JP2007285967A - Laser length measuring machine - Google Patents

Laser length measuring machine Download PDF

Info

Publication number
JP2007285967A
JP2007285967A JP2006115531A JP2006115531A JP2007285967A JP 2007285967 A JP2007285967 A JP 2007285967A JP 2006115531 A JP2006115531 A JP 2006115531A JP 2006115531 A JP2006115531 A JP 2006115531A JP 2007285967 A JP2007285967 A JP 2007285967A
Authority
JP
Japan
Prior art keywords
moving body
light beam
length measuring
beam splitter
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115531A
Other languages
Japanese (ja)
Inventor
Toru Teramoto
亨 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP2006115531A priority Critical patent/JP2007285967A/en
Publication of JP2007285967A publication Critical patent/JP2007285967A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser length measuring machine capable of measuring a moving body with a fixed reflector even when adjusting positions in the moving direction and the right angle direction of the moving body. <P>SOLUTION: This laser length measuring machine comprises a beam splitter 2 which divides a laser beams L emitted from a laser light source 1 into a measurement light beam m advancing in the moving direction of the moving body 7 and a reference light beam r advancing in the right angle direction of the measurement light beam, a movable prism 4 which is fixed on the moving body and reflects the measurement light beam to the beam splitter, a fixed prism 10 which reflects the reference light beam r to the beam splitter, and a plane mirror 10 which is vertical to the moving direction of a movable reflector in the vicinity of the beam splitter so as to reflect the measurement light beam reflected by the movable prism in the laser length measuring machine, which measures displacement of the moving body by detecting interference of the measurement light beam and the reference light beam. The machine can further adjust position of the moving body in the right angle direction to the moving direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ステージ移動型精密測長機、精密工作機械、半導体検査装置等に用いられるレーザ測長機に関する。   The present invention relates to a laser length measuring machine used for a stage moving type precision length measuring machine, a precision machine tool, a semiconductor inspection apparatus and the like.

従来のレーザ測長機の光学系を図3に示す。このレーザ測長機は、レーザ光源1、ビームスプリッタ2、固定プリズム3、可動プリズム4、受光器6からなる。可動プリズム4は、変位を測定しようとする移動体7に固定されている。レーザ光源1から出射されたレーザ光線Lは、ビームスプリッタ2で2方向に分けられる。2方向に分けられた一方のレーザ光線は、測定光線mとして可動プリズム4に向かい、可動プリズム4でビームスプリッタ2へ向けて反射される。2方向に分けられた他方のレーザ光線は、参照光線rとして固定プリズム3に向かい、固定プリズム3でビームスプリッタ2へ向けて反射される。ビームスプリッタ2へ戻ってきた測定光線mと参照光線rは、ビームスプリッタ2で反射又は透過してともに受光器6へ入射する。   FIG. 3 shows an optical system of a conventional laser length measuring machine. This laser length measuring machine includes a laser light source 1, a beam splitter 2, a fixed prism 3, a movable prism 4, and a light receiver 6. The movable prism 4 is fixed to a moving body 7 whose displacement is to be measured. The laser beam L emitted from the laser light source 1 is divided into two directions by the beam splitter 2. One laser beam divided in two directions is directed to the movable prism 4 as a measurement beam m, and is reflected by the movable prism 4 toward the beam splitter 2. The other laser beam divided into the two directions is directed to the fixed prism 3 as a reference beam r, and is reflected toward the beam splitter 2 by the fixed prism 3. The measurement light beam m and the reference light beam r that have returned to the beam splitter 2 are reflected or transmitted by the beam splitter 2 and are incident on the light receiver 6.

ここで、移動体7とともに可動プリズム4が移動すると、測定光線mと参照光線rとの干渉縞が変わり、時間tとともに両光線m、rの干渉によって、受光器6からパルス5aが発生する。このパルス5aの周期Tから移動体7の変位を測定できる。   Here, when the movable prism 4 moves together with the moving body 7, the interference fringes between the measurement light beam m and the reference light beam r change, and a pulse 5a is generated from the light receiver 6 due to the interference between the light beams m and r with time t. The displacement of the moving body 7 can be measured from the period T of the pulse 5a.

実開平1−107905号公報Japanese Utility Model Publication No. 1-107905

ところで、前述したような従来のレーザ測長機では、移動体7の位置をいくらか測定軸又は移動方向Xと直角方向へずらすと、これに伴い可動プリズム4の位置が移動するので、可動プリズム4で反射した測定光線mが、ビームスプリッタ2からの出発点へ戻れなくなる。すると、測定光線mと参照光線rとがビームスプリッタ2上の同じ位置へ戻らなくなって、両光線m、rによる干渉を観測できなくなり、測定不能になってしまうという問題がある。このため、従来は、移動体7を移動方向Xと直角方向へ位置調整するということは全く考えられていなかった。   By the way, in the conventional laser length measuring machine as described above, if the position of the movable body 7 is shifted in a direction perpendicular to the measurement axis or the movement direction X, the position of the movable prism 4 is moved accordingly. The measurement light beam m reflected by (1) cannot return to the starting point from the beam splitter 2. Then, there is a problem that the measurement light beam m and the reference light beam r do not return to the same position on the beam splitter 2, and the interference due to both the light beams m and r cannot be observed, making measurement impossible. For this reason, conventionally, it has not been considered at all to adjust the position of the moving body 7 in the direction perpendicular to the moving direction X.

しかし、最近のレーザ測長機では、高精度を実現するため、測定対象物を正確に測定軸上に位置させる要求が増してきたが、前記問題が障害になっていた。   However, in recent laser length measuring machines, in order to achieve high accuracy, there has been an increasing demand for accurately positioning the measurement object on the measurement axis, but the above problem has been an obstacle.

本発明は、前記問題に鑑みてなされたもので、反射体を固定した移動体を移動体の移動方向と直角方向へ位置調整しても測定可能なレーザ測長機を提供することを課題とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a laser length measuring machine that can measure even if the moving body having a reflector fixed thereto is positioned in the direction perpendicular to the moving direction of the moving body. To do.

上記課題を達成するため、本発明は、レーザ光源から出射されたレーザ光線を移動体の移動方向に進む測定光線と、前記レーザ光線を前記測定光線と直角方向へ進む参照光線とに分けるビームスプリッタと、前記移動体に固定されるとともに前記測定光線を前記ビームスプリッタに向けて反射する可動反射体と、前記参照光線を前記ビームスプリッタに向けて反射する固定反射体と、前記可動反射体によって反射された測定光線と前記固定反射体によって反射された参照光線との干渉を検出して移動体の変位を測定するレーザ測長機において、前記可動反射体によって反射された測定光線を反射するように、前記ビームスプリッタ近傍に前記可動反射体の移動方向に垂直な平面鏡を備えるとともに、前記移動体を移動方向に対して直角方向に位置調整可能にしたことを特徴とする。   In order to achieve the above object, the present invention provides a beam splitter that divides a laser beam emitted from a laser light source into a measurement beam that travels in a moving direction of a moving body and a reference beam that travels in a direction perpendicular to the measurement beam. A movable reflector fixed to the moving body and reflecting the measurement light beam toward the beam splitter, a fixed reflector reflecting the reference light beam toward the beam splitter, and reflected by the movable reflector In a laser length measuring device that measures the displacement of the moving body by detecting interference between the measured measuring beam and the reference beam reflected by the fixed reflector, the measuring beam reflected by the movable reflector is reflected. A plane mirror perpendicular to the moving direction of the movable reflector is provided in the vicinity of the beam splitter, and the moving body is perpendicular to the moving direction. Characterized in that the location adjustable.

本発明によれば、可動反射体を固定した移動体を移動方向と直角方向へ位置調整しても、可動反射体で反射された測定光線は、平面鏡で反射されて元の光路を戻り、可動反射体で再度反射されて、参照光線とともに必ずビームスプリッタからの出発点へ戻って両光線の干渉を観測できるので、測定不能になることがない。このため、測定対象物を測定軸上に置くことができ、高精度の測定が可能になる。また、測定光線がビームスプリッタと可動反射体の間及び平面鏡と可動反射体との間を往復するので、従来のレーザ測長機に比べて、同じ移動体の変位に対して干渉縞の変化が2倍になって、いっそう高精度の測定が可能になる。   According to the present invention, even if the position of the movable body with the movable reflector fixed is adjusted in the direction perpendicular to the moving direction, the measurement light beam reflected by the movable reflector is reflected by the plane mirror and returns to the original optical path to move the movable body. Since it is reflected again by the reflector and always returns to the starting point from the beam splitter together with the reference beam, the interference between the two beams can be observed. For this reason, the measurement object can be placed on the measurement axis, and high-precision measurement is possible. In addition, since the measurement light beam reciprocates between the beam splitter and the movable reflector and between the plane mirror and the movable reflector, the interference fringe changes with respect to the displacement of the same moving body as compared with the conventional laser length measuring machine. The measurement becomes more accurate by doubling.

以下、本発明の発明の実施の形態について添附図面を参照して詳細に説明する。図1は、本発明のレーザ測長機の一実施例を示している。   Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows an embodiment of a laser length measuring machine according to the present invention.

このレーザ測長機では、移動体7は、その移動方向Xに対して左右方向と上下方向に位置調整可能にするように、測長機本体の測定軸12に沿って移動する基台14に対して、図示しない左右調整ねじと高さ調整ねじによって取り付けられている。ビームスプリッタ2の近傍には、可動反射体である可動プリズム(コーナーキューブ)4に正対させて、移動体7の移動方向Xに垂直な平面鏡10を固定している。   In this laser length measuring machine, the movable body 7 is mounted on a base 14 that moves along the measuring axis 12 of the length measuring machine main body so that the position of the moving body 7 can be adjusted in the horizontal direction and the vertical direction with respect to the moving direction X. On the other hand, it is attached by a left and right adjustment screw and a height adjustment screw (not shown). In the vicinity of the beam splitter 2, a plane mirror 10 perpendicular to the moving direction X of the moving body 7 is fixed so as to face a movable prism (corner cube) 4 that is a movable reflector.

また、ビームスプリッタ2から出た測定光線mと参照光線rは、行きと帰りに1/4λ板8を通過するようになっている。これは、光がビームスプリッタ2に入射するとき、入射面に垂直な偏光が反射し、入射面に平行な偏光が通過する性質があるため、戻ってくる測定光線mと参照光線rそれぞれについて、偏光面を90°回転させて、ビームスプリッタ2において確実に反射又は透過して、受光器6に入力させるためのものである。   Further, the measurement light beam m and the reference light beam r emitted from the beam splitter 2 pass through the ¼λ plate 8 on the way to and from the back. This is because when light enters the beam splitter 2, the polarized light perpendicular to the incident surface is reflected and the polarized light parallel to the incident surface passes. The polarization plane is rotated by 90 ° so as to be reliably reflected or transmitted by the beam splitter 2 and input to the light receiver 6.

以上のこと以外の本実施例の構成は、前記従来のものと同じであるから、同じ部分に同じ符号を付すに止めて説明を省略する。   Since the configuration of the present embodiment other than the above is the same as that of the conventional one, the same parts are designated by the same reference numerals and the description thereof is omitted.

さて、以上のように構成されたレーザ測長機によると、ビームスプリッタ2でレーザ光線Lから分けられた測定光線mは、可動プリズム4によって反射され、平面鏡10へ入射する。この測定光線mは、平面鏡10で反射されて、同じ光路を戻って、再び可動プリズム4で反射して、ビームスプリッタ2上の出発点に正確に戻る。しかも、移動体7を移動方向に対して左右方向と上下方向に位置調整しても、測定光線mは、必ずビームスプリッタ2からの出発点に正確に戻る。これで、常に測定光線mと参照光線rとはビームスプリッタ2上の同じ位置へ戻ることになるので、両光線m、nの干渉を受光器6によって検出でき、移動体7の変位を測定することができて、測定不能になることがない。   Now, according to the laser length measuring machine configured as described above, the measurement light beam m separated from the laser light beam L by the beam splitter 2 is reflected by the movable prism 4 and enters the plane mirror 10. The measurement light beam m is reflected by the plane mirror 10, returns along the same optical path, is reflected by the movable prism 4 again, and returns accurately to the starting point on the beam splitter 2. Moreover, even if the movable body 7 is adjusted in the horizontal direction and the vertical direction with respect to the movement direction, the measurement light beam m always returns accurately to the starting point from the beam splitter 2. Thus, since the measurement light beam m and the reference light beam r always return to the same position on the beam splitter 2, the interference between both the light beams m and n can be detected by the light receiver 6 and the displacement of the moving body 7 is measured. Can not be measured.

また、図2の(A)に示したように、従来のレーザ測長機では、測定光線mは可動プリズム4とビームスプリッタ2との間を1往復するだけであるから、移動体7の変位δによる光路長変化は2δである。これに対して、図2の(B)に示したように、本実施例のレーザ測長機では、測定光線mは可動プリズム4とビームスプリッタ2との間及び可動プリズム4と平面鏡10との間を往復するから、可動プリズム4の変位δによる光路長変化は4δとなる。これにより、本実施例のレーザ測長機は、従来のものの半分の変位δでも検出可能となり、高精度な測定が可能になる。   Further, as shown in FIG. 2A, in the conventional laser length measuring machine, the measurement light beam m only reciprocates between the movable prism 4 and the beam splitter 2, so that the displacement of the moving body 7 is changed. The change in optical path length due to δ is 2δ. On the other hand, as shown in FIG. 2B, in the laser length measuring machine of this embodiment, the measurement light beam m is between the movable prism 4 and the beam splitter 2 and between the movable prism 4 and the plane mirror 10. Since the light travels back and forth, the change in the optical path length due to the displacement δ of the movable prism 4 is 4δ. As a result, the laser length measuring machine according to the present embodiment can detect even a half of the displacement δ of the conventional one, and can measure with high accuracy.

本発明に係るレーザ測長機の光学系の一実施例を示す図である。It is a figure which shows one Example of the optical system of the laser length measuring machine which concerns on this invention. 本発明に係るレーザ測長機で高精度な測定ができる理由を説明する図である。It is a figure explaining the reason which can perform a highly accurate measurement with the laser length measuring machine which concerns on this invention. 従来のレーザ測長機の光学系の一実施例を示す図である。It is a figure which shows one Example of the optical system of the conventional laser length measuring machine.

符号の説明Explanation of symbols

1 レーザ光源
2 ビームスプリッタ
3 固定プリズム(固定反射体)
4 可動プリズム(可動反射体)
7 移動体
10 平面鏡
m 測定光線
r 参照光線
1 Laser light source 2 Beam splitter 3 Fixed prism (fixed reflector)
4 Movable prism (movable reflector)
7 Moving object 10 Plane mirror m Measurement beam r Reference beam

Claims (1)

レーザ光源から出射されたレーザ光線を移動体の移動方向に進む測定光線と、前記レーザ光線を前記測定光線と直角方向へ進む参照光線とに分けるビームスプリッタと、前記移動体に固定されるとともに前記測定光線を前記ビームスプリッタに向けて反射する可動反射体と、前記参照光線を前記ビームスプリッタに向けて反射する固定反射体と、前記可動反射体によって反射された測定光線と前記固定反射体によって反射された参照光線との干渉を検出して移動体の変位を測定するレーザ測長機において、
前記可動反射体によって反射された測定光線を反射するように、前記ビームスプリッタ近傍に前記可動反射体の移動方向に垂直な平面鏡を備えるとともに、
前記移動体を移動方向に対して直角方向に位置調整可能にしたことを特徴とするレーザ測長機。
A beam splitter that divides the laser beam emitted from the laser light source into a measuring beam that travels in the moving direction of the moving body, and a reference beam that travels the laser beam in a direction perpendicular to the measuring beam, and is fixed to the moving body and A movable reflector that reflects a measurement beam toward the beam splitter, a fixed reflector that reflects the reference beam toward the beam splitter, a measurement beam reflected by the movable reflector, and a reflection by the fixed reflector In the laser length measuring machine that detects the interference with the reference beam and measures the displacement of the moving body,
A plane mirror perpendicular to the moving direction of the movable reflector is provided in the vicinity of the beam splitter so as to reflect the measurement light beam reflected by the movable reflector,
A laser length measuring machine characterized in that the position of the moving body can be adjusted in a direction perpendicular to the moving direction.
JP2006115531A 2006-04-19 2006-04-19 Laser length measuring machine Pending JP2007285967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115531A JP2007285967A (en) 2006-04-19 2006-04-19 Laser length measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115531A JP2007285967A (en) 2006-04-19 2006-04-19 Laser length measuring machine

Publications (1)

Publication Number Publication Date
JP2007285967A true JP2007285967A (en) 2007-11-01

Family

ID=38757868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115531A Pending JP2007285967A (en) 2006-04-19 2006-04-19 Laser length measuring machine

Country Status (1)

Country Link
JP (1) JP2007285967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129052A1 (en) * 2015-02-10 2016-08-18 中国電力株式会社 Strain measurement method and strain measurement system
CN117367327A (en) * 2023-12-01 2024-01-09 上海隐冠半导体技术有限公司 Pentagonal prism perpendicularity detection system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129052A1 (en) * 2015-02-10 2016-08-18 中国電力株式会社 Strain measurement method and strain measurement system
JP6090538B2 (en) * 2015-02-10 2017-03-08 中国電力株式会社 Strain measuring method and strain measuring system
CN117367327A (en) * 2023-12-01 2024-01-09 上海隐冠半导体技术有限公司 Pentagonal prism perpendicularity detection system and method
CN117367327B (en) * 2023-12-01 2024-03-29 上海隐冠半导体技术有限公司 Pentagonal prism perpendicularity detection system and method

Similar Documents

Publication Publication Date Title
EP3249350B1 (en) Laser measurement system capable of detecting 21 geometric errors
CN106461372B (en) Simple optical fiber couples double-frequency laser six degree of freedom error measuring system simultaneously
EP2150770B1 (en) Optical distance sensor
CN201187993Y (en) Device for large distance light parallel regulation
JP7089401B2 (en) Straightness measuring device
CN101221044B (en) Device and method for large distance light parallel regulation
US9115973B2 (en) Profile measuring instrument
KR20100041024A (en) Apparatus for six-degree-of-freedom displacement measurement using a two-dimensional grating
JP2001317933A (en) Shape-measuring apparatus
JP2023171867A (en) Multiaxis laser interference length measurer
JPH095059A (en) Flatness measuring device
JP2007285967A (en) Laser length measuring machine
TWI614481B (en) Rotation angle measuring system and machining system comprising the same
JP2005147824A (en) Straightness and flatness measuring apparatus
CN101236304A (en) Light ray parallel adjusting device and method
KR100434445B1 (en) Tree demensional shape/surface illumination measuring apparatus
JP6472641B2 (en) Non-contact positioning method and non-contact positioning apparatus
JPH04351905A (en) Xy stage possessing laser length measuring device
JP2004347425A (en) Measuring method of distance change between two faces and device
JPH11237207A (en) Laser interferometer
CN104266583A (en) Multi-degree-of-freedom measuring system
JP5868058B2 (en) POSITION MEASURING DEVICE, OPTICAL COMPONENT MANUFACTURING METHOD, AND MOLD MANUFACTURING METHOD
JP5149085B2 (en) Displacement meter
TWI583982B (en) Displacement measuring system and machining system comprising the same
JP2023100358A (en) Laser interference device