JP2007283222A - Biological treatment carrier - Google Patents

Biological treatment carrier Download PDF

Info

Publication number
JP2007283222A
JP2007283222A JP2006113928A JP2006113928A JP2007283222A JP 2007283222 A JP2007283222 A JP 2007283222A JP 2006113928 A JP2006113928 A JP 2006113928A JP 2006113928 A JP2006113928 A JP 2006113928A JP 2007283222 A JP2007283222 A JP 2007283222A
Authority
JP
Japan
Prior art keywords
carrier
inorganic compound
biological treatment
pores
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006113928A
Other languages
Japanese (ja)
Inventor
Kazue Ueda
一恵 上田
Tatsuya Matsumoto
達也 松本
Akira Ito
顕 伊藤
Kiyohiko Yamamura
清彦 山村
Takemichi Chigusa
健理 千種
Reiko Shinohara
玲子 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2006113928A priority Critical patent/JP2007283222A/en
Publication of JP2007283222A publication Critical patent/JP2007283222A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a granular biological treatment carrier which has durability, can be properly floated in an aeration tank, can be utilized in the adhesion of microorganisms at a low cost and is enhanced in sewage purifying capacity. <P>SOLUTION: The biological treatment carrier is constituted of a particulate material comprising a thermoplastic resin having pores with a diameter of 0.1-100 μm and has an apparent density of 0.5-1.5 g/ml and manufactured by forming a granular material, which is obtained by melting and kneading a thermoplastic resin and a particulate inorganic compound, treating the granular material with a solvent, which dissolves the inorganic material but not dissolves the thermoplastic resin, to remove the inorganic material from the granular material and forming pores to the parts where the inorganic compound is not present. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、汚水中に含まれる有機性成分や窒素成分を微生物により効率的に除去するために曝気槽に投入される生物処理用担体に関するものである。   The present invention relates to a biological treatment carrier that is put into an aeration tank in order to efficiently remove organic components and nitrogen components contained in sewage by microorganisms.

近年、生活廃水や工場排水などによって湖沼、内海などの富栄養化が進み、それがアオコや赤潮などの発生を引き起こすため、下水処理場や工場排水処理施設において、BOD、窒素、リンなどの除去技術の効率化が検討されている。   In recent years, eutrophication of lakes, inland seas, etc. has progressed due to domestic wastewater and factory wastewater, etc., which causes the occurrence of blue sea urchins and red tides. Technology efficiency is being studied.

最近、高負荷、高効率用の除去技術として、直径または一辺が3mm以上の粒子(本明細書では「担体」と称す)を処理槽内に分散浮遊させ、この担体の表面および内部細孔に高密度に着生した微生物によって、有機成分や窒素成分を分解除去するシステムが注目されている。   Recently, as a removal technique for high load and high efficiency, particles having a diameter or a side of 3 mm or more (referred to as “support” in this specification) are dispersed and suspended in a treatment tank, and the surface and internal pores of the support are dispersed. A system that decomposes and removes organic components and nitrogen components by high-density microorganisms has attracted attention.

例えば、微生物付着用担体として、(1)ポリビニルアルコール系ゲル状物、(2)ポリエチレングリコール系ゲル状物、(3)発泡ポリプロピレン成型物、(4)発泡ポリウレタン成型物、(5)ポリエチレン球状成型物、(6)セラミック成型物、(7)繊維塊、束状物などが提案されており、素材や形状に工夫がなされて使い分けられている。これらの担体は、通常、処理槽内に、汚水に対して体積比で10〜50%投入され、槽底部からの曝気空気により流動して、汚水と接触する。   For example, as a carrier for attaching microorganisms, (1) polyvinyl alcohol gel, (2) polyethylene glycol gel, (3) foamed polypropylene molding, (4) foamed polyurethane molding, (5) polyethylene spherical molding Products, (6) ceramic moldings, (7) fiber masses, bundles, etc. have been proposed, and the materials and shapes have been devised for proper use. These carriers are usually charged into the treatment tank in a volume ratio of 10 to 50% with respect to the sewage, and flow by aerated air from the bottom of the tank and come into contact with the sewage.

したがって、これらの担体は、水中での流動性がよく、しかも流動時の担体同士または槽壁面との摩擦や衝突に対して損傷のないものでなければならない。さらに、担体の表面や内部により多くの微生物が付着できる面積、空間があることが重要である。したがって、これらの担体は、処理槽より流出しない最低の大きさまで小さくすることにより微生物の付着面積を上げる工夫がなされている。   Therefore, these carriers must have good fluidity in water, and should not be damaged by friction or collision between the carriers or the tank wall surface during flow. Furthermore, it is important that there is an area and space where more microorganisms can adhere to the surface and inside of the carrier. Therefore, these carriers have been devised to increase the adhesion area of microorganisms by reducing them to the minimum size that does not flow out of the treatment tank.

これらの種々の担体の中で、ポリビニルアルコールやポリエチレングリコールのゲル状物およびポリエチレン球状成型物は、発泡体や繊維塊に比して内部に空隙が少なく、微生物の付着は担体の表面に限られる。また、ウレタンやポリプロピレン発泡体は、内部に多くの細孔を有するものの、処理水槽の水面上に浮きやすく、水中での流動が悪くなるという欠点がある。   Among these various carriers, gels and polyethylene spherical molded products of polyvinyl alcohol and polyethylene glycol have less voids in the interior than foams and fiber masses, and the adhesion of microorganisms is limited to the surface of the carrier. . In addition, although urethane and polypropylene foams have many pores inside, they are liable to float on the water surface of the treated water tank and have a drawback that the flow in water becomes poor.

このため連続孔にする方法が提案されているが、比較的連続孔が作りやすいのは膜やシート状、板状のものである。しかし、これらは、製造時の後工程として担体としての適当な大きさにカットする必要があり、そのための手間がかかる。そのうえに、形状としては直方体となるため、使用中に角が取れて粉となって流れていってしまい、かえって水質を悪化させる原因になってしまう。   For this reason, a method for making continuous holes has been proposed, but it is relatively easy to make continuous holes in the form of membranes, sheets, and plates. However, these need to be cut into an appropriate size as a carrier as a post-process at the time of production, and it takes time and effort. In addition, since the shape is a rectangular parallelepiped, the corners are removed during use, and the powder flows as a powder, which causes the water quality to deteriorate.

連続孔を有した球状に近い形態の担体を一工程で作るには、ビーズ発泡粒子を用いる方法があるが、連続孔を有するビーズ発泡体の製造は難しく、従来のものはほとんどが独立気泡となってしまい、軽量で水面に浮くため浄水機能が低くなる。このため、担体を形成する樹脂とは溶融しない粉体を同時に混ぜて発泡させた連続気泡発泡体が提案されているが(特許文献1)、発泡剤も含めて多くの添加剤を加える必要があるため、製造時の操作が煩雑でコストアップとなってしまう。また、たとえ連続孔になっていたとしても、疎水性の樹脂の場合は水が細孔に入っていきにくいため、結果として内部の多くの細孔を有効利用できていなかった。疎水性の樹脂にて形成された発泡体の場合に内部に水が入りやすくするために、親水性の樹脂を混ぜる方法も提案されているが(特許文献2)、非相溶の樹脂を混ぜることは簡単ではなく、再現性も得られにくいという問題があった。   There is a method using bead foam particles to make a carrier having a spherical shape with continuous pores in one step. However, it is difficult to produce a bead foam having continuous pores, and most of the conventional ones are closed cells. It becomes light and floats on the water surface, so the water purification function is lowered. For this reason, an open-cell foam has been proposed in which a powder that does not melt with the resin forming the carrier is mixed and foamed (Patent Document 1), but it is necessary to add many additives including a foaming agent. For this reason, the manufacturing operation is complicated and the cost is increased. Further, even if the pores are continuous, in the case of a hydrophobic resin, water hardly enters the pores, and as a result, many internal pores cannot be effectively used. In the case of a foam formed of a hydrophobic resin, a method of mixing a hydrophilic resin has also been proposed in order to make it easy for water to enter inside (Patent Document 2), but an incompatible resin is mixed. This is not easy and reproducibility is difficult to obtain.

一方、発泡体にすることなく連続孔を有した担体を作製するために、ポリオレフィン樹脂に無機粉体と有機液状体とを混合、溶融し、あとから無機粉体と有機液状体を抽出除去する方法が提案されている(特許文献3)。しかしながら、この方法は、無機粉体と有機液状体を抽出するために有機溶剤を使用する必要があり、好ましいものではなかった。   On the other hand, in order to produce a support having continuous pores without forming a foam, an inorganic powder and an organic liquid are mixed and melted in a polyolefin resin, and then the inorganic powder and the organic liquid are extracted and removed. A method has been proposed (Patent Document 3). However, this method is not preferable because an organic solvent needs to be used to extract the inorganic powder and the organic liquid.

これらに対して、構成繊維の直径が数十μm以下の繊維塊状物は、微細な繊維が無数の立体網目構造を形成するため、粒状物に比して極めて大きな微生物付着効果を得ることができる(特許文献4)。しかし、この場合は、製造方法が簡単であるとはいえず、また熱処理により繊維塊が収縮して内部空隙が減少することがあり得るものであった。
特開2005−171064号公報 特開2004−113220号公報 特公昭60−23130号公報 特開平10−180278号公報
On the other hand, a fiber lump having a diameter of constituent fibers of several tens of μm or less can obtain an extremely large microbial adhesion effect compared to a granular material because fine fibers form innumerable three-dimensional network structures. (Patent Document 4). However, in this case, it cannot be said that the production method is simple, and the fiber mass may shrink due to heat treatment, and the internal voids may decrease.
JP 2005-171064 A JP 2004-113220 A Japanese Patent Publication No. 60-23130 JP-A-10-180278

本発明は、耐久性があり、曝気槽中で適度な浮遊ができ、低コストで微生物の付着に利用でき、しかも汚水の浄化能力の高い粒状の生物処理用担体を提供することを目的とするものである。   An object of the present invention is to provide a granular biological treatment carrier that is durable, can float appropriately in an aeration tank, can be used for attachment of microorganisms at low cost, and has a high ability to purify sewage. Is.

本発明者らは、上記の欠点を解決するために鋭意検討をした結果、耐久性があり、曝気槽中で適度な浮遊ができ、低コストで微生物の付着に利用できる汚水の浄化能力の高い粒状の生物処理用担体を見い出し、本発明を完成した。   As a result of intensive studies to solve the above-mentioned drawbacks, the present inventors are durable, can float appropriately in an aeration tank, and have a high purification capability of sewage that can be used for adhesion of microorganisms at low cost. A granular biological treatment carrier was found and the present invention was completed.

すなわち、本発明の生物処理用担体は、直径0.1〜100μmの孔を有する熱可塑性樹脂からなる粒状体により構成され、見かけ密度が0.5〜1.5グラム/ミリリットルであることを要旨とする。   That is, the biological treatment carrier of the present invention is composed of granules made of a thermoplastic resin having pores having a diameter of 0.1 to 100 μm, and the apparent density is 0.5 to 1.5 g / milliliter. And

本発明の生物処理用担体の製造方法は、熱可塑性樹脂と粉粒状の無機化合物とを溶融混練して粒状体を形成し、その後に、前記粒状体を、前記無機化合物は溶解するが熱可塑性樹脂は溶解しない溶媒により処理して、前記粒状体から無機化合物を除去することで、この無機化合物が存在していた部分に直径0.1〜100μmの孔を形成するとともに、前記粒状体の見かけ密度を0.5〜1.5グラム/ミリリットルとすることを要旨とする。   In the method for producing a biological treatment carrier of the present invention, a thermoplastic resin and a powdered inorganic compound are melt-kneaded to form a granular material, and then the granular material is dissolved in the inorganic compound but is thermoplastic. The resin is treated with a solvent that does not dissolve and the inorganic compound is removed from the granular material, thereby forming pores having a diameter of 0.1 to 100 μm in the portion where the inorganic compound was present, and the appearance of the granular material The gist is to set the density to 0.5 to 1.5 grams / milliliter.

本発明によれば、生物処理用担体が、直径0.1〜100μmの孔を有する熱可塑性樹脂からなる粒状体により構成され、見かけ密度が0.5〜1.5グラム/ミリリットルであるため、孔の直径が適切な範囲であることから微生物の付着性が良く、また見かけ密度が適切な範囲であることから曝気槽中で適度な浮遊ができ、このため処理効率に優れて汚水の浄化能力が高い担体とすることができる。また、孔の直径が最大でも100μmであるため、この孔が担体の強度に悪影響を及ぼすことがなく、このため耐久性に優れた担体とすることができる。   According to the present invention, the biological treatment carrier is composed of granules made of a thermoplastic resin having pores having a diameter of 0.1 to 100 μm, and the apparent density is 0.5 to 1.5 g / milliliter. Since the pore diameter is in the appropriate range, the adherence of microorganisms is good, and the apparent density is in the appropriate range, so that it can float properly in the aeration tank. Can be a high carrier. Further, since the diameter of the hole is 100 μm at the maximum, the hole does not adversely affect the strength of the carrier, and therefore, a carrier having excellent durability can be obtained.

また本発明の製造方法によれば、上記した高性能の担体を低コストで簡単に製造することができる。   Further, according to the production method of the present invention, the above-described high-performance carrier can be easily produced at low cost.

本発明の生物処理用担体は、直径0.1〜100μmの孔を有する熱可塑性樹脂からなる粒状体であって、見かけ密度が0.5〜1.5グラム/ミリリットルのものにより構成されている。   The biological treatment carrier of the present invention is a granular material made of a thermoplastic resin having pores having a diameter of 0.1 to 100 μm and having an apparent density of 0.5 to 1.5 g / milliliter. .

本発明の生物処理用担体に用いる熱可塑性樹脂は、特に限定されるものはなく、一般的な熱可塑性樹脂を挙げることができる。例えば、ポリエチレン、ポリプロピレン、ポリ−4−メチルペンテン−1、ポリブテン、ポリイソブチレン、シクロオレフィン樹脂に代表されるポリオレフィン樹脂、ナイロン6、ナイロン66、ナイロン46、ナイロン11、ナイロン12などに代表されるポリアミド樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリカーボネートなどに代表されるポリエステル系樹脂、ポリメタクリル酸メチル、ポリアクリル酸、ポリアクリロニトリルなどに代表されるアクリル樹脂、ポリ酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニルなどに代表されるビニル系樹脂のほか、フッ素系樹脂、ポリスチレン系樹脂、アセタール系樹脂、ポリエーテル樹脂、シリコン樹脂などを挙げることができる。これらの樹脂は共重合体でも構わないし、一部が変性されていたり、架橋されていたりしても構わない。なかでも、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル系樹脂は、加工性・耐久性・コスト面などで優れているので、好ましく用いることができる。特に好ましいのは、ポリエチレン、ポリプロピレン、ポリスチレンであり、最も好ましいのはポリエチレンとポリプロピレンである。   The thermoplastic resin used for the biological treatment carrier of the present invention is not particularly limited, and examples thereof include general thermoplastic resins. For example, polyethylene, polypropylene, poly-4-methylpentene-1, polybutene, polyisobutylene, polyolefin resin represented by cycloolefin resin, polyamide represented by nylon 6, nylon 66, nylon 46, nylon 11, nylon 12, etc. Resin, polyethylene terephthalate, polybutylene terephthalate, polylactic acid, polybutylene succinate, polyester resin represented by polycarbonate, acrylic resin represented by polymethyl methacrylate, polyacrylic acid, polyacrylonitrile, polyvinyl acetate, In addition to vinyl resins such as polyvinyl alcohol and polyvinyl chloride, mention may be made of fluorine resins, polystyrene resins, acetal resins, polyether resins, silicone resins, etc. Can. These resins may be copolymers or may be partially modified or cross-linked. Among these, polyolefin resins, polyamide resins, and polyester resins are excellent in processability, durability, and cost, and can be preferably used. Particularly preferred are polyethylene, polypropylene and polystyrene, and most preferred are polyethylene and polypropylene.

本発明の生物処理用担体は、粒状体であって、直径0.1〜100μmの孔を有することが必要である。これにより微生物が付着・繁殖しやすくなり、浄水能力が高まる。孔は、担体の表面部のみならず、内部にも存在することが好ましい。孔の直径が100μmを超えると、空隙が大きくなって担体の耐久性が劣りやすくなる。   The biological treatment carrier of the present invention is a granular material and needs to have pores having a diameter of 0.1 to 100 μm. This makes it easier for microorganisms to adhere and propagate, increasing the water purification capacity. The pores are preferably present not only in the surface portion of the carrier but also in the interior. When the diameter of the holes exceeds 100 μm, the voids become large and the durability of the carrier tends to be poor.

本発明の粒状の生物処理用担体は、その見かけ密度が0.5〜1.5グラム/ミリリットルであることが必要であり、好ましくは0.6〜1.4グラム/ミリリットルであり、より好ましくは0.8〜1.2グラム/ミリリットルであり、最も好ましくは0.9〜1.1グラム/ミリリットルである。見かけ密度が0.5グラム/ミリリットルよりも低い場合は、曝気槽中で担体が浮いてしまい、効率よく処理することができない。一方、見かけ密度が1.5グラム/ミリリットルよりも高い場合は、担体が沈んでしまい、やはり効率よく処理することができない。   The granular biological treatment carrier of the present invention needs to have an apparent density of 0.5 to 1.5 grams / milliliter, preferably 0.6 to 1.4 grams / milliliter, and more preferably Is 0.8 to 1.2 grams / milliliter, most preferably 0.9 to 1.1 grams / milliliter. When the apparent density is lower than 0.5 gram / milliliter, the carrier floats in the aeration tank and cannot be processed efficiently. On the other hand, if the apparent density is higher than 1.5 grams / milliliter, the carrier sinks and cannot be processed efficiently.

本発明の粒状の生物処理用担体は、熱可塑性樹脂と粉粒状の無機化合物とを溶融混練することにより、好適に製造することができる。その溶融混練に際しては、単軸押出機、二軸押出機、ロール混練機、ブラベンダー等の一般的な混練機を使用することができるが、無機化合物をより分散させるためには二軸押出機を使用することが好ましい。熱可塑性樹脂と無機化合物とは、ドライブレンドしてホッパーから投入しても良いし、無機化合物をサイドフィーダーから添加しても良い。   The granular biological treatment carrier of the present invention can be preferably produced by melt-kneading a thermoplastic resin and a granular inorganic compound. In the melt kneading, a general kneader such as a single screw extruder, a twin screw extruder, a roll kneader, or a Brabender can be used. In order to disperse the inorganic compound more, a twin screw extruder. Is preferably used. The thermoplastic resin and the inorganic compound may be dry blended and supplied from a hopper, or the inorganic compound may be added from a side feeder.

ここで使用される粉粒状の無機化合物は、熱可塑性樹脂との溶融混練の際に、ある程度の大きさを保って分散するものであることが好ましい。このようにして作製した熱可塑性樹脂と無機化合物との混合体は、そのまま処理用担体として用いることもできるが、本発明においては、無機化合物を溶融混練後に取り除いて孔を形成する。これにより、微生物の保持に効果的となる。このために、無機化合物は溶解するが熱可塑性樹脂は溶解しない溶媒による処理を行なう。   The particulate inorganic compound used here is preferably one that is dispersed while maintaining a certain size during melt-kneading with a thermoplastic resin. The mixture of the thermoplastic resin and the inorganic compound thus produced can be used as a processing carrier as it is, but in the present invention, the inorganic compound is removed after melt-kneading to form pores. Thereby, it becomes effective for retention of microorganisms. For this purpose, treatment with a solvent that dissolves the inorganic compound but does not dissolve the thermoplastic resin is performed.

このためには、無機化合物は、水に溶けやすいものが好ましい。無機化合物は溶融混練後に水抽出などによって取り除くが、完全に取り除く必要はない。そのため毒性の低いものが好ましい。また、水に溶けやすい無機化合物は、水との親和性が良いため、微量が樹脂中に残って、水が担体中に浸入することを助ける役割を果たすことができる。   For this purpose, the inorganic compound is preferably soluble in water. The inorganic compound is removed by water extraction after melt-kneading, but it is not necessary to remove it completely. Therefore, a thing with low toxicity is preferable. In addition, since an inorganic compound that is easily soluble in water has a good affinity with water, a minute amount remains in the resin and can play a role in helping water to enter the carrier.

このような無機化合物の例としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、塩化アルミニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、水酸化ナトリウム、水酸化カルシウムなどが挙げられる。なかでも好ましいのは、塩化ナトリウムと硫酸マグネシウムである。これらの無機化合物は、無定形で粒の大きさがそろってなくても良いが、ある程度粒の大きさをそろえたものが好ましい。この場合に好ましい平均粒径は1〜100μmである。1μm未満でも構わないが、かさ高くなって扱いにくかったり、水分など余分なものを吸着してしまう場合などがある。   Examples of such inorganic compounds include sodium chloride, calcium chloride, magnesium chloride, aluminum chloride, sodium sulfate, magnesium sulfate, calcium sulfate, sodium hydroxide, calcium hydroxide and the like. Of these, sodium chloride and magnesium sulfate are preferred. These inorganic compounds may be amorphous and may not have the same particle size, but those having a certain particle size are preferable. In this case, a preferable average particle diameter is 1 to 100 μm. Although it may be less than 1 μm, it may be bulky and difficult to handle, or it may adsorb extraneous matter such as moisture.

なお、上記のように粉粒状の無機化合物の好ましい平均粒径は1〜100μmであるが、平均粒径の小さい方の無機化合物では、その粒径分布によって、粒径が1μm以下である粒子もある程度含まれる。また、粉粒状の無機化合物のうちには、溶融混練の際に破砕されてその粒径が小さくなるものが存在する。このため、平均粒径が1〜100μmである粉粒状の無機化合物を用いても、得られる担体には、それよりも小さい範囲を含んで、直径0.1〜100μmの孔が形成されることになる。   In addition, although the preferable average particle diameter of a granular inorganic compound is 1-100 micrometers as mentioned above, in the inorganic compound with a smaller average particle diameter, the particle | grains whose particle diameter is 1 micrometer or less are also given by the particle size distribution. To some extent included. Moreover, among the granular inorganic compounds, there are those that are crushed during melt-kneading to reduce the particle size. For this reason, even if a granular inorganic compound having an average particle diameter of 1 to 100 μm is used, pores having a diameter of 0.1 to 100 μm are formed in the obtained carrier, including a smaller range. become.

本発明の粒状の生物処理用担体は、球形もしくは楕円球形であることが好ましい。大きさとしては平均粒径が3〜15mmであることが好ましく、より好ましくは4〜13mmである。球状に成形するには、混練機から押出した際にホットカットする方法が最も一般的である。そのほかに、通常の水浴を通した後にペレタイズし、ミルなどで角を落とす方法を用いても良いし、射出成形などの成形法を取ることもできる。担体の平均粒径が小さいほど、複数の担体による単位体積あたりの表面積が大きくなって処理効率が上がるが、平均粒径が3mm以下であると、処理水と担体とを分離するためのスクリーンの目幅が小さくなって通水抵抗が大きくなり、水処理に支障をきたしやすくなる。反対に平均粒径が15mmよりも大きくなると、複数の担体による単位体積あたりの表面積が小さくなって処理効率が下がる傾向が生じる。   The granular biological treatment carrier of the present invention is preferably spherical or elliptical. As the size, the average particle size is preferably 3 to 15 mm, more preferably 4 to 13 mm. The most common method for forming into a spherical shape is hot-cut when extruded from a kneader. In addition, a method of pelletizing after passing through a normal water bath and dropping corners with a mill or the like may be used, or a molding method such as injection molding may be used. The smaller the average particle size of the carrier, the larger the surface area per unit volume of the plurality of carriers and the higher the treatment efficiency. However, when the average particle size is 3 mm or less, the screen for separating the treated water and the carrier The mesh width becomes smaller and the water flow resistance becomes larger, which tends to hinder water treatment. On the other hand, when the average particle diameter is larger than 15 mm, the surface area per unit volume by a plurality of carriers tends to be small, and the processing efficiency tends to decrease.

以下、本発明を実施例に基づいて具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。
下記の実施例、比較例における評価方法は、以下の通りである。
Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited only to the following examples.
Evaluation methods in the following examples and comparative examples are as follows.

(1)メルトフローレート(MFR);
JIS K7210 にしたがい、付属A表の条件のなかから、温度190℃、荷重21.2N(2.16kg)で測定した。MFRの単位は、g/10分である。
(1) Melt flow rate (MFR);
According to JIS K7210, measurement was performed at a temperature of 190 ° C. and a load of 21.2 N (2.16 kg) from the conditions in Table A. The unit of MFR is g / 10 minutes.

(2)微細構造観察、孔の大きさ測定
作製した担体を液体窒素に浸して割り、その破断面を走査型電子顕微鏡(SEM)で観察した。この時観察される孔の大きさを測定し、最も細いものと最も太いものとの範囲で表した。
(2) Microstructure observation and pore size measurement The produced carrier was immersed in liquid nitrogen and divided, and the fracture surface was observed with a scanning electron microscope (SEM). The size of the hole observed at this time was measured and expressed in the range of the thinnest and the thickest.

(3)見かけ密度
エー・アンド・ディ社製 天秤:HA−202M 比重測定キット:AD−1653を用いて測定した。
(3) Apparent density Measured using A & D Corporation Balance: HA-202M Specific gravity measurement kit: AD-1653.

(4)BOD平均除去率(%)
担体20リットルを100リットルの処理水槽に入れ(充填率20%)、原水として、BOD560mg/リットルの製麺排水を、槽底部から8リットル/分の空気量で曝気して撹拌しながら、処理水量20リットル/時で処理した。運転開始後、20日、25日、30日経過したときの処理水を採取し、BODを測定して、原水からのBOD平均除去率を求めた。
(4) BOD average removal rate (%)
20 liters of carrier is put into a 100 liter treated water tank (filling rate 20%), and as raw water, noodle wastewater with a BOD of 560 mg / liter is aerated from the bottom of the tank with an air amount of 8 liters / minute while stirring, Processed at 20 liters / hour. Treated water was collected when 20 days, 25 days, and 30 days had elapsed after the start of operation, and BOD was measured to determine the average removal rate of BOD from raw water.

(5)耐久性
上記の(4)の処理を3か月継続した後に、担体を取り出し、処理前との大きさを調べ(粒子の長径と短径の平均値を、50個の担体について測定し、それらについての平均値を出した)、初期値に対し何%小さくなったかを調べた。その値が小さいほうが、耐久性に優れていることを示す。
(5) Durability After the above treatment (4) is continued for 3 months, the carrier is taken out and the size before the treatment is examined (average values of major and minor diameters of particles are measured for 50 carriers). Then, an average value was obtained for them), and the percentage of the initial value was examined. The smaller the value, the better the durability.

[原料]
次に、下記の実施例、比較例において用いた各種原料を示す。
(1)樹脂
樹脂A:ポリエチレン(日本ポリエチレン社製 YF30、MFR=1.1g/10分)
樹脂B:ポリエチレン(日本ポリエチレン社製 LF547、MFR=3.8g/10分)
樹脂C:ポリプロピレン(チッソ社製 K5019F、MFR=5.4g/10分)
樹脂D:無機質充填ナイロン6(ユニチカ社製 A3130、MFR=20g/10分)
[material]
Next, various raw materials used in the following Examples and Comparative Examples are shown.
(1) Resin Resin A: Polyethylene (manufactured by Nippon Polyethylene YF30, MFR = 1.1 g / 10 min)
Resin B: Polyethylene (manufactured by Nippon Polyethylene LF547, MFR = 3.8 g / 10 min)
Resin C: Polypropylene (K5019F manufactured by Chisso Corporation, MFR = 5.4 g / 10 min)
Resin D: Inorganic filled nylon 6 (Unitika A3130, MFR = 20 g / 10 min)

(2)無機化合物
N:塩化ナトリウム(赤穂化成社製 オシオミクロンT−0、平均粒径10μm)
M:硫酸マグネシウム(赤穂化成社製 MG−0K、平均粒径70μm)
O:硫酸マグネシウム(赤穂化成社製 MG−0K−100、平均粒径10μm)
(2) Inorganic compound N: sodium chloride (manufactured by Ako Kasei Co., Ltd., Osiomicron T-0, average particle size 10 μm)
M: Magnesium sulfate (manufactured by Ako Kasei Co., Ltd. MG-0K, average particle size 70 μm)
O: Magnesium sulfate (manufactured by Ako Kasei Co., Ltd. MG-0K-100, average particle size 10 μm)

実施例1
樹脂Aを100質量部と、無機化合物Nを100質量部とを、二軸押出機(池貝社製、PCM−30)を用い、ダイス(直径5mm×2孔)から押出した。押出し温度は190℃、スクリュー回転数は150rpmとして、ホットカットにて直径約5ミリの球状サンプルを作製した。これを熱水中で8時間処理することで、無機化合物Nをサンプルから抽出した。これにより得られた担体の断面をSEMで観察した結果を図1に示す。図示のように多数の微小な孔が形成されていた。担体の見かけ密度、孔の大きさを表1に示す。
Example 1
100 parts by mass of resin A and 100 parts by mass of inorganic compound N were extruded from a die (diameter 5 mm × 2 holes) using a twin screw extruder (Ikegai Co., Ltd., PCM-30). A spherical sample having a diameter of about 5 mm was prepared by hot cutting at an extrusion temperature of 190 ° C. and a screw rotation speed of 150 rpm. The inorganic compound N was extracted from the sample by treating this in hot water for 8 hours. The result of observing the cross section of the carrier thus obtained with SEM is shown in FIG. As shown in the figure, a large number of minute holes were formed. Table 1 shows the apparent density and pore size of the carrier.

この担体を用いて、製麺排水を処理した後のBOD平均除去率を求めた。その結果を表1に示す。初期粒径および3ヵ月後の粒径変化も求めた。その結果も表1に示す。   Using this carrier, the average removal rate of BOD after treating the noodle making waste water was determined. The results are shown in Table 1. The initial particle size and the change in particle size after 3 months were also determined. The results are also shown in Table 1.

Figure 2007283222
Figure 2007283222

実施例2〜12、比較例1〜3
樹脂の種類、無機化合物の種類、それらの量比を、表1のように変化させて、担体を作製した。そして。それ以外は実施例1と同様にして試験を行った。ただし、実施例9では、実施例1と比べて、押出し温度を210℃、スクリュー回転数を250rpmに変化させた。また実施例10では、実施例1と比べて、押出し温度を210℃に変化させた。実施例11では、他の実施例1〜10に比べて初期粒径が大きくなるように変化させ、実施例12では初期粒径が小さくなるように変化させた。その結果を表1に示す。
Examples 2-12, Comparative Examples 1-3
The type of resin, the type of inorganic compound, and the quantitative ratio thereof were changed as shown in Table 1 to prepare a carrier. And then. Otherwise, the test was conducted in the same manner as in Example 1. However, in Example 9, as compared with Example 1, the extrusion temperature was changed to 210 ° C. and the screw rotation speed was changed to 250 rpm. Moreover, in Example 10, compared with Example 1, the extrusion temperature was changed to 210 degreeC. In Example 11, the initial particle size was changed to be larger than those in other Examples 1 to 10, and in Example 12, the initial particle size was changed to be smaller. The results are shown in Table 1.

実施例1のものは、見かけ密度、孔の大きさが、本発明の範囲であったため、BOD平均除去率が高く、また耐久性にも優れた担体であった。同様に、実施例2〜12についても、樹脂の種類、無機化合物の種類、作製時の量比を変化させても、見かけ密度および孔の大きさが本発明の範囲であったため、BOD平均除去率が高く、また耐久性にも優れた担体であった。ただし、実施例11のものは、担体の初期粒径が大きかったため、実施例1〜10のものに比べてBOD除去率がやや低かった。また実施例12のものは、担体の初期粒径が小さかったため、同様に実施例1〜10のものに比べてBOD除去率がやや低かった。   In Example 1, the apparent density and pore size were within the scope of the present invention, so that the BOD average removal rate was high and the carrier was excellent in durability. Similarly, in Examples 2 to 12, even when the kind of resin, the kind of inorganic compound, and the quantity ratio at the time of production were changed, the apparent density and the size of the pore were within the scope of the present invention. It was a carrier having a high rate and excellent durability. However, since the initial particle diameter of the carrier of Example 11 was large, the BOD removal rate was slightly lower than that of Examples 1-10. Moreover, since the initial particle diameter of the carrier of Example 12 was small, the BOD removal rate was similarly slightly lower than that of Examples 1-10.

比較例1のものは、無機化合物を用いなかったために孔が開いておらず、このため耐久性は良いがBOD平均除去率が悪いものであった。比較例2のものは、無機化合物の配合量が多すぎた結果、孔が大きくなって本発明の範囲を外れるものが見られることとなり、BOD除去はある程度できても、耐久性が悪くなってしまった。比較例3のものは、は無機化合物の配合量が非常に多かった結果、見かけ密度が低くなり、また孔の大きさも非常に大きくなってしまって本発明の範囲からかなり外れたものが見られた。このため、曝気槽中で担体が浮いてしまって、効率のよい浄水処理が不可能であり、BOD平均除去率も悪くなり、さらに耐久性も悪いものであった。   In Comparative Example 1, no inorganic compound was used, so no pores were formed. Therefore, the durability was good, but the average BOD removal rate was poor. In Comparative Example 2, as a result of too much compounding amount of the inorganic compound, the pores become large and some of the results are outside the scope of the present invention. Even though BOD removal can be performed to some extent, the durability deteriorates. Oops. In Comparative Example 3, the amount of the inorganic compound was very large, resulting in a low apparent density and a very large pore size, which was significantly out of the scope of the present invention. It was. For this reason, the carrier floated in the aeration tank, so that efficient water purification treatment was impossible, the BOD average removal rate was poor, and the durability was also poor.

本発明の実施例1の担体の断面をSEMで観察した結果を示す図である。It is a figure which shows the result of having observed the cross section of the support | carrier of Example 1 of this invention by SEM.

Claims (2)

直径0.1〜100μmの孔を有する熱可塑性樹脂からなる粒状体により構成され、見かけ密度が0.5〜1.5グラム/ミリリットルであることを特徴とする生物処理用担体。   A biological treatment carrier characterized in that it is composed of granules made of a thermoplastic resin having pores having a diameter of 0.1 to 100 µm, and has an apparent density of 0.5 to 1.5 g / ml. 熱可塑性樹脂と粉粒状の無機化合物とを溶融混練して粒状体を形成し、その後に、前記粒状体を、前記無機化合物は溶解するが熱可塑性樹脂は溶解しない溶媒により処理して、前記粒状体から無機化合物を除去することで、この無機化合物が存在していた部分に直径0.1〜100μmの孔を形成するとともに、前記粒状体の見かけ密度を0.5〜1.5グラム/ミリリットルとすることを特徴とする生物処理用担体の製造方法。   A thermoplastic resin and a granular inorganic compound are melt-kneaded to form a granular body, and then the granular body is treated with a solvent that dissolves the inorganic compound but does not dissolve the thermoplastic resin. By removing the inorganic compound from the body, pores having a diameter of 0.1 to 100 μm are formed in the portion where the inorganic compound was present, and the apparent density of the granular material is 0.5 to 1.5 g / ml. A method for producing a carrier for biological treatment, characterized in that
JP2006113928A 2006-04-18 2006-04-18 Biological treatment carrier Pending JP2007283222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113928A JP2007283222A (en) 2006-04-18 2006-04-18 Biological treatment carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113928A JP2007283222A (en) 2006-04-18 2006-04-18 Biological treatment carrier

Publications (1)

Publication Number Publication Date
JP2007283222A true JP2007283222A (en) 2007-11-01

Family

ID=38755484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113928A Pending JP2007283222A (en) 2006-04-18 2006-04-18 Biological treatment carrier

Country Status (1)

Country Link
JP (1) JP2007283222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112533A (en) * 2011-11-25 2013-06-10 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Porous ceramic using volcanic ash as raw material and method for producing the same
JP2014073476A (en) * 2012-10-05 2014-04-24 Inoac Gijutsu Kenkyusho:Kk Microorganism carrier

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768282A (en) * 1993-09-02 1995-03-14 Kubota Corp Wastewater treatment apparatus
JPH08173984A (en) * 1994-12-21 1996-07-09 Showa Eng Kk Microorganism sticking use carrier for wastewater treatment
JPH0910789A (en) * 1995-07-03 1997-01-14 Nisshinbo Ind Inc Waste water treatment material
JPH10296284A (en) * 1997-04-30 1998-11-10 Takeda Chem Ind Ltd Carrier for immobilizing microbe and manufacture thereof
JPH1192568A (en) * 1997-07-22 1999-04-06 Kanebo Ltd Spongy spherical particle and production thereof
JP2000061487A (en) * 1998-08-25 2000-02-29 Kankyo Eng Co Ltd Carrier for microorganism and its production
JP2000169620A (en) * 1998-12-04 2000-06-20 Rengo Co Ltd Porous hydrophilic polymer and its production
JP2001170668A (en) * 1999-12-14 2001-06-26 Kankyo Eng Co Ltd Carrier for microorganism and method for manufacturing the same
JP2001205285A (en) * 2000-01-28 2001-07-31 Takeda Chem Ind Ltd Carrier for water treatment, method of manufacturing the same and water treatment apparatus
JP2001205288A (en) * 2000-01-28 2001-07-31 Takeda Chem Ind Ltd Carrier for water treatment, its production method, and apparatus for water treatment
JP2001314181A (en) * 2000-05-10 2001-11-13 Mi Tec:Kk Liquors containing chelate compound
JP2003170183A (en) * 2001-12-05 2003-06-17 Takeda Chem Ind Ltd Carrier for water treatment, method for manufacturing the same and apparatus for water treatment

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768282A (en) * 1993-09-02 1995-03-14 Kubota Corp Wastewater treatment apparatus
JPH08173984A (en) * 1994-12-21 1996-07-09 Showa Eng Kk Microorganism sticking use carrier for wastewater treatment
JPH0910789A (en) * 1995-07-03 1997-01-14 Nisshinbo Ind Inc Waste water treatment material
JPH10296284A (en) * 1997-04-30 1998-11-10 Takeda Chem Ind Ltd Carrier for immobilizing microbe and manufacture thereof
JPH1192568A (en) * 1997-07-22 1999-04-06 Kanebo Ltd Spongy spherical particle and production thereof
JP2000061487A (en) * 1998-08-25 2000-02-29 Kankyo Eng Co Ltd Carrier for microorganism and its production
JP2000169620A (en) * 1998-12-04 2000-06-20 Rengo Co Ltd Porous hydrophilic polymer and its production
JP2001170668A (en) * 1999-12-14 2001-06-26 Kankyo Eng Co Ltd Carrier for microorganism and method for manufacturing the same
JP2001205285A (en) * 2000-01-28 2001-07-31 Takeda Chem Ind Ltd Carrier for water treatment, method of manufacturing the same and water treatment apparatus
JP2001205288A (en) * 2000-01-28 2001-07-31 Takeda Chem Ind Ltd Carrier for water treatment, its production method, and apparatus for water treatment
JP2001314181A (en) * 2000-05-10 2001-11-13 Mi Tec:Kk Liquors containing chelate compound
JP2003170183A (en) * 2001-12-05 2003-06-17 Takeda Chem Ind Ltd Carrier for water treatment, method for manufacturing the same and apparatus for water treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112533A (en) * 2011-11-25 2013-06-10 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Porous ceramic using volcanic ash as raw material and method for producing the same
JP2014073476A (en) * 2012-10-05 2014-04-24 Inoac Gijutsu Kenkyusho:Kk Microorganism carrier

Similar Documents

Publication Publication Date Title
JP3143412B2 (en) Microbial immobilization carrier for fluidized bed
JP5650373B2 (en) Method for manufacturing fluid processing carrier
CN1868919A (en) Suspension microorganism carrier and its preparation method
JP6869307B2 (en) Microbial carrier
JP2007283222A (en) Biological treatment carrier
JP5154671B2 (en) Solid phosphorus removing agent and waste water septic tank provided with the same
JP2004358328A (en) Microorganism carrier
TW201446660A (en) Anaerobic treatment method
JP4545408B2 (en) Water treatment material, nitrate nitrogen treatment material and production method thereof
JP3587733B2 (en) Microbial carrier and wastewater treatment equipment
JP2008068248A (en) Solid phosphorus removing agent, method for producing the same, method for dissolving the same in water, apparatus for dissolving the same and waste water cleaning tank equipped with the apparatus
JP5691439B2 (en) Anaerobic treatment method and apparatus
JP2005021842A (en) Contaminant removing material, and method for removing contaminant using the same
JP6295877B2 (en) Wastewater treatment system containing animal and vegetable oils
JP5964195B2 (en) Microbial carrier
KR100918587B1 (en) Method for manufacturing porous biological film microbic carrier containing yellow ocher, and carrier produced thereby
JP2005021831A (en) Carrier for microorganism proliferation, and its using method
JP2014217806A (en) Water purification method and apparatus
US20080038554A1 (en) Media
JP2004344871A (en) Method for manufacturing porous filter
JP2001170668A (en) Carrier for microorganism and method for manufacturing the same
JP4229426B2 (en) Microorganism immobilization carrier and waste water treatment method using the same
JP2003340480A (en) Microbial cell immobilization support, method for producing the same and method for treating waste water using the same
JP2002223751A (en) Microorganism-immobilized carrier
CN1898303A (en) Bacteria support material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724