JP2007265846A - Cylindrical battery and its manufacturing method - Google Patents

Cylindrical battery and its manufacturing method Download PDF

Info

Publication number
JP2007265846A
JP2007265846A JP2006090492A JP2006090492A JP2007265846A JP 2007265846 A JP2007265846 A JP 2007265846A JP 2006090492 A JP2006090492 A JP 2006090492A JP 2006090492 A JP2006090492 A JP 2006090492A JP 2007265846 A JP2007265846 A JP 2007265846A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
welded
core exposed
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006090492A
Other languages
Japanese (ja)
Inventor
Tomohiko Yokoyama
智彦 横山
Yasuhiro Yamauchi
康弘 山内
Kenji Minamisaka
健二 南坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006090492A priority Critical patent/JP2007265846A/en
Publication of JP2007265846A publication Critical patent/JP2007265846A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical battery having low internal resistance by adopting welding structure capable of stably welding a current collector to a core exposed part. <P>SOLUTION: The cylindrical battery is formed by housing an electrode body in which a positive current collector 14 is welded to a positive electrode core exposed part 11c of a rolled electrode group and a negative current collector is welded to a negative electrode core exposed part in an outer packaging can. The current collector 14 has a central opening 14b and almost U-shaped grooves 14c radially formed from the central opening 14b, the core exposed part 11c has a plurality of bent grooves 11d bent along a pair of slits in parallel each other toward the center direction of a spiral, the almost U-shaped grooves 14c are formed on the bent grooves 11d, the contact surface between outer bottom surfaces of the almost U-shaped grooves 14d and the bent grooves 11d is welded, and the contact surface between a standing part 11e remaining in the core exposed part 11c by the formation of the bent grooves 11d and the side wall of the almost U-shaped groove 14c is welded. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウム二次電池やアルカリ蓄電池などの円筒形電池に係り、特に、渦巻状電極群の一方端部に形成された正極芯体露出部に正極集電体が溶接され、渦巻状電極群の他方端部に形成された負極芯体露出部に負極集電体が溶接された電極体を円筒形外装缶内に備えた円筒形電池およびその製造方法に関する。   The present invention relates to a cylindrical battery such as a lithium secondary battery or an alkaline storage battery, and more particularly, a positive electrode current collector is welded to a positive electrode core exposed portion formed at one end of a spiral electrode group, and the spiral electrode The present invention relates to a cylindrical battery having an electrode body in which a negative electrode current collector is welded to a negative electrode core exposed part formed at the other end of the group in a cylindrical outer can and a method for manufacturing the same.

近年、携帯電話、ノートパソコン、小型ビデオカメラ等の携帯用電子・通信機器等に用いられる電源、あるいはハイブリッド車(HEV)や電気自動車(EV)等の電源として、エネルギー密度(Wh/Kg)の高いリチウム二次電池などの円筒形電池が注目されている。   In recent years, energy density (Wh / Kg) has been used as a power source for portable electronic / communication devices such as mobile phones, notebook computers, and small video cameras, or as a power source for hybrid vehicles (HEV) and electric vehicles (EV). Cylindrical batteries such as high lithium secondary batteries are attracting attention.

この種の円筒形のリチウム二次電池は、以下のようにして作製されるのが一般的である。即ち、まず、正極芯体(通常は、アルミニウム箔)に正極活物質を含有する正極合剤を塗布して帯状正極板を作製するとともに、負極芯体(通常は、銅箔)に負極活物質を含有する負極合剤を塗布して帯状負極板を作製する。この後、得られた帯状正極板と帯状負極板を帯状セパレータを介して相対向させて積層し、これらを渦巻状に巻回して渦巻状電極群とする。この後、渦巻状電極群の正極板端部の芯体露出部(正極合剤の未塗布部)と正極集電タブとを溶接するとともに、負極板端部の芯体露出部(負極合剤の未塗布部)と負極集電タブとを溶接して電極体とする。このようにして作製された電極体を円筒形外装缶内に収容し、非水電解液を注液した後、封口体で密閉して円筒形電池としている。   This type of cylindrical lithium secondary battery is generally manufactured as follows. That is, first, a positive electrode mixture containing a positive electrode active material is applied to a positive electrode core (usually an aluminum foil) to produce a strip-like positive electrode plate, and a negative electrode active material is applied to the negative electrode core (usually a copper foil). A negative electrode mixture containing is applied to produce a strip-shaped negative electrode plate. Thereafter, the obtained belt-like positive electrode plate and the belt-like negative electrode plate are laminated so as to face each other via a belt-like separator, and these are wound spirally to form a spiral electrode group. After that, the core exposed portion (the uncoated portion of the positive electrode mixture) at the end of the positive electrode plate of the spiral electrode group and the positive electrode current collecting tab are welded, and the core exposed portion (the negative electrode mixture) at the end of the negative electrode plate. The electrode body is welded to the negative electrode collector tab. The electrode body produced in this way is housed in a cylindrical outer can, and after pouring a nonaqueous electrolyte, it is sealed with a sealing body to form a cylindrical battery.

ここで、渦巻状電極群の正極板端部の芯体露出部と正極集電タブ(あるいは負極板端部の芯体露出部と負極集電タブ)とを溶接する場合、側端面に互に平行な一対のスリットを形成し、そのスリットに仕切られた部分の極板端部を折り曲げて、渦巻状電極群の側端面よりも内方位置に電極面を形成し、この電極面に集電タブを溶接することが特許文献1にて提案されている。上述した特許文献1に示された渦巻状電極群20においては、図7に示すように、一方の端部に正極板から延出した正極芯体露出部21aが形成されているとともに、他方の端部に負極板から延出した負極芯体露出部22aが形成されている。   Here, when welding the core exposed portion and the positive electrode current collecting tab (or the negative electrode plate end core exposed portion and the negative electrode current collecting tab) at the end of the positive electrode plate of the spiral electrode group, A pair of parallel slits are formed, and the electrode plate end portion of the portion partitioned by the slits is bent to form an electrode surface inward of the side end surface of the spiral electrode group. Patent Document 1 proposes welding a tab. In the spiral electrode group 20 shown in Patent Document 1 described above, as shown in FIG. 7, a positive electrode core exposed portion 21a extending from the positive electrode plate is formed at one end and the other end is formed. A negative electrode core exposed portion 22a extending from the negative electrode plate is formed at the end.

そして、正極芯体露出部21aの上面に、4つの長方形状の板状体からなる正極集電タブ22,23,24,25が溶接されているとともに、負極芯体露出部の下面にも正極集電タブとほぼ同様な負極集電タブ(図示せず)が溶接されている。なお、負極集電タブの溶接は正極集電タブの溶接と同様であるので、以下では、正極集電タブの溶接についてのみ説明する。ここで、正極芯体露出部21aの上面に4つの正極集電タブ22,23,24,25を溶接する際には、正極芯体露出部21aの上面に4つの正極集電タブ22,23,24,25を配置し、これらの正極集電タブ22,23,24,25の上にレーザ光を照射して正極芯体露出部21aに各正極集電タブ22,23,24,25を溶接するようにしている。
特開2000−40502号公報
The positive electrode current collecting tabs 22, 23, 24, and 25 made of four rectangular plates are welded to the upper surface of the positive electrode core exposed portion 21 a, and the lower surface of the negative electrode core exposed portion also has a positive electrode. A negative electrode current collecting tab (not shown) substantially similar to the current collecting tab is welded. Since welding of the negative electrode current collecting tab is similar to welding of the positive electrode current collecting tab, only the welding of the positive electrode current collecting tab will be described below. Here, when the four positive current collecting tabs 22, 23, 24, 25 are welded to the upper surface of the positive electrode core exposed portion 21a, the four positive current collecting tabs 22, 23 are disposed on the upper surface of the positive electrode core exposed portion 21a. , 24, 25 are arranged, and laser light is irradiated on these positive electrode current collecting tabs 22, 23, 24, 25 to attach the respective positive electrode current collecting tabs 22, 23, 24, 25 to the positive electrode core exposed portion 21a. We are trying to weld.
JP 2000-40502 A

ところが、上述した特許文献1に示されるように、4つの集電タブを芯体露出部の上に配置し、これらの集電タブにレーザを照射して溶接する方法にあっては、部品点数が多いことから、その溶接方法が複雑でハンドリングも面倒であるとともに、作業性も悪いことから生産効率が低下するという問題を生じた。
また、各集電タブの底面と芯体露出部との接触面のみをレーザにより溶接するものであるため、各集電タブと芯体露出部との接触抵抗が比較的大きくなって、内部抵抗が比較的大きく、大電流の用途に用いられた場合に、電圧降下が大きくなって、作動電圧が低下するという問題も生じた。
そこで、本発明は上記問題点を解消するためになされたものであって、集電体を安定して芯体露出部に溶接できるような溶接構造を採用して、内部抵抗が低減した円筒形電池を提供するとともに、製造が容易で生産効率も向上した円筒形電池の製造方法を提供することを目的とする。
However, as shown in Patent Document 1 described above, in the method of arranging four current collecting tabs on the core exposed portion and irradiating these current collecting tabs with laser, the number of parts is reduced. Therefore, the welding method is complicated and the handling is troublesome, and the workability is also poor, so that the production efficiency is lowered.
In addition, since only the contact surface between the bottom surface of each current collecting tab and the core exposed portion is welded by laser, the contact resistance between each current collecting tab and the core exposed portion becomes relatively large, and the internal resistance Has a relatively large voltage drop when used for high current applications, resulting in a problem that the operating voltage decreases.
Accordingly, the present invention has been made to solve the above-described problems, and adopts a welding structure that can stably weld the current collector to the core body exposed portion, thereby reducing the internal resistance. An object of the present invention is to provide a battery and a method for manufacturing a cylindrical battery that is easy to manufacture and has improved production efficiency.

本発明の円筒形電池は、渦巻状電極群の一方端部に形成された正極芯体露出部に正極集電体が溶接され、渦巻状電極群の他方端部に形成された負極芯体露出部に負極集電体が溶接された電極体を円筒形外装缶内に備えている。そして、上記目的を達成するため、集電体は中心開口と当該中心開口から放射状に形成された複数の略U字状溝部とを備え、芯体露出部は当該芯体露出部に形成された互に平行な一対のスリットに沿って渦巻の中心方向に向けて折曲されて形成された複数の折曲溝部を備えている。そして、この折曲溝部上に集電体に形成された略U字状溝部が配置されていて、当該略U字状溝部の外底面と折曲溝部との接触面が溶接されているとともに、折曲溝部が形成されたことにより当該芯体露出部に残存した立設部と略U字状溝部の側壁との接触面が溶接されている。   In the cylindrical battery of the present invention, the positive electrode current collector is welded to the positive electrode core exposed portion formed at one end of the spiral electrode group, and the negative electrode core exposed at the other end of the spiral electrode group is exposed. An electrode body having a negative electrode current collector welded to a portion is provided in a cylindrical outer can. In order to achieve the above object, the current collector includes a central opening and a plurality of substantially U-shaped grooves formed radially from the central opening, and the core body exposed part is formed in the core body exposed part. A plurality of bent grooves formed by bending toward the center of the spiral along a pair of mutually parallel slits are provided. And the substantially U-shaped groove part formed in the current collector is disposed on the bent groove part, and the contact surface between the outer bottom surface of the substantially U-shaped groove part and the bent groove part is welded, Due to the formation of the bent groove portion, the contact surface between the standing portion remaining in the core exposed portion and the side wall of the substantially U-shaped groove portion is welded.

このように折曲溝部上に集電体に形成された略U字状溝部が配置されていて、当該略U字状溝部の外底面と折曲溝部との接触面が溶接されているとともに、折曲溝部が形成されたことにより当該芯体露出部に残存した立設部と略U字状溝部の側壁との接触面が溶接されていると、集電体に形成された略U字状溝部と芯体露出部との各接触面に安定した溶接部を形成することができるようになる。これにより、内部抵抗の低減化が可能な溶接構造が得られるようになる。この場合、製造の容易さを考慮すると、集電体に形成された略U字状溝部は中心開口から互に直角となる4方向に形成され、折曲溝部は渦巻の中心から互に直角となる4方向に形成されているのが望ましい。   In this way, the substantially U-shaped groove portion formed on the current collector is disposed on the bent groove portion, and the contact surface between the outer bottom surface of the substantially U-shaped groove portion and the bent groove portion is welded, When the contact surface between the standing part remaining in the core exposed part and the side wall of the substantially U-shaped groove is welded by forming the bent groove, the substantially U-shaped formed on the current collector A stable weld can be formed on each contact surface between the groove and the core exposed portion. As a result, a welded structure capable of reducing the internal resistance can be obtained. In this case, considering the ease of manufacture, the substantially U-shaped grooves formed in the current collector are formed in four directions perpendicular to each other from the central opening, and the bent grooves are perpendicular to each other from the center of the spiral. It is desirable that the four directions are formed.

なお、上述のような集電構造となる円筒形電池を製造するには、芯体露出部に渦巻の中心から放射状に互に平行な一対のスリットの複数組を形成するスリット形成工程と、互に平行な一対のスリットに沿って渦巻の中心方向に向けて芯体露出部を折り曲げることにより折曲溝部を形成する折曲溝部形成工程と、折曲溝部の上に集電体に形成された略U字状溝部を配置した後、当該略U字状溝部の底面上にエネルギー線を照射して、当該略U字状溝部の底面と前記折曲溝部との接触面を溶接する第1溶接工程と、略U字状溝部の側壁にエネルギー線を照射して、当該略U字状溝部の側壁と当該芯体露出部に残存した立設部との接触面を溶接する第2溶接工程とを備えるようにすればよい。なお、エネルギー線としては、電子線やレーザ光を用いることができるが、製造の容易さの観点からすると、レーザ光を用いるのが望ましい。   In order to manufacture a cylindrical battery having a current collecting structure as described above, a slit forming step of forming a plurality of pairs of slits radially parallel to each other from the center of the spiral in the core exposed portion, A bent groove forming step of forming a bent groove portion by bending the core exposed portion along a pair of slits parallel to the spiral toward the center of the spiral, and a current collector formed on the bent groove portion 1st welding which irradiates an energy ray on the bottom face of the said substantially U-shaped groove part, and welds the contact surface of the said substantially U-shaped groove part and the said bending groove part after arrange | positioning a substantially U-shaped groove part. And a second welding step of irradiating energy rays to the side wall of the substantially U-shaped groove and welding the contact surface between the side wall of the substantially U-shaped groove and the standing portion remaining in the core exposed portion, Should be provided. In addition, although an electron beam and a laser beam can be used as an energy beam, it is desirable to use a laser beam from a viewpoint of ease of manufacture.

本発明の円筒形電池においては、集電体を安定して芯体露出部に溶接できるような溶接構造となるようになされているので、内部抵抗が低減した円筒形電池を得ることが可能となるとともに、製造が容易で生産効率も向上した円筒形電池を製造することが可能となる。   In the cylindrical battery of the present invention, since the current collector has a welded structure that can be stably welded to the core exposed portion, it is possible to obtain a cylindrical battery with reduced internal resistance. In addition, it is possible to manufacture a cylindrical battery that is easy to manufacture and has improved production efficiency.

ついで、本発明の実施の形態を図1〜図6に基づいて以下に説明するが、本発明はこの実施の形態に何ら限定されるものではなく、本発明の目的を変更しない範囲で適宜変更して実施することが可能である。なお、図1は渦巻電極群を巻回して作製する状態を模式的に示す斜視図である。図2は作製された渦巻電極群の上面から見た状態を模式的に示す上面図であり、図2(a)は作製直後の渦巻電極群を示しており、図2(b)は渦巻電極群の電極板から延出した芯体露出部に一対の平行なスリット(切り込み)を形成した状態を示しており、図2(c)は一対の平行なスリットで仕切られた芯体露出部を折り曲げて折曲溝部を形成した状態を示している。図3は本発明の渦巻電極群に正極集電体を溶接する状態を模式的に示す図である。   Next, an embodiment of the present invention will be described below with reference to FIGS. 1 to 6. However, the present invention is not limited to this embodiment, and may be appropriately changed without changing the object of the present invention. Can be implemented. FIG. 1 is a perspective view schematically showing a state in which a spiral electrode group is wound and manufactured. FIG. 2 is a top view schematically showing the state of the produced spiral electrode group as viewed from the upper surface, FIG. 2 (a) shows the spiral electrode group immediately after production, and FIG. 2 (b) shows the spiral electrode. FIG. 2 (c) shows a state in which a pair of parallel slits (cuts) are formed in the core exposed portion extending from the electrode plate of the group, and FIG. 2 (c) shows the core exposed portion partitioned by the pair of parallel slits. The state which bent and formed the bending groove part is shown. FIG. 3 is a diagram schematically showing a state in which a positive electrode current collector is welded to the spiral electrode group of the present invention.

図4は、折曲溝部が形成された渦巻電極群に正極集電体の略U字溝の底面と側面が溶接された状態を模式的に示す図であり、図4(a)は、折曲溝部での渦巻電極群の巻回方向と平行な方向の断面を示す断面図であり、図4(b)は折曲溝部での渦巻電極群の巻回方向と垂直な方向の断面を示す断面図である。図5は、折曲溝部が形成された渦巻電極群に正極集電体の略U字溝の底面が溶接された状態を模式的に示す図であり、図5(a)は、折曲溝部での渦巻電極群の巻回方向と平行な方向の断面を示す断面図であり、図5(b)は折曲溝部での渦巻電極群の巻回方向と垂直な方向の断面を示す断面図である。図6は折曲溝部が形成されない渦巻電極群に正極集電体の略U字溝の底面が溶接された状態を模式的に示す図であり、図6(a)は、U字溝での渦巻電極群の巻回方向と平行な方向の断面を示す断面図であり、図6(b)はU字溝での渦巻電極群の巻回方向と垂直な方向の断面を示す断面図である。   FIG. 4 is a diagram schematically showing a state in which the bottom surface and the side surface of the substantially U-shaped groove of the positive electrode current collector are welded to the spiral electrode group in which the bent groove portion is formed, and FIG. FIG. 4B is a cross-sectional view showing a cross section in a direction parallel to the winding direction of the spiral electrode group in the curved groove portion, and FIG. 4B shows a cross section in a direction perpendicular to the winding direction of the spiral electrode group in the bent groove portion. It is sectional drawing. FIG. 5 is a diagram schematically showing a state in which the bottom surface of the substantially U-shaped groove of the positive electrode current collector is welded to the spiral electrode group in which the bent groove portion is formed, and FIG. FIG. 5B is a cross-sectional view showing a cross section in a direction parallel to the winding direction of the spiral electrode group at FIG. 5B, and FIG. 5B is a cross-sectional view showing a cross section in a direction perpendicular to the winding direction of the spiral electrode group in the bent groove portion. It is. FIG. 6 is a diagram schematically showing a state in which the bottom surface of the substantially U-shaped groove of the positive electrode current collector is welded to the spiral electrode group in which the bent groove portion is not formed, and FIG. It is sectional drawing which shows the cross section of the direction parallel to the winding direction of a spiral electrode group, FIG.6 (b) is sectional drawing which shows the cross section of a direction perpendicular | vertical to the winding direction of the spiral electrode group in a U-shaped groove. .

1.正極板
正極活物質としてのコバルト酸リチウム(LiCoO2)粉末94質量%と、導電剤としてのアセチレンブラックあるいはグラファイトなどの炭素系粉末3質量%とを混合して正極合剤を調製した。この正極合剤と、ポリフッ化ビニリデン(PVdF)からなる結着剤3質量%とをN−メチル−2−ピロリドン(NMP)からなる有機溶剤に溶解した結着剤溶液とを混練して、正極活物質スラリーを調製した。なお、正極活物質としては上述したLiCoO2以外に、LixMO2(但し、MはCo,Ni,Mnの少なくとも1種で、0.45≦x≦1.20)で表されるリチウム遷移金属複合酸化物、例えば、LiNiO2,LiNiyCo1-y2(但し、0.01≦y≦0.99),Li0.5MnO2,LiMnO2などの1種単独、もしくは複数種を混合して用いるようにしてもよい。
1. Positive electrode plate A positive electrode mixture was prepared by mixing 94% by mass of lithium cobaltate (LiCoO 2 ) powder as a positive electrode active material and 3% by mass of carbon-based powder such as acetylene black or graphite as a conductive agent. This positive electrode mixture was kneaded with a binder solution prepared by dissolving 3% by mass of a binder composed of polyvinylidene fluoride (PVdF) in an organic solvent composed of N-methyl-2-pyrrolidone (NMP). An active material slurry was prepared. In addition to the above-described LiCoO 2 , the positive electrode active material is Li x MO 2 (where M is at least one of Co, Ni, and Mn, and 0.45 ≦ x ≦ 1.20). Metal composite oxide, for example, LiNiO 2 , LiNi y Co 1-y O 2 (where 0.01 ≦ y ≦ 0.99), Li 0.5 MnO 2 , LiMnO 2, etc. You may make it use.

ついで、アルミニウム箔(例えば、厚みが20μmのもの)からなる正極芯体11aを用意し、上述のように作製した正極活物質スラリーを正極芯体11aの片面に均一に塗布して、正極合剤層11bを形成した。この場合、正極合剤層11bの上側には正極活物質スラリーの塗布されていない所定幅(ここで、10mmとした)の非塗布部(正極芯体露出部)11cが正極芯体11aの端縁に沿って形成されるように塗布した。この後、乾燥機中を通過させて、スラリー作製時に必要であった有機溶剤(NMP)を除去して乾燥させた。乾燥後、ロールプレス機により厚みが0.06mmになるまで圧延して正極板を作製した。このようにして作製した正極板を幅が96mmとなる短冊状に切り出し、幅が10mmの帯状の正極芯体露出部11cを設けた正極板11を得た。   Next, a positive electrode core 11a made of an aluminum foil (for example, having a thickness of 20 μm) is prepared, and the positive electrode active material slurry prepared as described above is uniformly applied to one surface of the positive electrode core 11a. Layer 11b was formed. In this case, on the upper side of the positive electrode mixture layer 11b, a non-applied portion (positive electrode core exposed portion) 11c having a predetermined width (here, 10 mm) where the positive electrode active material slurry is not applied is an end of the positive electrode core body 11a. It was applied so as to form along the edge. Then, it was made to pass through a drier to remove the organic solvent (NMP) that was necessary at the time of slurry preparation and to dry. After drying, it was rolled with a roll press machine to a thickness of 0.06 mm to produce a positive electrode plate. The positive electrode plate thus produced was cut into a strip shape having a width of 96 mm to obtain a positive electrode plate 11 provided with a strip-shaped positive electrode core exposed portion 11c having a width of 10 mm.

2.負極板
負極活物質としての天然黒鉛粉末98質量%と、結着剤としてのカルボキシメチルセルロース(CMC)およびスチレンブタジエンゴム(SBR)をそれぞれ1質量%ずつ混合し、水を加えて混練して負極活物質スラリーを調製した。なお、負極活物質としては上述した天然黒鉛以外に、リチウムイオンを吸蔵・脱離し得るカーボン系材料、例えば、人造黒鉛、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体等を用いてもよいし、金属リチウム、リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金、SnO2、SnO、TiO2、Nb23等の電位が正極活物質に比べて卑な金属酸化物を用いてもよい。
2. Negative electrode plate 98% by mass of natural graphite powder as the negative electrode active material and 1% by mass of carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) as the binder were mixed, kneaded and mixed with water. A material slurry was prepared. As the negative electrode active material, in addition to the above-mentioned natural graphite, a carbon-based material capable of occluding and desorbing lithium ions, such as artificial graphite, carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof. May be used, and the potential of lithium alloys such as metallic lithium, lithium-aluminum alloy, lithium-lead alloy, lithium-tin alloy, SnO 2 , SnO, TiO 2 , Nb 2 O 3, etc. is higher than that of the positive electrode active material. A base metal oxide may be used.

ついで、銅箔(例えば、厚みが12μmのもの)からなる負極芯体12aを用意し、上述のように作製した負極活物質スラリーを負極芯体12aの片面に均一に塗布して、負極合剤層12bを形成した。この場合、負極合剤層12bの下側には負極活物質スラリーの塗布されていない所定幅(ここで、8mmとした)の非塗布部(負極芯体露出部)12cが形成されるように塗布した。この後、乾燥機中を通過させて乾燥させた。乾燥後、ロールプレス機により厚みが0.05mmになるまで圧延して負極板を作製した。このようにして作製した負極板を幅が98mmとなる短冊状に切り出し、幅が8mmの帯状の負極芯体露出部12cを設けた負極板12を得た。   Next, a negative electrode core body 12a made of copper foil (for example, having a thickness of 12 μm) is prepared, and the negative electrode active material slurry prepared as described above is uniformly applied to one surface of the negative electrode core body 12a. Layer 12b was formed. In this case, a non-applied portion (negative electrode core exposed portion) 12c having a predetermined width (here, 8 mm) where the negative electrode active material slurry is not applied is formed below the negative electrode mixture layer 12b. Applied. Then, it was dried by passing through a dryer. After drying, it was rolled with a roll press machine to a thickness of 0.05 mm to produce a negative electrode plate. The negative electrode plate thus produced was cut into a strip shape having a width of 98 mm to obtain a negative electrode plate 12 provided with a strip-shaped negative electrode core exposed portion 12c having a width of 8 mm.

3.渦巻状電極群
ついで、ポリエチレン製微多孔膜(厚みが0.022mmで、幅が100mmのもの)からなる帯状セパレータ13,13を用意し、上述のようにして作製した正極板11と負極板12とをそれぞれセパレータ13,13上に配置して幅方向へずらすとともに、これらの幅方向の中心線が一致するように重ね合わせた。これにより、正極芯体露出部11cおよび負極芯体露出部12cはセパレータ13の両端縁からそれぞれ外側へ突出することとなる。この後、巻取機によりこれらを渦巻状に巻回した後、最外周をテープ止めして渦巻状電極群10を作製した。なお、このようにして作製された渦巻状電極群10においては、一方の端部では正極板11の正極芯体露出部11cがセパレータ13の一方の端縁よりも外方へ突出し、他方の端部では負極板12の負極芯体露出部12cがセパレータ13の他方の端縁よりも外方へ突出している。
3. A spiral electrode group Next, strip separators 13 and 13 made of a polyethylene microporous film (thickness of 0.022 mm and width of 100 mm) are prepared, and the positive electrode plate 11 and the negative electrode plate 12 manufactured as described above. Were placed on the separators 13 and 13 and shifted in the width direction, and overlapped so that the center lines in the width direction coincided with each other. As a result, the positive electrode core exposed portion 11c and the negative electrode core exposed portion 12c protrude from the both end edges of the separator 13 outward. Then, after winding these in a spiral shape with a winder, the outermost periphery was taped to produce a spiral electrode group 10. In the spiral electrode group 10 manufactured in this way, the positive electrode core exposed portion 11c of the positive electrode plate 11 projects outward from one edge of the separator 13 at one end, and the other end. The negative electrode core exposed portion 12 c of the negative electrode plate 12 protrudes outward from the other edge of the separator 13.

上述のように作製した渦巻状電極群10の正極芯体露出部11cの上面にカッター(図示せず)を押し当てて、図2(b)に示すように、正極芯体露出部11cに一定の深さ(正極芯体露出部11cの先端部からセパレータ13の端部までで、例えば、2mm)で互に平行な一対のスリットX1,X2およびY1,Y2を形成した。この場合、一対のスリットX1,X2あるいはY1,Y2を、それらの幅が後述する正極集電体14に形成された断面形状が略U字状溝部14cの幅(外形寸法)と略同寸法になるように形成した。なお、ここでは、正極芯体露出部11cについてのみ説明するが、負極芯体露出部12cにおいても正極芯体露出部11cの場合と同様である。   A cutter (not shown) is pressed against the upper surface of the positive electrode core exposed portion 11c of the spiral electrode group 10 produced as described above, and as shown in FIG. 2B, the positive electrode core exposed portion 11c is constant. A pair of slits X1, X2 and Y1, Y2 parallel to each other were formed at a depth (from the tip of the positive electrode core exposed portion 11c to the end of the separator 13, for example, 2 mm). In this case, the width of the pair of slits X1, X2 or Y1, Y2 is approximately the same as the width (outside dimension) of the substantially U-shaped groove portion 14c. It formed so that it might become. Although only the positive electrode core exposed portion 11c will be described here, the negative electrode core exposed portion 12c is the same as that of the positive electrode core exposed portion 11c.

ついで、上述のようにして形成された一対のスリットX1,X2あるいはY1,Y2で仕切られた正極芯体露出部11cを渦巻状電極群10の外周側から中心部に向けて折り曲げた。これにより、渦巻状電極群10の正極芯体露出部11c側に折曲溝部11dが形成されることとなる。この場合、渦巻状電極群10の正極芯体露出部11c側に折曲溝部11dが形成されることにより、折曲溝部11dの上部両側には、正極芯体露出部11cの立設部11eが形成されることとなる。なお、渦巻状電極群10の負極芯体露出部12c側にも折曲溝部(図示せず)が形成され、この折曲溝部の下部両側には、負極芯体露出部12cの立設部(図示せず)が形成されることとなる。
ここで、折曲溝部11dが形成された渦巻状電極群10を渦巻状電極群aとし、折曲溝部11dを形成しない渦巻状電極群10を渦巻状電極群bとした。
Next, the positive electrode core exposed portion 11c partitioned by the pair of slits X1, X2 or Y1, Y2 formed as described above was bent from the outer peripheral side of the spiral electrode group 10 toward the center portion. As a result, the bent groove portion 11d is formed on the positive electrode core exposed portion 11c side of the spiral electrode group 10. In this case, the bent groove portion 11d is formed on the positive electrode core exposed portion 11c side of the spiral electrode group 10, so that the standing portions 11e of the positive electrode core exposed portion 11c are formed on both sides of the upper portion of the bent groove portion 11d. Will be formed. In addition, a bent groove portion (not shown) is also formed on the negative electrode core exposed portion 12c side of the spiral electrode group 10, and on both sides of the lower portion of the bent groove portion, a standing portion of the negative electrode core exposed portion 12c ( (Not shown) will be formed.
Here, the spiral electrode group 10 in which the bent groove portion 11d is formed is referred to as a spiral electrode group a, and the spiral electrode group 10 in which the bent groove portion 11d is not formed is referred to as a spiral electrode group b.

4.渦巻状電極体
ついで、正極集電体14を用意した。ここで、正極集電体14は、図3に示すように、円形の平板状本体部14aと、この本体部14aから延出したリード部14eとを備え、これらが一体的に形成されている。また、平板状本体部14aには、その中心部に中心開口14bと、この中心開口14bから放射状に伸びる複数本の断面形状が略U字状溝部14cと、中心開口14bの周囲に複数の注液孔14dとを備え、これらが一体的に形成されている。なお、図3においては、正極集電体14のみを図示しているが、負極集電体も正極集電体14とほぼ同様な構成となるので、その説明は省略する。
4). Spiral electrode body Next, a positive electrode current collector 14 was prepared. Here, as shown in FIG. 3, the positive electrode current collector 14 includes a circular flat plate-like main body portion 14a and a lead portion 14e extending from the main body portion 14a, and these are integrally formed. . The flat plate-like main body portion 14a has a central opening 14b at the center thereof, and a plurality of cross-sectional shapes extending radially from the central opening 14b. The substantially U-shaped groove portion 14c and a plurality of notes around the central opening 14b. The liquid hole 14d is provided, and these are integrally formed. In FIG. 3, only the positive electrode current collector 14 is illustrated, but the negative electrode current collector has substantially the same configuration as the positive electrode current collector 14, and thus description thereof is omitted.

ついで、渦巻状電極群aの上に正極集電体14を配置し、正極芯体露出部11c側に形成された折曲溝部11dに、正極集電体14に形成された略U字状溝部14cを合わせて、折曲溝部11dに略U字状溝部14cを嵌合させた。   Next, the positive electrode current collector 14 is disposed on the spiral electrode group a, and the substantially U-shaped groove portion formed in the positive electrode current collector 14 is formed in the bent groove portion 11d formed on the positive electrode core body exposed portion 11c side. The substantially U-shaped groove part 14c was fitted to the bending groove part 11d.

ついで、図4(a)に示すように、略U字状溝部14cの底面の中心部に沿ってレーザ光Laを照射した。この後、略U字状溝部14cの一方の側壁の高さ方向の中心部に沿ってレーザ光Lbを照射し、さらに、他方の側壁の高さ方向の中心部に沿ってレーザ光Lcを照射した。これにより、略U字状溝部14cの底面と折曲溝部11dとの接触面に第1溶接部15aが形成され、略U字状溝部14cの一方の側壁と正極芯体露出部11cの立設部11eとの接触面に第2溶接部15bが形成され、略U字状溝部14cの他方の側壁と正極芯体露出部11cの立設部11eとの接触面に第3溶接部15cが形成されることとなる。   Next, as shown in FIG. 4A, the laser beam La was irradiated along the center of the bottom surface of the substantially U-shaped groove 14c. Thereafter, the laser beam Lb is irradiated along the central portion in the height direction of one side wall of the substantially U-shaped groove portion 14c, and further, the laser beam Lc is irradiated along the central portion in the height direction of the other side wall. did. Thereby, the 1st welding part 15a is formed in the contact surface of the bottom face of the substantially U-shaped groove part 14c, and the bending groove part 11d, and one side wall of the substantially U-shaped groove part 14c and the positive electrode core body exposed part 11c are erected. The second welded portion 15b is formed on the contact surface with the portion 11e, and the third welded portion 15c is formed on the contact surface between the other side wall of the substantially U-shaped groove portion 14c and the standing portion 11e of the positive electrode core exposed portion 11c. Will be.

一方、渦巻状電極群aの下に配置された負極集電体の略U字状溝部を負極芯体露出部12c側に形成された折曲溝部に嵌合させた後、上述と同様に、レーザ光La,Lb,Lcを照射して、負極集電体の略U字状溝部の底面と折曲溝部との接触面、略U字状溝部の一方の側壁と負極芯体露出部12cの立設部との接触面、および略U字状溝部の他方の側壁と負極芯体露出部12cの立設部との接触面にそれぞれ溶接部を形成し、電極体A1を作製した。   On the other hand, after fitting the substantially U-shaped groove part of the negative electrode current collector disposed under the spiral electrode group a into the bent groove part formed on the negative electrode core exposed part 12c side, The laser light La, Lb, Lc is irradiated to contact the bottom surface of the substantially U-shaped groove portion of the negative electrode current collector with the bent groove portion, one side wall of the substantially U-shaped groove portion, and the negative electrode core exposed portion 12c. A welded portion was formed on the contact surface with the upright portion and the contact surface between the other side wall of the substantially U-shaped groove and the upright portion of the negative electrode core exposed portion 12c, thereby producing an electrode body A1.

また、渦巻状電極群aの上に正極集電体14を配置し、正極芯体露出部11c側に形成された折曲溝部11dに、正極集電体14に形成された略U字状溝部14cを合わせて、折曲溝部11dに略U字状溝部14cを嵌合させた。ついで、図5(a)に示すように、略U字状溝部14cの底面の中心部に沿ってレーザ光Laを照射した。これにより、略U字状溝部14cの底面と折曲溝部11dとの接触面に溶接部16aが形成されることとなる。
一方、渦巻状電極群aの下に配置された負極集電体の略U字状溝部を負極芯体露出部12c側に形成された折曲溝部に嵌合させた後、上述と同様に、レーザ光Laを照射して、負極集電体の略U字状溝部の底面と折曲溝部との接触面に溶接部を形成し、電極体B1を作製した。
Further, the positive electrode current collector 14 is disposed on the spiral electrode group a, and the substantially U-shaped groove portion formed in the positive electrode current collector 14 is formed in the bent groove portion 11d formed on the positive electrode core body exposed portion 11c side. The substantially U-shaped groove part 14c was fitted to the bending groove part 11d. Then, as shown in FIG. 5A, the laser beam La was irradiated along the center of the bottom surface of the substantially U-shaped groove 14c. Thereby, the welding part 16a will be formed in the contact surface of the bottom face of the substantially U-shaped groove part 14c, and the bending groove part 11d.
On the other hand, after fitting the substantially U-shaped groove part of the negative electrode current collector disposed under the spiral electrode group a into the bent groove part formed on the negative electrode core exposed part 12c side, The laser beam La was irradiated to form a welded portion on the contact surface between the bottom surface of the substantially U-shaped groove portion of the negative electrode current collector and the bent groove portion, thereby producing an electrode body B1.

さらに、渦巻状電極群bの上に正極集電体14を配置し、正極芯体露出部11cに正極集電体14の本体部14aを押し付けることにより、正極集電体14の略U字状溝部14cを正極芯体露出部11cに食い込ませた。ついで、ついで、図6(a)に示すように、略U字状溝部14cの底面の中心部に沿ってレーザ光Laを照射した。これにより、略U字状溝部14cの底面と正極芯体露出部11cとの接触面に溶接部17aが形成されることとなる。
一方、渦巻状電極群bの下に配置された負極集電体の本体部を押し付けることにより、負極集電体の溝を負極芯体露出部12cに食い込ませた後、上述と同様に、レーザ光Laを照射して、負極集電体の略U字状溝部の底面と負極芯体露出部12cとの接触面に溶接部を形成し、電極体C1を作製した。
Furthermore, the positive electrode current collector 14 is disposed on the spiral electrode group b, and the main body portion 14a of the positive electrode current collector 14 is pressed against the positive electrode core body exposed portion 11c, so that the substantially U-shape of the positive electrode current collector 14 is obtained. The groove part 14c was made to bite into the positive electrode core exposed part 11c. Next, as shown in FIG. 6A, the laser beam La was irradiated along the center of the bottom surface of the substantially U-shaped groove 14c. Thereby, the welding part 17a will be formed in the contact surface of the bottom face of the substantially U-shaped groove part 14c, and the positive electrode core exposed part 11c.
On the other hand, after pressing the main body portion of the negative electrode current collector disposed under the spiral electrode group b, the groove of the negative electrode current collector is caused to bite into the negative electrode core body exposed portion 12c, and then, as described above, the laser Irradiated with light La, a welded portion was formed on the contact surface between the bottom surface of the substantially U-shaped groove of the negative electrode current collector and the negative electrode core exposed portion 12c, and an electrode body C1 was produced.

5.非水電解液二次電池
ついで、上述のように作製した電極体A1,B1,C1を円筒状の金属製外装缶に挿入する。この後、負極集電体の本体部から延出した負極リードを外装缶の底部内面にスポット溶接した後、正極集電体14の本体部14aから延出した正極リード14eを封口体(なお、この封口体の内部には圧力弁が設けられているとともに周囲に絶縁ガスケットが配設されている:図示せず)の底部にレーザ溶接する。ついで、外装缶内にエチレンカーボネート(EC)とジエチルカーボネート(DEC)を3:7の容積比で混合した混合溶媒に、電解質としてLiPF6を1モル/リットルの割合で溶解させた非水電解液を注液した後、封口体を外装缶の開口部の下部周囲に形成された絞り部に配置し、外装缶の開口部を封口体側にかしめて密封することにより、円筒形非水電解液二次電池(A,B,C)が作製される。
5). Non-aqueous electrolyte secondary battery Next, the electrode bodies A1, B1, C1 produced as described above are inserted into a cylindrical metal outer can. Thereafter, the negative electrode lead extending from the main body portion of the negative electrode current collector is spot welded to the inner surface of the bottom of the outer can, and then the positive electrode lead 14e extending from the main body portion 14a of the positive electrode current collector 14 is sealed with a sealing body (in addition, A pressure valve is provided inside the sealing body, and an insulating gasket is provided around it (not shown). Laser welding is performed on the bottom of the sealing body. Next, a nonaqueous electrolytic solution in which LiPF 6 was dissolved as an electrolyte at a ratio of 1 mol / liter in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7 in the outer can. After the liquid is injected, the sealing body is placed in the throttle part formed around the lower part of the opening of the outer can, and the opening of the outer can is caulked to the sealing body side to seal it, so that the cylindrical non-aqueous electrolyte solution 2 is sealed. Secondary batteries (A, B, C) are produced.

ここで、電極体A1を用いたものを電池Aとし、電極体B1を用いたものを電池Bとし、電極体C1を用いたものを電池Cとした。なお、電解質としては、上述した六フッ化リン酸リチウム(LiPF6)以外に、過塩素酸リチウム(LiClO4)、ホウフッ化リチウム(LiBF4)、六フッ化珪酸リチウム(LiAsF6)、トリフルオロメチルスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム(LiN(CF3SO22)などのリチウム塩を用いるようにしてもよい。また、有機溶媒に対する溶解量としては、1モル/リットルに限らず、0.5〜2.0モル/リットルとするのが好ましい。 Here, a battery using the electrode body A1 was designated as a battery A, a battery using the electrode body B1 was designated as a battery B, and a battery using the electrode body C1 was designated as a battery C. As the electrolyte, in addition to the above-described lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), lithium hexafluorosilicate (LiAsF 6 ), trifluoro A lithium salt such as lithium methyl sulfonate (LiCF 3 SO 3 ) or lithium bistrifluoromethylsulfonylimide (LiN (CF 3 SO 2 ) 2 ) may be used. In addition, the amount dissolved in the organic solvent is not limited to 1 mol / liter, but is preferably 0.5 to 2.0 mol / liter.

上述のようにして作製した各電池A,B,Cを用いて、これらの各電池A,B,Cを周波数1kHzでの交流インピーダンスを測定することにより、各電池A,B,Cの内部抵抗(mΩ)を求めると、下記の表1に示すような結果となった。

Figure 2007265846
Using the batteries A, B, and C produced as described above, the internal resistance of each of the batteries A, B, and C is measured by measuring the AC impedance of each of the batteries A, B, and C at a frequency of 1 kHz. When (mΩ) was obtained, the results shown in Table 1 below were obtained.
Figure 2007265846

上記表1の結果から明らかなように、電池Cは内部抵抗が0.81mΩと大きいことが分かる。これは、電池Cにおいては、正極芯体露出部11cに正極集電体14の本体部14aを押し付けることにより、正極集電体14に形成された略U字状溝部14cを正極芯体露出部11cに食い込ませるようにしている。このため、正極芯体露出部11cと正極集電体14に形成された略U字状溝部14cの底面との接触が十分ではなく、これらの接触面に十分な溶接部17aが形成されなかったと考えられる。
また、略U字状溝部14cを正極芯体露出部11cに食い込ませるようにすると、図6(b)に示すように、正極芯体露出部11c間に隙間Z(図6(b)の丸印内参照)が生じ、この状態でレーザ光Laを照射すると、レーザ光Laが溝14cの底壁を貫通して隙間Z内に浸入するようになる。これにより、溶接ちりが電極体内に飛散して短絡が発生するという不具合が生じるようになる。
As is apparent from the results in Table 1, the battery C has a large internal resistance of 0.81 mΩ. In the battery C, by pressing the main body portion 14a of the positive electrode current collector 14 against the positive electrode core exposed portion 11c, the substantially U-shaped groove portion 14c formed in the positive electrode current collector 14 is changed to the positive electrode core exposed portion. 11c is bitten. For this reason, the contact between the positive electrode core exposed portion 11c and the bottom surface of the substantially U-shaped groove portion 14c formed in the positive electrode current collector 14 is not sufficient, and a sufficient welded portion 17a is not formed on these contact surfaces. Conceivable.
Further, when the substantially U-shaped groove portion 14c is made to bite into the positive electrode core exposed portion 11c, as shown in FIG. 6 (b), a gap Z (a circle in FIG. 6 (b)) is formed between the positive electrode core exposed portions 11c. When the laser beam La is irradiated in this state, the laser beam La penetrates the bottom wall of the groove 14c and enters the gap Z. Thereby, the malfunction that a welding dust scatters in an electrode body and a short circuit arises arises.

一方、電池Bは内部抵抗は0.77mΩとなって、電池Cよりも内部抵抗が改善されていることが分かる。これは、電池Bにおいては、略U字状溝部14cの底面と折曲溝部11dとの接触面に溶接部16aが形成されているので、正極芯体露出部11cと略U字状溝部14cの底面との接触が良好となる。これにより、折曲溝部11d内での正極芯体露出部11cと溝14cの底面との溶接部16aが安定して、内部抵抗が低下したと考えられる。この場合、正極芯体露出部11cにその端部が折り曲げられて折曲溝部11dが形成されているので、レーザ光Laが溝14cを貫通して電極体内に浸入することはない。   On the other hand, the battery B has an internal resistance of 0.77 mΩ, which indicates that the internal resistance is improved compared to the battery C. In the battery B, since the welded portion 16a is formed on the contact surface between the bottom surface of the substantially U-shaped groove portion 14c and the bent groove portion 11d, the positive electrode core body exposed portion 11c and the substantially U-shaped groove portion 14c Good contact with the bottom surface. Thereby, it is considered that the welded portion 16a between the positive electrode core body exposed portion 11c and the bottom surface of the groove 14c in the bent groove portion 11d is stabilized, and the internal resistance is reduced. In this case, since the end portion of the positive electrode core exposed portion 11c is bent to form the bent groove portion 11d, the laser light La does not penetrate the groove 14c and enter the electrode body.

これらに対して、電池Aは内部抵抗は0.75mΩとなって、電池C、電池Bよりもさらに内部抵抗が改善されていることが分かる。これは、電池Aにおいては、略U字状溝部14cの底面と折曲溝部11dとの接触面に第1溶接部15aが形成され、略U字状溝部14cの一方の側壁と正極芯体露出部11cの立設部11eとの接触面に第2溶接部15bが形成され、略U字状溝部14cの他方の側壁と正極芯体露出部11cの立設部11eとの接触面に第3溶接部15cが形成されているので、正極芯体露出部11cと略U字状溝部14cの底面および側面での接触が良好となる。これにより、第1溶接部15a、第2溶接部15bおよび第3溶接部15cが安定して形成されるようになって、内部抵抗がさらに低下したと考えられる。   On the other hand, the battery A has an internal resistance of 0.75 mΩ, which indicates that the internal resistance is further improved than the batteries C and B. In the battery A, the first welded portion 15a is formed on the contact surface between the bottom surface of the substantially U-shaped groove portion 14c and the bent groove portion 11d, and one side wall of the substantially U-shaped groove portion 14c and the positive electrode core body are exposed. A second welded portion 15b is formed on the contact surface of the portion 11c with the standing portion 11e, and a third surface is formed on the contact surface between the other side wall of the substantially U-shaped groove portion 14c and the standing portion 11e of the positive electrode core exposed portion 11c. Since the welded portion 15c is formed, the positive electrode core exposed portion 11c and the contact between the bottom surface and the side surface of the substantially U-shaped groove portion 14c are improved. Thereby, the 1st weld part 15a, the 2nd weld part 15b, and the 3rd weld part 15c came to be formed stably, and it is thought that internal resistance fell further.

上述したように、本発明の円筒形電池においては、集電体を安定して芯体露出部に溶接できるような溶接構造となるようになされているので、内部抵抗が低減した円筒形電池を得ることが可能となるとともに、製造が容易で生産効率も向上した円筒形電池を製造することが可能となる。   As described above, in the cylindrical battery according to the present invention, since the current collector is stably welded to the core exposed portion, the cylindrical battery with reduced internal resistance is provided. It is possible to obtain a cylindrical battery that can be easily obtained and that is easy to manufacture and has improved production efficiency.

なお、上述した実施の形態においては、レーザ光を照射して渦巻電極群の両端部に正極集電体と負極集電体を溶接する例について説明したが、レーザ光に代えて、本発明のように電子線や他のエネルギー線を照射して溶接するようにしてもよいことは明らかである。また、上述した実施の形態においては、本発明を非水電解液二次電池に適用する例について説明したが、本発明の円筒形電池は、非水電解液二次電池に限らず、一方の端部に正極芯体露出部が形成され、他方の端部に負極芯体露出部が形成された渦巻電極群が円筒形外装缶内に収容された電池であれば、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池やその他の蓄電池に適用できることは明らかである。   In the above-described embodiment, the example in which the positive electrode current collector and the negative electrode current collector are welded to both ends of the spiral electrode group by irradiating the laser beam has been described. Thus, it is obvious that welding may be performed by irradiating an electron beam or other energy beam. In the above-described embodiment, the example in which the present invention is applied to a non-aqueous electrolyte secondary battery has been described. However, the cylindrical battery of the present invention is not limited to a non-aqueous electrolyte secondary battery. A nickel-hydrogen storage battery, a nickel-metal hydride battery, a nickel-hydrogen storage battery, a nickel battery, etc. -Clearly applicable to alkaline storage batteries such as cadmium storage batteries and other storage batteries.

渦巻電極群を巻回して作製する状態を模式的に示す斜視図である。It is a perspective view which shows typically the state produced by winding a spiral electrode group. 作製された渦巻電極群の上面から見た状態を模式的に示す上面図であり、図2(a)は作製直後の渦巻電極群を示しており、図2(b)は渦巻電極群の電極板から延出した芯体露出部に一対の平行なスリット(切り込み)を形成した状態を示しており、図2(c)は一対の平行なスリットで仕切られた芯体露出部を折り曲げて折曲溝部を形成した状態を示している。FIG. 2A is a top view schematically showing a state of the produced spiral electrode group as viewed from the upper surface, FIG. 2A shows the spiral electrode group immediately after production, and FIG. 2B is an electrode of the spiral electrode group. FIG. 2 (c) shows a state in which a pair of parallel slits (cuts) are formed in the core exposed portion extending from the plate, and FIG. 2 (c) folds and folds the core exposed portion partitioned by the pair of parallel slits. The state which formed the curved groove part is shown. 本発明の渦巻電極群に正極集電体を溶接する状態を模式的に示す図である。It is a figure which shows typically the state which welds a positive electrode electrical power collector to the spiral electrode group of this invention. 折曲溝部が形成された渦巻電極群に正極集電体の略U字溝の底面と側面が溶接された状態を模式的に示す図であり、図4(a)は、折曲溝部での渦巻電極群の巻回方向と平行な方向の断面を示す断面図であり、図4(b)は折曲溝部での渦巻電極群の巻回方向と垂直な方向の断面を示す断面図である。FIG. 4A is a diagram schematically illustrating a state in which the bottom surface and the side surface of the substantially U-shaped groove of the positive electrode current collector are welded to the spiral electrode group in which the bent groove portion is formed. FIG. FIG. 4B is a sectional view showing a section in a direction parallel to the winding direction of the spiral electrode group, and FIG. 4B is a sectional view showing a section in a direction perpendicular to the winding direction of the spiral electrode group at the bent groove portion. . 折曲溝部が形成された渦巻電極群に正極集電体の略U字溝の底面が溶接された状態を模式的に示す図であり、図5(a)は、折曲溝部での渦巻電極群の巻回方向と平行な方向の断面を示す断面図であり、図5(b)は折曲溝部での渦巻電極群の巻回方向と垂直な方向の断面を示す断面図である。FIG. 5A is a diagram schematically showing a state in which the bottom surface of the substantially U-shaped groove of the positive electrode current collector is welded to the spiral electrode group in which the bent groove portion is formed, and FIG. 5A is a view showing the spiral electrode in the bent groove portion. FIG. 5B is a cross-sectional view showing a cross section in a direction perpendicular to the winding direction of the spiral electrode group in the bent groove portion. 折曲溝部が形成されない渦巻電極群に正極集電体の略U字溝の底面が溶接された状態を模式的に示す図であり、図6(a)は、U字溝での渦巻電極群の巻回方向と平行な方向の断面を示す断面図であり、図6(b)はU字溝での渦巻電極群の巻回方向と垂直な方向の断面を示す断面図である。FIG. 6A is a diagram schematically illustrating a state in which the bottom surface of the substantially U-shaped groove of the positive electrode current collector is welded to a spiral electrode group in which a bent groove portion is not formed. FIG. 6A is a diagram illustrating a spiral electrode group in a U-shaped groove. FIG. 6B is a cross-sectional view showing a cross section of the spiral electrode group in the U-shaped groove in a direction perpendicular to the winding direction. 従来例の渦巻電極群に正極集電タブが溶接された状態を模式的に示す斜視図である。It is a perspective view which shows typically the state by which the positive electrode current collection tab was welded to the spiral electrode group of the prior art example.

符号の説明Explanation of symbols

10…渦巻状電極群、11…正極板、11a…正極芯体、11b…正極合剤層、11c…正極芯体露出部、11d…折曲溝部、11e…立設部、12…負極板、12a…負極芯体、12b…負極合剤層、12c…負極芯体露出部、13…セパレータ、14…正極集電体、14a…本体部、14b…中心開口、14c…略U字状溝部、14d…注液孔、14e…正極リード、15a…第1溶接部、15b…第2溶接部、15c…第3溶接部、16a…溶接部、17b…溶接部、La,Lb,Lc…レーザ光、X1,X2…スリット、Y1,Y2…スリット、Z…隙間 DESCRIPTION OF SYMBOLS 10 ... Spiral electrode group, 11 ... Positive electrode plate, 11a ... Positive electrode core, 11b ... Positive electrode mixture layer, 11c ... Positive electrode core exposed part, 11d ... Bending groove part, 11e ... Standing part, 12 ... Negative electrode plate, 12a ... negative electrode core, 12b ... negative electrode mixture layer, 12c ... negative electrode core exposed part, 13 ... separator, 14 ... positive electrode current collector, 14a ... main body part, 14b ... central opening, 14c ... substantially U-shaped groove part, 14d ... Injection hole, 14e ... Positive electrode lead, 15a ... 1st welding part, 15b ... 2nd welding part, 15c ... 3rd welding part, 16a ... Welding part, 17b ... Welding part, La, Lb, Lc ... Laser beam , X1, X2 ... slit, Y1, Y2 ... slit, Z ... gap

Claims (5)

渦巻状電極群の一方端部に形成された正極芯体露出部に正極集電体が溶接され、前記渦巻状電極群の他方端部に形成された負極芯体露出部に負極集電体が溶接された電極体を円筒形外装缶内に備えた円筒形電池であって、
前記集電体は中心開口と当該中心開口から放射状に形成された複数の略U字状溝部とを備え、
前記芯体露出部は当該芯体露出部に形成された互に平行な一対のスリットに沿って渦巻の中心方向に向けて折曲されて形成された複数の折曲溝部を備え、
前記折曲溝部上に前記集電体に形成された略U字状溝部が配置されていて、当該略U字状溝部の外底面と前記折曲溝部との接触面が溶接されているとともに、前記折曲溝部が形成されたことにより当該芯体露出部に残存した立設部と前記略U字状溝部の側壁との接触面が溶接されていることを特徴とする円筒形電池。
A positive electrode current collector is welded to the positive electrode core exposed part formed at one end of the spiral electrode group, and a negative electrode current collector is connected to the negative electrode core exposed part formed at the other end of the spiral electrode group. A cylindrical battery provided with a welded electrode body in a cylindrical outer can,
The current collector includes a central opening and a plurality of substantially U-shaped grooves formed radially from the central opening,
The core body exposed portion includes a plurality of bent groove portions formed by being bent toward the center direction of the spiral along a pair of mutually parallel slits formed in the core body exposed portion,
A substantially U-shaped groove formed on the current collector is disposed on the bent groove, and a contact surface between the outer bottom surface of the substantially U-shaped groove and the bent groove is welded. A cylindrical battery, wherein a contact surface between the standing portion remaining in the core exposed portion and the side wall of the substantially U-shaped groove is welded by forming the bent groove.
前記略U字状溝部は前記中心開口から互に直角となる4方向に形成されていることを特徴とする請求項1に記載の円筒形電池。   2. The cylindrical battery according to claim 1, wherein the substantially U-shaped groove is formed in four directions perpendicular to each other from the central opening. 前記折曲溝部は渦巻の中心から互に直角となる4方向に形成されていることを特徴とする請求項1に記載の円筒形電池。   The cylindrical battery according to claim 1, wherein the bent groove portion is formed in four directions perpendicular to each other from the center of the spiral. 渦巻状電極群の一方端部に形成された正極芯体露出部に正極集電体を溶接するとともに、前記渦巻状電極群の他方端部に形成された負極芯体露出部に負極集電体を溶接した電極体を円筒形外装缶内に収容して形成する円筒形電池の製造方法であって、
前記芯体露出部に渦巻の中心から放射状に互に平行な一対のスリットの複数組を形成するスリット形成工程と、
前記互に平行な一対のスリットに沿って渦巻の中心方向に向けて前記芯体露出部を折り曲げることにより折曲溝部を形成する折曲溝部形成工程と、
前記折曲溝部の上に集電体に形成された略U字状溝部を配置した後、当該略U字状溝部の底面上にエネルギー線を照射して、当該略U字状溝部の底面と前記折曲溝部との接触面を溶接する第1溶接工程と、
前記略U字状溝部の側壁にエネルギー線を照射して、当該略U字状溝部の側壁と当該芯体露出部に残存した立設部との接触面を溶接する第2溶接工程とを備えたことを特徴とする円筒形電池の製造方法。
A positive electrode current collector is welded to a positive electrode core exposed part formed at one end of the spiral electrode group, and a negative electrode current collector is connected to a negative electrode core exposed part formed at the other end of the spiral electrode group A method of manufacturing a cylindrical battery in which a welded electrode body is accommodated in a cylindrical outer can and formed,
A slit forming step of forming a plurality of pairs of slits radially parallel to each other from the center of the spiral in the core exposed portion;
A bent groove portion forming step of forming a bent groove portion by bending the core body exposed portion toward the center direction of the spiral along the pair of mutually parallel slits;
After arranging the substantially U-shaped groove part formed in the current collector on the bent groove part, the bottom surface of the substantially U-shaped groove part is irradiated with energy rays on the bottom surface of the substantially U-shaped groove part. A first welding step of welding a contact surface with the bent groove portion;
A second welding step of irradiating the side wall of the substantially U-shaped groove with an energy beam and welding the contact surface between the side wall of the substantially U-shaped groove and the standing portion remaining in the core exposed portion. A method for producing a cylindrical battery, characterized by comprising:
前記エネルギー線はレーザ光であることを特徴とする請求項4に記載の円筒形電池の製造方法。
The method for manufacturing a cylindrical battery according to claim 4, wherein the energy beam is a laser beam.
JP2006090492A 2006-03-29 2006-03-29 Cylindrical battery and its manufacturing method Pending JP2007265846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090492A JP2007265846A (en) 2006-03-29 2006-03-29 Cylindrical battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090492A JP2007265846A (en) 2006-03-29 2006-03-29 Cylindrical battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007265846A true JP2007265846A (en) 2007-10-11

Family

ID=38638633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090492A Pending JP2007265846A (en) 2006-03-29 2006-03-29 Cylindrical battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007265846A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054378A (en) * 2009-09-01 2011-03-17 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
CN103730624A (en) * 2013-12-19 2014-04-16 周培荣 End surface welding current collector of lithium battery
CN103730623A (en) * 2013-12-19 2014-04-16 周培荣 End surface welding cylindrical lithium battery
CN104218208A (en) * 2014-07-31 2014-12-17 中天储能科技有限公司 Full-lug current collecting disk
JPWO2013021463A1 (en) * 2011-08-09 2015-03-05 トヨタ自動車株式会社 Battery and battery manufacturing method
KR20160106645A (en) * 2014-02-10 2016-09-12 도요타지도샤가부시키가이샤 Electrical storage device and manufacturing method for electrical storage device
JP2016532990A (en) * 2013-09-25 2016-10-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for producing electrochemical bundle of lithium battery
US9664278B2 (en) 2013-06-12 2017-05-30 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP2018077959A (en) * 2016-11-07 2018-05-17 トヨタ自動車株式会社 Power storage device and manufacturing method of power storage device
CN109301150A (en) * 2018-11-14 2019-02-01 珠海格力电器股份有限公司 A kind of full tab core and the battery using the full tab core
US10615447B2 (en) 2016-03-18 2020-04-07 Toyota Jidosha Kabushiki Kaisha Secondary cell and manufacturing method thereof
CN111916642A (en) * 2020-07-15 2020-11-10 东莞塔菲尔新能源科技有限公司 Battery, battery module and electric vehicle
WO2021020139A1 (en) * 2019-07-30 2021-02-04 株式会社村田製作所 Secondary battery, battery pack, electronic device, electric tool, electric aircraft and electric vehicle
JPWO2021024734A1 (en) * 2019-08-08 2021-02-11
US11296390B2 (en) 2017-10-10 2022-04-05 Lg Energy Solution, Ltd. Cylindrical battery cell having connection cap
WO2022216076A1 (en) * 2021-04-09 2022-10-13 주식회사 엘지에너지솔루션 Electrode assembly, battery cell, battery cell processing device, and battery pack and vehicle comprising same
WO2023286600A1 (en) * 2021-07-14 2023-01-19 三洋電機株式会社 Cylindrical battery and method for manufacturing cylindrical battery
WO2023023917A1 (en) * 2021-08-23 2023-03-02 宁德时代新能源科技股份有限公司 Battery cell, fabrication method therefor and fabrication system thereof, battery, and electrical device
WO2023032454A1 (en) * 2021-08-30 2023-03-09 パナソニックホールディングス株式会社 Battery and bonding method
JP7428235B2 (en) 2020-03-04 2024-02-06 株式会社村田製作所 Secondary batteries, electronic equipment and power tools
WO2024082112A1 (en) * 2022-10-17 2024-04-25 宁德时代新能源科技股份有限公司 Battery cell, battery, and electrical apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746468A (en) * 1980-09-03 1982-03-16 Japan Storage Battery Co Ltd Preparation for an alkali storage battery
JPS62120263U (en) * 1986-01-24 1987-07-30
JP2000030731A (en) * 1998-06-16 2000-01-28 Saft America Inc Manufacture of electrochemical cell
JP2001068379A (en) * 1999-08-24 2001-03-16 Honda Motor Co Ltd Electric double layer capacitor
WO2001024206A1 (en) * 1999-09-30 2001-04-05 Asahi Glass Company, Limited Capacitor element
JP2001160387A (en) * 1999-09-21 2001-06-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP2001256952A (en) * 2000-03-14 2001-09-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2004119330A (en) * 2002-09-30 2004-04-15 Sanyo Electric Co Ltd Secondary battery and its manufacturing method
JP2005520344A (en) * 2002-03-13 2005-07-07 エプコス アクチエンゲゼルシャフト Cup-type casing and capacitor having casing
JP2006040902A (en) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd Secondary battery and manufacturing method of secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746468A (en) * 1980-09-03 1982-03-16 Japan Storage Battery Co Ltd Preparation for an alkali storage battery
JPS62120263U (en) * 1986-01-24 1987-07-30
JP2000030731A (en) * 1998-06-16 2000-01-28 Saft America Inc Manufacture of electrochemical cell
JP2001068379A (en) * 1999-08-24 2001-03-16 Honda Motor Co Ltd Electric double layer capacitor
JP2001160387A (en) * 1999-09-21 2001-06-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor
WO2001024206A1 (en) * 1999-09-30 2001-04-05 Asahi Glass Company, Limited Capacitor element
JP2001256952A (en) * 2000-03-14 2001-09-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005520344A (en) * 2002-03-13 2005-07-07 エプコス アクチエンゲゼルシャフト Cup-type casing and capacitor having casing
JP2004119330A (en) * 2002-09-30 2004-04-15 Sanyo Electric Co Ltd Secondary battery and its manufacturing method
JP2006040902A (en) * 2004-07-28 2006-02-09 Samsung Sdi Co Ltd Secondary battery and manufacturing method of secondary battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054378A (en) * 2009-09-01 2011-03-17 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
JPWO2013021463A1 (en) * 2011-08-09 2015-03-05 トヨタ自動車株式会社 Battery and battery manufacturing method
US9318770B2 (en) 2011-08-09 2016-04-19 Toyota Jidosha Kabushiki Kaisha Battery and method of manufacturing battery
US9664278B2 (en) 2013-06-12 2017-05-30 Toyota Jidosha Kabushiki Kaisha Control device for vehicle
JP2016532990A (en) * 2013-09-25 2016-10-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for producing electrochemical bundle of lithium battery
CN103730624A (en) * 2013-12-19 2014-04-16 周培荣 End surface welding current collector of lithium battery
CN103730623A (en) * 2013-12-19 2014-04-16 周培荣 End surface welding cylindrical lithium battery
US10468657B2 (en) 2014-02-10 2019-11-05 Toyota Jidosha Kabushiki Kaisha Electrical storage device and manufacturing method for electrical storage device
KR20160106645A (en) * 2014-02-10 2016-09-12 도요타지도샤가부시키가이샤 Electrical storage device and manufacturing method for electrical storage device
KR101881237B1 (en) * 2014-02-10 2018-07-23 도요타지도샤가부시키가이샤 Electrical storage device and manufacturing method for electrical storage device
CN105960722A (en) * 2014-02-10 2016-09-21 丰田自动车株式会社 Electrical storage device and manufacturing method for electrical storage device
CN104218208B (en) * 2014-07-31 2016-06-29 中天储能科技有限公司 A kind of full lug current collecting plates
CN104218208A (en) * 2014-07-31 2014-12-17 中天储能科技有限公司 Full-lug current collecting disk
US10615447B2 (en) 2016-03-18 2020-04-07 Toyota Jidosha Kabushiki Kaisha Secondary cell and manufacturing method thereof
JP2018077959A (en) * 2016-11-07 2018-05-17 トヨタ自動車株式会社 Power storage device and manufacturing method of power storage device
US11296390B2 (en) 2017-10-10 2022-04-05 Lg Energy Solution, Ltd. Cylindrical battery cell having connection cap
CN109301150B (en) * 2018-11-14 2021-02-23 珠海格力电器股份有限公司 Full-tab winding core and battery using same
CN109301150A (en) * 2018-11-14 2019-02-01 珠海格力电器股份有限公司 A kind of full tab core and the battery using the full tab core
WO2021020139A1 (en) * 2019-07-30 2021-02-04 株式会社村田製作所 Secondary battery, battery pack, electronic device, electric tool, electric aircraft and electric vehicle
JPWO2021024734A1 (en) * 2019-08-08 2021-02-11
WO2021024734A1 (en) * 2019-08-08 2021-02-11 株式会社村田製作所 Secondary battery, battery pack, electronic device, electric tool and electric vehicle
JP7047978B2 (en) 2019-08-08 2022-04-05 株式会社村田製作所 Rechargeable batteries, battery packs, electronic devices, power tools and electric vehicles
JP7428235B2 (en) 2020-03-04 2024-02-06 株式会社村田製作所 Secondary batteries, electronic equipment and power tools
CN111916642A (en) * 2020-07-15 2020-11-10 东莞塔菲尔新能源科技有限公司 Battery, battery module and electric vehicle
WO2022216076A1 (en) * 2021-04-09 2022-10-13 주식회사 엘지에너지솔루션 Electrode assembly, battery cell, battery cell processing device, and battery pack and vehicle comprising same
WO2023286600A1 (en) * 2021-07-14 2023-01-19 三洋電機株式会社 Cylindrical battery and method for manufacturing cylindrical battery
WO2023023917A1 (en) * 2021-08-23 2023-03-02 宁德时代新能源科技股份有限公司 Battery cell, fabrication method therefor and fabrication system thereof, battery, and electrical device
WO2023032454A1 (en) * 2021-08-30 2023-03-09 パナソニックホールディングス株式会社 Battery and bonding method
WO2024082112A1 (en) * 2022-10-17 2024-04-25 宁德时代新能源科技股份有限公司 Battery cell, battery, and electrical apparatus

Similar Documents

Publication Publication Date Title
JP2007265846A (en) Cylindrical battery and its manufacturing method
JP4806270B2 (en) Square battery
JP6567280B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method
JP2011081931A (en) Lithium ion secondary battery
JP2010055906A (en) Nonaqueous electrolyte secondary battery
JPWO2006049167A1 (en) Battery and center pin
JP2005108584A (en) Sealed rectangular battery
JP2008262825A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
CN103988339A (en) Secondary battery of novel structure
JP2012174411A (en) Battery
JP2014035939A (en) Non-aqueous electrolyte secondary battery
JP6097030B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2004006264A (en) Lithium secondary battery
KR101933655B1 (en) Battery Cell Having Recess Portion Formed at Portion of Electrode Tab
JP2008262826A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
JP2008262827A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
WO2012053556A1 (en) Non-aqueous electrolyte secondary cell
US10431846B2 (en) Energy storage device
JP5951404B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2012089402A (en) Lithium ion secondary battery
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
WO2012053557A1 (en) Non-aqueous electrolyte secondary cell
JP6241529B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6037713B2 (en) Nonaqueous electrolyte secondary battery
JP5064699B2 (en) Cylindrical battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904