JP2007288838A - Embedded magnet type motor - Google Patents

Embedded magnet type motor Download PDF

Info

Publication number
JP2007288838A
JP2007288838A JP2006110068A JP2006110068A JP2007288838A JP 2007288838 A JP2007288838 A JP 2007288838A JP 2006110068 A JP2006110068 A JP 2006110068A JP 2006110068 A JP2006110068 A JP 2006110068A JP 2007288838 A JP2007288838 A JP 2007288838A
Authority
JP
Japan
Prior art keywords
rotor
magnets
shape
magnet type
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006110068A
Other languages
Japanese (ja)
Inventor
Hiroshi Kono
寛 河野
Toshihiko Yoshida
稔彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2006110068A priority Critical patent/JP2007288838A/en
Publication of JP2007288838A publication Critical patent/JP2007288838A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an embedded magnet type motor in which the amount of magnets is reduced, reluctance torque is increased, and a maximum output identical to that when all magnets exist can be attained without causing an undue induction voltage in the high speed rotary zone. <P>SOLUTION: A stator 11 is tubular and a plurality of tees 12 are provided on the inside while spaced apart equally. A coil (winding not shown) is wound around the tees 12 by distributed winding. A rotor 13 has a rotor core 14 formed by laminating a plurality of core sheets, and a rotor shaft 15 penetrating the center of the rotor core 14. A plurality of permanent magnets 16 are embedded in the rotor core 14. The rotor core 14 has a portion where the permanent magnets 16 are arranged in V-shape every 360° of electrical angle, and a flux barrier 17 formed in V-shape. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、埋込磁石型電動機に関する。   The present invention relates to an interior magnet type electric motor.

埋込磁石型電動機は、磁石トルク以外にリラクタンストルクを利用できるため、表面磁石型電動機と比較して合計トルクを大きくできることが知られている。さらに、弱め界磁制御をすることにより、磁石に反磁界をかけて誘起電圧定数を等価的に小さくし、運転範囲を高回転域まで広げた電動機が電気自動車や、ハイブリッド自動車、洗濯機等で使われている。   It is known that an embedded magnet type electric motor can use a reluctance torque in addition to a magnet torque, so that the total torque can be increased as compared with a surface magnet type electric motor. In addition, by using field-weakening control, the induced voltage constant is equivalently reduced by applying a demagnetizing field to the magnet and the operating range is extended to a high rotation range. This is used in electric vehicles, hybrid vehicles, washing machines, etc. ing.

図6はSPM(表面磁石型電動機)とIPM(埋込磁石型電動機)の特性比較である。回転数が所定回転数までのIで示す範囲では最大トルク制御を行い、インバータの最大電流でトルクが最も大きくなるように制御する。回転数が所定回転数を超えるIIで示す範囲では誘起電圧がインバータ入力電圧より大きくならないように、インバータ電流を下げながら弱め界磁制御を行う。   FIG. 6 is a characteristic comparison between SPM (surface magnet type motor) and IPM (embedded magnet type motor). Maximum torque control is performed in the range indicated by I until the rotation speed reaches a predetermined rotation speed, and control is performed so that the torque is maximized at the maximum current of the inverter. Field weakening control is performed while lowering the inverter current so that the induced voltage does not become higher than the inverter input voltage in the range indicated by II where the rotational speed exceeds the predetermined rotational speed.

埋込磁石型電動機は、磁石トルクが小さくなるものの、リラクタンストルクも利用できるために結果的に最大トルクをSPMと同等にできる場合が多い。また、表面磁石型電動機と異なり突極比があるため、弱め界磁電流(負のd軸電流)を流すことにより、誘起電圧を下げながらリラクタンストルクを大きくできるような磁束の流れを作っている。   Although an embedded magnet type electric motor has a small magnet torque, a reluctance torque can also be used, and as a result, the maximum torque can often be made equal to SPM. In addition, since there is a salient pole ratio unlike a surface magnet type motor, a flow of magnetic flux that can increase the reluctance torque while lowering the induced voltage is created by passing a field weakening current (negative d-axis current). .

従来、埋込磁石型電動機において、簡単なロータ構造でリラクタンストルクの割合を大きくできるものが提案されている(例えば、特許文献1参照。)。特許文献1においては、図7に示すように、ロータコア51における永久磁石52の配置としては、リラクタンストルクを利用するのに最も効率的なV字配置としながら、V字の片方は永久磁石52を抜いてフラックスバリア53として利用している。
特開2000−287393号公報
Conventionally, there has been proposed an embedded magnet type electric motor that can increase the ratio of reluctance torque with a simple rotor structure (see, for example, Patent Document 1). In Patent Document 1, as shown in FIG. 7, the permanent magnet 52 in the rotor core 51 is arranged in the most efficient V-shape for utilizing the reluctance torque. It is pulled out and used as a flux barrier 53.
JP 2000-287393 A

ところが、図7のようにV字状に配置すべき2個の永久磁石52のうちの一方の永久磁石52を抜いてフラックスバリア53とした場合は、永久磁石52がすべてある場合と比較して、最大出力が下がってしまうという問題がある。   However, when one of the two permanent magnets 52 to be arranged in a V-shape as shown in FIG. 7 is pulled out and used as the flux barrier 53, compared to the case where all the permanent magnets 52 are present. There is a problem that the maximum output is lowered.

また、図7の鎖線で囲んだ部分Aは鉄心の磁束密度が低くq軸インダクタンスを大きくできるという特徴がある。しかし、d軸インダクタンスも増加するため誘起電圧も上昇し、結果的に永久磁石52を抜かない場合と比較して、磁石トルクが少なくなった分だけ最大出力が下がってしまう。また、弱め界磁制御を行う運転範囲は永久磁石52が全て有りの場合と変わらない。   Further, the portion A surrounded by the chain line in FIG. 7 is characterized in that the magnetic flux density of the iron core is low and the q-axis inductance can be increased. However, since the d-axis inductance is also increased, the induced voltage is also increased. As a result, the maximum output is decreased by the amount that the magnet torque is reduced as compared with the case where the permanent magnet 52 is not removed. In addition, the operating range in which field weakening control is performed is the same as when all permanent magnets 52 are present.

巻線抵抗を無視した場合、d−q座標系における電圧等は以下の式となる。
Vd=−ωe・Lq・Iq+Ld・dId/dt・・・(1)
Vq=ωe・(ψ+Ld・Id)+Lq・dIq/dt・・・(2)
V=ωe・{(ψ+Ld・Id)+(Lq・Iq)0.5・・・(3)
T=Pn・{ψ・Iq+(Ld−Lq)・Id・Iq}・・・(4)
Vd:d軸電圧、ωe:電気角角周波数、Lq:q軸インダクタンス、Iq:q軸電流
Vq:q軸電圧、ψ:磁石磁束巻線鎖交数、Ld:d軸インダクタンス、Id:d軸電流
V:誘起電圧、T:トルク、Pn:極対数
Idが負のため、突極比:Lq/Ldを大きくできれば、(4)式からリラクタンストルクの利用率が高くなる。しかし、特に電流が大きい電動機においては、(3)式における(Lq・Iq)による誘起電圧上昇分が無視できないくらい大きくなるため、高速回転時において誘起電圧が過大になるという問題がある。
When the winding resistance is ignored, the voltage and the like in the dq coordinate system are as follows.
Vd = −ωe · Lq · Iq + Ld · dId / dt (1)
Vq = ωe · (ψ + Ld · Id) + Lq · dIq / dt (2)
V = ωe · {(ψ + Ld · Id) 2 + (Lq · Iq) 2 } 0.5 (3)
T = Pn · {ψ · Iq + (Ld−Lq) · Id · Iq} (4)
Vd: d-axis voltage, ωe: electrical angular frequency, Lq: q-axis inductance, Iq: q-axis current Vq: q-axis voltage, ψ: magnet flux winding interlinkage, Ld: d-axis inductance, Id: d-axis Current V: Induced voltage, T: Torque, Pn: Number of pole pairs Since Id is negative, if the salient pole ratio: Lq / Ld can be increased, the utilization factor of the reluctance torque increases from equation (4). However, an electric motor with a particularly large current has a problem that an induced voltage becomes excessive during high-speed rotation because an increase in induced voltage due to (Lq · Iq) 2 in equation (3) becomes so large that it cannot be ignored.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、磁石量を低減した埋込磁石型電動機において、高速回転域において誘起電圧が過大とならずに、磁石全て有りの場合と同じ最大出力が得られる埋込磁石型電動機を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide an embedded magnet type electric motor with a reduced amount of magnets so that an induced voltage does not become excessive in a high-speed rotation region and all magnets are present. It is an object of the present invention to provide an embedded magnet type electric motor that can obtain the same maximum output as in the case of.

前記の目的を達成するために、請求項1に記載の発明は、複数個の永久磁石がロータコア内に埋め込まれたロータを備えた埋込磁石型電動機であって、極数が4(n+1)(但し、nは1以上の整数)で、前記ロータは、電気角が360°毎に永久磁石がV字状又は円弧状に配置された部分と、V字状又は円弧状のフラックスバリアとを有する。   In order to achieve the above object, an invention according to claim 1 is an embedded magnet type electric motor including a rotor in which a plurality of permanent magnets are embedded in a rotor core, and the number of poles is 4 (n + 1). (Where n is an integer equal to or greater than 1), and the rotor includes a portion in which permanent magnets are arranged in a V shape or an arc shape every 360 ° of electrical angle, and a V-shaped or arc-shaped flux barrier. Have.

従って、この発明のロータ構造では、従来技術に比較して、高速回転域までフラットなトルク特性を実現できる。なぜならば、永久磁石が存在せずにフラックスバリアが存在する部分では、ステータ巻線による磁束しか存在しないため、最大電流においても鉄心の磁気飽和は発生せず、突極比を大きくできてリラクタンストルクの利用効率が高くなる。また、永久磁石が存在する部分では、従来技術に比較して突極比は小さいものの、インダクタンスが小さいため、誘起電圧が大きくならない。その結果、磁石量を低減した埋込磁石型電動機において、リラクタンストルクを増加させ、高速回転域において誘起電圧が過大とならずに、磁石全て有りの場合と同じ最大出力が得られる。   Therefore, in the rotor structure of the present invention, it is possible to realize a flat torque characteristic up to the high-speed rotation range as compared with the conventional technique. This is because in the part where there is no permanent magnet and there is a flux barrier, only the magnetic flux due to the stator winding exists, so even at the maximum current, the magnetic saturation of the iron core does not occur, the salient pole ratio can be increased and the reluctance torque The use efficiency of becomes higher. In addition, in the portion where the permanent magnet exists, the induced voltage does not increase because the inductance is small although the salient pole ratio is small as compared with the prior art. As a result, in the embedded magnet type electric motor with a reduced amount of magnets, the reluctance torque is increased and the induced voltage is not excessive in the high-speed rotation range, and the same maximum output as when all the magnets are present can be obtained.

請求項2に記載の発明は、請求項1に記載の発明において、ティースにコイルが分布巻で巻かれている。この発明では、ギャップの部分における磁束の流れが理論どおり正弦波に近くなるので、正弦波電流駆動でロータを回転制御するのが容易になる。   According to a second aspect of the present invention, in the first aspect of the present invention, a coil is wound around the teeth with distributed winding. In the present invention, since the flow of magnetic flux in the gap portion is close to a sine wave as in theory, it is easy to control the rotation of the rotor with a sine wave current drive.

請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記永久磁石は平板状に形成されている。この発明では、円弧状の永久磁石を使用する場合に比較して、永久磁石の製造が簡単になり、ひいては埋込磁石型電動機の製造コストを低減することができる。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the permanent magnet is formed in a flat plate shape. In this invention, compared with the case where an arc-shaped permanent magnet is used, the manufacture of the permanent magnet is simplified, and as a result, the manufacturing cost of the embedded magnet type electric motor can be reduced.

本発明によれば、磁石量を低減した埋込磁石型電動機において、高速回転域において誘起電圧が過大とならずに、磁石全て有りの場合と同じ最大出力が得られる埋込磁石型電動機を提供することができる。   According to the present invention, in an embedded magnet type motor with a reduced amount of magnets, there is provided an embedded magnet type motor capable of obtaining the same maximum output as when there are all magnets without causing an excessive induced voltage in a high speed rotation range. can do.

以下、本発明を8極、即ち4(n+1)のnを1とした数の極数を有する埋込磁石型電動機に具体化した一実施形態を図1〜図4にしたがって説明する。図1はロータ及びステータ全体の1/2の部分に対応する模式図である。   Hereinafter, an embodiment in which the present invention is embodied in an embedded magnet type motor having 8 poles, that is, 4 (n + 1) where n is 1 will be described with reference to FIGS. FIG. 1 is a schematic diagram corresponding to a half of the entire rotor and stator.

ステータ11は円筒状で内側に複数、この実施形態では48個(図示は24個)のティース12が等間隔で設けられている。ティース12には図示しないコイル(巻線)が分布巻で巻かれている。   The stator 11 is cylindrical and has a plurality of teeth 12 inside thereof, and in this embodiment, 48 (in the drawing, 24) teeth 12 are provided at equal intervals. A coil (winding) (not shown) is wound around the tooth 12 by distributed winding.

ロータ13は、電磁鋼板等の高透磁率材からなる円板状のコアシートを複数枚(例えば数十枚)積層したロータコア14と、ロータコア14の中心に貫挿されたロータ軸15とを備えている。コアシート同士は、必要に応じて接着剤等で一体固着されている。   The rotor 13 includes a rotor core 14 in which a plurality of (for example, several tens) disk-shaped core sheets made of a high permeability material such as an electromagnetic steel plate are stacked, and a rotor shaft 15 that is inserted through the center of the rotor core 14. ing. The core sheets are integrally fixed with an adhesive or the like as necessary.

ロータコア14内には、複数個の永久磁石16が埋め込まれている。ロータコア14は、電気角が360°毎に永久磁石16がV字状に配置された部分と、V字状に形成されたフラックスバリア17とを有する。即ち、図1に図示された部分では、ロータコア14の中心角90°の範囲に2組4個の永久磁石16が配置され、次の中心角90°の範囲に2組4個のフラックスバリア17が配置されている。   A plurality of permanent magnets 16 are embedded in the rotor core 14. The rotor core 14 has a portion where the permanent magnets 16 are arranged in a V shape every electrical angle of 360 °, and a flux barrier 17 formed in a V shape. That is, in the portion illustrated in FIG. 1, two sets of four permanent magnets 16 are arranged in the range of the central angle 90 ° of the rotor core 14, and two sets of four flux barriers 17 are arranged in the next range of the central angle 90 °. Is arranged.

永久磁石16は平板状に形成されており、V字を成すように4組8個(図示は2組4個)設けられている。隣接して配置される4個の永久磁石16はロータコア14の1/4の範囲の外周寄りに配置され、一方の組の永久磁石16はS極がティース12側となるように配置され、他方の組の永久磁石16はN極がティース12側となるように配置されている。   The permanent magnets 16 are formed in a flat plate shape, and four sets and eight pieces (two sets and four pieces in the drawing) are provided so as to form a V shape. The four permanent magnets 16 arranged adjacent to each other are arranged near the outer periphery of a quarter range of the rotor core 14, and one set of permanent magnets 16 is arranged so that the south pole is on the teeth 12 side, and the other The permanent magnets 16 are arranged so that the N pole is on the tooth 12 side.

フラックスバリア17は、ロータコア14の中心を含む平面に対して永久磁石16と対称に、かつ2組の永久磁石16を挟んで配置されているフラックスバリア17が点対称に配置されている。フラックスバリア17も永久磁石16と同じ形状の孔がV字を成すように4組8個(図示は2組4個)設けられている。即ち、フラックスバリア17はV字を成すように配置すべき永久磁石16を抜いた状態に形成されている。   The flux barrier 17 is arranged symmetrically with the permanent magnet 16 with respect to a plane including the center of the rotor core 14, and the flux barrier 17 arranged with two pairs of permanent magnets 16 is point-symmetrically arranged. The flux barrier 17 is also provided in four groups and eight pieces (two sets and four pieces in the figure) so that holes having the same shape as the permanent magnet 16 form a V shape. That is, the flux barrier 17 is formed in a state in which the permanent magnet 16 to be arranged so as to form a V shape is removed.

次に前記のように構成された埋込磁石型電動機の作用を説明する。
通常、リラクタンストルクを増加させるためには、高速回転型電動機とした方が良い。しかし、高速化により、誘起電圧が上昇するため、特に埋込磁石型電動機においては通電時の誘起電圧を下げなければならない。
Next, the operation of the interior magnet type motor configured as described above will be described.
Usually, in order to increase the reluctance torque, it is better to use a high-speed rotating electric motor. However, since the induced voltage increases due to the increase in speed, the induced voltage at the time of energization must be lowered particularly in an embedded magnet type electric motor.

一般的に、誘起電圧定数を下げる方法は以下のものがある。
(1)ロータコア14の積層厚を薄くする。
(2)磁石の磁束密度を下げる。
(3)ギャップを広げる。
(4)巻線のターン数を下げる。
In general, there are the following methods for reducing the induced voltage constant.
(1) Decreasing the lamination thickness of the rotor core 14.
(2) Lower the magnetic flux density of the magnet.
(3) Widen the gap.
(4) Reduce the number of turns of the winding.

例えば、磁石トルクのみを考えた場合、出力Pは次式で表されるので、Iqが一定であれば磁石トルクは下がってしまう。但し、Kは定数でトルクに比例する。
P=Pn・K・Iq・ωe
Iqはインバータ定格の制約から最大電流が決定されるため、大きくできないことが多い。
For example, when only the magnet torque is considered, the output P is expressed by the following equation. Therefore, if Iq is constant, the magnet torque decreases. However, KE is a constant and proportional to the torque.
P = Pn · K E · Iq · ωe
In many cases, Iq cannot be increased because the maximum current is determined by the restrictions of the inverter rating.

そこで、通電時の誘起電圧を低くできるロータ構造で、高速回転域で常にリラクタンストルクのピーク点を利用できる電動機であれば、磁石トルクの低下分を補うことができるため、最大出力を低下させないようにできる。   Therefore, a rotor structure that can reduce the induced voltage during energization and that can always use the peak point of reluctance torque in the high-speed rotation range can compensate for the decrease in magnet torque, so the maximum output will not be reduced. Can be.

この実施形態のロータ構造とした場合、フラックスバリア17が存在する領域19では永久磁石16がないため、ステータ巻線による磁束のみ存在する状態となり、最大電流においても鉄心の磁気飽和は発生せず、突極比を大きくできる。また、永久磁石16が存在する領域18では、V字の一方にのみ永久磁石が存在する従来技術の構成に比較して突極比は小さいものの、インダクタンスが小さいため誘起電圧が大きくならない。   In the case of the rotor structure of this embodiment, since there is no permanent magnet 16 in the region 19 where the flux barrier 17 exists, only the magnetic flux due to the stator windings exists, and magnetic saturation of the iron core does not occur even at the maximum current. The salient pole ratio can be increased. In the region 18 where the permanent magnets 16 are present, the salient pole ratio is small as compared with the configuration of the prior art in which the permanent magnet is present only on one of the V-shapes, but the induced voltage does not increase because the inductance is small.

実施形態のロータ構造の発生トルクは、次の(5)式で表される。
T=Pn/2・[{ψ・Iq+(Ld−Lq)・Id・Iq} +{(Ld−Lq)・Id・Iq}]・・・(5)
但し、Ld:永久磁石がある領域18のd軸インダクタンス、Lq:永久磁石がある領域18のq軸インダクタンス 、Ld:フラックスバリア17が存在する領域19のd軸インダクタンス、Lq:フラックスバリア17が存在する領域19のq軸インダクタンス
Ld<Ld、Lq<Lq
ここで、Lq>Lq>Lq(Lqは図7のq軸のインダクタンス)のため、誘起電圧上昇に寄与するインダクタンス成分を小さくしたまま、トルク発生に寄与するインダクタンス成分を大きくできる。
The generated torque of the rotor structure of the embodiment is expressed by the following equation (5).
T = Pn / 2 · [{ψ · Iq + (Ld 1 −Lq 1 ) · Id · Iq} + {(Ld 2 −Lq 2 ) · Id · Iq}] (5)
Where Ld 1 : d-axis inductance of the region 18 where the permanent magnet is present, Lq 1 : q-axis inductance of the region 18 where the permanent magnet is present, Ld 2 : d-axis inductance of the region 19 where the flux barrier 17 exists, Lq 2 : flux Q-axis inductance Ld 1 <Ld 2 , Lq 1 <Lq 2 in the region 19 where the barrier 17 exists
Here, since Lq 2 >Lq> Lq 1 (Lq is the q-axis inductance in FIG. 7), the inductance component contributing to torque generation can be increased while the inductance component contributing to the increase in induced voltage is reduced.

永久磁石16を希土類磁石として、最高回転速度10000rpm、正弦波電流駆動で電動機を回転させた場合について、有限要素法で磁界解析を行った。図2に基底速度における無負荷誘起電圧の磁界解析結果を示し、図3に基底速度で最大電流を流した場合の誘起電圧の磁界解析結果を示す。なお、図2と図3とでグラフの目盛りの最小値と最大値は一致させている。   Magnetic field analysis was performed by the finite element method for the case where the permanent magnet 16 was a rare earth magnet and the motor was rotated at a maximum rotational speed of 10,000 rpm and sine wave current drive. FIG. 2 shows the magnetic field analysis result of the no-load induced voltage at the base speed, and FIG. 3 shows the magnetic field analysis result of the induced voltage when the maximum current is passed at the base speed. 2 and 3, the minimum value and the maximum value of the scale of the graph are matched.

解析の際に、磁石全て有りと表現しているものは、実施形態の構成のフラックスバリア17に全て永久磁石16を入れてV字配置とした構成を意味し、従来技術と表現しているものは、図7と同様に、8組の全ての組を1個の永久磁石16と1個のフラックスバリア17でV字配置とした構成を意味する。   In the analysis, what is expressed as having all the magnets means a configuration in which the permanent magnets 16 are all placed in the flux barrier 17 of the configuration of the embodiment and arranged in a V-shape, which is expressed as conventional technology. Means a configuration in which all eight sets are arranged in a V-shape with one permanent magnet 16 and one flux barrier 17 as in FIG.

図2に示すように、無負荷誘起電圧は、一点鎖線で示す磁石全て有りの場合に比較して、細線で示す実施形態の場合及び太線で示す従来技術(磁石がV字の片側のみ)とも低くなる。しかし、図3に示すように、最大電流を流した時の誘起電圧は、従来技術の場合は磁石全て有りの場合殆ど変わらないのに対して、実施形態の場合は誘起電圧のピーク値が半分以下になっている。これは、従来技術と比較して、実施形態のロータ13では、領域19で磁気飽和が発生しないため、誘起電圧を小さいまま突極比が大きくできたことを裏付ける。   As shown in FIG. 2, the no-load induced voltage is compared with the case of the embodiment indicated by the thin line and the conventional technique indicated by the thick line (the magnet is only on one side of the V shape) as compared with the case where all the magnets indicated by the alternate long and short dash line are present Lower. However, as shown in FIG. 3, the induced voltage when the maximum current flows is almost the same in the case of the conventional technique when all the magnets are present, whereas in the case of the embodiment, the peak value of the induced voltage is halved. It is as follows. This confirms that the salient pole ratio can be increased while the induced voltage is kept small in the rotor 13 of the embodiment because magnetic saturation does not occur in the region 19 as compared with the prior art.

また、図4に回転数と出力及びトルクの関係をシミュレーションで求めた結果を示す。
出力に関しては、実施形態、従来技術及び磁石全て有りの場合とも、回転数の増加に伴って増加した後、低下する。そして、最大出力になる回転数が従来技術及び磁石全て有りの場合は、実施形態の場合より低い値でほぼ同じであり、従来技術の最大出力は磁石全て有りの場合の6割程度である。それに対して実施形態の場合は、最大出力が磁石全て有りの場合と同等以上になり、高回転数においても高い出力が得られる。この時の実施形態における出力は、従来技術の最大出力より大きな値である。
Further, FIG. 4 shows the result of obtaining the relationship between the rotational speed, the output, and the torque by simulation.
Regarding the output, in the case of the embodiment, the conventional technique, and all of the magnets, the output increases with an increase in the number of rotations and then decreases. When the rotational speed at which the maximum output is obtained is the same with the conventional technique and all the magnets, the values are lower than those in the embodiment, and are approximately the same, and the maximum output of the conventional technique is about 60% of the case with all the magnets. On the other hand, in the case of the embodiment, the maximum output is equal to or greater than that in the case where all the magnets are present, and a high output can be obtained even at a high rotational speed. The output in this embodiment is a value larger than the maximum output of the prior art.

また、トルクに関しては、低速回転領域では、実施形態の出力が従来技術に比較して低い。しかし、従来技術の出力は磁石全て有りの場合と同様に、一定トルクの低速回転領域が狭く、最大トルク電流制御を行える範囲が狭い。一方、実施形態の場合は、誘起電圧の上昇が少ないため、トルクが一定の回転領域が広く、最大トルク電流制御を行える範囲が広くなり、基底速度を高くできることが分かる。高速回転領域においては、従来技術及び磁石全て有りの場合よりトルクが高くなる。   Further, regarding the torque, the output of the embodiment is lower than that of the prior art in the low speed rotation region. However, as in the case where all the magnets are provided, the output of the prior art is narrow in the low-speed rotation region of constant torque, and the range in which maximum torque current control can be performed is narrow. On the other hand, in the case of the embodiment, since the increase of the induced voltage is small, it can be seen that the rotation region where the torque is constant is wide, the range in which the maximum torque current control can be performed is wide, and the base speed can be increased. In the high-speed rotation region, the torque is higher than in the case of the conventional technology and all the magnets.

この実施形態によれば、以下に示す効果を得ることができる。
(1)複数個の永久磁石16がロータコア14内に埋め込まれたロータ13を備えた埋込磁石型電動機であって、極数が8で、ロータ13は、電気角が360°毎に永久磁石16がV字状に配置された部分と、V字状のフラックスバリアとを有する。従って、永久磁石16が存在せずにフラックスバリア17が存在する部分(領域19)では、ステータ巻線による磁束しか存在しないため、最大電流においても鉄心の磁気飽和は発生せず、突極比を大きくできてリラクタンストルクの利用効率が高くなる。また、永久磁石16が存在する部分(領域18)では、従来技術に比較して突極比は小さいものの、インダクタンスが小さいため、誘起電圧が大きくならない。その結果、磁石量を低減した埋込磁石型電動機において、リラクタンストルクを増加させ、高速回転域において誘起電圧が過大とならずに、磁石全て有りの場合と同じ最大出力が得られる。また、従来技術に比較して、高速回転域までフラットなトルク特性を実現できるため、最大トルク電流制御を行える範囲が広くなり、基底速度を高くすることができる。その結果、従来は弱め界磁制御が必要な領域においても最大トルク制御で対応することが可能になる。さらに、弱め界磁制御時に進み角を、リラクタンストルクを最も効率良く利用できる角度に設定することにより、磁石磁束を減らすための余分なd軸電流を流す必要がなくなり、高効率になる。
According to this embodiment, the following effects can be obtained.
(1) An embedded magnet type electric motor including a rotor 13 in which a plurality of permanent magnets 16 are embedded in a rotor core 14, wherein the number of poles is 8 and the rotor 13 has a permanent magnet every 360 °. 16 has a V-shaped portion and a V-shaped flux barrier. Therefore, in the portion (region 19) where the permanent magnet 16 is not present and the flux barrier 17 is present, only the magnetic flux due to the stator winding is present, so that the magnetic saturation of the iron core does not occur even at the maximum current, and the salient pole ratio is The reluctance torque can be used more efficiently. In addition, in the portion where the permanent magnet 16 exists (region 18), although the salient pole ratio is smaller than that in the prior art, the induced voltage does not increase because the inductance is small. As a result, in the embedded magnet type electric motor with a reduced amount of magnets, the reluctance torque is increased and the induced voltage is not excessive in the high-speed rotation range, and the same maximum output as when all the magnets are present can be obtained. In addition, compared with the prior art, a flat torque characteristic can be realized up to a high-speed rotation range, so that the range in which maximum torque current control can be performed is widened, and the base speed can be increased. As a result, it is possible to cope with the maximum torque control even in a region where field weakening control is conventionally required. Further, by setting the advance angle at the time of field weakening control to an angle at which the reluctance torque can be most efficiently used, it is not necessary to flow an extra d-axis current for reducing the magnet magnetic flux, and the efficiency is increased.

(2)磁石全て有りの埋込磁石型電動機に比較して、永久磁石16の量を半分にすることかできるため、高速回転領域において高出力の埋込磁石型電動機を安価に製造することができる。   (2) Since the amount of the permanent magnet 16 can be halved as compared with an embedded magnet type motor having all magnets, a high output embedded magnet type motor can be manufactured at a low cost in a high-speed rotation region. it can.

(3)ティース12にコイル(巻線)が分布巻で巻かれている。従って、ギャップの部分における磁束の流れが理論どおり正弦波に近くなるので、正弦波電流駆動でロータ13を回転制御するのが容易になる。   (3) Coils (windings) are wound around the teeth 12 in distributed winding. Accordingly, since the flow of magnetic flux in the gap portion is close to a sine wave as theoretically, it is easy to control the rotation of the rotor 13 by sine wave current drive.

(4)永久磁石16は平板状に形成されている。従って、円弧状の永久磁石を使用する場合に比較して、永久磁石16の製造が簡単になり、ひいては埋込磁石型電動機の製造コストを低減することができる。   (4) The permanent magnet 16 is formed in a flat plate shape. Therefore, as compared with the case where an arc-shaped permanent magnet is used, the manufacture of the permanent magnet 16 is simplified, and as a result, the manufacturing cost of the embedded magnet type electric motor can be reduced.

(5)フラックスバリア17は永久磁石16と同様にV字状の配置となるように、かつ永久磁石16と対称に配置されている。従って、ロータコア14を構成するコアシートを積層する際に、永久磁石16が挿入される孔と、フラックスバリア17とを区別せずに積層しても差し支えないため、ロータコア14の製造が簡単になる。   (5) The flux barrier 17 is arranged in a V shape like the permanent magnet 16 and symmetrically with the permanent magnet 16. Accordingly, when the core sheets constituting the rotor core 14 are laminated, the holes into which the permanent magnets 16 are inserted and the flux barrier 17 may be laminated without being distinguished from each other, so that the manufacture of the rotor core 14 is simplified. .

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 永久磁石16及びフラックスバリア17の配置はV字状に限らない。例えば、図5(a)に示すように、フラックスバリア17の形状をV字配置の2個のフラックスバリア17に代えて1個の円弧状とし、2組4個のフラックスバリア17に代えて2組2個のフラックスバリア17、全体では4組4個のフラックスバリア17としてもよい。また、永久磁石16も平板状の2個の永久磁石16をV字状に配置する代わりに、1個の円弧状の永久磁石16を配置してもよい。磁束の流れ観点からは円弧状の方が好ましい。しかし、円弧状の永久磁石16は、製作し難く、割れ易いため製造コストが高くなる。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The arrangement of the permanent magnet 16 and the flux barrier 17 is not limited to a V shape. For example, as shown in FIG. 5A, the shape of the flux barrier 17 is changed to one arc shape instead of the two flux barriers 17 arranged in a V shape, and two sets of four flux barriers 17 are replaced with 2 pieces. A set of two flux barriers 17 may be used, or a total of four sets of four flux barriers 17. Moreover, the permanent magnet 16 may arrange | position one circular-arc-shaped permanent magnet 16 instead of arrange | positioning the flat permanent magnet 16 in V shape. From the viewpoint of magnetic flux flow, an arc shape is preferred. However, since the arc-shaped permanent magnet 16 is difficult to manufacture and easily broken, the manufacturing cost increases.

○ ティース12に対して巻線(コイル)を分布巻ではなく、図5(b)に示すように、巻線20を集中巻にした構成としてもよい。
○ ティース12は等間隔でなくても良い。巻線の巻き方や制御に応じて変更しても良い。
O It is good also as a structure which made winding 20 the concentrated winding as shown in FIG.5 (b) instead of distributed winding with respect to the teeth 12. As shown in FIG.
○ The teeth 12 may not be equally spaced. You may change according to the winding method and control of a coil | winding.

○ 埋込磁石型電動機の極数は8極に限らず、4(n+1)(但し、nは1以上の整数)であればよく、例えば、nを2とした4(2+1)=12極であってもよい。12極の場合、永久磁石16はV字配置であればロータコア14の中心角60°の範囲に2組4個ずつ3箇所に合計6組12個設けられ、円弧状の永久磁石16の場合は2組2個ずつ3箇所に合計6組6個設けられる。   ○ The number of poles of the embedded magnet type motor is not limited to 8 but may be 4 (n + 1) (where n is an integer of 1 or more), for example, 4 (2 + 1) = 12 poles where n is 2. There may be. In the case of 12 poles, if the permanent magnets 16 are arranged in a V shape, a total of 6 sets and 12 sets are provided in 3 locations each with 2 sets and 4 sets in the range of the central angle of the rotor core 14. A total of 6 sets and 6 sets are provided in 3 places each of 2 sets and 2 sets.

以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項3のいずれか一項に記載の発明において、前記永久磁石及びフラックスバリアはロータコアの軸方向から見た形状が同じに形成されるとともに、ロータコアの中心を含む平面に対して対称に形成されている。
The following technical idea (invention) can be understood from the embodiment.
(1) In the invention according to any one of claims 1 to 3, the permanent magnet and the flux barrier are formed to have the same shape as viewed from the axial direction of the rotor core, and include a plane including the center of the rotor core. Are formed symmetrically.

一実施形態のロータとステータの関係を示す模式部分平面図。The typical fragmentary top view which shows the relationship between the rotor of one Embodiment, and a stator. 基底速度における無負荷誘起電圧を示すグラフ。The graph which shows the no-load induced voltage in a base speed. 基底速度における最大電流を流した場合の誘起電圧を示すグラフ。The graph which shows the induced voltage at the time of flowing the maximum current in base speed. 出力−回転数及びトルク−回転数の関係を示すグラフ。The graph which shows the relationship between output-rotation speed and torque-rotation speed. (a),(b)は別の実施形態におけるロータとステータの関係を示す模式部分平面図。(A), (b) is a schematic fragmentary top view which shows the relationship between the rotor and stator in another embodiment. SPM(表面磁石型電動機)とIPM(埋込磁石型電動機)の特性比較。Comparison of characteristics between SPM (surface magnet type motor) and IPM (embedded magnet type motor). 従来技術における埋込磁石型電動機の模式平面図。The schematic plan view of the interior magnet type electric motor in a prior art.

符号の説明Explanation of symbols

12…ティース、13…ロータ、14…ロータコア、16…永久磁石、17…フラックスバリア。   12 ... Teeth, 13 ... Rotor, 14 ... Rotor core, 16 ... Permanent magnet, 17 ... Flux barrier.

Claims (3)

複数個の永久磁石がロータコア内に埋め込まれたロータを備えた埋込磁石型電動機であって、
極数が4(n+1)(但し、nは1以上の整数)で、前記ロータは、電気角が360°毎に永久磁石がV字状又は円弧状に配置された部分と、V字状又は円弧状のフラックスバリアとを有することを特徴とする埋込磁石型電動機。
An embedded magnet type electric motor having a rotor in which a plurality of permanent magnets are embedded in a rotor core,
The number of poles is 4 (n + 1) (where n is an integer equal to or greater than 1), and the rotor includes a portion in which permanent magnets are arranged in a V shape or an arc shape every electrical angle of 360 °, and a V shape or An embedded magnet type electric motor having an arc-shaped flux barrier.
ティースにコイルが分布巻で巻かれている請求項1に記載の埋込磁石型電動機。   The interior magnet type electric motor according to claim 1, wherein a coil is wound around the teeth by distributed winding. 前記永久磁石は平板状に形成されている請求項1又は請求項2に記載の埋込磁石型電動機。   The interior permanent magnet motor according to claim 1, wherein the permanent magnet is formed in a flat plate shape.
JP2006110068A 2006-04-12 2006-04-12 Embedded magnet type motor Pending JP2007288838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110068A JP2007288838A (en) 2006-04-12 2006-04-12 Embedded magnet type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110068A JP2007288838A (en) 2006-04-12 2006-04-12 Embedded magnet type motor

Publications (1)

Publication Number Publication Date
JP2007288838A true JP2007288838A (en) 2007-11-01

Family

ID=38760118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110068A Pending JP2007288838A (en) 2006-04-12 2006-04-12 Embedded magnet type motor

Country Status (1)

Country Link
JP (1) JP2007288838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405482B1 (en) * 2012-08-17 2014-06-11 포항공과대학교 산학협력단 Method of realizing the skew in the synchronous motor
US8766503B2 (en) 2011-03-28 2014-07-01 Kabushiki Kaisha Toyota Jidoshokki Permanent magnet embedded rotor for rotating electric machine and rotating electric machine
TWI744860B (en) * 2020-04-13 2021-11-01 國立成功大學 Motor and its spoke type rotor structure having oblique matching dual magnetic parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766503B2 (en) 2011-03-28 2014-07-01 Kabushiki Kaisha Toyota Jidoshokki Permanent magnet embedded rotor for rotating electric machine and rotating electric machine
KR101405482B1 (en) * 2012-08-17 2014-06-11 포항공과대학교 산학협력단 Method of realizing the skew in the synchronous motor
TWI744860B (en) * 2020-04-13 2021-11-01 國立成功大學 Motor and its spoke type rotor structure having oblique matching dual magnetic parts

Similar Documents

Publication Publication Date Title
JP4926107B2 (en) Rotating electric machine
CN105103420B (en) The rotor of synchronous reluctance motor and synchronous reluctance motor
WO2017085814A1 (en) Electric motor and air conditioner
US7482724B2 (en) Ipm electric rotating machine
EP3534496B1 (en) Permanent magnet motor
JP5061207B2 (en) Permanent magnet synchronous machine
JP5542849B2 (en) Switched reluctance motor
JP2017514453A (en) Permanent magnet synchronous motor and its rotor
EP1670119A1 (en) Motor with Improved flux distribution
KR101826126B1 (en) Three-phase electromagnetic motor
JP2008228522A (en) Rotary electric machine and its rotor
JP2009044860A (en) Rotator, and rotary electric machine
JP3428234B2 (en) Interior magnet type motor
JP2000197325A (en) Reluctance motor
JP2000245085A (en) Motor
WO2018212828A1 (en) Dual magnetic phase material rings for ac electric machines
JP2009050148A (en) Permanent-magnet electric motor with constant output in wide range
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP2003284274A (en) Rotor for permanent magnet synchronous motor
JP5750987B2 (en) Permanent magnet rotating electric machine
JP2016192841A (en) Switched reluctance rotating machine
JP4303579B2 (en) Three-dimensional stator structure rotating machine
JP2007288838A (en) Embedded magnet type motor
JP2007228771A (en) Permanent magnet type motor
US10056792B2 (en) Interior permanent magnet electric machine