JP2007298489A - Infrared detection device using thermal stress wave focusing phenomenon, thermal stress wave focusing device, and infrared detection method - Google Patents

Infrared detection device using thermal stress wave focusing phenomenon, thermal stress wave focusing device, and infrared detection method Download PDF

Info

Publication number
JP2007298489A
JP2007298489A JP2006152651A JP2006152651A JP2007298489A JP 2007298489 A JP2007298489 A JP 2007298489A JP 2006152651 A JP2006152651 A JP 2006152651A JP 2006152651 A JP2006152651 A JP 2006152651A JP 2007298489 A JP2007298489 A JP 2007298489A
Authority
JP
Japan
Prior art keywords
wave
thermoelastic
focusing device
wave focusing
incident infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006152651A
Other languages
Japanese (ja)
Inventor
Toshiaki Hata
俊明 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006152651A priority Critical patent/JP2007298489A/en
Publication of JP2007298489A publication Critical patent/JP2007298489A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal type sensor that can be applied to a large wave length range, has high response speed, and has a large operation temperature region. <P>SOLUTION: An infrared detection device employing a thermal stress wave focusing phenomenon is a kind of thermal type sensors. A general thermal type sensor uses a method of utilizing the temperature increase of the sensor, but the present thermal type sensor focuses the thermal elastic wave momentarily excited by shocking thermal expansion by absorbed heat quantity of incoming infrared radiation, converts it into an electric signal, and measures it. Therefore, the present thermal type sensor has a response speed about 1000 times that of a sensor utilizing the temperature increase, and can be operated even at the applied temperature region of 1000°C or higher, and the structure is extremely simple. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、0.7μm〜300μm程度の広い波長域にある赤外線レーザなどの赤外線を5μsec以下の短い応答時間で、1000℃以上の厳しい熱負荷にも耐え、ただ一種類の検出器でその保持するエネルギー強度を検出する赤外線検知装置および方法に関する。  The present invention can withstand a severe heat load of 1000 ° C. or more with a short response time of 5 μsec or less, and hold it with only one type of detector, such as an infrared laser in a wide wavelength range of about 0.7 μm to 300 μm. The present invention relates to an infrared detection apparatus and method for detecting energy intensity.

従来、赤外線レーザなどの赤外線検出用のセンサの原理を大きく分けると、光−電変換を利用した量子型センサと光−熱変換を利用する熱型センサが知られている。量子型センサは、光起電力効果、熱伝導効果、光電子放出を利用したものであり、熱型センサは、導電率の変化、焦電効果、熱起電力効果を利用したものがよく知られている。  Conventionally, when the principle of an infrared detection sensor such as an infrared laser is roughly classified, a quantum sensor using photo-electric conversion and a thermal sensor using photo-thermal conversion are known. Quantum sensors use the photovoltaic effect, thermal conduction effect, and photoemission, and thermal sensors are well known that use the change in conductivity, pyroelectric effect, and thermoelectric effect. Yes.

赤外線レーザなどを検知する赤外線センサの性能を支配するものは、センサの適用波長域と応答時間及び稼動温度領域などである。量子型センサの多くは、応答は速いが、適用波長域は狭く、動作温度はセンサ温度があまり急激に上昇すると破壊されるため、中および高パワー赤外線レーザのパワーの一部のみ吸収することによって作動させるか、または、冷却タイプとなっている。  What governs the performance of an infrared sensor that detects an infrared laser or the like is the applicable wavelength range, response time, and operating temperature range of the sensor. Many quantum sensors have a fast response but a narrow application wavelength range, and the operating temperature is destroyed when the sensor temperature rises too rapidly, so it absorbs only part of the power of medium and high power infrared lasers. It can be operated or cooled.

適用温度領域について、量子型センサは電子を発生させるため一般に低温で、室温以上の高温で作動させるものは僅少である。また、熱型センサは、高温の状態では、センサ自身が高温となるためレーザなどの赤外線の熱量を瞬時に計測することは不可能である。  In the application temperature range, quantum sensors are generally low in temperature to generate electrons, and few are operated at high temperatures above room temperature. Moreover, since the thermal sensor itself is at a high temperature in a high temperature state, it is impossible to instantaneously measure the amount of heat of infrared rays such as a laser.

熱型センサのような熱吸収を利用して応答検知するセンサには、発熱を抵抗体や熱電対に伝えて電気信号に変える方法がよく知られているが、応答はきわめて低速で、secオーダか、速いものでもmmsecオーダで、この検知方法では、量子型センサの応答の速さは得られないとされてきた。  For a sensor that detects response using heat absorption, such as a thermal sensor, a method of transmitting heat to a resistor or thermocouple to convert it into an electrical signal is well known, but the response is very slow and is on the order of sec. Even a fast one is in the order of mmsec, and it has been said that this detection method cannot provide a response speed of the quantum sensor.

発明が解決しようとしている課題Problems the invention is trying to solve

前記した如く、熱型センサの特徴である広い波長域に適用でき、かつ、応答が速く、稼動温度領域の広い熱型センサの開発が喫緊の課題となっている。  As described above, it is an urgent issue to develop a thermal sensor that can be applied to a wide wavelength range, which is a characteristic of a thermal sensor, has a quick response, and has a wide operating temperature range.

課題を解決するための手段Means for solving the problem

上記の目的を達成するために、本発明の熱応力波焦点化現象を用いた赤外線検知装置は、熱型センサの一種であるが、一般の熱型センサがセンサの温度上昇を利用する方法をとっているのに対し、吸収赤外線の熱量による衝撃的熱膨張により瞬間的に励起される熱弾性波を焦点化して電気信号に変換して計測しているため、温度上昇を利用する熱型センサに比べて応答は1000倍程度速く、適用温度領域は1000℃以上でも稼動させることが可能で、かつ、構造が非常に簡便である事を特徴としている。  In order to achieve the above object, the infrared detection device using the thermal stress wave focusing phenomenon of the present invention is a kind of thermal sensor, but a method in which a general thermal sensor uses the temperature rise of the sensor. On the other hand, the thermal sensor that uses the temperature rise is measured because the thermoelastic wave that is instantaneously excited by the shock thermal expansion due to the amount of heat of the absorbed infrared rays is focused and converted into an electrical signal. Compared to the above, the response is about 1000 times faster, the application temperature region can be operated even at 1000 ° C. or more, and the structure is very simple.

作用Action

かかる赤外線検知装置および検知方法によれば、断続励起された中位パワーあるいは高パワーのレーザを含む赤外線の全出力を受取るように露出された受光部で吸収した赤外線の量に比例して、球の表面の熱吸収により瞬間的に球面熱弾性波が生じ、これが球の中心に焦点化し大きな弾性波を生ずる。前記弾性波は縦波と横波で構成されているので、これを液状粘性グリス層通過処理により縦波だけに選別し、圧電素子で電気信号に変換して計測すれば、照射される赤外線の強さが正確に計測される。この熱弾性波は瞬間的な温度変化により励起し、その伝播速度は音速の速さをもち、印加温度が環境温度との温度差があれば作動するので、測定環境がいかに高温でも作動するという特徴を有している。そのため、適用温度領域が広い上に、応答をμsec以下にまで速くする事が可能となる。  According to such an infrared detection device and detection method, the sphere is proportional to the amount of infrared light absorbed by the light receiving unit exposed so as to receive all output of infrared light including intermittently excited medium power or high power laser. Due to the heat absorption of the surface, a spherical thermoelastic wave is instantaneously generated, which is focused on the center of the sphere to generate a large elastic wave. Since the elastic wave is composed of a longitudinal wave and a transverse wave, if the acoustic wave is selected as a longitudinal wave by a liquid viscous grease layer passing process and converted into an electrical signal by a piezoelectric element and measured, the intensity of the irradiated infrared rays is increased. Is measured accurately. This thermoelastic wave is excited by an instantaneous temperature change, and its propagation speed has a speed of sound, and it operates if the applied temperature has a temperature difference from the environmental temperature, so that it operates even if the measurement environment is high. It has characteristics. For this reason, the application temperature range is wide and the response can be accelerated to μsec or less.

以下、図1から図9の図面を参照しながらこの発明の実施例を詳細に説明する。  Embodiments of the present invention will be described in detail below with reference to the drawings of FIGS.

図5に基づいて本発明の熱応力波焦点化現象を用いた赤外線検知装置の一実施例を説明する。図5において、赤外線レーザ発振器はSpectra−Physics社製DCR−11QスイッチNd:YAGレーザ(18)で、第2高調波(532nm)を用いている。発射されたレーザは鏡(19)で反射され焦点距離200mmの凸レンズ(20)で焦点化される。凸レンズ通過後の光線は、分光板(21)で2方向に分岐される。一方は入力レーザエネルギー量測定のためNDフィルタ(22)通過後Molectron社製のJE−05熱量計(23)に入射し、その出力情報は電圧の変化としてKIKUSUI製デジタルオシロスコープCOR−5501(26)のchannel2(ch2)に入力される。一方、直進したレーザ光は、熱弾性波焦点化装置(24)に入射され、入射赤外線に応答する電圧を検知して、NF回路設計ブロック製AE−9501の増幅器(25)で増幅後デジタルオシロスコープCOR−5501(26)のchannel1(ch1)に入力される。この二方向の入力を数値化してデータ処理コンピュータ(27)で処理することにより、前記赤外線のパワーまたはエネルギの表示を取得することを特徴とする赤外線検知装置である。  An embodiment of an infrared detector using the thermal stress wave focusing phenomenon of the present invention will be described with reference to FIG. In FIG. 5, the infrared laser oscillator is a DCR-11Q switch Nd: YAG laser (18) manufactured by Spectra-Physics, and uses a second harmonic (532 nm). The emitted laser is reflected by a mirror (19) and focused by a convex lens (20) having a focal length of 200 mm. The light beam that has passed through the convex lens is branched in two directions by the spectroscopic plate (21). One is input to the JE-05 calorimeter (23) manufactured by Spectron after passing through the ND filter (22) for measuring the amount of input laser energy, and the output information is a change in voltage as a digital oscilloscope COR-5501 (26) manufactured by KIKUSUI. Channel2 (ch2). On the other hand, the straight laser beam is incident on the thermoelastic wave focusing device (24), detects the voltage responding to the incident infrared ray, and is amplified by the amplifier (25) of AE-9501 made by NF circuit design block and then the digital oscilloscope. It is input to channel 1 (ch1) of COR-5501 (26). The infrared detection apparatus is characterized in that a display of the infrared power or energy is obtained by digitizing the input in the two directions and processing it by a data processing computer (27).

前記記載の熱弾性波焦点化装置(26)の内、図1記載の球形熱弾性波焦点化装置は、球形固体(2)に直径10mmの光学ガラスS−LAH79ボールレンズを使用し、前記球レンズには中心に到達する導波管用の直径1.5mmの円柱状の穴(3)を備え、前記穴に,直径1mm,長さ18.8mmの光ファイバーを固着し導波管(4)としている。さらに,前記球レンズの円柱穴に同軸となるような球表面に入射赤外線を感応吸収するコーティングとして黒色塗装を施し受光部(1)とし、圧電素子(6)には共振周波数500kHzのNF回路設計ブロック製AE−904PのPZT圧電素子を用いている。Among the thermoelastic wave focusing devices (26) described above, the spherical thermoelastic wave focusing device shown in FIG. 1 uses an optical glass S-LAH79 ball lens having a diameter of 10 mm for the spherical solid (2), and the spherical The lens is provided with a cylindrical hole (3) having a diameter of 1.5 mm for the waveguide reaching the center, and an optical fiber having a diameter of 1 mm and a length of 18.8 mm is fixed to the hole as a waveguide (4). Yes. Further, a black coating is applied to the surface of the sphere that is coaxial with the cylindrical hole of the spherical lens as a light-sensitive part (1) as a coating that sensitively absorbs incident infrared rays, and the piezoelectric element (6) has an NF circuit design with a resonance frequency of 500 kHz. A block AE-904P PZT piezoelectric element is used.

前記記載の熱弾性波焦点化装置(24)の内、図2記載の半球形熱弾性波焦点化装置は、半球形固体(9)にBK−7(ホウケイ酸クラウン光学ガラス)のオリオン・オプティクス社製直径10mmの半球レンズを使用し、前記半球レンズの中心軸と同軸となるように球表面に入射赤外線を感応吸収するコーティングとして黒色塗装施し受光部(1)とし、圧電素子(6)には共振周波数500kHzのNF回路設計ブロック製AE−904PのPZT圧電素子を用いている。Among the thermoelastic wave focusing devices (24) described above, the hemispherical thermoelastic wave focusing device shown in FIG. 2 is a hemispherical solid (9) made of BK-7 (borosilicate crown optical glass) Orion Optics. A 10 mm diameter hemispherical lens is used, and the sphere surface is coated with black as a coating that sensitively absorbs incident infrared rays so as to be coaxial with the central axis of the hemispherical lens. Uses an AE-904P PZT piezoelectric element manufactured by an NF circuit design block having a resonance frequency of 500 kHz.

図1の前記球レンズ製球形熱弾性波焦点化装置の受光部(1)に赤外線を照射すると吸収した熱量に比例して,球レンズ表面のガラス層が急激に加熱されるため衝撃的熱膨張により瞬間的に球面弾性波が生じ,これが弾性波伝播領域(8)を通過し球レンズの中心で焦点化し大きな弾性波を生ずる。これが熱応力波焦点化現象である。出力弾性波はグリス層通過で縦波弾性波のみに分離され、圧電素子(6)で電圧に変換されるため、出力電圧を計測すれば,照射される赤外線のエネルギー強度が正確に計測される。Since the glass layer on the surface of the spherical lens is rapidly heated in proportion to the amount of heat absorbed when the light receiving part (1) of the spherical thermoelastic wave focusing device of FIG. Due to this, a spherical elastic wave is instantaneously generated, which passes through the elastic wave propagation region (8) and is focused at the center of the spherical lens to generate a large elastic wave. This is the thermal stress wave focusing phenomenon. Since the output elastic wave passes through the grease layer and is separated only into a longitudinal elastic wave and is converted into a voltage by the piezoelectric element (6), if the output voltage is measured, the energy intensity of the irradiated infrared rays can be accurately measured. .

図6は前記球形熱弾性波焦点化装置での電圧出力情報を経過時間で記録格納した計測結果の一例である。channel2(ch2)の入力に対し、channel1(ch1)の出力が応答する。図6より本発明の赤外線検知装置の応答は4μsec程度と非常に速く、入射レーザエネルギー強度を大きな電圧振幅として利得表示している。本発明の赤外線検知方法は前記電圧波形の第一周期の最大振幅が時間軸となす時間軸より上の面積(28)と時間軸より下の面積(29)との和により入射赤外線強度を検知することを特徴とする。FIG. 6 shows an example of a measurement result in which voltage output information in the spherical thermoelastic wave focusing device is recorded and stored as an elapsed time. The output of channel1 (ch1) responds to the input of channel2 (ch2). From FIG. 6, the response of the infrared detecting device of the present invention is very fast, about 4 μsec, and the gain laser energy intensity is displayed as a large voltage amplitude. The infrared detection method of the present invention detects the incident infrared intensity by the sum of the area (28) above the time axis and the area (29) below the time axis that the maximum amplitude of the first period of the voltage waveform is the time axis. It is characterized by doing.

図6は請求項2記載の球形熱弾性波焦点化装置での電圧出力情報を経過時間で記録格納した計測結果の一例であるが、請求項3記載の半球形熱弾性波焦点化装置を使用した際においても同様の電圧出力情報が得られることは明らかである。FIG. 6 is an example of a measurement result in which the voltage output information in the spherical thermoelastic wave focusing device according to claim 2 is recorded and stored as an elapsed time, but the hemispherical thermoelastic wave focusing device according to claim 3 is used. It is clear that the same voltage output information can be obtained even when this is done.

図7は直径10mmの光学ガラスS−LAH79ボールレンズ製球形熱弾性波焦点化装置を用いた際の本発明の赤外線検知装置により得られたV・μsecーレーザエネルギー強度特性曲線であり、縦軸に前記面積V・μSをとり、横軸には入射赤外線エネルギー強度をとっている。従って、縦軸の値が決まれば入射赤外線強度が決定される。FIG. 7 is a V · μsec-laser energy intensity characteristic curve obtained by the infrared detector of the present invention when a spherical thermoelastic wave focusing device made of an optical glass S-LAH79 ball lens having a diameter of 10 mm is used. The area V · μS is taken and the horizontal axis represents the incident infrared energy intensity. Therefore, if the value of the vertical axis is determined, the incident infrared intensity is determined.

図8は半球形固体(2)にBK−7(ホウケイ酸クラウン光学ガラス)のオリオン・オプティクス社製直径10mmの半球レンズを使用した半球形熱弾性波焦点化装置を用いた際の本発明の赤外線検知装置により得られたV・μsecーレーザエネルギー強度特性曲線であり、縦軸にV・μSをとり、横軸には入射赤外線エネルギー強度をとっている。特性曲線は、ほぼ比例関係にあるため縦軸の値が決まれば容易に入射赤外線強度が決定される。FIG. 8 shows a case of using a hemispherical thermoelastic wave focusing apparatus using a hemispherical solid (2) and a hemispherical lens made of Orion Optics of BK-7 (borosilicate crown optical glass). This is a V · μsec-laser energy intensity characteristic curve obtained by an infrared detector, with the vertical axis representing V · μS and the horizontal axis representing incident infrared energy intensity. Since the characteristic curve has a substantially proportional relationship, the incident infrared intensity can be easily determined if the value of the vertical axis is determined.

図7及び図8の特性曲線は、室温で計測されたもので、レーザによる温度上昇は数度程度でこの特性曲線に影響を与えるものではない。この実験を1000℃以上の高温で行う場合、熱弾性波焦点化装置の製作材料を高温で破壊しない材料で製作し、特性曲線に温度補正を加えれば、高温においても本発明による特性曲線が得られる事は明らかである。The characteristic curves in FIGS. 7 and 8 are measured at room temperature, and the temperature rise due to the laser is about several degrees and does not affect the characteristic curve. When this experiment is performed at a high temperature of 1000 ° C. or higher, if the thermoelastic wave focusing device is made of a material that does not break at a high temperature, and the temperature correction is applied to the characteristic curve, the characteristic curve according to the present invention can be obtained even at a high temperature. It is clear that

図9は、請求項5記載の焦点化装置計測盤(12)による入射赤外線強度分布より赤外線発射源(13)の方向とパワーを特定する赤外線検知方法の原理を説明したものである。図9において、例えば、X軸を回転移動させる事により、複数個の熱弾性波焦点化装置により計測される円錐状分布となる吸収赤外線強度分布の断面が二等辺三角形になるような位置でX軸を固定しX’軸をすれば、二等辺三角形の底角と底辺の長さが既知であることよりレーザ発射源(13)の方向と距離、吸収赤外線強度より赤外線発射源のパワーも検出し得る。FIG. 9 illustrates the principle of an infrared detection method for identifying the direction and power of the infrared emission source (13) from the incident infrared intensity distribution by the focusing device measurement panel (12) according to claim 5. In FIG. 9, for example, by rotating and moving the X axis, the X-ray absorption intensity distribution, which is a conical distribution measured by a plurality of thermoelastic wave focusing devices, has an isosceles triangular cross section. If the axis is fixed and the X ′ axis is set, the base angle and base length of the isosceles triangle are known, and the direction and distance of the laser emission source (13) and the power of the infrared emission source are detected from the absorbed infrared intensity. Can do.

発明の効果The invention's effect

以上のように、請求項2及び請求項3に記載した熱弾性波焦点化装置を備えた、請求項1記載の赤外線検知装置は、請求項4記載の検知方法により、高パワーのレーザを含む断続励起された赤外線を、広い適用波長域で、かつ、5sec程度の非常な速さで応答を検知する事が可能で、稼動温度領域の広い検知装置となっている。また、本発明の赤外線検知装置の構造が非常に簡単に構成されているため、故障も少なく製作費用も安価である。また、請求項5記載の複数個組み合わせて構成される焦点化装置配置計測盤をもちいれば、いかなる場所に於いても容易にレーザ源の方向と距離、強さを検知することが出来る。従って、本発明により熱型赤外線センサの性能が著しく改善される事が期待できる。As described above, the infrared detection device according to claim 1 including the thermoelastic wave focusing device according to claim 2 and claim 3 includes a high-power laser by the detection method according to claim 4. It is possible to detect the response of intermittently excited infrared rays in a wide applicable wavelength range and at a very high speed of about 5 seconds, and the detector has a wide operating temperature range. In addition, since the structure of the infrared detection device of the present invention is very simple, there are few failures and low manufacturing costs. Further, by using the focusing device arrangement measuring panel constructed by combining a plurality of claims, the direction, distance and intensity of the laser source can be easily detected at any location. Therefore, it can be expected that the performance of the thermal infrared sensor is remarkably improved by the present invention.

図1は球形固体を用いた球形熱弾性波焦点化装置の構成図である。  FIG. 1 is a block diagram of a spherical thermoelastic wave focusing device using a spherical solid. 図2は半球形固体を用いた半球形熱弾性波焦点化装置の構成図である。  FIG. 2 is a block diagram of a hemispherical thermoelastic wave focusing device using a hemispherical solid. 図3は本発明の赤外線検知装置の熱弾性波焦点化装置より出力される時間ー電圧曲線より、入射赤外線エネルギー強度を検知方法の説明図である。  FIG. 3 is an explanatory diagram of a method for detecting the incident infrared energy intensity from the time-voltage curve output from the thermoelastic wave focusing device of the infrared detector of the present invention. 図4は本発明の熱弾性波焦点化装置を複数個組み合わせて作成される焦点化装置計測盤を用いた赤外線発射源の検知方法を説明する説明図である。  FIG. 4 is an explanatory view for explaining a detection method of an infrared emission source using a focusing device measuring panel formed by combining a plurality of thermoelastic wave focusing devices of the present invention. 図5は本発明の赤外線検知装置の一実施例を示す構成図である。  FIG. 5 is a block diagram showing an embodiment of the infrared detecting device of the present invention. 図6は図5の一実施例で熱弾性波焦点化装置より出力される時間ー電圧曲線より、入射赤外線エネルギー強度検知方法の説明図である。  FIG. 6 is an explanatory diagram of an incident infrared energy intensity detection method based on a time-voltage curve output from the thermoelastic wave focusing device in the embodiment of FIG. 図7は図5の一実施例で使用された球形熱弾性波焦点化装置におけるV・μsecーレーザエネルギー強度特性曲線である。  FIG. 7 is a V · μsec-laser energy intensity characteristic curve in the spherical thermoelastic wave focusing device used in the embodiment of FIG. 図8は図5の一実施例で使用された半球形熱弾性波焦点化装置におけるV・μsecーレーザエネルギー強度特性曲線である。  FIG. 8 is a V · μsec-laser energy intensity characteristic curve in the hemispherical thermoelastic wave focusing device used in the embodiment of FIG. 図9は本発明の熱弾性波焦点化装置を複数個組み合わせて作成される焦点化装置計測盤を用いた赤外線発射源の検知方法を説明する説明図である。  FIG. 9 is an explanatory diagram for explaining a detection method of an infrared emission source using a focusing device measuring panel formed by combining a plurality of thermoelastic wave focusing devices of the present invention.

符号の説明Explanation of symbols

19 鏡
20 凸レンズ
21 分光板
22 NDフィルタ
23 熱量計
26 デジタルオシロスコープ
27 データ処理コンピュータ
19 mirror 20 convex lens 21 spectral plate 22 ND filter 23 calorimeter 26 digital oscilloscope 27 data processing computer

Claims (5)

断続励起された中位パワーあるいは高パワーのレーザを含む赤外線の全出力を受取るように露出された球形熱弾性波焦点化装置ないしは半球形熱弾性波焦点化装置で構成される熱弾性波焦点化装置を備え、前記焦点化装置に於いて入射赤外線に比例する熱弾性波を励起させ熱応力波焦点化現象で焦点化後、前記弾性波を圧電素子により電気信号に変換し入射赤外線のエネルギ強度を検知することを特徴とする赤外線検知装置。Thermoelastic wave focusing consisting of a spherical thermoelastic wave focusing device or hemispherical thermoelastic wave focusing device exposed to receive the full infrared power including intermittently pumped medium or high power lasers And a focusing device that excites a thermoelastic wave proportional to the incident infrared ray and focuses it by a thermal stress wave focusing phenomenon, and then converts the elastic wave into an electrical signal by a piezoelectric element and converts the energy intensity of the incident infrared ray. Infrared detector characterized by detecting 請求項1に記載の球形熱弾性波焦点化装置は1000℃以上の高温に耐えうる材料の球形固体(2)で形成され、入射赤外線を感応吸収するコーティングを施された受光部(1)と球形固体(2)の中心まで達する円柱状の穴(3)を備え、前記円柱状の穴(3)に一端を固着され他端を液状粘性グリス(5)で圧電素子(6)に接合される導波管(4)を含み、入射赤外線加熱による前記受光部(1)の衝撃的熱膨張で瞬間的に熱弾性波を励起させ、弾性波伝播領域(8)で焦点化した後、前記導波管(4)に付着する液状粘性グリス(5)層通過で縦波弾性波のみに分離し、前記圧電素子(6)で電気信号に変換することを特徴とする球形熱弾性波焦点化装置。The spherical thermoelastic wave focusing device according to claim 1 is formed of a spherical solid (2) made of a material capable of withstanding a high temperature of 1000 ° C. or more, and is provided with a light receiving unit (1) coated with sensitive absorption of incident infrared rays. A cylindrical hole (3) reaching the center of the spherical solid (2) is provided, one end is fixed to the cylindrical hole (3), and the other end is joined to the piezoelectric element (6) with liquid viscous grease (5). After the thermoelastic wave is instantaneously excited by shock thermal expansion of the light receiving part (1) by incident infrared heating and focused in the elastic wave propagation region (8), Focusing on a spherical thermoelastic wave characterized in that the liquid viscous grease (5) adhering to the waveguide (4) is separated into only longitudinal acoustic waves by passing through the layer (5) and converted into an electrical signal by the piezoelectric element (6). apparatus. 請求項1に記載の半球形熱弾性波焦点化装置は1000℃以上の高温に耐えうる材料の半球形固体(9)で形成され、入射赤外線を感応吸収するコーティングを施された受光部(1)と半球形固体(9)の中心位置に液状粘性グリス(5)で接合する圧電素子(6)を配置し、入射赤外線加熱により前記受光部(1)の衝撃的熱膨張で瞬間的に熱弾性波を励起させ、弾性波伝播領域(8)で焦点化した後、前記液状粘性グリス(5)層通過で縦波弾性波のみに分離し、前記圧電素子(6)で電気信号に変換することを特徴とする半球形熱弾性波焦点化装置。The hemispherical thermoelastic wave focusing device according to claim 1 is formed of a hemispherical solid (9) made of a material capable of withstanding a high temperature of 1000 ° C. or more, and is provided with a light receiving portion (1) that is sensitively absorbed by incident infrared rays. ) And a hemispherical solid (9) at the center position of the piezoelectric element (6) joined with the liquid viscous grease (5), and heat is generated instantaneously by the impact thermal expansion of the light receiving part (1) by incident infrared heating. After exciting the elastic wave and focusing in the elastic wave propagation region (8), it is separated into only the longitudinal wave elastic wave through the liquid viscous grease (5) layer and converted into an electric signal by the piezoelectric element (6). A hemispherical thermoelastic wave focusing device. 請求項1に記載の熱弾性波焦点化装置に直結された導線(7)による出力情報を時間関数での電圧波形として記録格納し、前記波形の第一周期の最大振幅が時間軸となす時間軸より上の面積(10)と時間軸より下の面積(11)との和により入射赤外線強度を検知することを特徴とする赤外線検知方法。The output information by the conducting wire (7) directly connected to the thermoelastic wave focusing device according to claim 1 is recorded and stored as a voltage waveform as a time function, and the time when the maximum amplitude of the first period of the waveform is a time axis is recorded. An infrared ray detecting method, wherein the incident infrared ray intensity is detected by a sum of an area (10) above the axis and an area (11) below the time axis. 請求項1に記載の熱弾性波焦点化装置複数個を平面状に密接に結合して構成された焦点化装置計測盤(12)をX軸、Y軸、Z軸回りに三次元的に揺動させることにより、入射赤外線強度分布より入射赤外線発射源(13)の方向と距離を、さらに、前記発射源のエネルギー強度も検出することを特徴とする赤外線検知方法。A focusing device measuring board (12) configured by closely coupling a plurality of thermoelastic wave focusing devices according to claim 1 in a plane is three-dimensionally swung around the X, Y, and Z axes. An infrared detection method characterized by detecting the direction and distance of an incident infrared ray emission source (13) from the incident infrared ray intensity distribution, and further detecting the energy intensity of the emission source by moving the infrared ray.
JP2006152651A 2006-05-01 2006-05-01 Infrared detection device using thermal stress wave focusing phenomenon, thermal stress wave focusing device, and infrared detection method Pending JP2007298489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152651A JP2007298489A (en) 2006-05-01 2006-05-01 Infrared detection device using thermal stress wave focusing phenomenon, thermal stress wave focusing device, and infrared detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152651A JP2007298489A (en) 2006-05-01 2006-05-01 Infrared detection device using thermal stress wave focusing phenomenon, thermal stress wave focusing device, and infrared detection method

Publications (1)

Publication Number Publication Date
JP2007298489A true JP2007298489A (en) 2007-11-15

Family

ID=38768089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152651A Pending JP2007298489A (en) 2006-05-01 2006-05-01 Infrared detection device using thermal stress wave focusing phenomenon, thermal stress wave focusing device, and infrared detection method

Country Status (1)

Country Link
JP (1) JP2007298489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423959A (en) * 2015-12-18 2016-03-23 中山市民众镇接源小学 Infrared laser number-marking protractor
CN108957573A (en) * 2017-05-19 2018-12-07 丁语欣 Danger source detection device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423959A (en) * 2015-12-18 2016-03-23 中山市民众镇接源小学 Infrared laser number-marking protractor
CN108957573A (en) * 2017-05-19 2018-12-07 丁语欣 Danger source detection device and method
CN108957573B (en) * 2017-05-19 2024-04-02 北京英特威视科技有限公司 Dangerous source detection device and method

Similar Documents

Publication Publication Date Title
US4262198A (en) Broadband optical radiation detector
US4430897A (en) Acoustic microscope and method
JP5042013B2 (en) Laser heating device
US20150316511A1 (en) Real-time detection and imaging of terahertz pulse radiation by using photoacoustic conversion
US11255723B2 (en) Beam power measurement with widening
JP5058180B2 (en) Method and apparatus for characterizing a thin layer material constructed on a substrate using active pyrometry
JPS60154224A (en) Thermal wave microscope
US20140339429A1 (en) Optical non-destructive inspection method and optical non-destructive inspection apparatus
CN110686771A (en) Photoacoustic effect-based wide-spectrum pulse light detector and detection method
JPS60256018A (en) Method and device for detecting predetermined characteristicof electromagnetic radiation beam
US3641346A (en) Pyroelectric joulemeter using a divergent lens
JP2007298489A (en) Infrared detection device using thermal stress wave focusing phenomenon, thermal stress wave focusing device, and infrared detection method
EP0192722B1 (en) Apparatus and method for static stress measurement in an object
CN107702816B (en) Method for measuring surface temperature of wall material in situ online real-time non-contact manner
US5048969A (en) Piezoelectric measurement of laser power
RU2655714C1 (en) Method of registration of electromagnetic radiation in ir, microwave and terahertz range of wave-lengths
JP6852008B2 (en) Optical inspection equipment, semiconductor devices and optical inspection methods
Lazov et al. Methods for measuring laser power
ITMI970505A1 (en) DEVICE FOR DETECTION OF OPTICAL PARAMETERS OF A LASER BEAM
US20230137953A1 (en) Narrowband sensors based on plasmonic metasurfaces integrated on piezoelectric plates
JP2001050818A (en) Non-contact temperature-measuring sensor
JP7098956B2 (en) Optical non-destructive inspection method and optical non-destructive inspection equipment
RU2445589C1 (en) Method of measuring surface temperature and temperature measuring device
US6408651B1 (en) Method of manufacturing optical fibers using thermopiles to measure fiber energy
CN114279579B (en) Optical amplification high dynamic range nanosecond window signal-to-noise ratio measuring device