JP2007286530A - Wavelength conversion module - Google Patents

Wavelength conversion module Download PDF

Info

Publication number
JP2007286530A
JP2007286530A JP2006116316A JP2006116316A JP2007286530A JP 2007286530 A JP2007286530 A JP 2007286530A JP 2006116316 A JP2006116316 A JP 2006116316A JP 2006116316 A JP2006116316 A JP 2006116316A JP 2007286530 A JP2007286530 A JP 2007286530A
Authority
JP
Japan
Prior art keywords
wavelength conversion
face
conversion element
optical waveguide
side connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006116316A
Other languages
Japanese (ja)
Other versions
JP5089075B2 (en
Inventor
Sugio Wako
杉生 輪湖
Junji Koyama
淳史 小山
Shingo Hase
真吾 長谷
Hiroshi Matsuura
寛 松浦
Takeshi Takagi
武史 高木
Hiroshi Abe
啓 阿部
Akira Fujisaki
晃 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Totoku Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Totoku Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006116316A priority Critical patent/JP5089075B2/en
Publication of JP2007286530A publication Critical patent/JP2007286530A/en
Application granted granted Critical
Publication of JP5089075B2 publication Critical patent/JP5089075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength conversion module, with which long lifetime and high reliability are attained and desired light power can be obtained, by eliminating various problems due to the large energy on incident and especally at exit end sides, above all, at the exit end sides of a wavelength conversion element, i.e., factors by which lightguide is drastically inhibited. <P>SOLUTION: The wavelength conversion module (10) consists of the wavelength conversion element (1), a first optical waveguide (2) for guiding the light to the element and a second optical waveguide (3) for guiding the light emitted from the wavelength conversion element to the outside. The wavelength conversion element is constituted, by subjecting an exit side connecting end surface (2o) of the first waveguide and a lightguide side connecting end surface (1i) of the wavelength conversion element to plane polishing and applying dielectric multilayer films (m), then connecting both end surfaces, and by subjecting an exit side connecting end surface (1o) of the wavelength conversion element to plane polishing and subjecting a lightguide side connecting end surface (3i) of the second optical waveguide to spherical polishing, then connecting both end surfaces by direct contact. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主にレーザ顕微鏡、バイオ医療用の分析装置、精密測定装置等に使用されるSHG(第2高調波)、THG(第3高調波)方式の光源に使用する波長変換モジュールに関するものである。   The present invention relates to a wavelength conversion module used for a light source of SHG (second harmonic) or THG (third harmonic) system mainly used in laser microscopes, biomedical analyzers, precision measuring devices, and the like. It is.

従来の波長変換モジュールは、例えば、LiNbO(ニオブ酸リチウム)などの非線形光学結晶に、周期的な分極反転構造が作製され、光導波路が形成されている波長変換素子の導光側接続端面(以下、導光端面と略記する)および出射側接続端面(以下、出射端面と略記する)にそれぞれ光導波路としての光ファイバを接続した構成となっている。この際、各光ファイバの入出射端面、および波長変換素子の導光端面と出射端面は誘電体多層膜が施される。また、前記波長変換素子には、波長変換素子の温度を調節するためのペルチェ素子が取り付けられる。なお、従来の波長変換モジュールとして、波長変換素子と、波長変換素子と熱的に結合されたペルチェ素子と、波長変換素子を光ファイバに結合させるためのガラスブロックを有し、光導波路に反射防止膜を設けて当該ガラスブロックと接続し、当該光ファイバと当該ガラスブロックの接続も同様としたものが、下記特許文献1に開示されている。
特開2005−321485
A conventional wavelength conversion module is, for example, a light guide side connection end face of a wavelength conversion element in which a periodically poled structure is formed in a nonlinear optical crystal such as LiNbO 3 (lithium niobate) and an optical waveguide is formed ( Hereinafter, an optical fiber as an optical waveguide is connected to each of the light guide end face and the output side connection end face (hereinafter referred to as the output end face). At this time, a dielectric multilayer film is applied to the incident / exit end face of each optical fiber and the light guide end face and the exit end face of the wavelength conversion element. The wavelength conversion element is attached with a Peltier element for adjusting the temperature of the wavelength conversion element. As a conventional wavelength conversion module, it has a wavelength conversion element, a Peltier element thermally coupled to the wavelength conversion element, and a glass block for coupling the wavelength conversion element to the optical fiber. The following Patent Document 1 discloses that a film is provided and connected to the glass block, and the connection between the optical fiber and the glass block is the same.
JP-A-2005-321485

従来の波長変換モジュールにおいては、波長変換素子の出射端面及び光ファイバの導光端面に施した誘電体多層膜は、接続面に導光する光が短波長で量子エネルギーが大きい(以下、接続面のエネルギーが大きいと略記する)ことから、動作時間の経過と共に異物に変質する為、導光を著しく阻害して低下させてしまい、短期間で所望の光パワーが得られなくなってしまうという問題があった。
また、波長変換素子の出射端に接続される光ファイバの端面と波長変換素子の出射端面の間には、隙間などによる空気層があったため、動作時間の経過と共に空気中の含有物(例えば、炭素、酸素、有機化合物等)が隙間に入って付着し、導光を著しく阻害していた。これらの現象は、波長変換素子の出射端側における接続面のエネルギーが大きいことから、特に波長変換素子の出射端側において顕著であり、その結果、短期間で所望の光パワーが得られなくなってしまうという問題があった。
本発明は、上記従来の波長変換モジュールが有する各種問題点を解決するためになされたものであり、波長変換素子の入出射端、とりわけ出射端側のエネルギーが大きいことに起因する各種問題、すなわち、導光が著しく阻害される要因を無くして、長寿命及び高信頼性を達成し、所望の光パワーが長期間得られる波長変換モジュールを提供することを目的とする。
In the conventional wavelength conversion module, the dielectric multilayer film applied to the output end face of the wavelength conversion element and the light guide end face of the optical fiber has a short wavelength of light guided to the connection face and a large quantum energy (hereinafter referred to as a connection face). Therefore, there is a problem that the desired light power cannot be obtained in a short period of time due to the deterioration of the light guide due to the deterioration of the light. there were.
In addition, since there was an air layer due to a gap or the like between the end face of the optical fiber connected to the output end of the wavelength conversion element and the output end face of the wavelength conversion element, the contents in the air (for example, Carbon, oxygen, organic compounds, etc.) entered the gaps and adhered to the gaps, significantly impeding light guiding. These phenomena are particularly remarkable on the emission end side of the wavelength conversion element because the energy of the connection surface on the emission end side of the wavelength conversion element is large, and as a result, the desired optical power cannot be obtained in a short period of time. There was a problem that.
The present invention has been made in order to solve the various problems of the conventional wavelength conversion module, and various problems caused by the large energy at the input / output end, particularly the output end side of the wavelength conversion element, An object of the present invention is to provide a wavelength conversion module that eliminates a factor that significantly impedes light guiding, achieves long life and high reliability, and obtains desired optical power for a long period of time.

第1の観点として本発明は、波長変換素子と、該波長変換素子へ光を導光する第1の光導波路と、波長変換素子から出射された光を外部へ導光する第2の光導波路とからなり、前記第1の光導波路の出射側接続端面と波長変換素子の導光側接続端面、および波長変換素子の出射側接続端面と第2の光導波路の導光側接続端面が接続されてなる波長変換モジュールであって、
前記第1の光導波路の出射側接続端面および波長変換素子の導光側接続端面には誘電体多層膜を施してこれらの端面を接続し、また、前記波長変換素子の出射側接続端面および第2の光導波路の導光側接続端面を直接接触によって接続したことを特徴とする波長変換モジュールにある。
As a first aspect, the present invention provides a wavelength conversion element, a first optical waveguide that guides light to the wavelength conversion element, and a second optical waveguide that guides light emitted from the wavelength conversion element to the outside. The output side connection end face of the first optical waveguide and the light guide side connection end face of the wavelength conversion element, and the output side connection end face of the wavelength conversion element and the light guide side connection end face of the second optical waveguide are connected. A wavelength conversion module comprising:
A dielectric multilayer film is applied to the output side connection end face of the first optical waveguide and the light guide side connection end face of the wavelength conversion element to connect these end faces, and the output side connection end face of the wavelength conversion element and In the wavelength conversion module, the light guide side connection end faces of the two optical waveguides are connected by direct contact.

第2の観点として本発明は、波長変換素子と、該波長変換素子へ光を導光する第1の光導波路と、波長変換素子から出射された光を外部へ導光する第2の光導波路とからなり、前記第1の光導波路の出射側接続端面と波長変換素子の導光側接続端面、および波長変換素子の出射側接続端面と第2の光導波路の導光側接続端面が接続されてなる波長変換モジュールであって、
前記第1の光導波路の出射側接続端面を平面研磨、球面研磨又は突き出し研磨し、前記波長変換素子の導光側接続端面を平面研磨してこれらの端面を接続し、また、前記波長変換素子の出射側接続端面を平面研磨し、前記第2の光導波路の導光側接続端面を球面研磨又は突き出し研磨してこれらの端面を直接接触によって接続したことを特徴とする波長変換モジュールにある。
As a second aspect, the present invention relates to a wavelength conversion element, a first optical waveguide that guides light to the wavelength conversion element, and a second optical waveguide that guides light emitted from the wavelength conversion element to the outside. The output side connection end face of the first optical waveguide and the light guide side connection end face of the wavelength conversion element, and the output side connection end face of the wavelength conversion element and the light guide side connection end face of the second optical waveguide are connected. A wavelength conversion module comprising:
The output side connection end face of the first optical waveguide is subjected to planar polishing, spherical polishing or protruding polishing, the light guide side connection end face of the wavelength conversion element is polished to connect these end faces, and the wavelength conversion element In the wavelength conversion module, the light emitting side connection end face of the second optical waveguide is planarly polished, the light guide side connection end face of the second optical waveguide is spherically polished or protruded, and these end faces are connected by direct contact.

第3の観点として本発明は、波長変換素子と、該波長変換素子へ光を導光する第1の光導波路と、波長変換素子から出射された光を外部へ導光する第2の光導波路とからなり、前記第1の光導波路の出射側接続端面と波長変換素子の導光側接続端面、および波長変換素子の出射側接続端面と第2の光導波路の導光側接続端面が接続されてなる波長変換モジュールであって、
前記第1の光導波路の出射側接続端面および波長変換素子の導光側接続端面を平面研磨し且つ誘電体多層膜を施してこれらの端面を接続し、また、前記波長変換素子の出射側接続端面を平面研磨し、前記第2の光導波路の導光側接続端面を球面研磨又は突き出し研磨してこれらの端面を直接接触によって接続したことを特徴とする波長変換モジュールにある。
As a third aspect, the present invention relates to a wavelength conversion element, a first optical waveguide that guides light to the wavelength conversion element, and a second optical waveguide that guides light emitted from the wavelength conversion element to the outside. The output side connection end face of the first optical waveguide and the light guide side connection end face of the wavelength conversion element, and the output side connection end face of the wavelength conversion element and the light guide side connection end face of the second optical waveguide are connected. A wavelength conversion module comprising:
The emission side connection end face of the first optical waveguide and the light guide side connection end face of the wavelength conversion element are planarly polished and a dielectric multilayer film is applied to connect these end faces, and the emission side connection of the wavelength conversion element The wavelength conversion module is characterized in that the end face is polished flat, the light guide side connection end face of the second optical waveguide is spherically polished or protruded, and these end faces are connected by direct contact.

第4の観点として本発明は、前記球面研磨の曲率半径を5mm以上、20mm以下とし、また突き出し研磨の突き出し長さを1μm以上、5μm以下としたことを特徴とする波長変換モジュールにある。   As a fourth aspect, the present invention provides a wavelength conversion module characterized in that the radius of curvature of the spherical polishing is 5 mm or more and 20 mm or less, and the protruding length of protruding polishing is 1 μm or more and 5 μm or less.

本発明の波長変換モジュールによれば、波長変換素子の出射端面と第2の光導波路の導光端面を誘電体多層膜等を施さないノンコートとしているので、誘電体多層膜を施した場合に生じていた、第2の接続面(B)のエネルギーが大きいために起因する、誘電体多層膜が異物に変質することを無くすことができる。また、第2の光導波路の導光端面を球面研磨又は突き出し研磨を行い且つノンコートとし、波長変換素子の出射端面と直接接触させて接続したので、接続端面間に隙間が生じなくなり、それぞれの端面に空気中の含有物の付着を無くすことができる。その結果、導光が著しく阻害される要因がなくなり、長寿命及び高信頼性が達成でき、所望の光パワーが長期間得られる波長変換モジュールとなる。従って、本発明は産業上に寄与する効果が極めて大である。   According to the wavelength conversion module of the present invention, the output end face of the wavelength conversion element and the light guide end face of the second optical waveguide are non-coated without a dielectric multilayer film or the like. It is possible to eliminate the deterioration of the dielectric multilayer film due to the large energy of the second connection surface (B). In addition, since the light guide end face of the second optical waveguide is spherically polished or protruded and made non-coated and connected in direct contact with the emission end face of the wavelength conversion element, there is no gap between the connection end faces. It is possible to eliminate adhesion of inclusions in the air. As a result, there is no factor that significantly impedes light guiding, a long life and high reliability can be achieved, and a wavelength conversion module that can obtain desired optical power for a long period of time is obtained. Therefore, the present invention has an extremely large effect contributing to the industry.

本発明の波長変換モジュールの基本構成について図3を用いて説明する。なお、同図(a)は平面図、また同図(b)は正面図である。
波長変換モジュール(50)は、例えば、LiNbO(ニオブ酸リチウム)などの非線形光学結晶に、周期的な分極反転構造が作製され、光導波路(図示せず)が形成されている波長変換素子(1)の導光側接続端面(以下、導光端面と略記する)および出射側接続端面(以下、出射端面と略記する)にそれぞれ第1の光導波路としての光ファイバ(2’)および第2の光導波路としての光ファイバ(3’)を接続して構成され、波長変換素子の導光端面側に光ファイバ(2’)との接続端面(第1の接続面(A))および出射端面側に光ファイバ(3’)との接続端面(第2の接続面(B))を有する。
また、前記波長変換素子(1)はホルダー(4)に支持され、該ホルダー(4)には、波長変換素子(1)の温度を調節するためのペルチェ素子(6)が取り付けられる。
The basic configuration of the wavelength conversion module of the present invention will be described with reference to FIG. 2A is a plan view, and FIG. 2B is a front view.
The wavelength conversion module (50) includes, for example, a wavelength conversion element in which a periodically poled structure is formed in a nonlinear optical crystal such as LiNbO 3 (lithium niobate) and an optical waveguide (not shown) is formed. 1) an optical fiber (2 ′) and a second optical waveguide as a first optical waveguide respectively on the light guide side connection end face (hereinafter abbreviated as light guide end face) and the output side connection end face (hereinafter abbreviated as output end face). An optical fiber (3 ′) as an optical waveguide is connected, and a connection end surface (first connection surface (A)) and an output end surface to the optical fiber (2 ′) are provided on the light guide end surface side of the wavelength conversion element. A connection end surface (second connection surface (B)) with the optical fiber (3 ′) is provided on the side.
The wavelength conversion element (1) is supported by a holder (4), and a Peltier element (6) for adjusting the temperature of the wavelength conversion element (1) is attached to the holder (4).

基本波となる光は第1の光導波路(2’)から第1の接続面(A)を介して波長変換素子(1)に入射し、より短波長の光に波長変換される。波長変換された光は第2の接続面(B)を介して第2の光導波路(3’)を伝播したのちに出力される。つまり、波長変換素子(1)の出射端面における光波長は導光端面における光波長より短く、波長変換素子の出射端面側のエネルギーは入射側に比べてより高くなる。そのため、波長変換素子(1)の出射端面と第2の光導波路(3’)の導光端面の間に空気層があると、空気中の含有物がより付着しやすくなる。また、これらの端面にARコートなどの誘電体多層膜が施されている場合は、より変質しやすくなる。このような傾向は、SHGやTHGなど、出力光波長が基本波の波長の半分以下となるような波長変換を行った場合に特に顕著になり、安定な動作を妨げる可能性がある。   The light that becomes the fundamental wave enters the wavelength conversion element (1) from the first optical waveguide (2 ') via the first connection surface (A), and is wavelength-converted to light having a shorter wavelength. The wavelength-converted light is output after propagating through the second optical waveguide (3 ') via the second connection surface (B). That is, the light wavelength at the exit end face of the wavelength conversion element (1) is shorter than the light wavelength at the light guide end face, and the energy on the exit end face side of the wavelength conversion element is higher than that on the incident side. Therefore, if there is an air layer between the output end face of the wavelength conversion element (1) and the light guide end face of the second optical waveguide (3 '), inclusions in the air are more likely to adhere. Further, when a dielectric multilayer film such as an AR coat is applied to these end faces, it becomes more easily altered. Such a tendency becomes particularly noticeable when wavelength conversion is performed such that the output light wavelength is half or less of the fundamental wave wavelength, such as SHG and THG, which may hinder stable operation.

これを解決するためには、より短波長側の光が通過する、波長変換素子(1)の出射端面と第2の光導波路(3’)の導光端面の間を、空気層を介さない直接接触とすることが望ましい。このようにすることで、空気中の含有物などの付着を防止することができ、長期にわたり安定した性能を維持することが可能となる。また、これらの端面を、誘電体多層膜などを施さないノンコートとするとともに、これらの端面の間を直接接触とすることによって、誘電体多層膜の変質が起こることもない。   In order to solve this problem, an air layer is not interposed between the emission end face of the wavelength conversion element (1) and the light guide end face of the second optical waveguide (3 ′) through which light on the shorter wavelength side passes. Direct contact is desirable. By doing in this way, adhesion of the content in air etc. can be prevented and it becomes possible to maintain the stable performance over a long period of time. Further, these end faces are made non-coated without a dielectric multilayer film or the like, and the end faces are in direct contact with each other, so that the dielectric multilayer film is not altered.

本発明の波長変換モジュールの形態例1としては、前記第1観点に示した波長変換モジュールである。以下、波長変換モジュールの構成について詳しく説明する。
前記第1の光導波路は、例えば基本波である1060nm〜1200nm帯の波長光を波長変換素子に導光するために用いられる光導波路である。なおこの光導波路は特定波長光の偏波面を保持したまま伝送できることが好ましく、例えばクラッド層に応力付与部を設けた偏波保持光ファイバが挙げられる。また前記偏波保持光ファイバのサイズは、例えばコア径が6μm、クラッド層径(外径)が125μmである。
また前記波長変換素子は、第1の光導波路からの光を導光して波長変換を行い、例えば1060nm〜1200nm帯の波長光を530nm〜600nm帯の波長光に変換して出射する。前記波長変換素子としては、例えば非線形光学結晶(例えば、PPLN(周期分極反転LiNbO結晶)、KN(KNbO)結晶等)が挙げられる。
また前記第2の光導波路は、波長変換素子で変換された光を導光し、次段に出射するために用いられる光導波路である。なおこの光導波路は特定波長光の偏波面を保持したまま伝送できることが好ましく、例えば偏波保持光ファイバが挙げられる。この第2の光導波路で用いられる偏波保持光ファイバは、例えば530nm〜600nm帯という短波長の波長光を通過させるために、コア径は波長特性から細いものが好ましく、例えばコア径が4μm、クラッド層径(外径)が125μmである。
本形態例1の波長変換モジュールでは、前記波長変換素子の出射端面及び第2の光導波路の導光端面(第2の接続面(B))はエネルギーが大きいので、端面に誘電体多層膜が施されている場合には、この多層膜の変質が起こり易いことから、ノンコートであることが望ましい。また前記第1の光導波路の出射端面及び波長変換素子の導光端面(第1の接続面(A))は、エネルギーが大きくないことから端面に施した誘電体多層膜の変質が起こり難く、接続損失を少なくすることができる。この場合、第1の光導波路の出射端面には高屈折率誘電体膜と低屈折率誘電体膜を交互に適切な層数で施し、また波長変換素子の導光端面には低屈折率誘電体膜を施すことが望ましい。
The wavelength conversion module according to the first aspect of the present invention is the wavelength conversion module shown in the first aspect. Hereinafter, the configuration of the wavelength conversion module will be described in detail.
The first optical waveguide is an optical waveguide that is used, for example, to guide wavelength light in a 1060 nm to 1200 nm band that is a fundamental wave to a wavelength conversion element. The optical waveguide is preferably capable of transmitting while maintaining the plane of polarization of the specific wavelength light, and examples thereof include a polarization maintaining optical fiber in which a stress applying portion is provided in the cladding layer. The polarization maintaining optical fiber has a core diameter of 6 μm and a cladding layer diameter (outer diameter) of 125 μm, for example.
The wavelength conversion element guides light from the first optical waveguide and performs wavelength conversion, for example, converts wavelength light in a 1060 nm to 1200 nm band into wavelength light in a 530 nm to 600 nm band and emits the converted light. Examples of the wavelength conversion element include nonlinear optical crystals (for example, PPLN (periodically poled LiNbO 3 crystal), KN (KNbO 3 ) crystal, etc.).
The second optical waveguide is an optical waveguide used for guiding the light converted by the wavelength conversion element and emitting it to the next stage. The optical waveguide is preferably capable of transmitting while maintaining the polarization plane of the specific wavelength light, and examples thereof include a polarization maintaining optical fiber. The polarization maintaining optical fiber used in the second optical waveguide preferably has a thin core diameter from the wavelength characteristics in order to pass light having a short wavelength of, for example, a band of 530 nm to 600 nm, for example, a core diameter of 4 μm, The cladding layer diameter (outer diameter) is 125 μm.
In the wavelength conversion module of Embodiment 1, since the energy is large in the emission end face of the wavelength conversion element and the light guide end face (second connection face (B)) of the second optical waveguide, a dielectric multilayer film is formed on the end face. If it is applied, the multilayer film is likely to be altered, so that it is preferably non-coated. Further, the output end face of the first optical waveguide and the light guide end face (first connection face (A)) of the wavelength conversion element are not energetic, so the dielectric multilayer film applied to the end face is unlikely to change. Connection loss can be reduced. In this case, a high-refractive index dielectric film and a low-refractive index dielectric film are alternately applied with an appropriate number of layers on the output end face of the first optical waveguide, and a low-refractive index dielectric is provided on the light guide end face of the wavelength conversion element. It is desirable to apply a body membrane.

本発明の波長変換モジュールの形態例2としては、前記第2観点に示した波長変換モジュールである。
本形態例2の波長変換モジュールでは、前記波長変換素子の出射端面及び第2の光導波路の導光端面(第2の接続面(B))は、上記形態例1と同様に、誘電体多層膜などは施さないノンコートであることが望ましい。また波長変換素子と第2の光導波路とを、第2の光導波路の入射端面に球面研磨又は突き出し研磨を施した上、突き当てなどによって直接接触させることによって、隙間に空気中の含有物が付着することを防ぐことが望ましい。また前記第1の光導波路と波長変換素子の接続端面(第1の接続面(A))は、エネルギーが大きくないことから端面に空気中の含有物の付着は起こり難く、第1の光導波路の出射端面は平面研磨で良い。しかし安全をみて球面研磨または突き出し研磨を施しても良い。また、前記第1の接続面(A)はエネルギーが大きくないことから、接続損失がそれ程問題にならない場合はノンコートでも良い。なお、波長変換素子の端面を球面研磨又は突き出し研磨とすることは、形状及び構造上実施し難いため、平面研磨とする。
The wavelength conversion module according to the second aspect of the present invention is the wavelength conversion module shown in the second aspect.
In the wavelength conversion module of the second embodiment, the output end face of the wavelength conversion element and the light guide end face (second connection face (B)) of the second optical waveguide are dielectric multilayers as in the first embodiment. It is desirable that the film or the like is non-coated. In addition, by subjecting the wavelength conversion element and the second optical waveguide to spherical contact or protruding polishing on the incident end face of the second optical waveguide and bringing them into direct contact by abutting or the like, inclusions in the air are introduced into the gap. It is desirable to prevent adhesion. Further, since the connection end face (first connection face (A)) between the first optical waveguide and the wavelength conversion element is not large in energy, it is difficult for substances contained in the air to adhere to the end face. The exit end face of the surface may be flat polished. However, for safety, spherical polishing or protruding polishing may be performed. Further, since the first connection surface (A) is not large in energy, it may be non-coated when the connection loss does not matter so much. In addition, since it is difficult to carry out spherical polishing or protruding polishing on the end face of the wavelength conversion element because of its shape and structure, it is determined as flat polishing.

本発明の波長変換モジュールの形態例3としては、前記第3観点に示した波長変換モジュールである。
本形態例3の波長変換モジュールでは、前記波長変換素子の出射端面及び第2の光導波路の導光端面(第2の接続面(B))は、上記形態例1、2の接続端面と同様、誘電体多層膜などは施さないノンコートであることが望ましい。また波長変換素子と第2の導波路とを、第2の光導波路の入射端面に球面研磨又は突き出し研磨を施した上、突き当てなどによって直接接触させることによって、上記形態例2と同様、隙間に空気中の含有物が付着することを防ぐことが望ましい。また前記第1の光導波路と波長変換素子の接続端面(第1の接続面(A))は、エネルギーが大きくないことから端面に空気中の含有物の付着は起こり難く、これらの接続端面は平面研磨で良い。また同じ理由から、これらの接続端面に施した誘電体多層膜の変質が起こり難く、接続損失を少なくすることができる。なお波長変換素子の端面を球面研磨又は突き出し研磨とすることは、形状及び構造上実施し難いため、平面研磨とする。また誘電体多層膜については、上記形態例1の誘電体多層膜と同様である。
A third embodiment of the wavelength conversion module of the present invention is the wavelength conversion module shown in the third aspect.
In the wavelength conversion module of the third embodiment, the emission end face of the wavelength conversion element and the light guide end face (second connection surface (B)) of the second optical waveguide are the same as the connection end faces of the first and second embodiments. In addition, it is preferable that the dielectric multilayer film is not coated. In addition, the wavelength conversion element and the second waveguide are subjected to spherical polishing or protruding polishing on the incident end face of the second optical waveguide and then brought into direct contact by abutting or the like, so that the gap is the same as in the second embodiment. It is desirable to prevent the contents in the air from adhering to the surface. In addition, since the connection end face (first connection face (A)) of the first optical waveguide and the wavelength conversion element is not large in energy, the inclusion of inclusions in the air hardly occurs on the end face. Flat polishing is acceptable. For the same reason, the dielectric multilayer film applied to these connection end faces hardly changes and connection loss can be reduced. In addition, since it is difficult to carry out spherical polishing or protruding polishing on the end face of the wavelength conversion element because of its shape and structure, it is determined as flat polishing. The dielectric multilayer film is the same as the dielectric multilayer film of the first embodiment.

本発明の波長変換モジュールの形態例4としては、前記第4観点に示した波長変換モジュールである。
本形態例4の波長変換モジュールでは、前記球面研磨の場合は曲率半径を5mm以上、20mm以下とし、また突き出し研磨の場合は突き出し長さを1μm以上、5μm以下とすることにより加工性が良くなり、また波長変換素子と第2の光導波路が良好に直接接触し接続される。
Embodiment 4 of the wavelength conversion module of the present invention is the wavelength conversion module shown in the fourth aspect.
In the wavelength conversion module of the fourth embodiment, the workability is improved by setting the radius of curvature to 5 mm or more and 20 mm or less in the case of spherical polishing and by setting the protruding length to 1 μm or more and 5 μm or less in the case of protruding polishing. In addition, the wavelength conversion element and the second optical waveguide are in good direct contact and connected.

以下、本発明の内容を、図に示す実施の形態により更に詳細に説明する。なお、これにより本発明が限定されるものではない。
図1は、本発明の波長変換モジュールの一例を示す略図であり、同図(a)は平面図、また同図(b)は正面図である。また図2は、本発明の波長変換モジュールの接続面を拡大した略図である。
これらの図において、1は波長変換素子、1iは波長変換素子の入射側接続端面、1oは波長変換素子の出射側接続端面、2は第1の光導波路(偏波保持光ファイバ)、2aは第1の光導波路のコア、2bは第1の光導波路のクラッド、2oは第1の光導波路の出射側接続端面、3は第2の光導波路(偏波保持光ファイバ)、3aは第2の光導波路のコア、3bは第2の光導波路のクラッド、3iは第2の光導波路の入射側接続端面、4は波長変換素子ホルダー、4aは波長変換素子ホルダーの本体、4bは波長変換素子ホルダーの蓋、5はガラスキャピラリ、6はペルチェ素子、6aはペルチェ素子のリード線、7は波長変換素子の筐体、8は波長変換素子の基台、10は波長変換モジュール、Aは第1の接続面、Bは第2の接続面、またmは誘電体多層膜(ARコート)である。
Hereinafter, the contents of the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.
FIG. 1 is a schematic diagram showing an example of the wavelength conversion module of the present invention, where FIG. 1 (a) is a plan view and FIG. 1 (b) is a front view. FIG. 2 is a schematic view enlarging the connection surface of the wavelength conversion module of the present invention.
In these drawings, reference numeral 1 denotes a wavelength conversion element, 1i denotes an incident side connection end face of the wavelength conversion element, 1o denotes an emission side connection end face of the wavelength conversion element, 2 denotes a first optical waveguide (polarization-maintaining optical fiber), and 2a denotes The core of the first optical waveguide, 2b is the cladding of the first optical waveguide, 2o is the output side connection end face of the first optical waveguide, 3 is the second optical waveguide (polarization-maintaining optical fiber), and 3a is the second 3b is the cladding of the second optical waveguide, 3i is the incident-side connection end face of the second optical waveguide, 4 is the wavelength conversion element holder, 4a is the main body of the wavelength conversion element holder, and 4b is the wavelength conversion element The lid of the holder, 5 is a glass capillary, 6 is a Peltier element, 6a is a lead wire of the Peltier element, 7 is a casing of the wavelength conversion element, 8 is a base of the wavelength conversion element, 10 is a wavelength conversion module, and A is the first , B is the second connection surface, and m is Collector is a multi-layer film (AR coat).

本発明の波長変換モジュールの第1実施形態について図1、2を用いて説明する。なお、図2においては、ガラスキャピラリは示していない。
実施例1の波長変換モジュール(10)は、波長変換素子(1)と、該波長変換素子へ光を導光する第1の光導波路(2)と、波長変換素子から出射された光を外部へ導光する第2の光導波路(3)とからなり、前記第1の光導波路(2)の出射端面(2o)と波長変換素子の導光端面(1i)、および波長変換素子の出射端面(1o)と第2の光導波路(3)の導光端面(3i)が接続され、第1の接続面(A)と第2の接続面(B)を有する構造で、前記第1の光導波路(2)の出射端面(2o)および波長変換素子(1)の導光端面(1i)を平面研磨し、また前記波長変換素子(1)の出射端面(1o)を平面研磨し、また前記第2の光導波路(3)の導光端面(3i)を球面研磨し、また第1の光導波路(2)の出射端面(2o)および波長変換素子(1)の導光端面(1i)に誘電体多層膜(m)を施し、また前記波長変換素子(1)の出射端面(1o)と第2の光導波路(3)の導光端面(3i)は、誘電体多層膜を施さないノンコート構成とした。なお、前記波長変換素子(1)には光導波路(図示せず)が設けられており、また、波長変換素子(1)はホルダーの本体(4a)と、ホルダーの蓋(4b)からなる波長変換素子ホルダー(以下、ホルダーと略記する)(4)に支持されている。またホルダー(4)は波長変換素子の筐体(7)に収納され、この筐体(7)は波長変換素子の基台(8)に取り付けられている。また、前記ホルダー(4)には、波長変換素子(1)の温度を調節するためのペルチェ素子(6)およびサーミスタ(図示せず)が取り付けられており、ペルチェ素子リード線(6a)により温度調節器(図示せず)と接続される。
A first embodiment of the wavelength conversion module of the present invention will be described with reference to FIGS. In FIG. 2, the glass capillary is not shown.
The wavelength conversion module (10) of Example 1 includes a wavelength conversion element (1), a first optical waveguide (2) that guides light to the wavelength conversion element, and light emitted from the wavelength conversion element. A second optical waveguide (3) that guides the light to the output end face (2o) of the first optical waveguide (2), the light guide end face (1i) of the wavelength conversion element, and the output end face of the wavelength conversion element (1o) and the light guide end face (3i) of the second optical waveguide (3) are connected, and the first optical waveguide has a structure having a first connection surface (A) and a second connection surface (B). The output end face (2o) of the waveguide (2) and the light guide end face (1i) of the wavelength conversion element (1) are planarly polished, and the output end face (1o) of the wavelength conversion element (1) is planarly polished, The light guide end face (3i) of the second optical waveguide (3) is spherically polished, and the output end face (2o) of the first optical waveguide (2) And a dielectric multilayer film (m) is applied to the light guide end face (1i) of the wavelength conversion element (1), and the light guide end face (1o) of the wavelength conversion element (1) and the second optical waveguide (3) are guided. The optical end face (3i) has a non-coated configuration in which no dielectric multilayer film is applied. The wavelength conversion element (1) is provided with an optical waveguide (not shown), and the wavelength conversion element (1) has a wavelength comprising a holder body (4a) and a holder lid (4b). It is supported by a conversion element holder (hereinafter abbreviated as a holder) (4). The holder (4) is housed in a wavelength conversion element casing (7), and the casing (7) is attached to the wavelength conversion element base (8). The holder (4) is provided with a Peltier element (6) and a thermistor (not shown) for adjusting the temperature of the wavelength conversion element (1), and the temperature is controlled by the Peltier element lead wire (6a). Connected to a regulator (not shown).

上記波長変換モジュール(10)の具体的な製造方法について説明する。
先ず第1の光導波路(2)として偏波保持光ファイバを用い、この光ファイバの出射端面(2o)および波長変換素子(1)の導光,出射端面(1i),(1o)を平面研磨した。この際、波長変換素子(1)は室温硬化型のシリコーンゴム(図示せず)でホルダー(4)に接着した。また第2の光導波路(3)として偏波保持光ファイバを用い、この光ファイバの導光端面(3i)を球面研磨した。また球面研磨の曲率半径は10mmとした。なお、第1の光導波路(2)の出射端面(2o)および第2の光導波路(3)の導光端面(3i)近辺はガラスキャピラリ(5)に保持した。
次に、第1の光導波路(2)の出射端面(2o)および波長変換素子(1)の導光端面(1i)に誘電体多層膜(m)を施した。なお、波長変換素子(1)の出射端面(1o)と第2の光導波路(3)の導光端面(3i)には誘電体多層膜を施さないノンコート構成とした。
次に、波長変換素子(1)の導光端面(1i)に、第1の光導波路(2)の出射端面(2o)を突き当てて、接着剤(図示せず)で固定した。この接続面が第1の接続面(A)となる。また波長変換素子(1)の出射端面(1o)に、第2の光導波路(3)の球面研磨した導光端面(3i)を突き当てて直接接触させ、接着剤(図示せず)で固定した。この接続面が第2の接続面(B)となる。なお、波長変換素子(1)の導光端面(1i)と第1の光導波路(2)の出射端面(2o)、および波長変換素子(1)の出射端面(1o)と第2の光導波路(3)の導光端面(3i)を接続する際は顕微鏡を用いて光軸合わせを行った。
次に、ホルダー(4)に、波長変換素子(1)の温度を調節するためのペルチェ素子(6)およびサーミスタ(図示せず)を取り付け、ペルチェ素子リード線(6a)により温度調節器(図示せず)と接続した。またホルダー(4)を波長変換素子の筐体(7)に収納し、この筐体(7)を波長変換素子の基台(8)に取り付けて波長変換モジュール(10)を完成させた。
前記波長変換素子(1)は、例えば非線形光学結晶のPPLNに、周期的な分極反転構造が作製され、例えば径が6μmの光導波路(図示せず)が形成されているものである。また、前記波長変換素子(1)のサイズは例えば1.2mm×0.8mm×12mmである。また前記第1の光導波路(2)の偏波保持光ファイバは、例えばコア(2a)の径が6μm、クラッド(2b)径(外径)が125μmである。また前記第2の光導波路(3)の偏波保持光ファイバは、例えばコア(3a)の径が4μm、クラッド(3b)径(外径)が125μmである。また前記ホルダー(4)は熱伝導性の良いものが好ましく、例えば材質は金めっき銅である。また前記誘電体多層膜(m)としては、第1の光導波路(2)の出射端面(2o)には高屈折率誘電体膜のTa(5酸化タンタル)と低屈折率誘電体膜のTiO(酸化チタン)を交互に2層施したARコートを、また波長変換素子(1)の導光端面(1i)にはSiO(2酸化ケイ素)を施したARコートを用いた。また前記接着剤としては、例えばUV接着剤を用いた。なお本実施例では、第1の光導波路(2)の出射端面(2o)と波長変換素子(1)の導光端面(1i)に誘電体多層膜(m)としてARコートを施しているが、場合によっては施さなくてもよい。
A specific method for manufacturing the wavelength conversion module (10) will be described.
First, a polarization-maintaining optical fiber is used as the first optical waveguide (2), and the output end face (2o) of this optical fiber and the light guide of the wavelength conversion element (1), and the output end faces (1i), (1o) are planar polished. did. At this time, the wavelength conversion element (1) was bonded to the holder (4) with a room temperature curable silicone rubber (not shown). Further, a polarization maintaining optical fiber was used as the second optical waveguide (3), and the light guide end face (3i) of this optical fiber was spherically polished. The curvature radius of spherical polishing was 10 mm. The vicinity of the light emitting end face (2o) of the first optical waveguide (2) and the light guiding end face (3i) of the second optical waveguide (3) was held by the glass capillary (5).
Next, a dielectric multilayer film (m) was applied to the emission end face (2o) of the first optical waveguide (2) and the light guide end face (1i) of the wavelength conversion element (1). The output end face (1o) of the wavelength conversion element (1) and the light guide end face (3i) of the second optical waveguide (3) have a non-coated configuration in which no dielectric multilayer film is applied.
Next, the emission end face (2o) of the first optical waveguide (2) was abutted against the light guide end face (1i) of the wavelength conversion element (1) and fixed with an adhesive (not shown). This connection surface is the first connection surface (A). In addition, the light-guided end surface (3i) of the second optical waveguide (3) is abutted and brought into direct contact with the output end surface (1o) of the wavelength conversion element (1), and fixed with an adhesive (not shown). did. This connection surface becomes the second connection surface (B). The light guide end face (1i) of the wavelength conversion element (1) and the emission end face (2o) of the first optical waveguide (2), and the emission end face (1o) of the wavelength conversion element (1) and the second optical waveguide. When connecting the light guide end face (3i) of (3), the optical axis was aligned using a microscope.
Next, a Peltier element (6) and a thermistor (not shown) for adjusting the temperature of the wavelength conversion element (1) are attached to the holder (4), and a temperature controller (see FIG. (Not shown). The holder (4) was housed in the case (7) of the wavelength conversion element, and the case (7) was attached to the base (8) of the wavelength conversion element to complete the wavelength conversion module (10).
The wavelength conversion element (1) is one in which, for example, a periodically poled structure is produced in PPLN, which is a nonlinear optical crystal, and an optical waveguide (not shown) having a diameter of 6 μm, for example, is formed. The size of the wavelength conversion element (1) is, for example, 1.2 mm × 0.8 mm × 12 mm. The polarization maintaining optical fiber of the first optical waveguide (2) has, for example, a core (2a) diameter of 6 μm and a clad (2b) diameter (outer diameter) of 125 μm. The polarization maintaining optical fiber of the second optical waveguide (3) has, for example, a core (3a) diameter of 4 μm and a clad (3b) diameter (outer diameter) of 125 μm. The holder (4) preferably has good thermal conductivity. For example, the material is gold-plated copper. As the dielectric multilayer film (m), a high refractive index dielectric film Ta 2 O 5 (tantalum pentoxide) and a low refractive index dielectric are formed on the output end face (2o) of the first optical waveguide (2). An AR coat in which two layers of TiO 2 (titanium oxide) were alternately applied, and an AR coat in which SiO 2 (silicon dioxide) was applied to the light guide end face (1i) of the wavelength conversion element (1) were used. . For example, a UV adhesive was used as the adhesive. In this embodiment, the AR coating is applied as the dielectric multilayer film (m) to the emission end face (2o) of the first optical waveguide (2) and the light guide end face (1i) of the wavelength conversion element (1). In some cases, it may not be applied.

なお、以上の実施形態においては、波長変換素子(1)の出射端面(1o)と第2の光導波路(3)の導光端面(3i)は誘電体多層膜を施さないノンコート構成としたが、波長変換素子の屈折率(約2.1)と第2の光導波路(光ファイバの場合、約1.4)の屈折率差による反射を防止するような誘電体多層膜を波長変換素子と第2の光導波路のいずれかに施してもよい。この場合、誘電体多層膜が施された波長変換素子または第2の光導波路のいずれかが、他方と直接接触して接続されることによって、空気中の含有物の付着を防ぐことができる。更に望ましくは、当該誘電体多層膜は第2の光導波路の側に施される。その理由は、たとえば、第2の光導波路が光ファイバの場合、波長変換素子よりも光ファイバの方が誘電体多層膜の形成に有利な構造であるため、より強固な膜が得られるからである。   In the above embodiment, the emission end face (1o) of the wavelength conversion element (1) and the light guide end face (3i) of the second optical waveguide (3) have a non-coated structure without a dielectric multilayer film. A dielectric multilayer film that prevents reflection due to a difference in refractive index between the refractive index of the wavelength conversion element (about 2.1) and the second optical waveguide (about 1.4 in the case of an optical fiber) is used as the wavelength conversion element. You may give to either of the 2nd optical waveguide. In this case, either the wavelength conversion element or the second optical waveguide provided with the dielectric multilayer film is connected in direct contact with the other, thereby preventing the inclusion of inclusions in the air. More preferably, the dielectric multilayer film is provided on the second optical waveguide side. The reason is that, for example, when the second optical waveguide is an optical fiber, the optical fiber is more advantageous for forming the dielectric multilayer film than the wavelength conversion element, so that a stronger film can be obtained. is there.

次に、上記実施例1および比較例により得られた波長変換モジュールについて、信頼性試験を行った。比較例としては波長変換素子の出射端面と光ファイバの導光端面が直接接触されていない波長変換モジュールを作成し、同様な信頼性試験を行った。この比較例の波長変換モジュールは、図3の構成において、光ファイバ(2’)の出射端面、波長変換素子(1)の導光端面と出射端面、及び光ファイバ(3’)の導光端面を平面研磨し、更にこれら全ての端面には接続損失を最小にする為に誘電体多層膜としてARコート(図示せず)が施されたものである。その結果、本発明の波長変換モジュールは比較例の波長変換モジュールと比較して、数倍の長寿命となった。   Next, a reliability test was performed on the wavelength conversion modules obtained in Example 1 and the comparative example. As a comparative example, a wavelength conversion module in which the output end face of the wavelength conversion element and the light guide end face of the optical fiber are not in direct contact was created, and the same reliability test was performed. In the configuration of FIG. 3, the wavelength conversion module of this comparative example has an emission end face of the optical fiber (2 ′), a light guide end face and an emission end face of the wavelength conversion element (1), and a light guide end face of the optical fiber (3 ′). Further, AR coating (not shown) is applied as a dielectric multilayer film to minimize the connection loss on all of the end faces. As a result, the wavelength conversion module of the present invention has a life several times longer than the wavelength conversion module of the comparative example.

上記実施例1により得られた波長変換モジュールは、波長変換素子の出射端面を平面研磨し、また第2の光導波路の導光端面を球面研磨し、またこれらの端面をノンコートとして直接接触させ接続しているので、接続端面間に隙間が生じるのを防止し、端面に空気中の含有物の付着を無くすことが可能となった。そのため、導光する光パワーの低下を防いで、長寿命及び高信頼性を達成し、所望の光パワーが長期間得られるようになった。   In the wavelength conversion module obtained in Example 1, the output end face of the wavelength conversion element is planarly polished, the light guide end face of the second optical waveguide is spherically polished, and these end faces are directly contacted as non-coated and connected. Therefore, it is possible to prevent a gap from being formed between the connection end faces, and to eliminate adhesion of inclusions in the air to the end faces. Therefore, a decrease in optical power to be guided is prevented, a long life and high reliability are achieved, and a desired optical power can be obtained for a long time.

なお、上記実施形態において、基本波の波長によって波長変換素子の入射側でも空気中の含有物の付着などの問題がある場合は、波長変換素子の入射側も出射側と同様の構成とすることによって、本発明の効果を得ることができる。すなわち、第1の光導波路と波長変換素子の端面を直接接触させ、空気層を介さないようにすることによって、空気中の含有物の付着などを防止することができる。また、さらにこれらの端面をノンコートとすることによって、誘電体多層膜の変質などといった問題を防止することができる。   In the above embodiment, when there is a problem such as adhesion of inclusions in the air even on the incident side of the wavelength conversion element depending on the wavelength of the fundamental wave, the incident side of the wavelength conversion element is configured similarly to the emission side. Thus, the effects of the present invention can be obtained. That is, the first optical waveguide and the end face of the wavelength conversion element are in direct contact with each other so as not to pass through the air layer, thereby preventing the inclusion of inclusions in the air. Further, by making these end faces non-coated, problems such as deterioration of the dielectric multilayer film can be prevented.

本発明の波長変換モジュールは、長寿命及び高信頼性を達成し、所望の光パワーが長期間得られるので、レーザ顕微鏡、バイオ医療用の分析装置、精密測定装置等に使用されるSHG(第2高調波)、THG(第3高調波)方式の光源に好適に使用できる。   The wavelength conversion module of the present invention achieves long life and high reliability, and can obtain desired optical power for a long period of time. Therefore, the SHG (No. 1) used in laser microscopes, biomedical analyzers, precision measuring devices, etc. 2nd harmonic) and THG (3rd harmonic) type light source.

本発明の波長変換モジュールの一例を示す略図であり、同図(a)は平面図、また同図(b)は正面図である。It is the schematic which shows an example of the wavelength conversion module of this invention, the figure (a) is a top view, and the figure (b) is a front view. 本発明の波長変換モジュールの接続面を拡大した略図である。It is the schematic which expanded the connection surface of the wavelength conversion module of this invention. 本発明の波長変換モジュールの基本構成を示す略図であり、同図(a)は平面図、また同図(b)は正面図である。It is the schematic which shows the basic composition of the wavelength conversion module of the present invention, the figure (a) is a top view and the figure (b) is a front view.

符号の説明Explanation of symbols

1 波長変換素子
1i 波長変換素子の入射側接続端面
1o 波長変換素子の出射側接続端面
2 第1の光導波路(偏波保持光ファイバ)
2a 第1の光導波路のコア
2b 第1の光導波路のクラッド
2o 第1の光導波路の出射側接続端面
3 3は第2の光導波路(偏波保持光ファイバ)
3a 第2の光導波路のコア
3b 第2の光導波路のクラッド
3i 第2の光導波路の入射側接続端面
4 波長変換素子ホルダー
4a 波長変換素子ホルダーの本体
4b 波長変換素子ホルダーの蓋
5 ガラスキャピラリ
6 ペルチェ素子、
6a ペルチェ素子のリード線
7 波長変換素子の筐体
8 波長変換素子の基台
10 波長変換モジュール
A 第1の接続面
B 第2の接続面
m 誘電体多層膜(ARコート)
DESCRIPTION OF SYMBOLS 1 Wavelength conversion element 1i Incident side connection end face of wavelength conversion element 1o Output side connection end face of wavelength conversion element 2 First optical waveguide (polarization maintaining optical fiber)
2a Core of the first optical waveguide 2b Cladding of the first optical waveguide 2o Output side connection end face 33 of the first optical waveguide 3 is the second optical waveguide (polarization maintaining optical fiber)
3a Core of second optical waveguide 3b Cladding of second optical waveguide 3i Incident-side connection end face of second optical waveguide 4 Wavelength conversion element holder 4a Wavelength conversion element holder main body 4b Wavelength conversion element holder lid 5 Glass capillary 6 Peltier element,
6a Peltier element lead wire 7 Wavelength conversion element housing 8 Wavelength conversion element base 10 Wavelength conversion module
A First connection surface
B Second connection surface m Dielectric multilayer (AR coating)

Claims (4)

波長変換素子と、該波長変換素子へ光を導光する第1の光導波路と、波長変換素子から出射された光を外部へ導光する第2の光導波路とからなり、前記第1の光導波路の出射側接続端面と波長変換素子の導光側接続端面、および波長変換素子の出射側接続端面と第2の光導波路の導光側接続端面が接続されてなる波長変換モジュールであって、
前記第1の光導波路の出射側接続端面および波長変換素子の導光側接続端面には誘電体多層膜を施してこれらの端面を接続し、また、前記波長変換素子の出射側接続端面および第2の光導波路の導光側接続端面を直接接触によって接続したことを特徴とする波長変換モジュール。
The first optical waveguide includes a wavelength conversion element, a first optical waveguide that guides light to the wavelength conversion element, and a second optical waveguide that guides light emitted from the wavelength conversion element to the outside. A wavelength conversion module in which an output-side connection end face of a waveguide and a light guide-side connection end face of a wavelength conversion element, and an output-side connection end face of a wavelength conversion element and a light guide-side connection end face of a second optical waveguide are connected,
A dielectric multilayer film is applied to the output side connection end face of the first optical waveguide and the light guide side connection end face of the wavelength conversion element to connect these end faces, and the output side connection end face of the wavelength conversion element and 2. A wavelength conversion module, wherein the light guide side connection end faces of the two optical waveguides are connected by direct contact.
波長変換素子と、該波長変換素子へ光を導光する第1の光導波路と、波長変換素子から出射された光を外部へ導光する第2の光導波路とからなり、前記第1の光導波路の出射側接続端面と波長変換素子の導光側接続端面、および波長変換素子の出射側接続端面と第2の光導波路の導光側接続端面が接続されてなる波長変換モジュールであって、
前記第1の光導波路の出射側接続端面を平面研磨、球面研磨又は突き出し研磨し、前記波長変換素子の導光側接続端面を平面研磨してこれらの端面を接続し、また、前記波長変換素子の出射側接続端面を平面研磨し、前記第2の光導波路の導光側接続端面を球面研磨又は突き出し研磨してこれらの端面を直接接触によって接続したことを特徴とする波長変換モジュール。
The first optical waveguide includes a wavelength conversion element, a first optical waveguide that guides light to the wavelength conversion element, and a second optical waveguide that guides light emitted from the wavelength conversion element to the outside. A wavelength conversion module in which an output-side connection end face of a waveguide and a light guide-side connection end face of a wavelength conversion element, and an output-side connection end face of a wavelength conversion element and a light guide-side connection end face of a second optical waveguide are connected,
The output side connection end face of the first optical waveguide is subjected to planar polishing, spherical polishing or protruding polishing, the light guide side connection end face of the wavelength conversion element is polished to connect these end faces, and the wavelength conversion element The wavelength conversion module is characterized in that the output-side connection end face of the second optical waveguide is ground and the light guide-side connection end face of the second optical waveguide is spherically polished or protruded and these end faces are connected by direct contact.
波長変換素子と、該波長変換素子へ光を導光する第1の光導波路と、波長変換素子から出射された光を外部へ導光する第2の光導波路とからなり、前記第1の光導波路の出射側接続端面と波長変換素子の導光側接続端面、および波長変換素子の出射側接続端面と第2の光導波路の導光側接続端面が接続されてなる波長変換モジュールであって、
前記第1の光導波路の出射側接続端面および波長変換素子の導光側接続端面を平面研磨し且つ誘電体多層膜を施してこれらの端面を接続し、また、前記波長変換素子の出射側接続端面を平面研磨し、前記第2の光導波路の導光側接続端面を球面研磨又は突き出し研磨してこれらの端面を直接接触によって接続したことを特徴とする波長変換モジュール。
The first optical waveguide includes a wavelength conversion element, a first optical waveguide that guides light to the wavelength conversion element, and a second optical waveguide that guides light emitted from the wavelength conversion element to the outside. A wavelength conversion module in which an output-side connection end face of a waveguide and a light guide-side connection end face of a wavelength conversion element, and an output-side connection end face of a wavelength conversion element and a light guide-side connection end face of a second optical waveguide are connected,
The emission side connection end face of the first optical waveguide and the light guide side connection end face of the wavelength conversion element are planarly polished and a dielectric multilayer film is applied to connect these end faces, and the emission side connection of the wavelength conversion element A wavelength conversion module characterized in that the end face is ground and the light guide side connection end face of the second optical waveguide is spherically polished or protruded and the end faces are connected by direct contact.
前記球面研磨の曲率半径を5mm以上、20mm以下とし、また突き出し研磨の突き出し長さを1μm以上、5μm以下としたことを特徴とする請求項2または3記載の波長変換モジュール。





4. The wavelength conversion module according to claim 2, wherein a radius of curvature of the spherical polishing is 5 mm or more and 20 mm or less, and a protruding length of protruding polishing is 1 μm or more and 5 μm or less.





JP2006116316A 2006-04-20 2006-04-20 Wavelength conversion module Active JP5089075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006116316A JP5089075B2 (en) 2006-04-20 2006-04-20 Wavelength conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006116316A JP5089075B2 (en) 2006-04-20 2006-04-20 Wavelength conversion module

Publications (2)

Publication Number Publication Date
JP2007286530A true JP2007286530A (en) 2007-11-01
JP5089075B2 JP5089075B2 (en) 2012-12-05

Family

ID=38758322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006116316A Active JP5089075B2 (en) 2006-04-20 2006-04-20 Wavelength conversion module

Country Status (1)

Country Link
JP (1) JP5089075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530011A (en) * 2015-10-05 2018-10-11 キュービテック,インコーポレイテッド Biphoton adjustable light source

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423209A (en) * 1987-07-20 1989-01-25 Fujitsu Ltd Optical fiber connector
JPH05150142A (en) * 1991-11-28 1993-06-18 Fujikura Ltd Structure for connecting optical waveguide
JPH1138459A (en) * 1997-07-23 1999-02-12 Nec Corp Wavelength conversion element and laser device using this element
JP2001018156A (en) * 1999-07-09 2001-01-23 Nec Corp Spherical surface machining device and method, and polishing tape
JP2002139644A (en) * 2000-11-01 2002-05-17 Hitachi Ltd Optical connection device
JP2002341188A (en) * 2001-05-15 2002-11-27 Sumitomo Electric Ind Ltd Multi-fiber optical connector and method for grinding end surface of multi-fiber optical connector
JP2003035831A (en) * 2001-05-14 2003-02-07 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide and method for manufacturing the same
WO2004025363A1 (en) * 2002-09-10 2004-03-25 The Furukawa Electric Co., Ltd. Wavelength conversion module
JP2004219751A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Optical waveguide device, optical waveguide laser using the same and optical device provided with the same
JP2005181897A (en) * 2003-12-22 2005-07-07 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength converter module
JP2005300594A (en) * 2004-04-06 2005-10-27 Fujikura Ltd Fiber fuse stopper
JP2005321485A (en) * 2004-05-06 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength conversion module

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423209A (en) * 1987-07-20 1989-01-25 Fujitsu Ltd Optical fiber connector
JPH05150142A (en) * 1991-11-28 1993-06-18 Fujikura Ltd Structure for connecting optical waveguide
JPH1138459A (en) * 1997-07-23 1999-02-12 Nec Corp Wavelength conversion element and laser device using this element
JP2001018156A (en) * 1999-07-09 2001-01-23 Nec Corp Spherical surface machining device and method, and polishing tape
JP2002139644A (en) * 2000-11-01 2002-05-17 Hitachi Ltd Optical connection device
JP2003035831A (en) * 2001-05-14 2003-02-07 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide and method for manufacturing the same
JP2002341188A (en) * 2001-05-15 2002-11-27 Sumitomo Electric Ind Ltd Multi-fiber optical connector and method for grinding end surface of multi-fiber optical connector
WO2004025363A1 (en) * 2002-09-10 2004-03-25 The Furukawa Electric Co., Ltd. Wavelength conversion module
JP2004219751A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Optical waveguide device, optical waveguide laser using the same and optical device provided with the same
JP2005181897A (en) * 2003-12-22 2005-07-07 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength converter module
JP2005300594A (en) * 2004-04-06 2005-10-27 Fujikura Ltd Fiber fuse stopper
JP2005321485A (en) * 2004-05-06 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength conversion module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530011A (en) * 2015-10-05 2018-10-11 キュービテック,インコーポレイテッド Biphoton adjustable light source
JP7103942B2 (en) 2015-10-05 2022-07-20 キュービテック,インコーポレイテッド Adjustable biophoton light source
US11586092B2 (en) 2015-10-05 2023-02-21 Qubitekk, Inc. Tunable source bi-photons

Also Published As

Publication number Publication date
JP5089075B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP4734053B2 (en) Mounting deviation compensation method for optical waveguide components
WO2006075760A1 (en) Light source apparatus provided with modulating function and method for driving same
US7801186B2 (en) Light source
US20150247972A1 (en) Optical fiber, fiber laser, and optical fiber manufacturing method
WO2018062484A1 (en) Optical connection structure and optical module
JP6379090B2 (en) Optical mounting device
JP2004013155A (en) Single mode optical switch, thin film optical switch, optical switch, and method for manufacturing single mode optical switch
JP5089075B2 (en) Wavelength conversion module
JP2008275996A (en) Light guide member
JP2004145140A (en) Optical connector and connection structure of optical connector
JP2008256765A (en) Fiber bundle and light source device
JP4242903B2 (en) Photonic crystal optical fiber, optical fiber connection method and optical connector
US20060188204A1 (en) Method and apparatus for reducing feedback within an optical waveguide
JP2005024846A (en) Optical fibers, method of splicing optical fibers, and optical connector
JP5064989B2 (en) Wavelength conversion module
JP2007079225A (en) Connecting method of wavelength conversion element and connecting member
JP2006154868A (en) Optical fiber with lens function and method for manufacturing the same
US8259768B2 (en) Optical fiber component and optical module using the same
US7260288B2 (en) Optical wave guide element, and manufacture therefor
DK181086B1 (en) Electromagnetic radiation frequency converter and light source comprising same
JP2008250183A (en) Optical device
TW201319648A (en) Optical device and optical device manufacturing method
JP7302241B2 (en) optical waveguide
JP4526489B2 (en) Wavelength conversion module, wavelength conversion light source, and wavelength conversion device
JP2008250184A (en) Fiber light source apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100830

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120229

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350