JP2007297777A - Cable for suspension structure and measurement system - Google Patents

Cable for suspension structure and measurement system Download PDF

Info

Publication number
JP2007297777A
JP2007297777A JP2006124294A JP2006124294A JP2007297777A JP 2007297777 A JP2007297777 A JP 2007297777A JP 2006124294 A JP2006124294 A JP 2006124294A JP 2006124294 A JP2006124294 A JP 2006124294A JP 2007297777 A JP2007297777 A JP 2007297777A
Authority
JP
Japan
Prior art keywords
cable
optical fiber
temperature
suspension structure
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006124294A
Other languages
Japanese (ja)
Inventor
Shinsuke Yamazaki
伸介 山崎
Shinichi Takami
伸一 高見
Shinichi Konno
信一 今野
Tatsuya Eguchi
立也 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2006124294A priority Critical patent/JP2007297777A/en
Publication of JP2007297777A publication Critical patent/JP2007297777A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/145Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising elements for indicating or detecting the rope or cable status
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2095Auxiliary components, e.g. electric conductors or light guides
    • D07B2201/2096Light guides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2301/00Controls
    • D07B2301/25System input signals, e.g. set points
    • D07B2301/252Temperature
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2301/00Controls
    • D07B2301/55Sensors
    • D07B2301/5531Sensors using electric means or elements
    • D07B2301/5577Sensors using electric means or elements using light guides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/203Bridges

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the temperature distribution, tension, and moisture content of a cable used for a suspension structure such as a cable-stayed bridge by a simple structure. <P>SOLUTION: This suspension structure such as a cable-stayed bridge comprises cables 5 for suspension structure for supporting a bridge girder 3 and an optical fiber sensor 40 having an optical fiber-incorporated line 25 in which an optical fiber 25a is incorporated. The optical fiber-incorporated line 25 of the optical fiber sensors 40 is installed in each cable 5 along the longitudinal direction of the cable body 21 of the cable. The temperature, deformation, or humidity is detected by these optical fiber sensors 40. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,例えば橋梁,建物の屋根等の吊り構造物に用いられる吊り構造用のケーブル,及び,測定システムに関する。   The present invention relates to a cable for a suspension structure used for a suspension structure such as a bridge and a roof of a building, and a measurement system.

例えば河川,海峡,道路等に架設される橋梁として,斜張橋,吊り橋等,吊り構造用のケーブルを用いたものが知られている。このような吊り構造を有する橋梁の施工時や施工後の維持管理時等においては,ケーブルの形状,長さ,張力等を適切に管理する必要がある。従来,ケーブルの形状変化,長さ,張力等を測定する方法としては,ケーブルの長さ方向における複数箇所の表面温度を測定し,測定された表面温度より,ケーブルの内部の温度分布を推定し,ケーブルの形状変化,長さ,張力等を間接的に測定する方法が提案されている(特許文献1,2参照。)。張力測定法としては,ロードセル方式,歪みゲージ測定方式,振動法測定方式等,様々なものが提案されている(特許文献3,4参照)。また,橋梁の維持管理において,水分によるケーブルの腐食を防止するため,ケーブル内の湿度を管理する方法が提案されている(特許文献5参照)。   For example, as a bridge built on a river, a strait, a road or the like, a cable using a cable for a suspension structure such as a cable-stayed bridge or a suspension bridge is known. When constructing a bridge having such a suspended structure or during maintenance after construction, it is necessary to appropriately manage the shape, length, tension, etc. of the cable. Conventionally, as a method of measuring the cable shape change, length, tension, etc., the surface temperature at multiple locations in the length direction of the cable is measured, and the temperature distribution inside the cable is estimated from the measured surface temperature. A method of indirectly measuring the shape change, length, tension, etc. of the cable has been proposed (see Patent Documents 1 and 2). Various tension measurement methods such as a load cell method, a strain gauge measurement method, and a vibration method measurement method have been proposed (see Patent Documents 3 and 4). In bridge maintenance management, a method for managing the humidity in the cable has been proposed in order to prevent the cable from being corroded by moisture (see Patent Document 5).

特開平5−98609号公報JP-A-5-98609 特開平5−164630号公報JP-A-5-164630 特開2000−155059号公報JP 2000-155059 A 特開2001−255222号公報JP 2001-255222 A 特開平10−159019号公報Japanese Patent Laid-Open No. 10-159019

しかしながら,従来のケーブルの温度測定法にあっては,ケーブルの表面の温度しか測定できず,ケーブルの内部の温度を直接測定できないので,誤差が生じる懸念があった。また,ケーブルの全長に渡って連続的な温度分布を測定することが難しかった。なお,温度分布の測定精度を向上させるためには,温度センサの設置箇所,即ち測定箇所の数を増加させれば良く,また,ケーブルの全長に渡って温度を測定したい場合は,ケーブルの全長に渡って温度センサを取り付ければ良いとも考えられるが,この場合,非常に多くのセンサが必要であるため,センサの配線等が複雑になる問題があった。さらに,センサの耐候性が悪い問題があった。また,その他の張力測定法,湿度測定法においても,測定を高精度かつ効率的に行うことが難しかった。   However, in the conventional cable temperature measurement method, only the surface temperature of the cable can be measured, and the temperature inside the cable cannot be directly measured. In addition, it was difficult to measure the continuous temperature distribution over the entire length of the cable. In order to improve the measurement accuracy of the temperature distribution, the number of temperature sensor installation points, that is, the number of measurement points, should be increased. If the temperature is to be measured over the entire length of the cable, the total length of the cable However, in this case, since a great number of sensors are necessary, there is a problem that the wiring of the sensors becomes complicated. Furthermore, there was a problem that the weather resistance of the sensor was bad. In other tension measurement methods and humidity measurement methods, it was difficult to perform measurement with high accuracy and efficiency.

本発明は,上記の点に鑑みてなされたものであり,ケーブルの温度分布,張力,湿度等を,簡単な構造で精度良く測定できる吊り構造用のケーブル,及び,測定システムを提供することを目的とする。   The present invention has been made in view of the above points, and provides a cable for a suspension structure and a measurement system that can accurately measure the temperature distribution, tension, humidity, and the like of the cable with a simple structure. Objective.

上記課題を解決するため,本発明によれば,構造部材を支持するケーブル本体を備えた吊り構造用のケーブルであって,前記ケーブル本体の長さ方向に沿って,光ファイバを設けたことを特徴とする,吊り構造用のケーブルが提供される。   In order to solve the above problems, according to the present invention, there is provided a cable for a suspension structure including a cable body that supports a structural member, wherein an optical fiber is provided along a length direction of the cable body. A cable for a suspended structure is provided.

前記ケーブル本体は,複数の線材と前記光ファイバとを備えたものでも良い。また,前記複数の線材によってパラレルワイヤストランドが構成されていても良い。   The cable body may include a plurality of wires and the optical fiber. Moreover, the parallel wire strand may be comprised with the said some wire.

前記光ファイバは,前記ケーブル本体の内部に1又は2以上設けられていても良い。前記光ファイバは,前記ケーブル本体の少なくとも中央部に沿って設けても良い。この吊り構造用のケーブルは,橋梁に用いられるものでも良い。   One or more optical fibers may be provided inside the cable body. The optical fiber may be provided along at least a central portion of the cable body. The cable for the suspension structure may be used for a bridge.

さらに,本発明によれば,上記のいずれかに記載の吊り構造用ケーブルに設けられる光ファイバと,前記光ファイバから出射する光を利用して所定の情報を検出する測定装置とを備えることを特徴とする,測定システムが提供される。   Furthermore, according to the present invention, the optical fiber provided in any one of the above suspension structure cables and a measuring device that detects predetermined information using light emitted from the optical fiber are provided. A characteristic measurement system is provided.

前記所定の情報は,前記光ファイバの温度分布,歪み分布及び/又は湿度分布であっても良い。また,前記所定の情報に基づいて,前記ケーブル本体の形状及び/又は張力を算出する演算部を備えても良い。   The predetermined information may be a temperature distribution, a strain distribution, and / or a humidity distribution of the optical fiber. Moreover, you may provide the calculating part which calculates the shape and / or tension | tensile_strength of the said cable main body based on the said predetermined information.

本発明によれば,少なくとも1本の光ファイバを用いるだけで,ケーブルの複数箇所の温度,張力,湿度等の情報を,精度良く効率的に測定できる。ケーブル内部の連続的な温度分布,歪み分布,湿度分布等を,ケーブル全長に渡って測定できる。構造が簡単であり,耐久性が良い。光ファイバセンサの付け替え等を行う必要が無いので,メンテナンスに要する労力や費用を削減できる。   According to the present invention, it is possible to accurately and efficiently measure information such as temperature, tension, and humidity at a plurality of locations of a cable only by using at least one optical fiber. Continuous temperature distribution, strain distribution, humidity distribution, etc. inside the cable can be measured over the entire length of the cable. Simple structure and good durability. Since it is not necessary to replace the optical fiber sensor, the labor and cost required for maintenance can be reduced.

以下,本発明にかかる実施形態を,吊り構造物の一例である橋梁としての斜張橋に用いられるケーブルに基づいて説明する。図1及び図2は,斜張橋の一例を示している。図1及び図2に例示した斜張橋1は,河川の両岸の間(河川の幅方向)において所定の間隔を空けて立設された一対のタワー2A,2B,河川の両岸の間に架け渡された構造部材としての橋桁3,吊り構造用のケーブルとしての複数本のケーブル5を備えている。さらに,各ケーブル5の温度,張力,長さを測定する測定システム6を備えている。   Hereinafter, an embodiment according to the present invention will be described based on a cable used for a cable-stayed bridge as a bridge which is an example of a suspended structure. 1 and 2 show an example of a cable-stayed bridge. The cable-stayed bridge 1 illustrated in FIGS. 1 and 2 is formed between a pair of towers 2A and 2B that are erected at a predetermined interval between both banks of the river (in the width direction of the river). A bridge girder 3 as a structural member spanned between two and a plurality of cables 5 as cables for a suspension structure. Furthermore, a measurement system 6 for measuring the temperature, tension, and length of each cable 5 is provided.

各タワー2A,2Bは,それぞれ2本の支柱10,11を備えている。支柱10は河川の上流側(図2においては左側)に設けられ,支柱11は河川の下流側(図2においては右側)に設けられている。橋桁3は,各タワー2A,2Bの下部において,支柱10と支柱11との間に通されるようにして備えられている。ケーブル5は,各タワー2A,2Bの支柱10,11と橋桁3との間に,それぞれ複数本ずつ斜めに架け渡されている。   Each tower 2A, 2B is provided with two columns 10, 11, respectively. The column 10 is provided on the upstream side of the river (left side in FIG. 2), and the column 11 is provided on the downstream side of the river (right side in FIG. 2). The bridge girder 3 is provided so as to pass between the column 10 and the column 11 at the lower part of each tower 2A, 2B. A plurality of cables 5 are bridged diagonally between the columns 10 and 11 of the towers 2A and 2B and the bridge girder 3, respectively.

例えばタワー2Aの支柱10において,ケーブル5は,支柱10の両側(河川の両岸側)にそれぞれ複数本,例えば同じ本数ずつ設けられている。橋桁3の上方において,支柱10の両側には,各ケーブル5の一端(上端,後述するソケット22)が,支柱10の高さ方向に並べて取り付けられている。また,上方に取り付けられたケーブル5ほど,支柱10に対してより大きく外側に向かって傾斜させられ,他端(下端,後述するソケット23)が支柱10からより離れた位置に配置されるようになっている。各ケーブル5の下端は,橋桁3の一縁部(河川の上流側の縁部)に対して一列に並べて取り付けられている。即ち,上端が上方に取り付けられているケーブル5ほど,支柱10から離れた部分において橋桁3を支持するように取り付けられている。こうして,支柱10には,複数本のケーブル5が支柱10の上部を中心として両側に向かう末広がり状に,また,支柱10を中心としてほぼ線対称に配置されている。図3に示すように,各ケーブル5は,後述するソケット22,23がそれぞれ支柱10の側縁部,橋桁3の一縁部に取り付けられ,支柱10の側縁部と橋桁3の一縁部との間に,後述するケーブル本体21が張られた状態で備えられている。   For example, in the column 10 of the tower 2A, a plurality of cables 5, for example, the same number, are provided on both sides of the column 10 (both sides of the river). Above the bridge girder 3, one end (upper end, a socket 22 described later) of each cable 5 is attached to both sides of the column 10 side by side in the height direction of the column 10. Further, the cable 5 attached to the upper side is inclined more outward with respect to the support column 10, and the other end (lower end, socket 23 described later) is arranged at a position farther from the support column 10. It has become. The lower end of each cable 5 is attached in a line with respect to one edge of the bridge girder 3 (edge on the upstream side of the river). That is, the cable 5 having the upper end attached upward is attached so as to support the bridge girder 3 at a portion away from the support column 10. Thus, a plurality of cables 5 are arranged on the support column 10 so as to extend toward the both sides centering on the upper portion of the support column 10 and substantially symmetrical with respect to the support column 10. As shown in FIG. 3, each cable 5 has sockets 22, 23 to be described later attached to the side edge of the column 10 and one edge of the bridge girder 3, and the side edge of the column 10 and one edge of the bridge girder 3. The cable main body 21 to be described later is provided in a stretched state.

同様にして,タワー2Aの支柱11にも,複数本のケーブル5が両側に取り付けられており,各ケーブル5の他端は,橋桁3の他縁部(河川の下流側の縁部)にそれぞれ取り付けられている。さらに,タワー2Bの支柱10,11にも,タワー2Aと同様にケーブル5がそれぞれ備えられ,各ケーブル5の他端が橋桁3の両縁部にそれぞれ取り付けられている。   Similarly, a plurality of cables 5 are attached to both sides of the column 11 of the tower 2A. The other end of each cable 5 is connected to the other edge of the bridge girder 3 (the edge on the downstream side of the river). It is attached. Further, the columns 5 and 11 of the tower 2B are provided with cables 5 similarly to the tower 2A, and the other ends of the cables 5 are respectively attached to both edges of the bridge girder 3.

橋桁3は,これら複数本のケーブル5のケーブル本体21によって吊り下げられ,河川の上方に持ち上げられた状態で支持されている。各ケーブル5は,後述するケーブル本体21に対して橋桁3の荷重が加えられることにより,ケーブル本体21に張力が付与された状態でそれぞれ備えられている。   The bridge girder 3 is suspended by the cable body 21 of the plurality of cables 5 and supported in a state where it is lifted above the river. Each cable 5 is provided with a tension applied to the cable body 21 by applying a load of the bridge girder 3 to the cable body 21 described later.

次に,ケーブル5の構造の一例について詳細に説明する。図4に示すように,ケーブル5は,例えばケーブル本体21,ケーブル本体21の両端部にそれぞれ設けられたソケット22,23,及び,後述する光ファイバ温度センサ40の構成要素である複数本の光ファイバ内蔵線(光ファイバケーブル)25を備えている。   Next, an example of the structure of the cable 5 will be described in detail. As shown in FIG. 4, the cable 5 includes, for example, a cable main body 21, sockets 22 and 23 provided at both ends of the cable main body 21, and a plurality of light components that are constituent elements of an optical fiber temperature sensor 40 described later. A fiber built-in line (optical fiber cable) 25 is provided.

ケーブル本体21としては,例えばパラレルワイヤストランド(PWS:Parallel Wire Strand)が用いられる。かかるケーブル本体21は,複数本の線材としての鋼線(ワイヤ)30と光ファイバ内蔵線25からなる集合体(ストランド)31,集合体31の外側を被覆する被覆層32,被覆層32のさらに外側を被覆する被覆層33を備えている。   As the cable body 21, for example, a parallel wire strand (PWS) is used. The cable body 21 includes an assembly (strand) 31 composed of a plurality of steel wires (wires) 30 and optical fiber built-in wires 25 as a plurality of wires, a coating layer 32 that covers the outside of the assembly 31, and a coating layer 32. A coating layer 33 that covers the outside is provided.

鋼線30は,例えば外径約7mm程度の略円形の横断面形状を有する細長い線材であり,例えば外周面を亜鉛(Zn)によって被覆した鋼材,即ち,亜鉛めっき鋼線である。かかる鋼線30は,被覆層32,33の内部において,ソケット22からソケット23まで,ケーブル本体21の長さ方向に沿って配設されている。さらに,被覆層32,33の内部には,例えば鋼線30とほぼ同程度の外径を有する1又は2以上の光ファイバ内蔵線25が,ソケット22からソケット23まで,ケーブル本体21の長さ方向に沿って備えられている。各光ファイバ内蔵線25は,光ファイバ(光伝送路)25aと,光ファイバ25aを保護する外管25bとを備えている。これら複数本の鋼線30及び光ファイバ内蔵線25は,互いに略平行に並べられ,隣接する鋼線30の外周面や光ファイバ内蔵線25の外周面が互いに密着させられた状態で束ねられている。   The steel wire 30 is an elongated wire having a substantially circular cross-sectional shape having an outer diameter of about 7 mm, for example, and is, for example, a steel material whose outer peripheral surface is coated with zinc (Zn), that is, a galvanized steel wire. The steel wire 30 is disposed along the length direction of the cable body 21 from the socket 22 to the socket 23 inside the coating layers 32 and 33. Further, in the coating layers 32 and 33, for example, one or two or more optical fiber built-in wires 25 having an outer diameter almost equal to that of the steel wire 30 are provided from the socket 22 to the socket 23, and the length of the cable body 21. It is provided along the direction. Each optical fiber built-in line 25 includes an optical fiber (optical transmission line) 25a and an outer tube 25b that protects the optical fiber 25a. The plurality of steel wires 30 and the optical fiber built-in wire 25 are arranged substantially parallel to each other, and are bundled in a state where the outer peripheral surface of the adjacent steel wire 30 and the outer peripheral surface of the optical fiber built-in wire 25 are in close contact with each other. Yes.

なお,これら複数本の鋼線30及び光ファイバ内蔵線25は,僅かに撚り合わせられた状態になっており,例えばソケット22側からみて,ソケット23側に向かうに従い,ケーブル本体21の中央部を中心として左方向に向かうように捩られている。即ち,複数本の鋼線30の中に光ファイバ内蔵線25が混合された状態で撚り合わせられ,束ねられることにより,一本の索状の集合体31が形成されている。従って,鋼線30と光ファイバ内蔵線25(ケーブル本体21の中央部に備えられたものを除く)は,ケーブル本体21の中央部を中心として僅かに螺旋状に巻回された状態で,ケーブル本体21の長さ方向に沿って備えられている。そのため,ケーブル本体21の中央部に備えられた光ファイバ内蔵線25(光ファイバ25a)は,ケーブル本体21の中央部において長さ方向に沿って備えられており,また,ケーブル本体21の中央部の周囲に配置された光ファイバ内蔵線25(光ファイバ25a)は,ケーブル本体21の中央部を中心として僅かに螺旋状に巻回された状態で,ケーブル本体21の長さ方向に沿って備えられている。   The plurality of steel wires 30 and the optical fiber built-in wire 25 are in a slightly twisted state. For example, as viewed from the socket 22 side, the central portion of the cable body 21 is moved toward the socket 23 side. It is twisted to the left as the center. That is, a single cord-like assembly 31 is formed by twisting and bundling the optical fiber built-in wires 25 in a mixed state in a plurality of steel wires 30. Therefore, the steel wire 30 and the optical fiber built-in wire 25 (excluding those provided in the central portion of the cable body 21) are wound slightly spirally around the central portion of the cable body 21, and the cable It is provided along the length direction of the main body 21. Therefore, the optical fiber built-in line 25 (optical fiber 25a) provided at the center of the cable body 21 is provided along the length direction at the center of the cable body 21, and the center of the cable body 21 is also provided. The optical fiber built-in line 25 (optical fiber 25a) arranged around the cable body 21 is provided along the length direction of the cable body 21 while being slightly spirally wound around the central portion of the cable body 21. It has been.

図5に示すように,光ファイバ内蔵線25は,被覆層32,33の内部において,例えばケーブル本体21の少なくとも中央部に沿って設けられており,さらに,ケーブル本体21の中央部の周囲にも,複数本配設されている。例えば,ケーブル本体21の横断面において,ケーブル本体21の中央部を中心とした同心円上に並べて設けられている。図示の例では,最も外側に配置された鋼線30が位置する半径Rの同心円上に,該同心円の周方向においてほぼ等間隔を空けて配置されており,さらに,半径R/2の同心円上にも,該同心円の周方向においてほぼ等間隔を空けて配置されている。また,各光ファイバ内蔵線25の端部は,図4に示すように,ソケット23の端部から外側にそれぞれ導出されており,後述する測定装置42にそれぞれ接続できるようになっている。   As shown in FIG. 5, the optical fiber built-in line 25 is provided inside the covering layers 32 and 33, for example, along at least the central portion of the cable main body 21, and further around the central portion of the cable main body 21. Also, a plurality of them are arranged. For example, in the cross section of the cable main body 21, the cable main body 21 is arranged side by side on a concentric circle with the central portion of the cable main body 21 as the center. In the illustrated example, the steel wires 30 arranged on the outermost side are arranged on a concentric circle having a radius R at substantially equal intervals in the circumferential direction of the concentric circle, and further on a concentric circle having a radius R / 2. Moreover, they are arranged at almost equal intervals in the circumferential direction of the concentric circles. Further, as shown in FIG. 4, the end of each optical fiber built-in line 25 is led out from the end of the socket 23 and can be connected to a measuring device 42 to be described later.

被覆層32は,集合体31の外側全体を覆うように設けられている。また,被覆層32は,例えばフィラメントテープ等のテープ32aによって構成されている。即ち,集合体31の長さ方向に沿って,集合体31の外周囲にテープ32aが巻き付けられることにより,鋼線30と光ファイバ内蔵線25が束ねられた状態で保持され,また,テープ32aからなる被覆層32が形成されるようになっている。   The covering layer 32 is provided so as to cover the entire outside of the aggregate 31. The covering layer 32 is constituted by a tape 32a such as a filament tape, for example. That is, the tape 32a is wound around the outer periphery of the assembly 31 along the length direction of the assembly 31, so that the steel wire 30 and the optical fiber built-in wire 25 are held in a bundled state, and the tape 32a A covering layer 32 made of is formed.

被覆層33は,被覆層32の外側全体を覆うように設けられている。被覆層33の材質としては,耐候性が高いもの,例えばポリエチレン,フッ素樹脂などの合成樹脂が用いられる。   The covering layer 33 is provided so as to cover the entire outside of the covering layer 32. As the material of the covering layer 33, a material having high weather resistance, for example, a synthetic resin such as polyethylene or fluororesin is used.

次に,測定システム6の一例について詳細に説明する。図3に示すように,測定システム6は,前述した光ファイバ内蔵線25を有する複数の光ファイバセンサとしての光ファイバ温度センサ40,及び,各光ファイバ温度センサ40の制御等を行う制御コンピュータ41を備えている。   Next, an example of the measurement system 6 will be described in detail. As shown in FIG. 3, the measurement system 6 includes an optical fiber temperature sensor 40 as a plurality of optical fiber sensors having the above-described optical fiber built-in line 25, and a control computer 41 that controls each of the optical fiber temperature sensors 40. It has.

光ファイバ温度センサ40は,各ケーブル5に対してそれぞれ複数(即ち,各ケーブル5に対して設けられた光ファイバ内蔵線25の本数と同じ数)備えられている。各光ファイバ温度センサ40は,一本の光ファイバ内蔵線25と,光ファイバ内蔵線25内の光ファイバ25aに光を入射させて反射光を検出することにより光ファイバ25aの全長に渡る温度分布を求める測定装置42とをそれぞれ備えている。図3に示すように,測定装置42は,例えば斜張橋1に備えられたケーブル5の下端側において,各光ファイバ内蔵線25の端部にそれぞれ取り付けられている。   A plurality of optical fiber temperature sensors 40 are provided for each cable 5 (that is, the same number as the number of optical fiber built-in lines 25 provided for each cable 5). Each optical fiber temperature sensor 40 makes the light incident on one optical fiber built-in line 25 and the optical fiber 25a in the optical fiber built-in line 25, and detects the reflected light, whereby the temperature distribution over the entire length of the optical fiber 25a. And a measuring device 42 for obtaining As shown in FIG. 3, the measuring device 42 is attached to the end of each optical fiber built-in line 25 on the lower end side of the cable 5 provided in the cable-stayed bridge 1, for example.

各光ファイバ温度センサ40の測定装置42は,制御コンピュータ41に対してそれぞれ電気的に接続されており,制御コンピュータ41から各測定装置42に対して,温度の測定に関する制御信号がそれぞれ送信されるように構成されている。また,各測定装置42において検出された温度分布に関する情報が,各測定装置42から制御コンピュータ41に対してそれぞれ送信されるようになっている。さらに,制御コンピュータ41は,受信した温度分布に関する情報に基づいて,各ケーブル本体21の形状,長さ,張力等を算出する演算部41aを備えている。   The measuring device 42 of each optical fiber temperature sensor 40 is electrically connected to the control computer 41, and a control signal related to temperature measurement is transmitted from the control computer 41 to each measuring device 42. It is configured as follows. In addition, information regarding the temperature distribution detected in each measuring device 42 is transmitted from each measuring device 42 to the control computer 41. Furthermore, the control computer 41 includes a calculation unit 41a that calculates the shape, length, tension, and the like of each cable body 21 based on the received information on the temperature distribution.

次に,以上のように構成された斜張橋1におけるケーブル5の温度測定方法について説明する。先ず,温度の測定対象であるケーブル5に設けられたいずれかの光ファイバ温度センサ40の測定装置42に対して,制御コンピュータ41から制御信号を送信し,測定装置42から光ファイバ25aに光を入射させる。すると,光ファイバ25a内で光が散乱して光ファイバ25aの端部から出射し,測定装置42は,光ファイバ25aから出射した光に基づいて,光ファイバ25aの長さ方向における複数箇所の温度,即ち,光ファイバ25aの全長に渡る連続的な温度分布を検出する。こうして得られた温度分布に関する情報が,測定装置42から制御コンピュータ41に送信され,制御コンピュータ41において,その光ファイバ温度センサ40に備えられた光ファイバ25aの温度分布が検知される。   Next, a method for measuring the temperature of the cable 5 in the cable-stayed bridge 1 configured as described above will be described. First, a control signal is transmitted from the control computer 41 to the measuring device 42 of any one of the optical fiber temperature sensors 40 provided on the cable 5 that is a temperature measurement target, and light is transmitted from the measuring device 42 to the optical fiber 25a. Make it incident. Then, the light is scattered in the optical fiber 25a and emitted from the end of the optical fiber 25a, and the measuring device 42 determines the temperature at a plurality of locations in the length direction of the optical fiber 25a based on the light emitted from the optical fiber 25a. That is, a continuous temperature distribution over the entire length of the optical fiber 25a is detected. Information on the temperature distribution thus obtained is transmitted from the measuring device 42 to the control computer 41, and the control computer 41 detects the temperature distribution of the optical fiber 25a provided in the optical fiber temperature sensor 40.

以上のようにして,制御コンピュータ41から各ケーブル5に設けられている各光ファイバ温度センサ40に対してそれぞれ制御信号を送信することにより,各光ファイバ温度センサ40によって測定が行われ,測定された温度分布の情報が制御コンピュータ41よってそれぞれ検知される。これにより,制御コンピュータ41においては,各ケーブル5の中央部に設けられている光ファイバ25aの温度分布,半径R/2の同心円上に設けられている光ファイバ25aの温度分布,半径Rの同心円上に設けられている光ファイバ25aの温度分布が検知される。即ち,各ケーブル本体21内の中央部における温度分布,ケーブル本体21内の半径R/2の同心円上における温度分布,ケーブル本体21内の半径Rの同心円上における温度分布が検知される。こうして,各ケーブル本体21の内部の温度を,ケーブル本体21の長さ方向においても径方向(横断面)においても,複数の箇所で測定することができ,ケーブル本体21全体の温度分布を精度良く調査することができる。   As described above, each control signal is transmitted from the control computer 41 to each optical fiber temperature sensor 40 provided on each cable 5, whereby the measurement is performed by each optical fiber temperature sensor 40. The temperature distribution information is detected by the control computer 41. Thereby, in the control computer 41, the temperature distribution of the optical fiber 25a provided at the center of each cable 5, the temperature distribution of the optical fiber 25a provided on the concentric circle of radius R / 2, and the concentric circle of radius R. The temperature distribution of the optical fiber 25a provided above is detected. That is, the temperature distribution in the central portion of each cable body 21, the temperature distribution on the concentric circle of radius R / 2 in the cable body 21, and the temperature distribution on the concentric circle of radius R in the cable body 21 are detected. In this way, the temperature inside each cable body 21 can be measured at a plurality of locations in both the length direction and the radial direction (cross section) of the cable body 21, and the temperature distribution of the entire cable body 21 can be accurately measured. Can be investigated.

さらに,制御コンピュータ41の演算部41aにおいては,測定された各ケーブル本体21の温度分布に基づいて,各ケーブル本体21の形状,長さ等を算出できる。即ち,温度変化に伴って生じるケーブル本体21の変形を間接的に検知でき,さらに,ケーブル本体21の張力等も算出できる。これらの算出結果を参照し,各ケーブル本体21の形状,長さ,張力,応力分布等が設計範囲内にあるか否かを判定することにより,各ケーブル本体21の緊張作業等を行う必要があるか否かを判断することができる。   Furthermore, in the calculation part 41a of the control computer 41, the shape, length, etc. of each cable main body 21 can be calculated based on the measured temperature distribution of each cable main body 21. That is, it is possible to indirectly detect the deformation of the cable main body 21 caused by the temperature change, and it is possible to calculate the tension of the cable main body 21 and the like. By referring to these calculation results and determining whether the shape, length, tension, stress distribution, etc. of each cable body 21 is within the design range, it is necessary to perform tension work etc. of each cable body 21. It can be determined whether or not there is.

かかる構成によれば,ケーブル5に少なくとも一本の光ファイバ25a,即ち光ファイバ温度センサ40を設けることにより,ケーブル5の長さ方向における温度分布を確実に測定することができる。従来の温度測定法よりも,ケーブル5の複数箇所の温度を,容易かつ効率的に,また,多数の箇所について精密に測定できる。即ち,ケーブル5の全長に渡って連続的な温度分布を測定できる。さらに,光ファイバ25aを2本以上設けることで,ケーブル5の温度分布をより精度良く測定できる。また,ケーブル5の内部に光ファイバ25aを設け,ケーブル5の内部の温度を直接的に測定することにより,ケーブル5の内部の温度を精度良く簡単に測定することができる。従って,温度分布に基づいてケーブル5の形状,長さ,張力,応力分布等の測定を精度良く行うことができ,ひいては,斜張橋1の維持管理を適切に行うことができる。   According to such a configuration, by providing at least one optical fiber 25a, that is, the optical fiber temperature sensor 40, in the cable 5, the temperature distribution in the length direction of the cable 5 can be reliably measured. Compared to the conventional temperature measurement method, the temperature at a plurality of locations on the cable 5 can be measured easily and efficiently, and more precisely at many locations. That is, a continuous temperature distribution can be measured over the entire length of the cable 5. Furthermore, the temperature distribution of the cable 5 can be measured more accurately by providing two or more optical fibers 25a. Further, by providing the optical fiber 25a inside the cable 5 and directly measuring the temperature inside the cable 5, the temperature inside the cable 5 can be measured easily and accurately. Therefore, the shape, length, tension, stress distribution, etc. of the cable 5 can be accurately measured based on the temperature distribution, and the maintenance of the cable-stayed bridge 1 can be appropriately performed.

また,光ファイバ温度センサ40は,従来の温度測定に用いられる機器と比較して,構造が簡単であり,光ファイバ内蔵線25の耐久性も良い。例えば熱電対等のような温度センサのように,付け替えを行う必要が無いので,メンテナンスに要する労力や費用も削減できる。特に,光ファイバ内蔵線25をケーブル5の内部に内蔵させ,ケーブル5に一体的に配設したことにより,光ファイバ内蔵線25の損傷や劣化を確実に防止できる。また,温度センサや配線等の機器がケーブル5の表面に露出せず,ケーブル5の表面の構造等を簡単にすることができ,ケーブル5の耐候性,意匠性の向上を図ることもできる。   Further, the optical fiber temperature sensor 40 has a simple structure and good durability of the optical fiber built-in line 25 as compared with a conventional device used for temperature measurement. For example, unlike a temperature sensor such as a thermocouple, it is not necessary to replace it, so that the labor and cost required for maintenance can be reduced. In particular, since the optical fiber built-in line 25 is built in the cable 5 and disposed integrally with the cable 5, damage and deterioration of the optical fiber built-in line 25 can be reliably prevented. In addition, devices such as a temperature sensor and wiring are not exposed on the surface of the cable 5, the structure of the surface of the cable 5 can be simplified, and the weather resistance and design of the cable 5 can be improved.

以上,添付図面を参照しながら本発明の好適な実施の形態の一例について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において,各種の変更例または修正例に想到しうることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。   The exemplary embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes and modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

以上の実施形態では,ケーブル5の温度を測定する光ファイバ温度センサ40と測定システム6について説明したが,光ファイバセンサや測定システムによって測定する所定の情報とは,温度には限定されない。例えば,光ファイバセンサとしては,光ファイバ歪みセンサを備えても良い。即ち,光ファイバ歪みセンサを用いて光ファイバの歪み分布を検出し,この歪み分布からケーブル5の張力,応力分布,形状,長さ等を検出する測定システムを構成しても良い。この場合も,光ファイバの全長に渡って歪みを精密に検出でき,ケーブル5の張力,応力分布,形状,長さ等を,効率的に精度良く測定することができる。   In the above embodiment, the optical fiber temperature sensor 40 and the measurement system 6 for measuring the temperature of the cable 5 have been described. However, the predetermined information measured by the optical fiber sensor or the measurement system is not limited to the temperature. For example, an optical fiber strain sensor may be provided as the optical fiber sensor. That is, a measurement system that detects the strain distribution of the optical fiber using an optical fiber strain sensor and detects the tension, stress distribution, shape, length, and the like of the cable 5 from the strain distribution may be configured. In this case as well, strain can be accurately detected over the entire length of the optical fiber, and the tension, stress distribution, shape, length, etc. of the cable 5 can be measured efficiently and accurately.

また,光ファイバセンサは,所定の情報として湿度を測定する光ファイバ湿度センサであっても良く,かかる光ファイバ湿度センサを用いてケーブル5内の湿度分布を測定する測定システムを構成しても良い。この場合,測定された湿度分布に基づいて,ケーブル5内の湿度の調節を適切に行うことができる。   The optical fiber sensor may be an optical fiber humidity sensor that measures humidity as predetermined information, and may constitute a measurement system that measures the humidity distribution in the cable 5 using such an optical fiber humidity sensor. . In this case, the humidity in the cable 5 can be adjusted appropriately based on the measured humidity distribution.

さらに,一本のケーブル5に対して,互いに異なる種類の情報を検出する複数種類の光ファイバセンサを備えても良い。例えば光ファイバ温度センサ40,光ファイバ歪みセンサ,光ファイバ湿度センサのいずれか2種以上を備えても良い。そうすれば,ケーブル5の温度,歪み,湿度のいずれか2つ以上の情報をそれぞれ測定することができ,ケーブル5の状態をさらに詳細に調べることができる。従って,ケーブル5の維持管理に有用である。さらに,光ファイバセンサは,異なる2種類以上の情報を検出可能な構成であっても良い。例えば光ファイバ温度歪みセンサ,即ち,温度と歪みの両方の情報を測定できる構成のものであっても良い。   Furthermore, a plurality of types of optical fiber sensors that detect different types of information may be provided for one cable 5. For example, any two or more of an optical fiber temperature sensor 40, an optical fiber strain sensor, and an optical fiber humidity sensor may be provided. By doing so, it is possible to measure information on any two or more of the temperature, strain, and humidity of the cable 5 and to investigate the state of the cable 5 in more detail. Therefore, it is useful for the maintenance management of the cable 5. Further, the optical fiber sensor may be configured to detect two or more different types of information. For example, an optical fiber temperature strain sensor, that is, a configuration capable of measuring both temperature and strain information may be used.

ケーブル本体21における光ファイバセンサの配置は,以上の実施形態に示したような,同心円上に並べるものには限定されず,少なくとも1本の光ファイバがケーブル5に設けられていれば良い。また,光ファイバ,光ファイバ内蔵線,光ファイバセンサ等の構成,測定法の原理等は,以上の説明において例示したものには限定されず,様々なものを適用することができる。   The arrangement of the optical fiber sensors in the cable main body 21 is not limited to the arrangement of concentric circles as shown in the above embodiment, and it is sufficient that at least one optical fiber is provided in the cable 5. Further, the configuration of the optical fiber, the optical fiber built-in line, the optical fiber sensor, etc., the principle of the measurement method, and the like are not limited to those exemplified in the above description, and various types can be applied.

ケーブルの構造は,以上の実施形態において説明したパラレルワイヤストランドには限定されない。例えば集合体31を構成する鋼線30,光ファイバ内蔵線25は,必ずしも撚り合わせられていなくても良い。また,例えばマルチストランド構造,即ち,実施の形態に示したようなケーブル本体21をさらに複数本集束させて,一本の索状にした構造にしても良い。   The structure of the cable is not limited to the parallel wire strand described in the above embodiment. For example, the steel wire 30 and the optical fiber built-in wire 25 constituting the aggregate 31 do not necessarily have to be twisted together. Further, for example, a multi-strand structure, that is, a structure in which a plurality of cable main bodies 21 as shown in the embodiment are further converged into a single cord shape may be used.

斜張橋1の構造やケーブル5の配設の態様は,以上の実施形態に示したものには限定されず,本発明は,様々な構造の斜張橋において適用できる。さらに本発明は,その他の種類の橋梁,例えば吊り橋に用いられるケーブル(メインケーブル)に適用することもできる。また,橋梁は河川に架設されるものに限定されず,海峡,道路等に架設されるものであっても良い。   The structure of the cable-stayed bridge 1 and the mode of arrangement of the cables 5 are not limited to those shown in the above embodiments, and the present invention can be applied to cable-stayed bridges having various structures. Furthermore, the present invention can be applied to other types of bridges, for example, cables (main cables) used for suspension bridges. Further, the bridge is not limited to a bridge built on a river, but may be a bridge built on a strait, a road, or the like.

さらに,本発明は,橋梁に用いられるケーブルには限定されず,ケーブル本体によって支持される構造部材も,橋桁には限定されない。例えば建築構造物において吊り屋根構造に用いられる吊り構造用のケーブルであっても良く,ケーブル本体によって支持される構造部材とは,屋根であっても良い。その場合,例えば屋根に積雪があったときに,雪によって屋根に加えられる荷重や,屋根に生じている応力分布,温度分布等を,ケーブルに備えた光ファイバセンサによって検出することもできる。即ち,光ファイバセンサの測定結果に基づいて,雪下ろし等の作業が必要であるか否かを判断することができる。   Further, the present invention is not limited to the cable used for the bridge, and the structural member supported by the cable body is not limited to the bridge girder. For example, a cable for a suspended structure used for a suspended roof structure in a building structure may be used, and the structural member supported by the cable body may be a roof. In this case, for example, when there is snow on the roof, the load applied to the roof by the snow, the stress distribution generated in the roof, the temperature distribution, etc. can be detected by an optical fiber sensor provided in the cable. That is, it is possible to determine whether or not work such as snow removal is necessary based on the measurement result of the optical fiber sensor.

本発明は,例えば橋梁,吊り屋根等,建築構造物又は土木構造物等において用いられる吊り構造用のケーブルに適用できる。   The present invention can be applied to a cable for a suspension structure used in a building structure or a civil engineering structure such as a bridge and a suspended roof.

斜張橋の構成を示した概略側面図である。It is the schematic side view which showed the structure of the cable-stayed bridge. 斜張橋の概略正面図である。It is a schematic front view of a cable-stayed bridge. ケーブル及び温度測定システムの構成を説明する説明図である。It is explanatory drawing explaining the structure of a cable and a temperature measurement system. ケーブルの構成を示した説明図である。It is explanatory drawing which showed the structure of the cable. ケーブル本体の横断面図である。It is a cross-sectional view of a cable main body.

符号の説明Explanation of symbols

1 斜張橋
5 ケーブル
6 測定システム
21 ケーブル本体
25 光ファイバ内蔵線
25a 光ファイバ
30 鋼線
31 集合体
40 光ファイバ温度センサ
41 制御部
42 測定装置
DESCRIPTION OF SYMBOLS 1 Cable-stayed bridge 5 Cable 6 Measurement system 21 Cable main body 25 Optical fiber built-in line 25a Optical fiber 30 Steel wire 31 Assembly 40 Optical fiber temperature sensor 41 Control part 42 Measuring apparatus

Claims (8)

構造部材を支持するケーブル本体を備えた吊り構造用のケーブルであって,
前記ケーブル本体の長さ方向に沿って,光ファイバを設けたことを特徴とする,吊り構造用のケーブル。
A cable for a suspension structure having a cable body for supporting a structural member,
A cable for a suspension structure, wherein an optical fiber is provided along a length direction of the cable body.
前記ケーブル本体は,複数の線材と前記光ファイバとを備え,
前記複数の線材によってパラレルワイヤストランドが構成されていることを特徴とする,請求項1に記載の吊り構造用のケーブル。
The cable body includes a plurality of wires and the optical fiber,
The cable for a suspension structure according to claim 1, wherein a parallel wire strand is constituted by the plurality of wires.
前記光ファイバは,前記ケーブル本体の内部に1又は2以上設けられていることを特徴とする,請求項1又は2に記載の吊り構造用のケーブル。 The suspension cable according to claim 1 or 2, wherein one or more of the optical fibers are provided inside the cable body. 前記光ファイバは,前記ケーブル本体の少なくとも中央部に沿って設けられていることを特徴とする,請求項1〜3のいずれかに記載の吊り構造用のケーブル。 The said optical fiber is provided along the at least center part of the said cable main body, The cable for suspension structures in any one of Claims 1-3 characterized by the above-mentioned. 橋梁に用いられることを特徴とする,請求項1〜4のいずれかに記載の吊り構造用のケーブル。 The cable for a suspension structure according to any one of claims 1 to 4, wherein the cable is used for a bridge. 請求項1〜5のいずれかに記載の吊り構造用ケーブルに設けられる光ファイバと,
前記光ファイバから出射する光を利用して所定の情報を検出する測定装置とを備えることを特徴とする,測定システム。
An optical fiber provided in the suspension structure cable according to any one of claims 1 to 5;
A measurement system comprising: a measurement device that detects predetermined information using light emitted from the optical fiber.
前記所定の情報は,前記光ファイバの温度分布,歪み分布及び/又は湿度分布であることを特徴とする,請求項6に記載の測定システム。 The measurement system according to claim 6, wherein the predetermined information is a temperature distribution, a strain distribution, and / or a humidity distribution of the optical fiber. 前記所定の情報に基づいて,前記ケーブル本体の形状及び/又は張力を算出する演算部を備えることを特徴とする,請求項6又は7に記載の測定システム。 The measurement system according to claim 6 or 7, further comprising a calculation unit that calculates the shape and / or tension of the cable body based on the predetermined information.
JP2006124294A 2006-04-27 2006-04-27 Cable for suspension structure and measurement system Pending JP2007297777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006124294A JP2007297777A (en) 2006-04-27 2006-04-27 Cable for suspension structure and measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006124294A JP2007297777A (en) 2006-04-27 2006-04-27 Cable for suspension structure and measurement system

Publications (1)

Publication Number Publication Date
JP2007297777A true JP2007297777A (en) 2007-11-15

Family

ID=38767495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006124294A Pending JP2007297777A (en) 2006-04-27 2006-04-27 Cable for suspension structure and measurement system

Country Status (1)

Country Link
JP (1) JP2007297777A (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782473A (en) * 2010-03-17 2010-07-21 东南大学 Progressive type healthy monitoring method of rope system based on angle monitoring during support settlement
CN101782472A (en) * 2010-03-17 2010-07-21 东南大学 Healthy monitoring method of rope system based on angle monitoring during support settlement
CN101788402A (en) * 2010-03-17 2010-07-28 东南大学 Method for indentifying loose supporting cable based on angle monitoring during support settlement
CN101793631A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on space coordinate monitoring
CN101793629A (en) * 2010-04-02 2010-08-04 东南大学 Method for monitoring health of progressive cable structure based on strain monitor
CN101793632A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on strain monitoring
CN101793628A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on hybrid monitoring
CN101799373A (en) * 2010-03-31 2010-08-11 东南大学 Health monitor method for identifying damaged cable and support seat displacement based on angle monitor
CN101806667A (en) * 2010-03-31 2010-08-18 东南大学 Progressive method for identifying damaged cable and support displacement based on cable force monitoring
CN101806663A (en) * 2010-03-17 2010-08-18 东南大学 Health monitoring method of cable system based on mixed monitoring in presence of support seat settlement
CN101806666A (en) * 2010-03-31 2010-08-18 东南大学 Health monitoring method for identifying damaged cable and support displacement based on space coordinate monitoring
CN101806665A (en) * 2010-03-17 2010-08-18 东南大学 Method for identifying untensioned support cables based on mixed monitoring in presence of support seat settlement
CN101806668A (en) * 2010-04-02 2010-08-18 东南大学 Cable structure health monitoring method based on cable tension monitoring
CN101813571A (en) * 2010-03-31 2010-08-25 东南大学 Progressive method for identifying damaged cables and support displacement based on angle monitoring
CN101813569A (en) * 2010-03-31 2010-08-25 东南大学 Health monitoring method for identifying damaged cable and support displacement based on strain monitoring
CN101813570A (en) * 2010-03-31 2010-08-25 东南大学 Health monitoring method for recognizing damaged cable and support displacement based on mixed monitoring
CN101819097A (en) * 2010-03-31 2010-09-01 东南大学 Progressive method for identifying damaged cable and support displacement based on strain monitoring
CN101819098A (en) * 2010-03-31 2010-09-01 东南大学 Mixed monitoring based progressive method for identifying damaged cables and support displacement
JP2011132680A (en) * 2009-12-22 2011-07-07 Shimizu Corp Structural health monitoring system using optical fiber sensor
CN102221481A (en) * 2011-05-31 2011-10-19 东南大学 Relax cable identification method based on mixed monitoring in support generalized displacement
CN102288442A (en) * 2011-05-13 2011-12-21 东南大学 Method for distinguishing damaged cable, slack cable and angular displacement of supporting seat based on angle monitoring
CN102288424A (en) * 2011-05-13 2011-12-21 东南大学 Progressive method for recognizing damaged cable and angular displacement of support based on hybrid monitoring
CN102305720A (en) * 2011-05-13 2012-01-04 东南大学 Cable stress monitoring-based progressive method for identifying damaged cable and angular displacement of support
CN102305723A (en) * 2011-05-31 2012-01-04 东南大学 Health monitoring method based on mixed monitoring and identification of damaged cable and generalized displacement of support
CN102323084A (en) * 2011-05-31 2012-01-18 东南大学 Progressive method for identifying damaged cable and support generalized displacement on the basis of mixed monitoring
JP2012510011A (en) * 2009-09-30 2012-04-26 江▲蘇▼法▲爾▼▲勝▼▲ほん▼昇集▲団▼有限公司 Intelligent cable system for bridging with fiber grating sensor
CN102706645A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable approximant identification method on basis of cable force monitoring during support settlement and temperature variation
CN102706610A (en) * 2012-05-30 2012-10-03 东南大学 Problem cable and supporting seat generalized displacement identification method based on strain monitoring at moment of temperature variation
CN102706627A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support angular displacement identification method on basis of hybrid monitoring during temperature variation
CN102706646A (en) * 2012-05-29 2012-10-03 东南大学 Approximant type identification method of damaged cable based on space coordinate monitoring during temperature variation
CN102706579A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable and support translation based on space coordinate monitoring during temperature change
CN102706599A (en) * 2012-05-29 2012-10-03 东南大学 Loosened cable progressive-type identification method based on combined monitoring at moment of sedimentation of supporting seat and temperature variation
CN102706602A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable approximant identification method on basis of cable force monitoring during temperature variation
CN102706606A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable identification method on basis of the space coordinate monitoring during temperature variation
CN102706590A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable approximation-type identification method based on strain monitoring at moment of temperature variation
CN102706580A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable based on cable force monitoring during temperature change
CN102706674A (en) * 2012-05-30 2012-10-03 东南大学 Progressive type identification method of a damaged cable and support generalized displacement based on cable force monitoring during temperature variation
CN102706576A (en) * 2012-05-29 2012-10-03 东南大学 Method for progressively identifying problem cable and support translation based on angle monitoring during temperature change
CN102706603A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable approximant identification method on basis of space coordinate monitoring during support settlement and temperature variation
CN102706660A (en) * 2012-05-30 2012-10-03 东南大学 Temperature variation space coordinate monitoring problem cable and support saddle angular displacement progressive identification method
CN102706634A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable approximant identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation
CN102706626A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable identification method on basis of cable force monitoring during temperature variation
CN102706655A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable identification method based on cable force monitoring during support depression and temperature variation
CN102706587A (en) * 2012-05-29 2012-10-03 东南大学 Problem cable and supporting seat translation identification method based on strain monitoring at moment of temperature variation
CN102706676A (en) * 2012-05-30 2012-10-03 东南大学 Loosened cable identification method based on cable force monitoring of support angular displacement and temperature change
CN102706597A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable approximant identification method on basis of hybrid monitoring during temperature variation
CN102706612A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable approximant identification method on basis of cable force monitoring during temperature variation
CN102721558A (en) * 2012-05-30 2012-10-10 东南大学 Progressive identification method of damaged line and support angle displacement based on temperature change and spatial coordinate monitoring
CN102721555A (en) * 2012-05-29 2012-10-10 东南大学 Damaged cable approximant identification method used in case of support settlement and temperature variation on basis of hybrid monitoring
CN102721554A (en) * 2012-05-29 2012-10-10 东南大学 Damaged cable and support translation identification method used in case of temperature variation on basis of hybrid monitoring
CN102721552A (en) * 2012-05-29 2012-10-10 东南大学 Slack cable identification method based on hybrid monitoring during temperature change
CN102721553A (en) * 2012-05-29 2012-10-10 东南大学 Strain monitoring-based slack line identification method in existence of support settlement and temperature change
CN102721556A (en) * 2012-05-30 2012-10-10 东南大学 Damaged cable and support angular displacement progressive identification method used in case of temperature variation on basis of strain monitoring
CN103194967A (en) * 2013-04-03 2013-07-10 中铁大桥局集团武汉桥梁科学研究院有限公司 Detecting system of bridge cable
CN103604657A (en) * 2013-12-09 2014-02-26 东南大学 Damaged cable/concentrated load/bracket angular displacement recognition method on basis of strain monitoring
CN103604631A (en) * 2013-12-09 2014-02-26 东南大学 Problematic cable/concentrated load progressive recognition method on basis of linear displacement cable power monitoring
CN103604653A (en) * 2013-12-09 2014-02-26 东南大学 Damaged cable/concentrated load/generalized displacement progressive recognition method on basis of strain monitoring
CN104634488A (en) * 2015-02-06 2015-05-20 西北工业大学 Deformation measurement method and device for airplane composite material stringer
JP5879453B1 (en) * 2015-08-27 2016-03-08 新日鉄住金エンジニアリング株式会社 Method of introducing initial tensile strain into cable and optical fiber
WO2016063904A1 (en) * 2014-10-22 2016-04-28 新日鉄住金エンジニアリング株式会社 Cable
CN106801381A (en) * 2017-03-06 2017-06-06 柳州欧维姆机械股份有限公司 A kind of drag-line of conveniently monitoring fracture of wire and preparation method thereof
JP2017110921A (en) * 2015-12-14 2017-06-22 国立大学法人横浜国立大学 Cable diagnosis system and sensing cable
JP2017120225A (en) * 2015-12-28 2017-07-06 鹿島建設株式会社 Anchoring part structure of pc steel stranded wire, ground anchor, measuring device, and measurement method
CN106969862A (en) * 2016-07-18 2017-07-21 福州大学 A kind of device for being used to monitor steel strand prestress loss
CN107208422A (en) * 2015-01-08 2017-09-26 住友电工钢线株式会社 Coat the twisted wire of PC steel
JP6406418B1 (en) * 2017-11-15 2018-10-17 沖電気工業株式会社 Optical fiber sensor device
CN109183617A (en) * 2018-08-28 2019-01-11 法尔胜泓昇集团有限公司 The main push-towing rope strand and installation method of carbon fiber-containing composite material intelligent muscle
CN109186565A (en) * 2018-09-20 2019-01-11 中建三局基础设施建设投资有限公司 A method of for length of boom calculating and collision detection
CN109632122A (en) * 2018-09-20 2019-04-16 广东省长大公路工程有限公司 Suspension bridge strand temperature automatic measurement system and Internet of Things measurement and control of temperature platform including it
JP2020117964A (en) * 2019-01-25 2020-08-06 日本地工株式会社 Facility state determining system, facility state determining method, and monitoring device
CN111851103A (en) * 2020-06-01 2020-10-30 上海宇航系统工程研究所 Tension-displacement measurement and control and crimping equipment for flexible rope
CN113235428A (en) * 2021-05-21 2021-08-10 浙江数智交院科技股份有限公司 Bridge main cable structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197505A (en) * 1986-02-25 1987-09-01 本州四国連絡橋公団 System for controlling shape of suspension bridge cable
JPS63311148A (en) * 1987-06-15 1988-12-19 Tokyo Electric Power Co Inc:The Power cable line having moisture absorption detecting function
JPH0587007U (en) * 1992-04-27 1993-11-22 日立造船株式会社 Cable temperature measuring device
JP2000097647A (en) * 1998-09-28 2000-04-07 Ohbayashi Corp Method for measuring deformation of structure using optical fiber and optical fiber sensor
JP2003501562A (en) * 1999-06-02 2003-01-14 フレシネ アンテルナショナル (エステーユーペー) Structural cable for civil engineering, covering part of the cable, and method of laying the cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197505A (en) * 1986-02-25 1987-09-01 本州四国連絡橋公団 System for controlling shape of suspension bridge cable
JPS63311148A (en) * 1987-06-15 1988-12-19 Tokyo Electric Power Co Inc:The Power cable line having moisture absorption detecting function
JPH0587007U (en) * 1992-04-27 1993-11-22 日立造船株式会社 Cable temperature measuring device
JP2000097647A (en) * 1998-09-28 2000-04-07 Ohbayashi Corp Method for measuring deformation of structure using optical fiber and optical fiber sensor
JP2003501562A (en) * 1999-06-02 2003-01-14 フレシネ アンテルナショナル (エステーユーペー) Structural cable for civil engineering, covering part of the cable, and method of laying the cable

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510011A (en) * 2009-09-30 2012-04-26 江▲蘇▼法▲爾▼▲勝▼▲ほん▼昇集▲団▼有限公司 Intelligent cable system for bridging with fiber grating sensor
JP2011132680A (en) * 2009-12-22 2011-07-07 Shimizu Corp Structural health monitoring system using optical fiber sensor
CN101806663A (en) * 2010-03-17 2010-08-18 东南大学 Health monitoring method of cable system based on mixed monitoring in presence of support seat settlement
CN101782472A (en) * 2010-03-17 2010-07-21 东南大学 Healthy monitoring method of rope system based on angle monitoring during support settlement
CN101788402A (en) * 2010-03-17 2010-07-28 东南大学 Method for indentifying loose supporting cable based on angle monitoring during support settlement
CN101782473A (en) * 2010-03-17 2010-07-21 东南大学 Progressive type healthy monitoring method of rope system based on angle monitoring during support settlement
CN101806665A (en) * 2010-03-17 2010-08-18 东南大学 Method for identifying untensioned support cables based on mixed monitoring in presence of support seat settlement
CN101813569A (en) * 2010-03-31 2010-08-25 东南大学 Health monitoring method for identifying damaged cable and support displacement based on strain monitoring
CN101819098A (en) * 2010-03-31 2010-09-01 东南大学 Mixed monitoring based progressive method for identifying damaged cables and support displacement
CN101799373A (en) * 2010-03-31 2010-08-11 东南大学 Health monitor method for identifying damaged cable and support seat displacement based on angle monitor
CN101806666A (en) * 2010-03-31 2010-08-18 东南大学 Health monitoring method for identifying damaged cable and support displacement based on space coordinate monitoring
CN101806667B (en) * 2010-03-31 2011-09-14 东南大学 Progressive method for identifying damaged cable and support displacement based on cable force monitoring
CN101813571B (en) * 2010-03-31 2011-09-14 东南大学 Progressive method for identifying damaged cables and support displacement based on angle monitoring
CN101813571A (en) * 2010-03-31 2010-08-25 东南大学 Progressive method for identifying damaged cables and support displacement based on angle monitoring
CN101806667A (en) * 2010-03-31 2010-08-18 东南大学 Progressive method for identifying damaged cable and support displacement based on cable force monitoring
CN101813570A (en) * 2010-03-31 2010-08-25 东南大学 Health monitoring method for recognizing damaged cable and support displacement based on mixed monitoring
CN101819097A (en) * 2010-03-31 2010-09-01 东南大学 Progressive method for identifying damaged cable and support displacement based on strain monitoring
CN101793629A (en) * 2010-04-02 2010-08-04 东南大学 Method for monitoring health of progressive cable structure based on strain monitor
CN101793632A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on strain monitoring
CN101806668A (en) * 2010-04-02 2010-08-18 东南大学 Cable structure health monitoring method based on cable tension monitoring
CN101793628A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on hybrid monitoring
CN101793631A (en) * 2010-04-02 2010-08-04 东南大学 Cable structure health monitoring method based on space coordinate monitoring
CN102288442A (en) * 2011-05-13 2011-12-21 东南大学 Method for distinguishing damaged cable, slack cable and angular displacement of supporting seat based on angle monitoring
CN102288424A (en) * 2011-05-13 2011-12-21 东南大学 Progressive method for recognizing damaged cable and angular displacement of support based on hybrid monitoring
CN102305720A (en) * 2011-05-13 2012-01-04 东南大学 Cable stress monitoring-based progressive method for identifying damaged cable and angular displacement of support
CN102221481A (en) * 2011-05-31 2011-10-19 东南大学 Relax cable identification method based on mixed monitoring in support generalized displacement
CN102305723A (en) * 2011-05-31 2012-01-04 东南大学 Health monitoring method based on mixed monitoring and identification of damaged cable and generalized displacement of support
CN102323084A (en) * 2011-05-31 2012-01-18 东南大学 Progressive method for identifying damaged cable and support generalized displacement on the basis of mixed monitoring
CN102706655A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable identification method based on cable force monitoring during support depression and temperature variation
CN102706626A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable identification method on basis of cable force monitoring during temperature variation
CN102706626B (en) * 2012-05-29 2015-07-08 东南大学 Slack cable identification method on basis of cable force monitoring during temperature variation
CN102706646A (en) * 2012-05-29 2012-10-03 东南大学 Approximant type identification method of damaged cable based on space coordinate monitoring during temperature variation
CN102706579A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable and support translation based on space coordinate monitoring during temperature change
CN102706599A (en) * 2012-05-29 2012-10-03 东南大学 Loosened cable progressive-type identification method based on combined monitoring at moment of sedimentation of supporting seat and temperature variation
CN102706602A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable approximant identification method on basis of cable force monitoring during temperature variation
CN102706606A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable identification method on basis of the space coordinate monitoring during temperature variation
CN102706590A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable approximation-type identification method based on strain monitoring at moment of temperature variation
CN102706580A (en) * 2012-05-29 2012-10-03 东南大学 Method for identifying damaged cable based on cable force monitoring during temperature change
CN102721553A (en) * 2012-05-29 2012-10-10 东南大学 Strain monitoring-based slack line identification method in existence of support settlement and temperature change
CN102706576A (en) * 2012-05-29 2012-10-03 东南大学 Method for progressively identifying problem cable and support translation based on angle monitoring during temperature change
CN102706603A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable approximant identification method on basis of space coordinate monitoring during support settlement and temperature variation
CN102721552A (en) * 2012-05-29 2012-10-10 东南大学 Slack cable identification method based on hybrid monitoring during temperature change
CN102721554A (en) * 2012-05-29 2012-10-10 东南大学 Damaged cable and support translation identification method used in case of temperature variation on basis of hybrid monitoring
CN102721555A (en) * 2012-05-29 2012-10-10 东南大学 Damaged cable approximant identification method used in case of support settlement and temperature variation on basis of hybrid monitoring
CN102706645A (en) * 2012-05-29 2012-10-03 东南大学 Damaged cable approximant identification method on basis of cable force monitoring during support settlement and temperature variation
CN102706587A (en) * 2012-05-29 2012-10-03 东南大学 Problem cable and supporting seat translation identification method based on strain monitoring at moment of temperature variation
CN102706612A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable approximant identification method on basis of cable force monitoring during temperature variation
CN102706597A (en) * 2012-05-29 2012-10-03 东南大学 Slack cable approximant identification method on basis of hybrid monitoring during temperature variation
CN102706676A (en) * 2012-05-30 2012-10-03 东南大学 Loosened cable identification method based on cable force monitoring of support angular displacement and temperature change
CN102721558A (en) * 2012-05-30 2012-10-10 东南大学 Progressive identification method of damaged line and support angle displacement based on temperature change and spatial coordinate monitoring
CN102706610A (en) * 2012-05-30 2012-10-03 东南大学 Problem cable and supporting seat generalized displacement identification method based on strain monitoring at moment of temperature variation
CN102706634A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable approximant identification method on basis of space coordinate monitoring during generalized displacement of support and temperature variation
CN102706660A (en) * 2012-05-30 2012-10-03 东南大学 Temperature variation space coordinate monitoring problem cable and support saddle angular displacement progressive identification method
CN102706674A (en) * 2012-05-30 2012-10-03 东南大学 Progressive type identification method of a damaged cable and support generalized displacement based on cable force monitoring during temperature variation
CN102721556A (en) * 2012-05-30 2012-10-10 东南大学 Damaged cable and support angular displacement progressive identification method used in case of temperature variation on basis of strain monitoring
CN102706627A (en) * 2012-05-30 2012-10-03 东南大学 Damaged cable and support angular displacement identification method on basis of hybrid monitoring during temperature variation
CN103194967A (en) * 2013-04-03 2013-07-10 中铁大桥局集团武汉桥梁科学研究院有限公司 Detecting system of bridge cable
CN103604653A (en) * 2013-12-09 2014-02-26 东南大学 Damaged cable/concentrated load/generalized displacement progressive recognition method on basis of strain monitoring
CN103604657A (en) * 2013-12-09 2014-02-26 东南大学 Damaged cable/concentrated load/bracket angular displacement recognition method on basis of strain monitoring
CN103604631A (en) * 2013-12-09 2014-02-26 东南大学 Problematic cable/concentrated load progressive recognition method on basis of linear displacement cable power monitoring
WO2016063904A1 (en) * 2014-10-22 2016-04-28 新日鉄住金エンジニアリング株式会社 Cable
JP2016080658A (en) * 2014-10-22 2016-05-16 新日鉄住金エンジニアリング株式会社 cable
CN107208422A (en) * 2015-01-08 2017-09-26 住友电工钢线株式会社 Coat the twisted wire of PC steel
US10815664B2 (en) 2015-01-08 2020-10-27 Sumitomo Electric Industries, Ltd. Coated PC steel stranded cable
EP3486394A1 (en) * 2015-01-08 2019-05-22 Sumitomo (SEI) Steel Wire Corp. Coated pc steel stranded cable
CN109298494A (en) * 2015-01-08 2019-02-01 住友电工钢线株式会社 Coat the twisted wire of PC steel
EP3243972A4 (en) * 2015-01-08 2018-10-31 Sumitomo (SEI) Steel Wire Corp. Covered pc steel twisted wire
CN104634488A (en) * 2015-02-06 2015-05-20 西北工业大学 Deformation measurement method and device for airplane composite material stringer
WO2017033494A1 (en) * 2015-08-27 2017-03-02 新日鉄住金エンジニアリング株式会社 Cable and method for introducing initial tensile strain into optical fiber
JP2017044925A (en) * 2015-08-27 2017-03-02 新日鉄住金エンジニアリング株式会社 Cable and method of introducing initial tensile strain to optical fiber
CN107076585A (en) * 2015-08-27 2017-08-18 新日铁住金工程技术株式会社 Cable and the introduction method that incipient extension strain is imported to optical fiber
JP5879453B1 (en) * 2015-08-27 2016-03-08 新日鉄住金エンジニアリング株式会社 Method of introducing initial tensile strain into cable and optical fiber
US9958299B2 (en) 2015-08-27 2018-05-01 Nippon Steel & Sumikin Engineering Co., Ltd. Cable and method for introducing initial tensile strain to optical fiber
CN107076585B (en) * 2015-08-27 2020-03-13 新日铁住金工程技术株式会社 Cable and method for introducing initial tensile strain into optical fiber
JP2017110921A (en) * 2015-12-14 2017-06-22 国立大学法人横浜国立大学 Cable diagnosis system and sensing cable
JP2017120225A (en) * 2015-12-28 2017-07-06 鹿島建設株式会社 Anchoring part structure of pc steel stranded wire, ground anchor, measuring device, and measurement method
CN106969862A (en) * 2016-07-18 2017-07-21 福州大学 A kind of device for being used to monitor steel strand prestress loss
CN106801381A (en) * 2017-03-06 2017-06-06 柳州欧维姆机械股份有限公司 A kind of drag-line of conveniently monitoring fracture of wire and preparation method thereof
JP6406418B1 (en) * 2017-11-15 2018-10-17 沖電気工業株式会社 Optical fiber sensor device
JP2019090719A (en) * 2017-11-15 2019-06-13 沖電気工業株式会社 Optical fiber sensor device
CN109183617A (en) * 2018-08-28 2019-01-11 法尔胜泓昇集团有限公司 The main push-towing rope strand and installation method of carbon fiber-containing composite material intelligent muscle
CN109632122A (en) * 2018-09-20 2019-04-16 广东省长大公路工程有限公司 Suspension bridge strand temperature automatic measurement system and Internet of Things measurement and control of temperature platform including it
CN109186565A (en) * 2018-09-20 2019-01-11 中建三局基础设施建设投资有限公司 A method of for length of boom calculating and collision detection
CN109186565B (en) * 2018-09-20 2020-11-24 中建三局基础设施建设投资有限公司 Method for length calculation and collision check of lifting rod
CN109632122B (en) * 2018-09-20 2023-11-24 广东省长大公路工程有限公司 Automatic temperature measurement system for rope strands of suspension bridge and temperature measurement and control platform of Internet of things comprising automatic temperature measurement and control system
JP2020117964A (en) * 2019-01-25 2020-08-06 日本地工株式会社 Facility state determining system, facility state determining method, and monitoring device
CN111851103A (en) * 2020-06-01 2020-10-30 上海宇航系统工程研究所 Tension-displacement measurement and control and crimping equipment for flexible rope
CN111851103B (en) * 2020-06-01 2021-09-28 上海宇航系统工程研究所 Tension-displacement measurement and control and crimping equipment for flexible rope
CN113235428A (en) * 2021-05-21 2021-08-10 浙江数智交院科技股份有限公司 Bridge main cable structure

Similar Documents

Publication Publication Date Title
JP2007297777A (en) Cable for suspension structure and measurement system
RU2589443C2 (en) Calibration of wear detection system
KR101976655B1 (en) Method for Determining the Fatigue Capital of a Cable
KR101344722B1 (en) System for measuring bridge deflection using optical fiber
US20130208259A1 (en) Parameter sensing and monitoring
Wu et al. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads
JP2006250647A (en) Wire cable, and tension measurement system and method
JP2008175562A (en) Strain measuring system
US9097562B2 (en) Flexible strip comprising at least one optical fibre for carrying out deformation and/or temperature measurements
CN109655007A (en) A kind of interior pipe inner concrete deformation monitoring method being perfused of grand bridge tubular arch
NO310125B1 (en) System for monitoring high voltage cables in air tension
CN107478564A (en) Prestress anchorage cable corrosion damage monitoring method and device based on Fibre Optical Sensor
CN115060186B (en) Bridge girder safety monitoring system and method based on weak reflectivity grating array
CN109958056A (en) Smart stay cable, smart stay cable preparation method and smart stay cable safe condition detection method
CN110696179A (en) Method for laying concrete sensing optical fiber
JP6784451B2 (en) Cable diagnostic system and sensing cable
JPH11287650A (en) Measuring device for deformation of internal space of tunnel by use of optical fiber
CN210177368U (en) Intelligent inhaul cable and fiber reinforced optical fiber lacing wire
CN207248706U (en) A kind of prestress anchorage cable corrosion damage monitoring device based on Fibre Optical Sensor
JP2019070594A (en) Damage detection method of pc cable
CN210571747U (en) Intelligent steel strand cable capable of realizing damage self-diagnosis and self-positioning
CN109931875A (en) A kind of buried type geotechnical engineering monitoring device
JP4056038B2 (en) Snow sensor, snow meter and snow measurement method using optical fiber
JP7416492B2 (en) armored dss cable
WO2023144916A1 (en) Power cable monitoring system, and method for manufacturing sensor rope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214