ状の低密度部分とを有することを特徴とする密度勾配型不織布の製造方法。
A preparation step of preparing a spinning solution in which an organic polymerizable substance is dissolved in an organic solvent;
While rotating a cylindrical accumulating conductor having a plurality of openings, a high voltage is applied to the spinning solution and electrostatic spraying is performed toward the accumulating conductor that is grounded. An electrostatic spraying step of forming a spun organic fiber as a non-woven fabric on the outer surface of the conductor for accumulation,
The said nonwoven fabric has a high density part and the web-shaped low density part enclosed by the high density part, The manufacturing method of the density gradient type nonwoven fabric characterized by the above-mentioned.
前記有機重合性物質がポリカプロラクトン、ヒドロキシアルカノエートの単重合体又は共重合体、コラーゲン又は乳酸/グリコール酸共重合体である請求項1に記載の密度勾配型不織布の製造方法。   The method for producing a density gradient nonwoven fabric according to claim 1, wherein the organic polymerizable substance is a polycaprolactone, a hydroxyalkanoate homopolymer or copolymer, collagen or a lactic acid / glycolic acid copolymer. 前記紡績液への印加電圧が5kV以上40kV以下である請求項1又は2に記載の密度勾配型不織布の製造方法。   The method for producing a density gradient nonwoven fabric according to claim 1 or 2, wherein a voltage applied to the spinning liquid is 5 kV or more and 40 kV or less. 前記不織布の高密度部分の厚みが、0.1mm以上2mm以下である請求項1乃至3のいずれか1項に記載の密度勾配型不織布の製造方法。   The method for producing a density gradient nonwoven fabric according to any one of claims 1 to 3, wherein a thickness of the high density portion of the nonwoven fabric is 0.1 mm or more and 2 mm or less. 前記不織布の平均繊維径が、0.1μm以上20μm以下である請求項1乃至4のいずれか1項に記載の密度勾配型不織布の製造方法。   The method for producing a density gradient nonwoven fabric according to any one of claims 1 to 4, wherein an average fiber diameter of the nonwoven fabric is 0.1 µm or more and 20 µm or less. 有機重合性物質を静電紡糸した有機性繊維から構成される不織布であって、
高密度部分と、
高密度部分に取り囲まれたウェブ状の低密度部分とを有する密度勾配型不織布。
A non-woven fabric composed of organic fibers obtained by electrostatic spinning of an organic polymerizable material,
With high density parts,
A density gradient nonwoven fabric having a web-like low density portion surrounded by a high density portion.
前記有機重合性物質がポリカプロラクトン、3-ヒドロキシ酪酸/3-ヒドロキシヘキサン酸共重合体、コラーゲン又は乳酸/グリコール酸共重合体である請求項6に記載の密度勾配型不織布。   The density gradient nonwoven fabric according to claim 6, wherein the organic polymerizable substance is polycaprolactone, 3-hydroxybutyric acid / 3-hydroxyhexanoic acid copolymer, collagen, or lactic acid / glycolic acid copolymer. 前記不織布の高密度部分の厚みが、0.1mm以上2mm以下である請求項6又は7に記載の密度勾配型不織布。   The density gradient nonwoven fabric according to claim 6 or 7, wherein a thickness of the high density portion of the nonwoven fabric is 0.1 mm or more and 2 mm or less. 平均繊維径が、0.1μm以上20μm以下である請求項6乃至8のいずれか1項に記載の密度勾配型不織布。

The density gradient nonwoven fabric according to any one of claims 6 to 8, wherein an average fiber diameter is 0.1 µm or more and 20 µm or less.

JP2006132445A 2006-05-11 2006-05-11 Method for producing density gradient nonwoven fabric Expired - Fee Related JP4979264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132445A JP4979264B2 (en) 2006-05-11 2006-05-11 Method for producing density gradient nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006132445A JP4979264B2 (en) 2006-05-11 2006-05-11 Method for producing density gradient nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2007303021A true JP2007303021A (en) 2007-11-22
JP4979264B2 JP4979264B2 (en) 2012-07-18

Family

ID=38837192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132445A Expired - Fee Related JP4979264B2 (en) 2006-05-11 2006-05-11 Method for producing density gradient nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4979264B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112564A1 (en) * 2009-04-01 2010-10-07 Centro De Estudios E Investigaciones Técnicas De Gipuzkoa Template-supported method of forming patterns of nanofibers in the electrospinning process and uses of said nanofibers
WO2011077958A1 (en) * 2009-12-25 2011-06-30 東洋紡績株式会社 Aggregates of collagen fibers, and process for production thereof
JP2013034986A (en) * 2011-07-13 2013-02-21 Panasonic Corp Air filter and manufacturing method thereof, and air cleaning device with the air filter attached
EP2585629A2 (en) * 2010-06-28 2013-05-01 Virginia Commonwealth University Air impedance electrospinning for controlled porosity
JP2013087389A (en) * 2011-10-18 2013-05-13 Honda Motor Co Ltd Porous sheet and method of manufacturing the same
EP2592180A1 (en) * 2011-11-14 2013-05-15 Cook Medical Technologies LLC Electrospun patterned stent graft covering
JP2015535893A (en) * 2012-09-21 2015-12-17 ワシントン・ユニバーシティWashington University Medical patch with spatially arranged fibers
CN107532334A (en) * 2016-03-18 2018-01-02 株式会社东芝 The manufacture method of electrospinning device and accumulation body
JP2018027310A (en) * 2017-08-24 2018-02-22 ワシントン・ユニバーシティWashington University Medical patch having spatially arranged fiber
US10080687B2 (en) 2012-09-21 2018-09-25 Washington University Biomedical patches with spatially arranged fibers
US10154918B2 (en) 2012-12-28 2018-12-18 Cook Medical Technologies Llc Endoluminal prosthesis with fiber matrix
CN109154105A (en) * 2016-04-20 2019-01-04 克拉考公司 High molecular weight and low molecular weight fine fiber and TPU fine fiber
JPWO2017212544A1 (en) * 2016-06-07 2019-04-04 株式会社 フューエンス Nanofiber structure made of polyhydroxyalkanoic acid and non-woven fabric
US10588734B2 (en) 2010-06-17 2020-03-17 Washington University Biomedical patches with aligned fibers
US10632228B2 (en) 2016-05-12 2020-04-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557060A (en) * 1978-10-10 1980-04-26 Ici Ltd Antiistatic spun yarn product and production
JPH03161563A (en) * 1989-11-17 1991-07-11 I C I Japan Kk Fibrous aggregate
JP2004530054A (en) * 2001-03-20 2004-09-30 ナイキャスト リミテッド Method and apparatus for improving the mechanical properties of nonwoven materials
WO2004087012A1 (en) * 2003-03-31 2004-10-14 Teijin Limited Composite of support substrate and collagen, and process for producing support substrate and composite
JP2004321484A (en) * 2003-04-24 2004-11-18 Sangaku Renkei Kiko Kyushu:Kk Medical high molecular nano-micro fiber
JP2006283241A (en) * 2005-04-01 2006-10-19 Kanai Hiroaki Method for producing nano-fiber web, nano-fiber web or laminate, collector electrode and nano-fiber web production apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557060A (en) * 1978-10-10 1980-04-26 Ici Ltd Antiistatic spun yarn product and production
JPH03161563A (en) * 1989-11-17 1991-07-11 I C I Japan Kk Fibrous aggregate
JP2004530054A (en) * 2001-03-20 2004-09-30 ナイキャスト リミテッド Method and apparatus for improving the mechanical properties of nonwoven materials
WO2004087012A1 (en) * 2003-03-31 2004-10-14 Teijin Limited Composite of support substrate and collagen, and process for producing support substrate and composite
JP2004321484A (en) * 2003-04-24 2004-11-18 Sangaku Renkei Kiko Kyushu:Kk Medical high molecular nano-micro fiber
JP2006283241A (en) * 2005-04-01 2006-10-19 Kanai Hiroaki Method for producing nano-fiber web, nano-fiber web or laminate, collector electrode and nano-fiber web production apparatus

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010112564A1 (en) * 2009-04-01 2010-10-07 Centro De Estudios E Investigaciones Técnicas De Gipuzkoa Template-supported method of forming patterns of nanofibers in the electrospinning process and uses of said nanofibers
JP5807329B2 (en) * 2009-12-25 2015-11-10 東洋紡株式会社 Aggregate of collagen fibers and method for producing the same
WO2011077958A1 (en) * 2009-12-25 2011-06-30 東洋紡績株式会社 Aggregates of collagen fibers, and process for production thereof
US11000358B2 (en) 2010-06-17 2021-05-11 Washington University Biomedical patches with aligned fibers
US11471260B2 (en) 2010-06-17 2022-10-18 Washington University Biomedical patches with aligned fibers
US11311366B2 (en) 2010-06-17 2022-04-26 Washington University Biomedical patches with aligned fibers
US10588734B2 (en) 2010-06-17 2020-03-17 Washington University Biomedical patches with aligned fibers
US10617512B2 (en) 2010-06-17 2020-04-14 Washington University Biomedical patches with aligned fibers
US10888409B2 (en) 2010-06-17 2021-01-12 Washington University Biomedical patches with aligned fibers
US11096772B1 (en) 2010-06-17 2021-08-24 Washington University Biomedical patches with aligned fibers
US11071617B2 (en) 2010-06-17 2021-07-27 Washington University Biomedical patches with aligned fibers
EP2585629A2 (en) * 2010-06-28 2013-05-01 Virginia Commonwealth University Air impedance electrospinning for controlled porosity
EP2585629A4 (en) * 2010-06-28 2014-05-14 Univ Virginia Commonwealth Air impedance electrospinning for controlled porosity
JP2013034986A (en) * 2011-07-13 2013-02-21 Panasonic Corp Air filter and manufacturing method thereof, and air cleaning device with the air filter attached
JP2013087389A (en) * 2011-10-18 2013-05-13 Honda Motor Co Ltd Porous sheet and method of manufacturing the same
EP2592180A1 (en) * 2011-11-14 2013-05-15 Cook Medical Technologies LLC Electrospun patterned stent graft covering
US9175427B2 (en) 2011-11-14 2015-11-03 Cook Medical Technologies Llc Electrospun patterned stent graft covering
US10682444B2 (en) 2012-09-21 2020-06-16 Washington University Biomedical patches with spatially arranged fibers
US11596717B2 (en) 2012-09-21 2023-03-07 Washington University Three dimensional electrospun biomedical patch for facilitating tissue repair
US10124089B2 (en) 2012-09-21 2018-11-13 Washington University Method of making biomedical patches with spatially arranged fibers
US11253635B2 (en) 2012-09-21 2022-02-22 Washington University Three dimensional electrospun biomedical patch for facilitating tissue repair
US10080687B2 (en) 2012-09-21 2018-09-25 Washington University Biomedical patches with spatially arranged fibers
US10441685B2 (en) 2012-09-21 2019-10-15 Washington University Biomedical patches with spatially arranged fibers
JP2015535893A (en) * 2012-09-21 2015-12-17 ワシントン・ユニバーシティWashington University Medical patch with spatially arranged fibers
US11173234B2 (en) 2012-09-21 2021-11-16 Washington University Biomedical patches with spatially arranged fibers
US10154918B2 (en) 2012-12-28 2018-12-18 Cook Medical Technologies Llc Endoluminal prosthesis with fiber matrix
CN107532334A (en) * 2016-03-18 2018-01-02 株式会社东芝 The manufacture method of electrospinning device and accumulation body
CN107532334B (en) * 2016-03-18 2019-07-16 株式会社东芝 The manufacturing method of electrospinning device and accumulation body
CN109154105A (en) * 2016-04-20 2019-01-04 克拉考公司 High molecular weight and low molecular weight fine fiber and TPU fine fiber
US11826487B2 (en) 2016-05-12 2023-11-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
US11224677B2 (en) 2016-05-12 2022-01-18 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
US10632228B2 (en) 2016-05-12 2020-04-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
JPWO2017212544A1 (en) * 2016-06-07 2019-04-04 株式会社 フューエンス Nanofiber structure made of polyhydroxyalkanoic acid and non-woven fabric
JP2018027310A (en) * 2017-08-24 2018-02-22 ワシントン・ユニバーシティWashington University Medical patch having spatially arranged fiber

Also Published As

Publication number Publication date
JP4979264B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4979264B2 (en) Method for producing density gradient nonwoven fabric
Ding et al. Electrospinning: nanofabrication and applications
JP4908498B2 (en) Electrospinning apparatus for spinning and spinning method
Nadaf et al. Recent update on electrospinning and electrospun nanofibers: current trends and their applications
US20210002788A1 (en) Method and apparatus for accumulating cross-aligned fiber in an electrospinning device
Zhan et al. Grooved fibers: Preparation principles through electrospinning and potential applications
Zhao et al. Nanofibrous patterns by direct electrospinning of nanofibers onto topographically structured non-conductive substrates
Wang et al. Needleless electrospinning of nanofibers: technology and applications
US8337742B2 (en) Bubble launched electrospinning jets
Chronakis Micro-/nano-fibers by electrospinning technology: processing, properties and applications
US10029029B2 (en) Apparatus and method for electrospinning a Nanofiber coating on surfaces of poorly conductive three-dimensional objects
Yousefzadeh et al. A note on the 3D structural design of electrospun nanofibers
US9091007B2 (en) Electrospinning apparatus with a sideway motion device and a method of using the same
Zdraveva et al. Electrospun nanofibers
Bubakir et al. Advances in Melt Electrospinning
JP3184886U (en) Screw fiber generator and electrostatic rod spinning equipment
Zhang et al. Bionic electrospun ultrafine fibrous poly (L-lactic acid) scaffolds with a multi-scale structure
Mishra et al. Electrospun nanofibers
JP2009052171A (en) Method for producing fine fiber aggregate and apparatus therefor
Liu et al. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors
KR101853310B1 (en) Manufacturing method for high dispersion fiber aggregate having expanded inter-fiber space and manufacturing apparatus for the same
CZ303297B6 (en) Device for nozzleless centrifugal production of nanofibers and micro-fibers on surface of rotating cylinders
Joshi et al. 3D Nonwoven Fabrics for Biomedical Applications
KR101865769B1 (en) Cell culture scaffold
CN106555234B (en) A kind of composite screw fiber spinning apparatus and its spinning process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4979264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees